• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2014 Scott Mansell
3  * Copyright © 2014 Broadcom
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  */
24 
25 #include <inttypes.h>
26 #include "util/u_format.h"
27 #include "util/crc32.h"
28 #include "util/u_math.h"
29 #include "util/u_memory.h"
30 #include "util/ralloc.h"
31 #include "util/hash_table.h"
32 #include "tgsi/tgsi_dump.h"
33 #include "tgsi/tgsi_parse.h"
34 #include "compiler/nir/nir.h"
35 #include "compiler/nir/nir_builder.h"
36 #include "compiler/nir_types.h"
37 #include "nir/tgsi_to_nir.h"
38 #include "vc4_context.h"
39 #include "vc4_qpu.h"
40 #include "vc4_qir.h"
41 
42 static struct qreg
43 ntq_get_src(struct vc4_compile *c, nir_src src, int i);
44 static void
45 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
46 
47 static int
type_size(const struct glsl_type * type)48 type_size(const struct glsl_type *type)
49 {
50    return glsl_count_attribute_slots(type, false);
51 }
52 
53 static void
resize_qreg_array(struct vc4_compile * c,struct qreg ** regs,uint32_t * size,uint32_t decl_size)54 resize_qreg_array(struct vc4_compile *c,
55                   struct qreg **regs,
56                   uint32_t *size,
57                   uint32_t decl_size)
58 {
59         if (*size >= decl_size)
60                 return;
61 
62         uint32_t old_size = *size;
63         *size = MAX2(*size * 2, decl_size);
64         *regs = reralloc(c, *regs, struct qreg, *size);
65         if (!*regs) {
66                 fprintf(stderr, "Malloc failure\n");
67                 abort();
68         }
69 
70         for (uint32_t i = old_size; i < *size; i++)
71                 (*regs)[i] = c->undef;
72 }
73 
74 static void
ntq_emit_thrsw(struct vc4_compile * c)75 ntq_emit_thrsw(struct vc4_compile *c)
76 {
77         if (!c->fs_threaded)
78                 return;
79 
80         /* Always thread switch after each texture operation for now.
81          *
82          * We could do better by batching a bunch of texture fetches up and
83          * then doing one thread switch and collecting all their results
84          * afterward.
85          */
86         qir_emit_nondef(c, qir_inst(QOP_THRSW, c->undef,
87                                     c->undef, c->undef));
88         c->last_thrsw_at_top_level = (c->execute.file == QFILE_NULL);
89 }
90 
91 static struct qreg
indirect_uniform_load(struct vc4_compile * c,nir_intrinsic_instr * intr)92 indirect_uniform_load(struct vc4_compile *c, nir_intrinsic_instr *intr)
93 {
94         struct qreg indirect_offset = ntq_get_src(c, intr->src[0], 0);
95         uint32_t offset = nir_intrinsic_base(intr);
96         struct vc4_compiler_ubo_range *range = NULL;
97         unsigned i;
98         for (i = 0; i < c->num_uniform_ranges; i++) {
99                 range = &c->ubo_ranges[i];
100                 if (offset >= range->src_offset &&
101                     offset < range->src_offset + range->size) {
102                         break;
103                 }
104         }
105         /* The driver-location-based offset always has to be within a declared
106          * uniform range.
107          */
108         assert(range);
109         if (!range->used) {
110                 range->used = true;
111                 range->dst_offset = c->next_ubo_dst_offset;
112                 c->next_ubo_dst_offset += range->size;
113                 c->num_ubo_ranges++;
114         }
115 
116         offset -= range->src_offset;
117 
118         /* Adjust for where we stored the TGSI register base. */
119         indirect_offset = qir_ADD(c, indirect_offset,
120                                   qir_uniform_ui(c, (range->dst_offset +
121                                                      offset)));
122 
123         /* Clamp to [0, array size).  Note that MIN/MAX are signed. */
124         indirect_offset = qir_MAX(c, indirect_offset, qir_uniform_ui(c, 0));
125         indirect_offset = qir_MIN_NOIMM(c, indirect_offset,
126                                         qir_uniform_ui(c, (range->dst_offset +
127                                                            range->size - 4)));
128 
129         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
130                      indirect_offset,
131                      qir_uniform(c, QUNIFORM_UBO_ADDR, 0));
132 
133         c->num_texture_samples++;
134 
135         ntq_emit_thrsw(c);
136 
137         return qir_TEX_RESULT(c);
138 }
139 
140 nir_ssa_def *
vc4_nir_get_swizzled_channel(nir_builder * b,nir_ssa_def ** srcs,int swiz)141 vc4_nir_get_swizzled_channel(nir_builder *b, nir_ssa_def **srcs, int swiz)
142 {
143         switch (swiz) {
144         default:
145         case PIPE_SWIZZLE_NONE:
146                 fprintf(stderr, "warning: unknown swizzle\n");
147                 /* FALLTHROUGH */
148         case PIPE_SWIZZLE_0:
149                 return nir_imm_float(b, 0.0);
150         case PIPE_SWIZZLE_1:
151                 return nir_imm_float(b, 1.0);
152         case PIPE_SWIZZLE_X:
153         case PIPE_SWIZZLE_Y:
154         case PIPE_SWIZZLE_Z:
155         case PIPE_SWIZZLE_W:
156                 return srcs[swiz];
157         }
158 }
159 
160 static struct qreg *
ntq_init_ssa_def(struct vc4_compile * c,nir_ssa_def * def)161 ntq_init_ssa_def(struct vc4_compile *c, nir_ssa_def *def)
162 {
163         struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
164                                           def->num_components);
165         _mesa_hash_table_insert(c->def_ht, def, qregs);
166         return qregs;
167 }
168 
169 /**
170  * This function is responsible for getting QIR results into the associated
171  * storage for a NIR instruction.
172  *
173  * If it's a NIR SSA def, then we just set the associated hash table entry to
174  * the new result.
175  *
176  * If it's a NIR reg, then we need to update the existing qreg assigned to the
177  * NIR destination with the incoming value.  To do that without introducing
178  * new MOVs, we require that the incoming qreg either be a uniform, or be
179  * SSA-defined by the previous QIR instruction in the block and rewritable by
180  * this function.  That lets us sneak ahead and insert the SF flag beforehand
181  * (knowing that the previous instruction doesn't depend on flags) and rewrite
182  * its destination to be the NIR reg's destination
183  */
184 static void
ntq_store_dest(struct vc4_compile * c,nir_dest * dest,int chan,struct qreg result)185 ntq_store_dest(struct vc4_compile *c, nir_dest *dest, int chan,
186                struct qreg result)
187 {
188         struct qinst *last_inst = NULL;
189         if (!list_empty(&c->cur_block->instructions))
190                 last_inst = (struct qinst *)c->cur_block->instructions.prev;
191 
192         assert(result.file == QFILE_UNIF ||
193                (result.file == QFILE_TEMP &&
194                 last_inst && last_inst == c->defs[result.index]));
195 
196         if (dest->is_ssa) {
197                 assert(chan < dest->ssa.num_components);
198 
199                 struct qreg *qregs;
200                 struct hash_entry *entry =
201                         _mesa_hash_table_search(c->def_ht, &dest->ssa);
202 
203                 if (entry)
204                         qregs = entry->data;
205                 else
206                         qregs = ntq_init_ssa_def(c, &dest->ssa);
207 
208                 qregs[chan] = result;
209         } else {
210                 nir_register *reg = dest->reg.reg;
211                 assert(dest->reg.base_offset == 0);
212                 assert(reg->num_array_elems == 0);
213                 struct hash_entry *entry =
214                         _mesa_hash_table_search(c->def_ht, reg);
215                 struct qreg *qregs = entry->data;
216 
217                 /* Insert a MOV if the source wasn't an SSA def in the
218                  * previous instruction.
219                  */
220                 if (result.file == QFILE_UNIF) {
221                         result = qir_MOV(c, result);
222                         last_inst = c->defs[result.index];
223                 }
224 
225                 /* We know they're both temps, so just rewrite index. */
226                 c->defs[last_inst->dst.index] = NULL;
227                 last_inst->dst.index = qregs[chan].index;
228 
229                 /* If we're in control flow, then make this update of the reg
230                  * conditional on the execution mask.
231                  */
232                 if (c->execute.file != QFILE_NULL) {
233                         last_inst->dst.index = qregs[chan].index;
234 
235                         /* Set the flags to the current exec mask.  To insert
236                          * the SF, we temporarily remove our SSA instruction.
237                          */
238                         list_del(&last_inst->link);
239                         qir_SF(c, c->execute);
240                         list_addtail(&last_inst->link,
241                                      &c->cur_block->instructions);
242 
243                         last_inst->cond = QPU_COND_ZS;
244                         last_inst->cond_is_exec_mask = true;
245                 }
246         }
247 }
248 
249 static struct qreg *
ntq_get_dest(struct vc4_compile * c,nir_dest * dest)250 ntq_get_dest(struct vc4_compile *c, nir_dest *dest)
251 {
252         if (dest->is_ssa) {
253                 struct qreg *qregs = ntq_init_ssa_def(c, &dest->ssa);
254                 for (int i = 0; i < dest->ssa.num_components; i++)
255                         qregs[i] = c->undef;
256                 return qregs;
257         } else {
258                 nir_register *reg = dest->reg.reg;
259                 assert(dest->reg.base_offset == 0);
260                 assert(reg->num_array_elems == 0);
261                 struct hash_entry *entry =
262                         _mesa_hash_table_search(c->def_ht, reg);
263                 return entry->data;
264         }
265 }
266 
267 static struct qreg
ntq_get_src(struct vc4_compile * c,nir_src src,int i)268 ntq_get_src(struct vc4_compile *c, nir_src src, int i)
269 {
270         struct hash_entry *entry;
271         if (src.is_ssa) {
272                 entry = _mesa_hash_table_search(c->def_ht, src.ssa);
273                 assert(i < src.ssa->num_components);
274         } else {
275                 nir_register *reg = src.reg.reg;
276                 entry = _mesa_hash_table_search(c->def_ht, reg);
277                 assert(reg->num_array_elems == 0);
278                 assert(src.reg.base_offset == 0);
279                 assert(i < reg->num_components);
280         }
281 
282         struct qreg *qregs = entry->data;
283         return qregs[i];
284 }
285 
286 static struct qreg
ntq_get_alu_src(struct vc4_compile * c,nir_alu_instr * instr,unsigned src)287 ntq_get_alu_src(struct vc4_compile *c, nir_alu_instr *instr,
288                 unsigned src)
289 {
290         assert(util_is_power_of_two(instr->dest.write_mask));
291         unsigned chan = ffs(instr->dest.write_mask) - 1;
292         struct qreg r = ntq_get_src(c, instr->src[src].src,
293                                     instr->src[src].swizzle[chan]);
294 
295         assert(!instr->src[src].abs);
296         assert(!instr->src[src].negate);
297 
298         return r;
299 };
300 
301 static inline struct qreg
qir_SAT(struct vc4_compile * c,struct qreg val)302 qir_SAT(struct vc4_compile *c, struct qreg val)
303 {
304         return qir_FMAX(c,
305                         qir_FMIN(c, val, qir_uniform_f(c, 1.0)),
306                         qir_uniform_f(c, 0.0));
307 }
308 
309 static struct qreg
ntq_rcp(struct vc4_compile * c,struct qreg x)310 ntq_rcp(struct vc4_compile *c, struct qreg x)
311 {
312         struct qreg r = qir_RCP(c, x);
313 
314         /* Apply a Newton-Raphson step to improve the accuracy. */
315         r = qir_FMUL(c, r, qir_FSUB(c,
316                                     qir_uniform_f(c, 2.0),
317                                     qir_FMUL(c, x, r)));
318 
319         return r;
320 }
321 
322 static struct qreg
ntq_rsq(struct vc4_compile * c,struct qreg x)323 ntq_rsq(struct vc4_compile *c, struct qreg x)
324 {
325         struct qreg r = qir_RSQ(c, x);
326 
327         /* Apply a Newton-Raphson step to improve the accuracy. */
328         r = qir_FMUL(c, r, qir_FSUB(c,
329                                     qir_uniform_f(c, 1.5),
330                                     qir_FMUL(c,
331                                              qir_uniform_f(c, 0.5),
332                                              qir_FMUL(c, x,
333                                                       qir_FMUL(c, r, r)))));
334 
335         return r;
336 }
337 
338 static struct qreg
ntq_umul(struct vc4_compile * c,struct qreg src0,struct qreg src1)339 ntq_umul(struct vc4_compile *c, struct qreg src0, struct qreg src1)
340 {
341         struct qreg src0_hi = qir_SHR(c, src0,
342                                       qir_uniform_ui(c, 24));
343         struct qreg src1_hi = qir_SHR(c, src1,
344                                       qir_uniform_ui(c, 24));
345 
346         struct qreg hilo = qir_MUL24(c, src0_hi, src1);
347         struct qreg lohi = qir_MUL24(c, src0, src1_hi);
348         struct qreg lolo = qir_MUL24(c, src0, src1);
349 
350         return qir_ADD(c, lolo, qir_SHL(c,
351                                         qir_ADD(c, hilo, lohi),
352                                         qir_uniform_ui(c, 24)));
353 }
354 
355 static struct qreg
ntq_scale_depth_texture(struct vc4_compile * c,struct qreg src)356 ntq_scale_depth_texture(struct vc4_compile *c, struct qreg src)
357 {
358         struct qreg depthf = qir_ITOF(c, qir_SHR(c, src,
359                                                  qir_uniform_ui(c, 8)));
360         return qir_FMUL(c, depthf, qir_uniform_f(c, 1.0f/0xffffff));
361 }
362 
363 /**
364  * Emits a lowered TXF_MS from an MSAA texture.
365  *
366  * The addressing math has been lowered in NIR, and now we just need to read
367  * it like a UBO.
368  */
369 static void
ntq_emit_txf(struct vc4_compile * c,nir_tex_instr * instr)370 ntq_emit_txf(struct vc4_compile *c, nir_tex_instr *instr)
371 {
372         uint32_t tile_width = 32;
373         uint32_t tile_height = 32;
374         uint32_t tile_size = (tile_height * tile_width *
375                               VC4_MAX_SAMPLES * sizeof(uint32_t));
376 
377         unsigned unit = instr->texture_index;
378         uint32_t w = align(c->key->tex[unit].msaa_width, tile_width);
379         uint32_t w_tiles = w / tile_width;
380         uint32_t h = align(c->key->tex[unit].msaa_height, tile_height);
381         uint32_t h_tiles = h / tile_height;
382         uint32_t size = w_tiles * h_tiles * tile_size;
383 
384         struct qreg addr;
385         assert(instr->num_srcs == 1);
386         assert(instr->src[0].src_type == nir_tex_src_coord);
387         addr = ntq_get_src(c, instr->src[0].src, 0);
388 
389         /* Perform the clamping required by kernel validation. */
390         addr = qir_MAX(c, addr, qir_uniform_ui(c, 0));
391         addr = qir_MIN_NOIMM(c, addr, qir_uniform_ui(c, size - 4));
392 
393         qir_ADD_dest(c, qir_reg(QFILE_TEX_S_DIRECT, 0),
394                      addr, qir_uniform(c, QUNIFORM_TEXTURE_MSAA_ADDR, unit));
395 
396         ntq_emit_thrsw(c);
397 
398         struct qreg tex = qir_TEX_RESULT(c);
399         c->num_texture_samples++;
400 
401         enum pipe_format format = c->key->tex[unit].format;
402         if (util_format_is_depth_or_stencil(format)) {
403                 struct qreg scaled = ntq_scale_depth_texture(c, tex);
404                 for (int i = 0; i < 4; i++)
405                         ntq_store_dest(c, &instr->dest, i, qir_MOV(c, scaled));
406         } else {
407                 for (int i = 0; i < 4; i++)
408                         ntq_store_dest(c, &instr->dest, i,
409                                        qir_UNPACK_8_F(c, tex, i));
410         }
411 }
412 
413 static void
ntq_emit_tex(struct vc4_compile * c,nir_tex_instr * instr)414 ntq_emit_tex(struct vc4_compile *c, nir_tex_instr *instr)
415 {
416         struct qreg s, t, r, lod, compare;
417         bool is_txb = false, is_txl = false;
418         unsigned unit = instr->texture_index;
419 
420         if (instr->op == nir_texop_txf) {
421                 ntq_emit_txf(c, instr);
422                 return;
423         }
424 
425         for (unsigned i = 0; i < instr->num_srcs; i++) {
426                 switch (instr->src[i].src_type) {
427                 case nir_tex_src_coord:
428                         s = ntq_get_src(c, instr->src[i].src, 0);
429                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_1D)
430                                 t = qir_uniform_f(c, 0.5);
431                         else
432                                 t = ntq_get_src(c, instr->src[i].src, 1);
433                         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
434                                 r = ntq_get_src(c, instr->src[i].src, 2);
435                         break;
436                 case nir_tex_src_bias:
437                         lod = ntq_get_src(c, instr->src[i].src, 0);
438                         is_txb = true;
439                         break;
440                 case nir_tex_src_lod:
441                         lod = ntq_get_src(c, instr->src[i].src, 0);
442                         is_txl = true;
443                         break;
444                 case nir_tex_src_comparator:
445                         compare = ntq_get_src(c, instr->src[i].src, 0);
446                         break;
447                 default:
448                         unreachable("unknown texture source");
449                 }
450         }
451 
452         if (c->stage != QSTAGE_FRAG && !is_txl) {
453                 /* From the GLSL 1.20 spec:
454                  *
455                  *     "If it is mip-mapped and running on the vertex shader,
456                  *      then the base texture is used."
457                  */
458                 is_txl = true;
459                 lod = qir_uniform_ui(c, 0);
460         }
461 
462         if (c->key->tex[unit].force_first_level) {
463                 lod = qir_uniform(c, QUNIFORM_TEXTURE_FIRST_LEVEL, unit);
464                 is_txl = true;
465                 is_txb = false;
466         }
467 
468         struct qreg texture_u[] = {
469                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P0, unit),
470                 qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P1, unit),
471                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
472                 qir_uniform(c, QUNIFORM_CONSTANT, 0),
473         };
474         uint32_t next_texture_u = 0;
475 
476         /* There is no native support for GL texture rectangle coordinates, so
477          * we have to rescale from ([0, width], [0, height]) to ([0, 1], [0,
478          * 1]).
479          */
480         if (instr->sampler_dim == GLSL_SAMPLER_DIM_RECT) {
481                 s = qir_FMUL(c, s,
482                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_X, unit));
483                 t = qir_FMUL(c, t,
484                              qir_uniform(c, QUNIFORM_TEXRECT_SCALE_Y, unit));
485         }
486 
487         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE || is_txl) {
488                 texture_u[2] = qir_uniform(c, QUNIFORM_TEXTURE_CONFIG_P2,
489                                            unit | (is_txl << 16));
490         }
491 
492         struct qinst *tmu;
493         if (instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE) {
494                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0), r);
495                 tmu->src[qir_get_tex_uniform_src(tmu)] =
496                         texture_u[next_texture_u++];
497         } else if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
498                    c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP ||
499                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP_TO_BORDER ||
500                    c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
501                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_R, 0),
502                                    qir_uniform(c, QUNIFORM_TEXTURE_BORDER_COLOR,
503                                                unit));
504                 tmu->src[qir_get_tex_uniform_src(tmu)] =
505                         texture_u[next_texture_u++];
506         }
507 
508         if (c->key->tex[unit].wrap_s == PIPE_TEX_WRAP_CLAMP) {
509                 s = qir_SAT(c, s);
510         }
511 
512         if (c->key->tex[unit].wrap_t == PIPE_TEX_WRAP_CLAMP) {
513                 t = qir_SAT(c, t);
514         }
515 
516         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_T, 0), t);
517         tmu->src[qir_get_tex_uniform_src(tmu)] =
518                 texture_u[next_texture_u++];
519 
520         if (is_txl || is_txb) {
521                 tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_B, 0), lod);
522                 tmu->src[qir_get_tex_uniform_src(tmu)] =
523                         texture_u[next_texture_u++];
524         }
525 
526         tmu = qir_MOV_dest(c, qir_reg(QFILE_TEX_S, 0), s);
527         tmu->src[qir_get_tex_uniform_src(tmu)] = texture_u[next_texture_u++];
528 
529         c->num_texture_samples++;
530 
531         ntq_emit_thrsw(c);
532 
533         struct qreg tex = qir_TEX_RESULT(c);
534 
535         enum pipe_format format = c->key->tex[unit].format;
536 
537         struct qreg *dest = ntq_get_dest(c, &instr->dest);
538         if (util_format_is_depth_or_stencil(format)) {
539                 struct qreg normalized = ntq_scale_depth_texture(c, tex);
540                 struct qreg depth_output;
541 
542                 struct qreg u0 = qir_uniform_f(c, 0.0f);
543                 struct qreg u1 = qir_uniform_f(c, 1.0f);
544                 if (c->key->tex[unit].compare_mode) {
545                         /* From the GL_ARB_shadow spec:
546                          *
547                          *     "Let Dt (D subscript t) be the depth texture
548                          *      value, in the range [0, 1].  Let R be the
549                          *      interpolated texture coordinate clamped to the
550                          *      range [0, 1]."
551                          */
552                         compare = qir_SAT(c, compare);
553 
554                         switch (c->key->tex[unit].compare_func) {
555                         case PIPE_FUNC_NEVER:
556                                 depth_output = qir_uniform_f(c, 0.0f);
557                                 break;
558                         case PIPE_FUNC_ALWAYS:
559                                 depth_output = u1;
560                                 break;
561                         case PIPE_FUNC_EQUAL:
562                                 qir_SF(c, qir_FSUB(c, compare, normalized));
563                                 depth_output = qir_SEL(c, QPU_COND_ZS, u1, u0);
564                                 break;
565                         case PIPE_FUNC_NOTEQUAL:
566                                 qir_SF(c, qir_FSUB(c, compare, normalized));
567                                 depth_output = qir_SEL(c, QPU_COND_ZC, u1, u0);
568                                 break;
569                         case PIPE_FUNC_GREATER:
570                                 qir_SF(c, qir_FSUB(c, compare, normalized));
571                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
572                                 break;
573                         case PIPE_FUNC_GEQUAL:
574                                 qir_SF(c, qir_FSUB(c, normalized, compare));
575                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
576                                 break;
577                         case PIPE_FUNC_LESS:
578                                 qir_SF(c, qir_FSUB(c, compare, normalized));
579                                 depth_output = qir_SEL(c, QPU_COND_NS, u1, u0);
580                                 break;
581                         case PIPE_FUNC_LEQUAL:
582                                 qir_SF(c, qir_FSUB(c, normalized, compare));
583                                 depth_output = qir_SEL(c, QPU_COND_NC, u1, u0);
584                                 break;
585                         }
586                 } else {
587                         depth_output = normalized;
588                 }
589 
590                 for (int i = 0; i < 4; i++)
591                         dest[i] = depth_output;
592         } else {
593                 for (int i = 0; i < 4; i++)
594                         dest[i] = qir_UNPACK_8_F(c, tex, i);
595         }
596 }
597 
598 /**
599  * Computes x - floor(x), which is tricky because our FTOI truncates (rounds
600  * to zero).
601  */
602 static struct qreg
ntq_ffract(struct vc4_compile * c,struct qreg src)603 ntq_ffract(struct vc4_compile *c, struct qreg src)
604 {
605         struct qreg trunc = qir_ITOF(c, qir_FTOI(c, src));
606         struct qreg diff = qir_FSUB(c, src, trunc);
607         qir_SF(c, diff);
608 
609         qir_FADD_dest(c, diff,
610                       diff, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
611 
612         return qir_MOV(c, diff);
613 }
614 
615 /**
616  * Computes floor(x), which is tricky because our FTOI truncates (rounds to
617  * zero).
618  */
619 static struct qreg
ntq_ffloor(struct vc4_compile * c,struct qreg src)620 ntq_ffloor(struct vc4_compile *c, struct qreg src)
621 {
622         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
623 
624         /* This will be < 0 if we truncated and the truncation was of a value
625          * that was < 0 in the first place.
626          */
627         qir_SF(c, qir_FSUB(c, src, result));
628 
629         struct qinst *sub = qir_FSUB_dest(c, result,
630                                           result, qir_uniform_f(c, 1.0));
631         sub->cond = QPU_COND_NS;
632 
633         return qir_MOV(c, result);
634 }
635 
636 /**
637  * Computes ceil(x), which is tricky because our FTOI truncates (rounds to
638  * zero).
639  */
640 static struct qreg
ntq_fceil(struct vc4_compile * c,struct qreg src)641 ntq_fceil(struct vc4_compile *c, struct qreg src)
642 {
643         struct qreg result = qir_ITOF(c, qir_FTOI(c, src));
644 
645         /* This will be < 0 if we truncated and the truncation was of a value
646          * that was > 0 in the first place.
647          */
648         qir_SF(c, qir_FSUB(c, result, src));
649 
650         qir_FADD_dest(c, result,
651                       result, qir_uniform_f(c, 1.0))->cond = QPU_COND_NS;
652 
653         return qir_MOV(c, result);
654 }
655 
656 static struct qreg
ntq_fsin(struct vc4_compile * c,struct qreg src)657 ntq_fsin(struct vc4_compile *c, struct qreg src)
658 {
659         float coeff[] = {
660                 -2.0 * M_PI,
661                 pow(2.0 * M_PI, 3) / (3 * 2 * 1),
662                 -pow(2.0 * M_PI, 5) / (5 * 4 * 3 * 2 * 1),
663                 pow(2.0 * M_PI, 7) / (7 * 6 * 5 * 4 * 3 * 2 * 1),
664                 -pow(2.0 * M_PI, 9) / (9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
665         };
666 
667         struct qreg scaled_x =
668                 qir_FMUL(c,
669                          src,
670                          qir_uniform_f(c, 1.0 / (M_PI * 2.0)));
671 
672         struct qreg x = qir_FADD(c,
673                                  ntq_ffract(c, scaled_x),
674                                  qir_uniform_f(c, -0.5));
675         struct qreg x2 = qir_FMUL(c, x, x);
676         struct qreg sum = qir_FMUL(c, x, qir_uniform_f(c, coeff[0]));
677         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
678                 x = qir_FMUL(c, x, x2);
679                 sum = qir_FADD(c,
680                                sum,
681                                qir_FMUL(c,
682                                         x,
683                                         qir_uniform_f(c, coeff[i])));
684         }
685         return sum;
686 }
687 
688 static struct qreg
ntq_fcos(struct vc4_compile * c,struct qreg src)689 ntq_fcos(struct vc4_compile *c, struct qreg src)
690 {
691         float coeff[] = {
692                 -1.0f,
693                 pow(2.0 * M_PI, 2) / (2 * 1),
694                 -pow(2.0 * M_PI, 4) / (4 * 3 * 2 * 1),
695                 pow(2.0 * M_PI, 6) / (6 * 5 * 4 * 3 * 2 * 1),
696                 -pow(2.0 * M_PI, 8) / (8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
697                 pow(2.0 * M_PI, 10) / (10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1),
698         };
699 
700         struct qreg scaled_x =
701                 qir_FMUL(c, src,
702                          qir_uniform_f(c, 1.0f / (M_PI * 2.0f)));
703         struct qreg x_frac = qir_FADD(c,
704                                       ntq_ffract(c, scaled_x),
705                                       qir_uniform_f(c, -0.5));
706 
707         struct qreg sum = qir_uniform_f(c, coeff[0]);
708         struct qreg x2 = qir_FMUL(c, x_frac, x_frac);
709         struct qreg x = x2; /* Current x^2, x^4, or x^6 */
710         for (int i = 1; i < ARRAY_SIZE(coeff); i++) {
711                 if (i != 1)
712                         x = qir_FMUL(c, x, x2);
713 
714                 struct qreg mul = qir_FMUL(c,
715                                            x,
716                                            qir_uniform_f(c, coeff[i]));
717                 if (i == 0)
718                         sum = mul;
719                 else
720                         sum = qir_FADD(c, sum, mul);
721         }
722         return sum;
723 }
724 
725 static struct qreg
ntq_fsign(struct vc4_compile * c,struct qreg src)726 ntq_fsign(struct vc4_compile *c, struct qreg src)
727 {
728         struct qreg t = qir_get_temp(c);
729 
730         qir_SF(c, src);
731         qir_MOV_dest(c, t, qir_uniform_f(c, 0.0));
732         qir_MOV_dest(c, t, qir_uniform_f(c, 1.0))->cond = QPU_COND_ZC;
733         qir_MOV_dest(c, t, qir_uniform_f(c, -1.0))->cond = QPU_COND_NS;
734         return qir_MOV(c, t);
735 }
736 
737 static void
emit_vertex_input(struct vc4_compile * c,int attr)738 emit_vertex_input(struct vc4_compile *c, int attr)
739 {
740         enum pipe_format format = c->vs_key->attr_formats[attr];
741         uint32_t attr_size = util_format_get_blocksize(format);
742 
743         c->vattr_sizes[attr] = align(attr_size, 4);
744         for (int i = 0; i < align(attr_size, 4) / 4; i++) {
745                 c->inputs[attr * 4 + i] =
746                         qir_MOV(c, qir_reg(QFILE_VPM, attr * 4 + i));
747                 c->num_inputs++;
748         }
749 }
750 
751 static void
emit_fragcoord_input(struct vc4_compile * c,int attr)752 emit_fragcoord_input(struct vc4_compile *c, int attr)
753 {
754         c->inputs[attr * 4 + 0] = qir_ITOF(c, qir_reg(QFILE_FRAG_X, 0));
755         c->inputs[attr * 4 + 1] = qir_ITOF(c, qir_reg(QFILE_FRAG_Y, 0));
756         c->inputs[attr * 4 + 2] =
757                 qir_FMUL(c,
758                          qir_ITOF(c, qir_FRAG_Z(c)),
759                          qir_uniform_f(c, 1.0 / 0xffffff));
760         c->inputs[attr * 4 + 3] = qir_RCP(c, qir_FRAG_W(c));
761 }
762 
763 static struct qreg
emit_fragment_varying(struct vc4_compile * c,gl_varying_slot slot,uint8_t swizzle)764 emit_fragment_varying(struct vc4_compile *c, gl_varying_slot slot,
765                       uint8_t swizzle)
766 {
767         uint32_t i = c->num_input_slots++;
768         struct qreg vary = {
769                 QFILE_VARY,
770                 i
771         };
772 
773         if (c->num_input_slots >= c->input_slots_array_size) {
774                 c->input_slots_array_size =
775                         MAX2(4, c->input_slots_array_size * 2);
776 
777                 c->input_slots = reralloc(c, c->input_slots,
778                                           struct vc4_varying_slot,
779                                           c->input_slots_array_size);
780         }
781 
782         c->input_slots[i].slot = slot;
783         c->input_slots[i].swizzle = swizzle;
784 
785         return qir_VARY_ADD_C(c, qir_FMUL(c, vary, qir_FRAG_W(c)));
786 }
787 
788 static void
emit_fragment_input(struct vc4_compile * c,int attr,gl_varying_slot slot)789 emit_fragment_input(struct vc4_compile *c, int attr, gl_varying_slot slot)
790 {
791         for (int i = 0; i < 4; i++) {
792                 c->inputs[attr * 4 + i] =
793                         emit_fragment_varying(c, slot, i);
794                 c->num_inputs++;
795         }
796 }
797 
798 static void
add_output(struct vc4_compile * c,uint32_t decl_offset,uint8_t slot,uint8_t swizzle)799 add_output(struct vc4_compile *c,
800            uint32_t decl_offset,
801            uint8_t slot,
802            uint8_t swizzle)
803 {
804         uint32_t old_array_size = c->outputs_array_size;
805         resize_qreg_array(c, &c->outputs, &c->outputs_array_size,
806                           decl_offset + 1);
807 
808         if (old_array_size != c->outputs_array_size) {
809                 c->output_slots = reralloc(c,
810                                            c->output_slots,
811                                            struct vc4_varying_slot,
812                                            c->outputs_array_size);
813         }
814 
815         c->output_slots[decl_offset].slot = slot;
816         c->output_slots[decl_offset].swizzle = swizzle;
817 }
818 
819 static void
declare_uniform_range(struct vc4_compile * c,uint32_t start,uint32_t size)820 declare_uniform_range(struct vc4_compile *c, uint32_t start, uint32_t size)
821 {
822         unsigned array_id = c->num_uniform_ranges++;
823         if (array_id >= c->ubo_ranges_array_size) {
824                 c->ubo_ranges_array_size = MAX2(c->ubo_ranges_array_size * 2,
825                                                 array_id + 1);
826                 c->ubo_ranges = reralloc(c, c->ubo_ranges,
827                                          struct vc4_compiler_ubo_range,
828                                          c->ubo_ranges_array_size);
829         }
830 
831         c->ubo_ranges[array_id].dst_offset = 0;
832         c->ubo_ranges[array_id].src_offset = start;
833         c->ubo_ranges[array_id].size = size;
834         c->ubo_ranges[array_id].used = false;
835 }
836 
837 static bool
ntq_src_is_only_ssa_def_user(nir_src * src)838 ntq_src_is_only_ssa_def_user(nir_src *src)
839 {
840         if (!src->is_ssa)
841                 return false;
842 
843         if (!list_empty(&src->ssa->if_uses))
844                 return false;
845 
846         return (src->ssa->uses.next == &src->use_link &&
847                 src->ssa->uses.next->next == &src->ssa->uses);
848 }
849 
850 /**
851  * In general, emits a nir_pack_unorm_4x8 as a series of MOVs with the pack
852  * bit set.
853  *
854  * However, as an optimization, it tries to find the instructions generating
855  * the sources to be packed and just emit the pack flag there, if possible.
856  */
857 static void
ntq_emit_pack_unorm_4x8(struct vc4_compile * c,nir_alu_instr * instr)858 ntq_emit_pack_unorm_4x8(struct vc4_compile *c, nir_alu_instr *instr)
859 {
860         struct qreg result = qir_get_temp(c);
861         struct nir_alu_instr *vec4 = NULL;
862 
863         /* If packing from a vec4 op (as expected), identify it so that we can
864          * peek back at what generated its sources.
865          */
866         if (instr->src[0].src.is_ssa &&
867             instr->src[0].src.ssa->parent_instr->type == nir_instr_type_alu &&
868             nir_instr_as_alu(instr->src[0].src.ssa->parent_instr)->op ==
869             nir_op_vec4) {
870                 vec4 = nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
871         }
872 
873         /* If the pack is replicating the same channel 4 times, use the 8888
874          * pack flag.  This is common for blending using the alpha
875          * channel.
876          */
877         if (instr->src[0].swizzle[0] == instr->src[0].swizzle[1] &&
878             instr->src[0].swizzle[0] == instr->src[0].swizzle[2] &&
879             instr->src[0].swizzle[0] == instr->src[0].swizzle[3]) {
880                 struct qreg rep = ntq_get_src(c,
881                                               instr->src[0].src,
882                                               instr->src[0].swizzle[0]);
883                 ntq_store_dest(c, &instr->dest.dest, 0, qir_PACK_8888_F(c, rep));
884                 return;
885         }
886 
887         for (int i = 0; i < 4; i++) {
888                 int swiz = instr->src[0].swizzle[i];
889                 struct qreg src;
890                 if (vec4) {
891                         src = ntq_get_src(c, vec4->src[swiz].src,
892                                           vec4->src[swiz].swizzle[0]);
893                 } else {
894                         src = ntq_get_src(c, instr->src[0].src, swiz);
895                 }
896 
897                 if (vec4 &&
898                     ntq_src_is_only_ssa_def_user(&vec4->src[swiz].src) &&
899                     src.file == QFILE_TEMP &&
900                     c->defs[src.index] &&
901                     qir_is_mul(c->defs[src.index]) &&
902                     !c->defs[src.index]->dst.pack) {
903                         struct qinst *rewrite = c->defs[src.index];
904                         c->defs[src.index] = NULL;
905                         rewrite->dst = result;
906                         rewrite->dst.pack = QPU_PACK_MUL_8A + i;
907                         continue;
908                 }
909 
910                 qir_PACK_8_F(c, result, src, i);
911         }
912 
913         ntq_store_dest(c, &instr->dest.dest, 0, qir_MOV(c, result));
914 }
915 
916 /** Handles sign-extended bitfield extracts for 16 bits. */
917 static struct qreg
ntq_emit_ibfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)918 ntq_emit_ibfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
919               struct qreg bits)
920 {
921         assert(bits.file == QFILE_UNIF &&
922                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
923                c->uniform_data[bits.index] == 16);
924 
925         assert(offset.file == QFILE_UNIF &&
926                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
927         int offset_bit = c->uniform_data[offset.index];
928         assert(offset_bit % 16 == 0);
929 
930         return qir_UNPACK_16_I(c, base, offset_bit / 16);
931 }
932 
933 /** Handles unsigned bitfield extracts for 8 bits. */
934 static struct qreg
ntq_emit_ubfe(struct vc4_compile * c,struct qreg base,struct qreg offset,struct qreg bits)935 ntq_emit_ubfe(struct vc4_compile *c, struct qreg base, struct qreg offset,
936               struct qreg bits)
937 {
938         assert(bits.file == QFILE_UNIF &&
939                c->uniform_contents[bits.index] == QUNIFORM_CONSTANT &&
940                c->uniform_data[bits.index] == 8);
941 
942         assert(offset.file == QFILE_UNIF &&
943                c->uniform_contents[offset.index] == QUNIFORM_CONSTANT);
944         int offset_bit = c->uniform_data[offset.index];
945         assert(offset_bit % 8 == 0);
946 
947         return qir_UNPACK_8_I(c, base, offset_bit / 8);
948 }
949 
950 /**
951  * If compare_instr is a valid comparison instruction, emits the
952  * compare_instr's comparison and returns the sel_instr's return value based
953  * on the compare_instr's result.
954  */
955 static bool
ntq_emit_comparison(struct vc4_compile * c,struct qreg * dest,nir_alu_instr * compare_instr,nir_alu_instr * sel_instr)956 ntq_emit_comparison(struct vc4_compile *c, struct qreg *dest,
957                     nir_alu_instr *compare_instr,
958                     nir_alu_instr *sel_instr)
959 {
960         enum qpu_cond cond;
961 
962         switch (compare_instr->op) {
963         case nir_op_feq:
964         case nir_op_ieq:
965         case nir_op_seq:
966                 cond = QPU_COND_ZS;
967                 break;
968         case nir_op_fne:
969         case nir_op_ine:
970         case nir_op_sne:
971                 cond = QPU_COND_ZC;
972                 break;
973         case nir_op_fge:
974         case nir_op_ige:
975         case nir_op_uge:
976         case nir_op_sge:
977                 cond = QPU_COND_NC;
978                 break;
979         case nir_op_flt:
980         case nir_op_ilt:
981         case nir_op_slt:
982                 cond = QPU_COND_NS;
983                 break;
984         default:
985                 return false;
986         }
987 
988         struct qreg src0 = ntq_get_alu_src(c, compare_instr, 0);
989         struct qreg src1 = ntq_get_alu_src(c, compare_instr, 1);
990 
991         unsigned unsized_type =
992                 nir_alu_type_get_base_type(nir_op_infos[compare_instr->op].input_types[0]);
993         if (unsized_type == nir_type_float)
994                 qir_SF(c, qir_FSUB(c, src0, src1));
995         else
996                 qir_SF(c, qir_SUB(c, src0, src1));
997 
998         switch (sel_instr->op) {
999         case nir_op_seq:
1000         case nir_op_sne:
1001         case nir_op_sge:
1002         case nir_op_slt:
1003                 *dest = qir_SEL(c, cond,
1004                                 qir_uniform_f(c, 1.0), qir_uniform_f(c, 0.0));
1005                 break;
1006 
1007         case nir_op_bcsel:
1008                 *dest = qir_SEL(c, cond,
1009                                 ntq_get_alu_src(c, sel_instr, 1),
1010                                 ntq_get_alu_src(c, sel_instr, 2));
1011                 break;
1012 
1013         default:
1014                 *dest = qir_SEL(c, cond,
1015                                 qir_uniform_ui(c, ~0), qir_uniform_ui(c, 0));
1016                 break;
1017         }
1018 
1019         /* Make the temporary for nir_store_dest(). */
1020         *dest = qir_MOV(c, *dest);
1021 
1022         return true;
1023 }
1024 
1025 /**
1026  * Attempts to fold a comparison generating a boolean result into the
1027  * condition code for selecting between two values, instead of comparing the
1028  * boolean result against 0 to generate the condition code.
1029  */
ntq_emit_bcsel(struct vc4_compile * c,nir_alu_instr * instr,struct qreg * src)1030 static struct qreg ntq_emit_bcsel(struct vc4_compile *c, nir_alu_instr *instr,
1031                                   struct qreg *src)
1032 {
1033         if (!instr->src[0].src.is_ssa)
1034                 goto out;
1035         if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
1036                 goto out;
1037         nir_alu_instr *compare =
1038                 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
1039         if (!compare)
1040                 goto out;
1041 
1042         struct qreg dest;
1043         if (ntq_emit_comparison(c, &dest, compare, instr))
1044                 return dest;
1045 
1046 out:
1047         qir_SF(c, src[0]);
1048         return qir_MOV(c, qir_SEL(c, QPU_COND_NS, src[1], src[2]));
1049 }
1050 
1051 static struct qreg
ntq_fddx(struct vc4_compile * c,struct qreg src)1052 ntq_fddx(struct vc4_compile *c, struct qreg src)
1053 {
1054         /* Make sure that we have a bare temp to use for MUL rotation, so it
1055          * can be allocated to an accumulator.
1056          */
1057         if (src.pack || src.file != QFILE_TEMP)
1058                 src = qir_MOV(c, src);
1059 
1060         struct qreg from_left = qir_ROT_MUL(c, src, 1);
1061         struct qreg from_right = qir_ROT_MUL(c, src, 15);
1062 
1063         /* Distinguish left/right pixels of the quad. */
1064         qir_SF(c, qir_AND(c, qir_reg(QFILE_QPU_ELEMENT, 0),
1065                           qir_uniform_ui(c, 1)));
1066 
1067         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1068                                   qir_FSUB(c, from_right, src),
1069                                   qir_FSUB(c, src, from_left)));
1070 }
1071 
1072 static struct qreg
ntq_fddy(struct vc4_compile * c,struct qreg src)1073 ntq_fddy(struct vc4_compile *c, struct qreg src)
1074 {
1075         if (src.pack || src.file != QFILE_TEMP)
1076                 src = qir_MOV(c, src);
1077 
1078         struct qreg from_bottom = qir_ROT_MUL(c, src, 2);
1079         struct qreg from_top = qir_ROT_MUL(c, src, 14);
1080 
1081         /* Distinguish top/bottom pixels of the quad. */
1082         qir_SF(c, qir_AND(c,
1083                           qir_reg(QFILE_QPU_ELEMENT, 0),
1084                           qir_uniform_ui(c, 2)));
1085 
1086         return qir_MOV(c, qir_SEL(c, QPU_COND_ZS,
1087                                   qir_FSUB(c, from_top, src),
1088                                   qir_FSUB(c, src, from_bottom)));
1089 }
1090 
1091 static void
ntq_emit_alu(struct vc4_compile * c,nir_alu_instr * instr)1092 ntq_emit_alu(struct vc4_compile *c, nir_alu_instr *instr)
1093 {
1094         /* This should always be lowered to ALU operations for VC4. */
1095         assert(!instr->dest.saturate);
1096 
1097         /* Vectors are special in that they have non-scalarized writemasks,
1098          * and just take the first swizzle channel for each argument in order
1099          * into each writemask channel.
1100          */
1101         if (instr->op == nir_op_vec2 ||
1102             instr->op == nir_op_vec3 ||
1103             instr->op == nir_op_vec4) {
1104                 struct qreg srcs[4];
1105                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1106                         srcs[i] = ntq_get_src(c, instr->src[i].src,
1107                                               instr->src[i].swizzle[0]);
1108                 for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
1109                         ntq_store_dest(c, &instr->dest.dest, i,
1110                                        qir_MOV(c, srcs[i]));
1111                 return;
1112         }
1113 
1114         if (instr->op == nir_op_pack_unorm_4x8) {
1115                 ntq_emit_pack_unorm_4x8(c, instr);
1116                 return;
1117         }
1118 
1119         if (instr->op == nir_op_unpack_unorm_4x8) {
1120                 struct qreg src = ntq_get_src(c, instr->src[0].src,
1121                                               instr->src[0].swizzle[0]);
1122                 for (int i = 0; i < 4; i++) {
1123                         if (instr->dest.write_mask & (1 << i))
1124                                 ntq_store_dest(c, &instr->dest.dest, i,
1125                                                qir_UNPACK_8_F(c, src, i));
1126                 }
1127                 return;
1128         }
1129 
1130         /* General case: We can just grab the one used channel per src. */
1131         struct qreg src[nir_op_infos[instr->op].num_inputs];
1132         for (int i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
1133                 src[i] = ntq_get_alu_src(c, instr, i);
1134         }
1135 
1136         struct qreg result;
1137 
1138         switch (instr->op) {
1139         case nir_op_fmov:
1140         case nir_op_imov:
1141                 result = qir_MOV(c, src[0]);
1142                 break;
1143         case nir_op_fmul:
1144                 result = qir_FMUL(c, src[0], src[1]);
1145                 break;
1146         case nir_op_fadd:
1147                 result = qir_FADD(c, src[0], src[1]);
1148                 break;
1149         case nir_op_fsub:
1150                 result = qir_FSUB(c, src[0], src[1]);
1151                 break;
1152         case nir_op_fmin:
1153                 result = qir_FMIN(c, src[0], src[1]);
1154                 break;
1155         case nir_op_fmax:
1156                 result = qir_FMAX(c, src[0], src[1]);
1157                 break;
1158 
1159         case nir_op_f2i32:
1160         case nir_op_f2u32:
1161                 result = qir_FTOI(c, src[0]);
1162                 break;
1163         case nir_op_i2f32:
1164         case nir_op_u2f32:
1165                 result = qir_ITOF(c, src[0]);
1166                 break;
1167         case nir_op_b2f:
1168                 result = qir_AND(c, src[0], qir_uniform_f(c, 1.0));
1169                 break;
1170         case nir_op_b2i:
1171                 result = qir_AND(c, src[0], qir_uniform_ui(c, 1));
1172                 break;
1173         case nir_op_i2b:
1174         case nir_op_f2b:
1175                 qir_SF(c, src[0]);
1176                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC,
1177                                             qir_uniform_ui(c, ~0),
1178                                             qir_uniform_ui(c, 0)));
1179                 break;
1180 
1181         case nir_op_iadd:
1182                 result = qir_ADD(c, src[0], src[1]);
1183                 break;
1184         case nir_op_ushr:
1185                 result = qir_SHR(c, src[0], src[1]);
1186                 break;
1187         case nir_op_isub:
1188                 result = qir_SUB(c, src[0], src[1]);
1189                 break;
1190         case nir_op_ishr:
1191                 result = qir_ASR(c, src[0], src[1]);
1192                 break;
1193         case nir_op_ishl:
1194                 result = qir_SHL(c, src[0], src[1]);
1195                 break;
1196         case nir_op_imin:
1197                 result = qir_MIN(c, src[0], src[1]);
1198                 break;
1199         case nir_op_imax:
1200                 result = qir_MAX(c, src[0], src[1]);
1201                 break;
1202         case nir_op_iand:
1203                 result = qir_AND(c, src[0], src[1]);
1204                 break;
1205         case nir_op_ior:
1206                 result = qir_OR(c, src[0], src[1]);
1207                 break;
1208         case nir_op_ixor:
1209                 result = qir_XOR(c, src[0], src[1]);
1210                 break;
1211         case nir_op_inot:
1212                 result = qir_NOT(c, src[0]);
1213                 break;
1214 
1215         case nir_op_imul:
1216                 result = ntq_umul(c, src[0], src[1]);
1217                 break;
1218 
1219         case nir_op_seq:
1220         case nir_op_sne:
1221         case nir_op_sge:
1222         case nir_op_slt:
1223         case nir_op_feq:
1224         case nir_op_fne:
1225         case nir_op_fge:
1226         case nir_op_flt:
1227         case nir_op_ieq:
1228         case nir_op_ine:
1229         case nir_op_ige:
1230         case nir_op_uge:
1231         case nir_op_ilt:
1232                 if (!ntq_emit_comparison(c, &result, instr, instr)) {
1233                         fprintf(stderr, "Bad comparison instruction\n");
1234                 }
1235                 break;
1236 
1237         case nir_op_bcsel:
1238                 result = ntq_emit_bcsel(c, instr, src);
1239                 break;
1240         case nir_op_fcsel:
1241                 qir_SF(c, src[0]);
1242                 result = qir_MOV(c, qir_SEL(c, QPU_COND_ZC, src[1], src[2]));
1243                 break;
1244 
1245         case nir_op_frcp:
1246                 result = ntq_rcp(c, src[0]);
1247                 break;
1248         case nir_op_frsq:
1249                 result = ntq_rsq(c, src[0]);
1250                 break;
1251         case nir_op_fexp2:
1252                 result = qir_EXP2(c, src[0]);
1253                 break;
1254         case nir_op_flog2:
1255                 result = qir_LOG2(c, src[0]);
1256                 break;
1257 
1258         case nir_op_ftrunc:
1259                 result = qir_ITOF(c, qir_FTOI(c, src[0]));
1260                 break;
1261         case nir_op_fceil:
1262                 result = ntq_fceil(c, src[0]);
1263                 break;
1264         case nir_op_ffract:
1265                 result = ntq_ffract(c, src[0]);
1266                 break;
1267         case nir_op_ffloor:
1268                 result = ntq_ffloor(c, src[0]);
1269                 break;
1270 
1271         case nir_op_fsin:
1272                 result = ntq_fsin(c, src[0]);
1273                 break;
1274         case nir_op_fcos:
1275                 result = ntq_fcos(c, src[0]);
1276                 break;
1277 
1278         case nir_op_fsign:
1279                 result = ntq_fsign(c, src[0]);
1280                 break;
1281 
1282         case nir_op_fabs:
1283                 result = qir_FMAXABS(c, src[0], src[0]);
1284                 break;
1285         case nir_op_iabs:
1286                 result = qir_MAX(c, src[0],
1287                                 qir_SUB(c, qir_uniform_ui(c, 0), src[0]));
1288                 break;
1289 
1290         case nir_op_ibitfield_extract:
1291                 result = ntq_emit_ibfe(c, src[0], src[1], src[2]);
1292                 break;
1293 
1294         case nir_op_ubitfield_extract:
1295                 result = ntq_emit_ubfe(c, src[0], src[1], src[2]);
1296                 break;
1297 
1298         case nir_op_usadd_4x8:
1299                 result = qir_V8ADDS(c, src[0], src[1]);
1300                 break;
1301 
1302         case nir_op_ussub_4x8:
1303                 result = qir_V8SUBS(c, src[0], src[1]);
1304                 break;
1305 
1306         case nir_op_umin_4x8:
1307                 result = qir_V8MIN(c, src[0], src[1]);
1308                 break;
1309 
1310         case nir_op_umax_4x8:
1311                 result = qir_V8MAX(c, src[0], src[1]);
1312                 break;
1313 
1314         case nir_op_umul_unorm_4x8:
1315                 result = qir_V8MULD(c, src[0], src[1]);
1316                 break;
1317 
1318         case nir_op_fddx:
1319         case nir_op_fddx_coarse:
1320         case nir_op_fddx_fine:
1321                 result = ntq_fddx(c, src[0]);
1322                 break;
1323 
1324         case nir_op_fddy:
1325         case nir_op_fddy_coarse:
1326         case nir_op_fddy_fine:
1327                 result = ntq_fddy(c, src[0]);
1328                 break;
1329 
1330         default:
1331                 fprintf(stderr, "unknown NIR ALU inst: ");
1332                 nir_print_instr(&instr->instr, stderr);
1333                 fprintf(stderr, "\n");
1334                 abort();
1335         }
1336 
1337         /* We have a scalar result, so the instruction should only have a
1338          * single channel written to.
1339          */
1340         assert(util_is_power_of_two(instr->dest.write_mask));
1341         ntq_store_dest(c, &instr->dest.dest,
1342                        ffs(instr->dest.write_mask) - 1, result);
1343 }
1344 
1345 static void
emit_frag_end(struct vc4_compile * c)1346 emit_frag_end(struct vc4_compile *c)
1347 {
1348         struct qreg color;
1349         if (c->output_color_index != -1) {
1350                 color = c->outputs[c->output_color_index];
1351         } else {
1352                 color = qir_uniform_ui(c, 0);
1353         }
1354 
1355         uint32_t discard_cond = QPU_COND_ALWAYS;
1356         if (c->s->info.fs.uses_discard) {
1357                 qir_SF(c, c->discard);
1358                 discard_cond = QPU_COND_ZS;
1359         }
1360 
1361         if (c->fs_key->stencil_enabled) {
1362                 qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1363                              qir_uniform(c, QUNIFORM_STENCIL, 0));
1364                 if (c->fs_key->stencil_twoside) {
1365                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1366                                      qir_uniform(c, QUNIFORM_STENCIL, 1));
1367                 }
1368                 if (c->fs_key->stencil_full_writemasks) {
1369                         qir_MOV_dest(c, qir_reg(QFILE_TLB_STENCIL_SETUP, 0),
1370                                      qir_uniform(c, QUNIFORM_STENCIL, 2));
1371                 }
1372         }
1373 
1374         if (c->output_sample_mask_index != -1) {
1375                 qir_MS_MASK(c, c->outputs[c->output_sample_mask_index]);
1376         }
1377 
1378         if (c->fs_key->depth_enabled) {
1379                 if (c->output_position_index != -1) {
1380                         qir_FTOI_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1381                                       qir_FMUL(c,
1382                                                c->outputs[c->output_position_index],
1383                                                qir_uniform_f(c, 0xffffff)))->cond = discard_cond;
1384                 } else {
1385                         qir_MOV_dest(c, qir_reg(QFILE_TLB_Z_WRITE, 0),
1386                                      qir_FRAG_Z(c))->cond = discard_cond;
1387                 }
1388         }
1389 
1390         if (!c->msaa_per_sample_output) {
1391                 qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE, 0),
1392                              color)->cond = discard_cond;
1393         } else {
1394                 for (int i = 0; i < VC4_MAX_SAMPLES; i++) {
1395                         qir_MOV_dest(c, qir_reg(QFILE_TLB_COLOR_WRITE_MS, 0),
1396                                      c->sample_colors[i])->cond = discard_cond;
1397                 }
1398         }
1399 }
1400 
1401 static void
emit_scaled_viewport_write(struct vc4_compile * c,struct qreg rcp_w)1402 emit_scaled_viewport_write(struct vc4_compile *c, struct qreg rcp_w)
1403 {
1404         struct qreg packed = qir_get_temp(c);
1405 
1406         for (int i = 0; i < 2; i++) {
1407                 struct qreg scale =
1408                         qir_uniform(c, QUNIFORM_VIEWPORT_X_SCALE + i, 0);
1409 
1410                 struct qreg packed_chan = packed;
1411                 packed_chan.pack = QPU_PACK_A_16A + i;
1412 
1413                 qir_FTOI_dest(c, packed_chan,
1414                               qir_FMUL(c,
1415                                        qir_FMUL(c,
1416                                                 c->outputs[c->output_position_index + i],
1417                                                 scale),
1418                                        rcp_w));
1419         }
1420 
1421         qir_VPM_WRITE(c, packed);
1422 }
1423 
1424 static void
emit_zs_write(struct vc4_compile * c,struct qreg rcp_w)1425 emit_zs_write(struct vc4_compile *c, struct qreg rcp_w)
1426 {
1427         struct qreg zscale = qir_uniform(c, QUNIFORM_VIEWPORT_Z_SCALE, 0);
1428         struct qreg zoffset = qir_uniform(c, QUNIFORM_VIEWPORT_Z_OFFSET, 0);
1429 
1430         qir_VPM_WRITE(c, qir_FADD(c, qir_FMUL(c, qir_FMUL(c,
1431                                                           c->outputs[c->output_position_index + 2],
1432                                                           zscale),
1433                                               rcp_w),
1434                                   zoffset));
1435 }
1436 
1437 static void
emit_rcp_wc_write(struct vc4_compile * c,struct qreg rcp_w)1438 emit_rcp_wc_write(struct vc4_compile *c, struct qreg rcp_w)
1439 {
1440         qir_VPM_WRITE(c, rcp_w);
1441 }
1442 
1443 static void
emit_point_size_write(struct vc4_compile * c)1444 emit_point_size_write(struct vc4_compile *c)
1445 {
1446         struct qreg point_size;
1447 
1448         if (c->output_point_size_index != -1)
1449                 point_size = c->outputs[c->output_point_size_index];
1450         else
1451                 point_size = qir_uniform_f(c, 1.0);
1452 
1453         /* Workaround: HW-2726 PTB does not handle zero-size points (BCM2835,
1454          * BCM21553).
1455          */
1456         point_size = qir_FMAX(c, point_size, qir_uniform_f(c, .125));
1457 
1458         qir_VPM_WRITE(c, point_size);
1459 }
1460 
1461 /**
1462  * Emits a VPM read of the stub vertex attribute set up by vc4_draw.c.
1463  *
1464  * The simulator insists that there be at least one vertex attribute, so
1465  * vc4_draw.c will emit one if it wouldn't have otherwise.  The simulator also
1466  * insists that all vertex attributes loaded get read by the VS/CS, so we have
1467  * to consume it here.
1468  */
1469 static void
emit_stub_vpm_read(struct vc4_compile * c)1470 emit_stub_vpm_read(struct vc4_compile *c)
1471 {
1472         if (c->num_inputs)
1473                 return;
1474 
1475         c->vattr_sizes[0] = 4;
1476         (void)qir_MOV(c, qir_reg(QFILE_VPM, 0));
1477         c->num_inputs++;
1478 }
1479 
1480 static void
emit_vert_end(struct vc4_compile * c,struct vc4_varying_slot * fs_inputs,uint32_t num_fs_inputs)1481 emit_vert_end(struct vc4_compile *c,
1482               struct vc4_varying_slot *fs_inputs,
1483               uint32_t num_fs_inputs)
1484 {
1485         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1486 
1487         emit_stub_vpm_read(c);
1488 
1489         emit_scaled_viewport_write(c, rcp_w);
1490         emit_zs_write(c, rcp_w);
1491         emit_rcp_wc_write(c, rcp_w);
1492         if (c->vs_key->per_vertex_point_size)
1493                 emit_point_size_write(c);
1494 
1495         for (int i = 0; i < num_fs_inputs; i++) {
1496                 struct vc4_varying_slot *input = &fs_inputs[i];
1497                 int j;
1498 
1499                 for (j = 0; j < c->num_outputs; j++) {
1500                         struct vc4_varying_slot *output =
1501                                 &c->output_slots[j];
1502 
1503                         if (input->slot == output->slot &&
1504                             input->swizzle == output->swizzle) {
1505                                 qir_VPM_WRITE(c, c->outputs[j]);
1506                                 break;
1507                         }
1508                 }
1509                 /* Emit padding if we didn't find a declared VS output for
1510                  * this FS input.
1511                  */
1512                 if (j == c->num_outputs)
1513                         qir_VPM_WRITE(c, qir_uniform_f(c, 0.0));
1514         }
1515 }
1516 
1517 static void
emit_coord_end(struct vc4_compile * c)1518 emit_coord_end(struct vc4_compile *c)
1519 {
1520         struct qreg rcp_w = ntq_rcp(c, c->outputs[c->output_position_index + 3]);
1521 
1522         emit_stub_vpm_read(c);
1523 
1524         for (int i = 0; i < 4; i++)
1525                 qir_VPM_WRITE(c, c->outputs[c->output_position_index + i]);
1526 
1527         emit_scaled_viewport_write(c, rcp_w);
1528         emit_zs_write(c, rcp_w);
1529         emit_rcp_wc_write(c, rcp_w);
1530         if (c->vs_key->per_vertex_point_size)
1531                 emit_point_size_write(c);
1532 }
1533 
1534 static void
vc4_optimize_nir(struct nir_shader * s)1535 vc4_optimize_nir(struct nir_shader *s)
1536 {
1537         bool progress;
1538 
1539         do {
1540                 progress = false;
1541 
1542                 NIR_PASS_V(s, nir_lower_vars_to_ssa);
1543                 NIR_PASS(progress, s, nir_lower_alu_to_scalar);
1544                 NIR_PASS(progress, s, nir_lower_phis_to_scalar);
1545                 NIR_PASS(progress, s, nir_copy_prop);
1546                 NIR_PASS(progress, s, nir_opt_remove_phis);
1547                 NIR_PASS(progress, s, nir_opt_dce);
1548                 NIR_PASS(progress, s, nir_opt_dead_cf);
1549                 NIR_PASS(progress, s, nir_opt_cse);
1550                 NIR_PASS(progress, s, nir_opt_peephole_select, 8);
1551                 NIR_PASS(progress, s, nir_opt_algebraic);
1552                 NIR_PASS(progress, s, nir_opt_constant_folding);
1553                 NIR_PASS(progress, s, nir_opt_undef);
1554                 NIR_PASS(progress, s, nir_opt_loop_unroll,
1555                          nir_var_shader_in |
1556                          nir_var_shader_out |
1557                          nir_var_local);
1558         } while (progress);
1559 }
1560 
1561 static int
driver_location_compare(const void * in_a,const void * in_b)1562 driver_location_compare(const void *in_a, const void *in_b)
1563 {
1564         const nir_variable *const *a = in_a;
1565         const nir_variable *const *b = in_b;
1566 
1567         return (*a)->data.driver_location - (*b)->data.driver_location;
1568 }
1569 
1570 static void
ntq_setup_inputs(struct vc4_compile * c)1571 ntq_setup_inputs(struct vc4_compile *c)
1572 {
1573         unsigned num_entries = 0;
1574         nir_foreach_variable(var, &c->s->inputs)
1575                 num_entries++;
1576 
1577         nir_variable *vars[num_entries];
1578 
1579         unsigned i = 0;
1580         nir_foreach_variable(var, &c->s->inputs)
1581                 vars[i++] = var;
1582 
1583         /* Sort the variables so that we emit the input setup in
1584          * driver_location order.  This is required for VPM reads, whose data
1585          * is fetched into the VPM in driver_location (TGSI register index)
1586          * order.
1587          */
1588         qsort(&vars, num_entries, sizeof(*vars), driver_location_compare);
1589 
1590         for (unsigned i = 0; i < num_entries; i++) {
1591                 nir_variable *var = vars[i];
1592                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1593                 unsigned loc = var->data.driver_location;
1594 
1595                 assert(array_len == 1);
1596                 (void)array_len;
1597                 resize_qreg_array(c, &c->inputs, &c->inputs_array_size,
1598                                   (loc + 1) * 4);
1599 
1600                 if (c->stage == QSTAGE_FRAG) {
1601                         if (var->data.location == VARYING_SLOT_POS) {
1602                                 emit_fragcoord_input(c, loc);
1603                         } else if (var->data.location == VARYING_SLOT_PNTC ||
1604                                    (var->data.location >= VARYING_SLOT_VAR0 &&
1605                                     (c->fs_key->point_sprite_mask &
1606                                      (1 << (var->data.location -
1607                                             VARYING_SLOT_VAR0))))) {
1608                                 c->inputs[loc * 4 + 0] = c->point_x;
1609                                 c->inputs[loc * 4 + 1] = c->point_y;
1610                         } else {
1611                                 emit_fragment_input(c, loc, var->data.location);
1612                         }
1613                 } else {
1614                         emit_vertex_input(c, loc);
1615                 }
1616         }
1617 }
1618 
1619 static void
ntq_setup_outputs(struct vc4_compile * c)1620 ntq_setup_outputs(struct vc4_compile *c)
1621 {
1622         nir_foreach_variable(var, &c->s->outputs) {
1623                 unsigned array_len = MAX2(glsl_get_length(var->type), 1);
1624                 unsigned loc = var->data.driver_location * 4;
1625 
1626                 assert(array_len == 1);
1627                 (void)array_len;
1628 
1629                 for (int i = 0; i < 4; i++)
1630                         add_output(c, loc + i, var->data.location, i);
1631 
1632                 if (c->stage == QSTAGE_FRAG) {
1633                         switch (var->data.location) {
1634                         case FRAG_RESULT_COLOR:
1635                         case FRAG_RESULT_DATA0:
1636                                 c->output_color_index = loc;
1637                                 break;
1638                         case FRAG_RESULT_DEPTH:
1639                                 c->output_position_index = loc;
1640                                 break;
1641                         case FRAG_RESULT_SAMPLE_MASK:
1642                                 c->output_sample_mask_index = loc;
1643                                 break;
1644                         }
1645                 } else {
1646                         switch (var->data.location) {
1647                         case VARYING_SLOT_POS:
1648                                 c->output_position_index = loc;
1649                                 break;
1650                         case VARYING_SLOT_PSIZ:
1651                                 c->output_point_size_index = loc;
1652                                 break;
1653                         }
1654                 }
1655         }
1656 }
1657 
1658 static void
ntq_setup_uniforms(struct vc4_compile * c)1659 ntq_setup_uniforms(struct vc4_compile *c)
1660 {
1661         nir_foreach_variable(var, &c->s->uniforms) {
1662                 uint32_t vec4_count = type_size(var->type);
1663                 unsigned vec4_size = 4 * sizeof(float);
1664 
1665                 declare_uniform_range(c, var->data.driver_location * vec4_size,
1666                                       vec4_count * vec4_size);
1667 
1668         }
1669 }
1670 
1671 /**
1672  * Sets up the mapping from nir_register to struct qreg *.
1673  *
1674  * Each nir_register gets a struct qreg per 32-bit component being stored.
1675  */
1676 static void
ntq_setup_registers(struct vc4_compile * c,struct exec_list * list)1677 ntq_setup_registers(struct vc4_compile *c, struct exec_list *list)
1678 {
1679         foreach_list_typed(nir_register, nir_reg, node, list) {
1680                 unsigned array_len = MAX2(nir_reg->num_array_elems, 1);
1681                 struct qreg *qregs = ralloc_array(c->def_ht, struct qreg,
1682                                                   array_len *
1683                                                   nir_reg->num_components);
1684 
1685                 _mesa_hash_table_insert(c->def_ht, nir_reg, qregs);
1686 
1687                 for (int i = 0; i < array_len * nir_reg->num_components; i++)
1688                         qregs[i] = qir_get_temp(c);
1689         }
1690 }
1691 
1692 static void
ntq_emit_load_const(struct vc4_compile * c,nir_load_const_instr * instr)1693 ntq_emit_load_const(struct vc4_compile *c, nir_load_const_instr *instr)
1694 {
1695         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1696         for (int i = 0; i < instr->def.num_components; i++)
1697                 qregs[i] = qir_uniform_ui(c, instr->value.u32[i]);
1698 
1699         _mesa_hash_table_insert(c->def_ht, &instr->def, qregs);
1700 }
1701 
1702 static void
ntq_emit_ssa_undef(struct vc4_compile * c,nir_ssa_undef_instr * instr)1703 ntq_emit_ssa_undef(struct vc4_compile *c, nir_ssa_undef_instr *instr)
1704 {
1705         struct qreg *qregs = ntq_init_ssa_def(c, &instr->def);
1706 
1707         /* QIR needs there to be *some* value, so pick 0 (same as for
1708          * ntq_setup_registers().
1709          */
1710         for (int i = 0; i < instr->def.num_components; i++)
1711                 qregs[i] = qir_uniform_ui(c, 0);
1712 }
1713 
1714 static void
ntq_emit_color_read(struct vc4_compile * c,nir_intrinsic_instr * instr)1715 ntq_emit_color_read(struct vc4_compile *c, nir_intrinsic_instr *instr)
1716 {
1717         assert(nir_src_as_const_value(instr->src[0])->u32[0] == 0);
1718 
1719         /* Reads of the per-sample color need to be done in
1720          * order.
1721          */
1722         int sample_index = (nir_intrinsic_base(instr) -
1723                             VC4_NIR_TLB_COLOR_READ_INPUT);
1724         for (int i = 0; i <= sample_index; i++) {
1725                 if (c->color_reads[i].file == QFILE_NULL) {
1726                         c->color_reads[i] =
1727                                 qir_TLB_COLOR_READ(c);
1728                 }
1729         }
1730         ntq_store_dest(c, &instr->dest, 0,
1731                        qir_MOV(c, c->color_reads[sample_index]));
1732 }
1733 
1734 static void
ntq_emit_load_input(struct vc4_compile * c,nir_intrinsic_instr * instr)1735 ntq_emit_load_input(struct vc4_compile *c, nir_intrinsic_instr *instr)
1736 {
1737         assert(instr->num_components == 1);
1738 
1739         nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1740         assert(const_offset && "vc4 doesn't support indirect inputs");
1741 
1742         if (c->stage == QSTAGE_FRAG &&
1743             nir_intrinsic_base(instr) >= VC4_NIR_TLB_COLOR_READ_INPUT) {
1744                 ntq_emit_color_read(c, instr);
1745                 return;
1746         }
1747 
1748         uint32_t offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1749         int comp = nir_intrinsic_component(instr);
1750         ntq_store_dest(c, &instr->dest, 0,
1751                        qir_MOV(c, c->inputs[offset * 4 + comp]));
1752 }
1753 
1754 static void
ntq_emit_intrinsic(struct vc4_compile * c,nir_intrinsic_instr * instr)1755 ntq_emit_intrinsic(struct vc4_compile *c, nir_intrinsic_instr *instr)
1756 {
1757         nir_const_value *const_offset;
1758         unsigned offset;
1759 
1760         switch (instr->intrinsic) {
1761         case nir_intrinsic_load_uniform:
1762                 assert(instr->num_components == 1);
1763                 const_offset = nir_src_as_const_value(instr->src[0]);
1764                 if (const_offset) {
1765                         offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1766                         assert(offset % 4 == 0);
1767                         /* We need dwords */
1768                         offset = offset / 4;
1769                         ntq_store_dest(c, &instr->dest, 0,
1770                                        qir_uniform(c, QUNIFORM_UNIFORM,
1771                                                    offset));
1772                 } else {
1773                         ntq_store_dest(c, &instr->dest, 0,
1774                                        indirect_uniform_load(c, instr));
1775                 }
1776                 break;
1777 
1778         case nir_intrinsic_load_user_clip_plane:
1779                 for (int i = 0; i < instr->num_components; i++) {
1780                         ntq_store_dest(c, &instr->dest, i,
1781                                        qir_uniform(c, QUNIFORM_USER_CLIP_PLANE,
1782                                                    nir_intrinsic_ucp_id(instr) *
1783                                                    4 + i));
1784                 }
1785                 break;
1786 
1787         case nir_intrinsic_load_blend_const_color_r_float:
1788         case nir_intrinsic_load_blend_const_color_g_float:
1789         case nir_intrinsic_load_blend_const_color_b_float:
1790         case nir_intrinsic_load_blend_const_color_a_float:
1791                 ntq_store_dest(c, &instr->dest, 0,
1792                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_X +
1793                                            (instr->intrinsic -
1794                                             nir_intrinsic_load_blend_const_color_r_float),
1795                                            0));
1796                 break;
1797 
1798         case nir_intrinsic_load_blend_const_color_rgba8888_unorm:
1799                 ntq_store_dest(c, &instr->dest, 0,
1800                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_RGBA,
1801                                            0));
1802                 break;
1803 
1804         case nir_intrinsic_load_blend_const_color_aaaa8888_unorm:
1805                 ntq_store_dest(c, &instr->dest, 0,
1806                                qir_uniform(c, QUNIFORM_BLEND_CONST_COLOR_AAAA,
1807                                            0));
1808                 break;
1809 
1810         case nir_intrinsic_load_alpha_ref_float:
1811                 ntq_store_dest(c, &instr->dest, 0,
1812                                qir_uniform(c, QUNIFORM_ALPHA_REF, 0));
1813                 break;
1814 
1815         case nir_intrinsic_load_sample_mask_in:
1816                 ntq_store_dest(c, &instr->dest, 0,
1817                                qir_uniform(c, QUNIFORM_SAMPLE_MASK, 0));
1818                 break;
1819 
1820         case nir_intrinsic_load_front_face:
1821                 /* The register contains 0 (front) or 1 (back), and we need to
1822                  * turn it into a NIR bool where true means front.
1823                  */
1824                 ntq_store_dest(c, &instr->dest, 0,
1825                                qir_ADD(c,
1826                                        qir_uniform_ui(c, -1),
1827                                        qir_reg(QFILE_FRAG_REV_FLAG, 0)));
1828                 break;
1829 
1830         case nir_intrinsic_load_input:
1831                 ntq_emit_load_input(c, instr);
1832                 break;
1833 
1834         case nir_intrinsic_store_output:
1835                 const_offset = nir_src_as_const_value(instr->src[1]);
1836                 assert(const_offset && "vc4 doesn't support indirect outputs");
1837                 offset = nir_intrinsic_base(instr) + const_offset->u32[0];
1838 
1839                 /* MSAA color outputs are the only case where we have an
1840                  * output that's not lowered to being a store of a single 32
1841                  * bit value.
1842                  */
1843                 if (c->stage == QSTAGE_FRAG && instr->num_components == 4) {
1844                         assert(offset == c->output_color_index);
1845                         for (int i = 0; i < 4; i++) {
1846                                 c->sample_colors[i] =
1847                                         qir_MOV(c, ntq_get_src(c, instr->src[0],
1848                                                                i));
1849                         }
1850                 } else {
1851                         offset = offset * 4 + nir_intrinsic_component(instr);
1852                         assert(instr->num_components == 1);
1853                         c->outputs[offset] =
1854                                 qir_MOV(c, ntq_get_src(c, instr->src[0], 0));
1855                         c->num_outputs = MAX2(c->num_outputs, offset + 1);
1856                 }
1857                 break;
1858 
1859         case nir_intrinsic_discard:
1860                 if (c->execute.file != QFILE_NULL) {
1861                         qir_SF(c, c->execute);
1862                         qir_MOV_cond(c, QPU_COND_ZS, c->discard,
1863                                      qir_uniform_ui(c, ~0));
1864                 } else {
1865                         qir_MOV_dest(c, c->discard, qir_uniform_ui(c, ~0));
1866                 }
1867                 break;
1868 
1869         case nir_intrinsic_discard_if: {
1870                 /* true (~0) if we're discarding */
1871                 struct qreg cond = ntq_get_src(c, instr->src[0], 0);
1872 
1873                 if (c->execute.file != QFILE_NULL) {
1874                         /* execute == 0 means the channel is active.  Invert
1875                          * the condition so that we can use zero as "executing
1876                          * and discarding."
1877                          */
1878                         qir_SF(c, qir_AND(c, c->execute, qir_NOT(c, cond)));
1879                         qir_MOV_cond(c, QPU_COND_ZS, c->discard, cond);
1880                 } else {
1881                         qir_OR_dest(c, c->discard, c->discard,
1882                                     ntq_get_src(c, instr->src[0], 0));
1883                 }
1884 
1885                 break;
1886         }
1887 
1888         default:
1889                 fprintf(stderr, "Unknown intrinsic: ");
1890                 nir_print_instr(&instr->instr, stderr);
1891                 fprintf(stderr, "\n");
1892                 break;
1893         }
1894 }
1895 
1896 /* Clears (activates) the execute flags for any channels whose jump target
1897  * matches this block.
1898  */
1899 static void
ntq_activate_execute_for_block(struct vc4_compile * c)1900 ntq_activate_execute_for_block(struct vc4_compile *c)
1901 {
1902         qir_SF(c, qir_SUB(c,
1903                           c->execute,
1904                           qir_uniform_ui(c, c->cur_block->index)));
1905         qir_MOV_cond(c, QPU_COND_ZS, c->execute, qir_uniform_ui(c, 0));
1906 }
1907 
1908 static void
ntq_emit_if(struct vc4_compile * c,nir_if * if_stmt)1909 ntq_emit_if(struct vc4_compile *c, nir_if *if_stmt)
1910 {
1911         if (!c->vc4->screen->has_control_flow) {
1912                 fprintf(stderr,
1913                         "IF statement support requires updated kernel.\n");
1914                 return;
1915         }
1916 
1917         nir_block *nir_else_block = nir_if_first_else_block(if_stmt);
1918         bool empty_else_block =
1919                 (nir_else_block == nir_if_last_else_block(if_stmt) &&
1920                  exec_list_is_empty(&nir_else_block->instr_list));
1921 
1922         struct qblock *then_block = qir_new_block(c);
1923         struct qblock *after_block = qir_new_block(c);
1924         struct qblock *else_block;
1925         if (empty_else_block)
1926                 else_block = after_block;
1927         else
1928                 else_block = qir_new_block(c);
1929 
1930         bool was_top_level = false;
1931         if (c->execute.file == QFILE_NULL) {
1932                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
1933                 was_top_level = true;
1934         }
1935 
1936         /* Set ZS for executing (execute == 0) and jumping (if->condition ==
1937          * 0) channels, and then update execute flags for those to point to
1938          * the ELSE block.
1939          */
1940         qir_SF(c, qir_OR(c,
1941                          c->execute,
1942                          ntq_get_src(c, if_stmt->condition, 0)));
1943         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1944                      qir_uniform_ui(c, else_block->index));
1945 
1946         /* Jump to ELSE if nothing is active for THEN, otherwise fall
1947          * through.
1948          */
1949         qir_SF(c, c->execute);
1950         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZC);
1951         qir_link_blocks(c->cur_block, else_block);
1952         qir_link_blocks(c->cur_block, then_block);
1953 
1954         /* Process the THEN block. */
1955         qir_set_emit_block(c, then_block);
1956         ntq_emit_cf_list(c, &if_stmt->then_list);
1957 
1958         if (!empty_else_block) {
1959                 /* Handle the end of the THEN block.  First, all currently
1960                  * active channels update their execute flags to point to
1961                  * ENDIF
1962                  */
1963                 qir_SF(c, c->execute);
1964                 qir_MOV_cond(c, QPU_COND_ZS, c->execute,
1965                              qir_uniform_ui(c, after_block->index));
1966 
1967                 /* If everything points at ENDIF, then jump there immediately. */
1968                 qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, after_block->index)));
1969                 qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
1970                 qir_link_blocks(c->cur_block, after_block);
1971                 qir_link_blocks(c->cur_block, else_block);
1972 
1973                 qir_set_emit_block(c, else_block);
1974                 ntq_activate_execute_for_block(c);
1975                 ntq_emit_cf_list(c, &if_stmt->else_list);
1976         }
1977 
1978         qir_link_blocks(c->cur_block, after_block);
1979 
1980         qir_set_emit_block(c, after_block);
1981         if (was_top_level) {
1982                 c->execute = c->undef;
1983                 c->last_top_block = c->cur_block;
1984         } else {
1985                 ntq_activate_execute_for_block(c);
1986         }
1987 }
1988 
1989 static void
ntq_emit_jump(struct vc4_compile * c,nir_jump_instr * jump)1990 ntq_emit_jump(struct vc4_compile *c, nir_jump_instr *jump)
1991 {
1992         struct qblock *jump_block;
1993         switch (jump->type) {
1994         case nir_jump_break:
1995                 jump_block = c->loop_break_block;
1996                 break;
1997         case nir_jump_continue:
1998                 jump_block = c->loop_cont_block;
1999                 break;
2000         default:
2001                 unreachable("Unsupported jump type\n");
2002         }
2003 
2004         qir_SF(c, c->execute);
2005         qir_MOV_cond(c, QPU_COND_ZS, c->execute,
2006                      qir_uniform_ui(c, jump_block->index));
2007 
2008         /* Jump to the destination block if everyone has taken the jump. */
2009         qir_SF(c, qir_SUB(c, c->execute, qir_uniform_ui(c, jump_block->index)));
2010         qir_BRANCH(c, QPU_COND_BRANCH_ALL_ZS);
2011         struct qblock *new_block = qir_new_block(c);
2012         qir_link_blocks(c->cur_block, jump_block);
2013         qir_link_blocks(c->cur_block, new_block);
2014         qir_set_emit_block(c, new_block);
2015 }
2016 
2017 static void
ntq_emit_instr(struct vc4_compile * c,nir_instr * instr)2018 ntq_emit_instr(struct vc4_compile *c, nir_instr *instr)
2019 {
2020         switch (instr->type) {
2021         case nir_instr_type_alu:
2022                 ntq_emit_alu(c, nir_instr_as_alu(instr));
2023                 break;
2024 
2025         case nir_instr_type_intrinsic:
2026                 ntq_emit_intrinsic(c, nir_instr_as_intrinsic(instr));
2027                 break;
2028 
2029         case nir_instr_type_load_const:
2030                 ntq_emit_load_const(c, nir_instr_as_load_const(instr));
2031                 break;
2032 
2033         case nir_instr_type_ssa_undef:
2034                 ntq_emit_ssa_undef(c, nir_instr_as_ssa_undef(instr));
2035                 break;
2036 
2037         case nir_instr_type_tex:
2038                 ntq_emit_tex(c, nir_instr_as_tex(instr));
2039                 break;
2040 
2041         case nir_instr_type_jump:
2042                 ntq_emit_jump(c, nir_instr_as_jump(instr));
2043                 break;
2044 
2045         default:
2046                 fprintf(stderr, "Unknown NIR instr type: ");
2047                 nir_print_instr(instr, stderr);
2048                 fprintf(stderr, "\n");
2049                 abort();
2050         }
2051 }
2052 
2053 static void
ntq_emit_block(struct vc4_compile * c,nir_block * block)2054 ntq_emit_block(struct vc4_compile *c, nir_block *block)
2055 {
2056         nir_foreach_instr(instr, block) {
2057                 ntq_emit_instr(c, instr);
2058         }
2059 }
2060 
2061 static void ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list);
2062 
2063 static void
ntq_emit_loop(struct vc4_compile * c,nir_loop * loop)2064 ntq_emit_loop(struct vc4_compile *c, nir_loop *loop)
2065 {
2066         if (!c->vc4->screen->has_control_flow) {
2067                 fprintf(stderr,
2068                         "loop support requires updated kernel.\n");
2069                 ntq_emit_cf_list(c, &loop->body);
2070                 return;
2071         }
2072 
2073         bool was_top_level = false;
2074         if (c->execute.file == QFILE_NULL) {
2075                 c->execute = qir_MOV(c, qir_uniform_ui(c, 0));
2076                 was_top_level = true;
2077         }
2078 
2079         struct qblock *save_loop_cont_block = c->loop_cont_block;
2080         struct qblock *save_loop_break_block = c->loop_break_block;
2081 
2082         c->loop_cont_block = qir_new_block(c);
2083         c->loop_break_block = qir_new_block(c);
2084 
2085         qir_link_blocks(c->cur_block, c->loop_cont_block);
2086         qir_set_emit_block(c, c->loop_cont_block);
2087         ntq_activate_execute_for_block(c);
2088 
2089         ntq_emit_cf_list(c, &loop->body);
2090 
2091         /* If anything had explicitly continued, or is here at the end of the
2092          * loop, then we need to loop again.  SF updates are masked by the
2093          * instruction's condition, so we can do the OR of the two conditions
2094          * within SF.
2095          */
2096         qir_SF(c, c->execute);
2097         struct qinst *cont_check =
2098                 qir_SUB_dest(c,
2099                              c->undef,
2100                              c->execute,
2101                              qir_uniform_ui(c, c->loop_cont_block->index));
2102         cont_check->cond = QPU_COND_ZC;
2103         cont_check->sf = true;
2104 
2105         qir_BRANCH(c, QPU_COND_BRANCH_ANY_ZS);
2106         qir_link_blocks(c->cur_block, c->loop_cont_block);
2107         qir_link_blocks(c->cur_block, c->loop_break_block);
2108 
2109         qir_set_emit_block(c, c->loop_break_block);
2110         if (was_top_level) {
2111                 c->execute = c->undef;
2112                 c->last_top_block = c->cur_block;
2113         } else {
2114                 ntq_activate_execute_for_block(c);
2115         }
2116 
2117         c->loop_break_block = save_loop_break_block;
2118         c->loop_cont_block = save_loop_cont_block;
2119 }
2120 
2121 static void
ntq_emit_function(struct vc4_compile * c,nir_function_impl * func)2122 ntq_emit_function(struct vc4_compile *c, nir_function_impl *func)
2123 {
2124         fprintf(stderr, "FUNCTIONS not handled.\n");
2125         abort();
2126 }
2127 
2128 static void
ntq_emit_cf_list(struct vc4_compile * c,struct exec_list * list)2129 ntq_emit_cf_list(struct vc4_compile *c, struct exec_list *list)
2130 {
2131         foreach_list_typed(nir_cf_node, node, node, list) {
2132                 switch (node->type) {
2133                 case nir_cf_node_block:
2134                         ntq_emit_block(c, nir_cf_node_as_block(node));
2135                         break;
2136 
2137                 case nir_cf_node_if:
2138                         ntq_emit_if(c, nir_cf_node_as_if(node));
2139                         break;
2140 
2141                 case nir_cf_node_loop:
2142                         ntq_emit_loop(c, nir_cf_node_as_loop(node));
2143                         break;
2144 
2145                 case nir_cf_node_function:
2146                         ntq_emit_function(c, nir_cf_node_as_function(node));
2147                         break;
2148 
2149                 default:
2150                         fprintf(stderr, "Unknown NIR node type\n");
2151                         abort();
2152                 }
2153         }
2154 }
2155 
2156 static void
ntq_emit_impl(struct vc4_compile * c,nir_function_impl * impl)2157 ntq_emit_impl(struct vc4_compile *c, nir_function_impl *impl)
2158 {
2159         ntq_setup_registers(c, &impl->registers);
2160         ntq_emit_cf_list(c, &impl->body);
2161 }
2162 
2163 static void
nir_to_qir(struct vc4_compile * c)2164 nir_to_qir(struct vc4_compile *c)
2165 {
2166         if (c->stage == QSTAGE_FRAG && c->s->info.fs.uses_discard)
2167                 c->discard = qir_MOV(c, qir_uniform_ui(c, 0));
2168 
2169         ntq_setup_inputs(c);
2170         ntq_setup_outputs(c);
2171         ntq_setup_uniforms(c);
2172         ntq_setup_registers(c, &c->s->registers);
2173 
2174         /* Find the main function and emit the body. */
2175         nir_foreach_function(function, c->s) {
2176                 assert(strcmp(function->name, "main") == 0);
2177                 assert(function->impl);
2178                 ntq_emit_impl(c, function->impl);
2179         }
2180 }
2181 
2182 static const nir_shader_compiler_options nir_options = {
2183         .lower_extract_byte = true,
2184         .lower_extract_word = true,
2185         .lower_ffma = true,
2186         .lower_flrp32 = true,
2187         .lower_fpow = true,
2188         .lower_fsat = true,
2189         .lower_fsqrt = true,
2190         .lower_negate = true,
2191         .native_integers = true,
2192         .max_unroll_iterations = 32,
2193 };
2194 
2195 const void *
vc4_screen_get_compiler_options(struct pipe_screen * pscreen,enum pipe_shader_ir ir,enum pipe_shader_type shader)2196 vc4_screen_get_compiler_options(struct pipe_screen *pscreen,
2197                                 enum pipe_shader_ir ir,
2198                                 enum pipe_shader_type shader)
2199 {
2200         return &nir_options;
2201 }
2202 
2203 static int
count_nir_instrs(nir_shader * nir)2204 count_nir_instrs(nir_shader *nir)
2205 {
2206         int count = 0;
2207         nir_foreach_function(function, nir) {
2208                 if (!function->impl)
2209                         continue;
2210                 nir_foreach_block(block, function->impl) {
2211                         nir_foreach_instr(instr, block)
2212                                 count++;
2213                 }
2214         }
2215         return count;
2216 }
2217 
2218 static struct vc4_compile *
vc4_shader_ntq(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key,bool fs_threaded)2219 vc4_shader_ntq(struct vc4_context *vc4, enum qstage stage,
2220                struct vc4_key *key, bool fs_threaded)
2221 {
2222         struct vc4_compile *c = qir_compile_init();
2223 
2224         c->vc4 = vc4;
2225         c->stage = stage;
2226         c->shader_state = &key->shader_state->base;
2227         c->program_id = key->shader_state->program_id;
2228         c->variant_id =
2229                 p_atomic_inc_return(&key->shader_state->compiled_variant_count);
2230         c->fs_threaded = fs_threaded;
2231 
2232         c->key = key;
2233         switch (stage) {
2234         case QSTAGE_FRAG:
2235                 c->fs_key = (struct vc4_fs_key *)key;
2236                 if (c->fs_key->is_points) {
2237                         c->point_x = emit_fragment_varying(c, ~0, 0);
2238                         c->point_y = emit_fragment_varying(c, ~0, 0);
2239                 } else if (c->fs_key->is_lines) {
2240                         c->line_x = emit_fragment_varying(c, ~0, 0);
2241                 }
2242                 break;
2243         case QSTAGE_VERT:
2244                 c->vs_key = (struct vc4_vs_key *)key;
2245                 break;
2246         case QSTAGE_COORD:
2247                 c->vs_key = (struct vc4_vs_key *)key;
2248                 break;
2249         }
2250 
2251         c->s = nir_shader_clone(c, key->shader_state->base.ir.nir);
2252 
2253         if (stage == QSTAGE_FRAG) {
2254                 if (c->fs_key->alpha_test_func != COMPARE_FUNC_ALWAYS) {
2255                         NIR_PASS_V(c->s, nir_lower_alpha_test,
2256                                    c->fs_key->alpha_test_func,
2257                                    c->fs_key->sample_alpha_to_one &&
2258                                    c->fs_key->msaa);
2259                 }
2260                 NIR_PASS_V(c->s, vc4_nir_lower_blend, c);
2261         }
2262 
2263         struct nir_lower_tex_options tex_options = {
2264                 /* We would need to implement txs, but we don't want the
2265                  * int/float conversions
2266                  */
2267                 .lower_rect = false,
2268 
2269                 .lower_txp = ~0,
2270 
2271                 /* Apply swizzles to all samplers. */
2272                 .swizzle_result = ~0,
2273         };
2274 
2275         /* Lower the format swizzle and ARB_texture_swizzle-style swizzle.
2276          * The format swizzling applies before sRGB decode, and
2277          * ARB_texture_swizzle is the last thing before returning the sample.
2278          */
2279         for (int i = 0; i < ARRAY_SIZE(key->tex); i++) {
2280                 enum pipe_format format = c->key->tex[i].format;
2281 
2282                 if (!format)
2283                         continue;
2284 
2285                 const uint8_t *format_swizzle = vc4_get_format_swizzle(format);
2286 
2287                 for (int j = 0; j < 4; j++) {
2288                         uint8_t arb_swiz = c->key->tex[i].swizzle[j];
2289 
2290                         if (arb_swiz <= 3) {
2291                                 tex_options.swizzles[i][j] =
2292                                         format_swizzle[arb_swiz];
2293                         } else {
2294                                 tex_options.swizzles[i][j] = arb_swiz;
2295                         }
2296                 }
2297 
2298                 if (util_format_is_srgb(format))
2299                         tex_options.lower_srgb |= (1 << i);
2300         }
2301 
2302         NIR_PASS_V(c->s, nir_lower_tex, &tex_options);
2303 
2304         if (c->fs_key && c->fs_key->light_twoside)
2305                 NIR_PASS_V(c->s, nir_lower_two_sided_color);
2306 
2307         if (c->vs_key && c->vs_key->clamp_color)
2308                 NIR_PASS_V(c->s, nir_lower_clamp_color_outputs);
2309 
2310         if (c->key->ucp_enables) {
2311                 if (stage == QSTAGE_FRAG) {
2312                         NIR_PASS_V(c->s, nir_lower_clip_fs, c->key->ucp_enables);
2313                 } else {
2314                         NIR_PASS_V(c->s, nir_lower_clip_vs, c->key->ucp_enables);
2315                         NIR_PASS_V(c->s, nir_lower_io_to_scalar,
2316                                    nir_var_shader_out);
2317                 }
2318         }
2319 
2320         /* FS input scalarizing must happen after nir_lower_two_sided_color,
2321          * which only handles a vec4 at a time.  Similarly, VS output
2322          * scalarizing must happen after nir_lower_clip_vs.
2323          */
2324         if (c->stage == QSTAGE_FRAG)
2325                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_in);
2326         else
2327                 NIR_PASS_V(c->s, nir_lower_io_to_scalar, nir_var_shader_out);
2328 
2329         NIR_PASS_V(c->s, vc4_nir_lower_io, c);
2330         NIR_PASS_V(c->s, vc4_nir_lower_txf_ms, c);
2331         NIR_PASS_V(c->s, nir_lower_idiv);
2332 
2333         vc4_optimize_nir(c->s);
2334 
2335         NIR_PASS_V(c->s, nir_convert_from_ssa, true);
2336 
2337         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2338                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d NIR instructions\n",
2339                         qir_get_stage_name(c->stage),
2340                         c->program_id, c->variant_id,
2341                         count_nir_instrs(c->s));
2342         }
2343 
2344         if (vc4_debug & VC4_DEBUG_NIR) {
2345                 fprintf(stderr, "%s prog %d/%d NIR:\n",
2346                         qir_get_stage_name(c->stage),
2347                         c->program_id, c->variant_id);
2348                 nir_print_shader(c->s, stderr);
2349         }
2350 
2351         nir_to_qir(c);
2352 
2353         switch (stage) {
2354         case QSTAGE_FRAG:
2355                 /* FS threading requires that the thread execute
2356                  * QPU_SIG_LAST_THREAD_SWITCH exactly once before terminating
2357                  * (with no other THRSW afterwards, obviously).  If we didn't
2358                  * fetch a texture at a top level block, this wouldn't be
2359                  * true.
2360                  */
2361                 if (c->fs_threaded && !c->last_thrsw_at_top_level) {
2362                         c->failed = true;
2363                         return c;
2364                 }
2365 
2366                 emit_frag_end(c);
2367                 break;
2368         case QSTAGE_VERT:
2369                 emit_vert_end(c,
2370                               c->vs_key->fs_inputs->input_slots,
2371                               c->vs_key->fs_inputs->num_inputs);
2372                 break;
2373         case QSTAGE_COORD:
2374                 emit_coord_end(c);
2375                 break;
2376         }
2377 
2378         if (vc4_debug & VC4_DEBUG_QIR) {
2379                 fprintf(stderr, "%s prog %d/%d pre-opt QIR:\n",
2380                         qir_get_stage_name(c->stage),
2381                         c->program_id, c->variant_id);
2382                 qir_dump(c);
2383                 fprintf(stderr, "\n");
2384         }
2385 
2386         qir_optimize(c);
2387         qir_lower_uniforms(c);
2388 
2389         qir_schedule_instructions(c);
2390         qir_emit_uniform_stream_resets(c);
2391 
2392         if (vc4_debug & VC4_DEBUG_QIR) {
2393                 fprintf(stderr, "%s prog %d/%d QIR:\n",
2394                         qir_get_stage_name(c->stage),
2395                         c->program_id, c->variant_id);
2396                 qir_dump(c);
2397                 fprintf(stderr, "\n");
2398         }
2399 
2400         qir_reorder_uniforms(c);
2401         vc4_generate_code(vc4, c);
2402 
2403         if (vc4_debug & VC4_DEBUG_SHADERDB) {
2404                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d instructions\n",
2405                         qir_get_stage_name(c->stage),
2406                         c->program_id, c->variant_id,
2407                         c->qpu_inst_count);
2408                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d uniforms\n",
2409                         qir_get_stage_name(c->stage),
2410                         c->program_id, c->variant_id,
2411                         c->num_uniforms);
2412         }
2413 
2414         ralloc_free(c->s);
2415 
2416         return c;
2417 }
2418 
2419 static void *
vc4_shader_state_create(struct pipe_context * pctx,const struct pipe_shader_state * cso)2420 vc4_shader_state_create(struct pipe_context *pctx,
2421                         const struct pipe_shader_state *cso)
2422 {
2423         struct vc4_context *vc4 = vc4_context(pctx);
2424         struct vc4_uncompiled_shader *so = CALLOC_STRUCT(vc4_uncompiled_shader);
2425         if (!so)
2426                 return NULL;
2427 
2428         so->program_id = vc4->next_uncompiled_program_id++;
2429 
2430         nir_shader *s;
2431 
2432         if (cso->type == PIPE_SHADER_IR_NIR) {
2433                 /* The backend takes ownership of the NIR shader on state
2434                  * creation.
2435                  */
2436                 s = cso->ir.nir;
2437 
2438                 NIR_PASS_V(s, nir_lower_io, nir_var_all, type_size,
2439                            (nir_lower_io_options)0);
2440         } else {
2441                 assert(cso->type == PIPE_SHADER_IR_TGSI);
2442 
2443                 if (vc4_debug & VC4_DEBUG_TGSI) {
2444                         fprintf(stderr, "prog %d TGSI:\n",
2445                                 so->program_id);
2446                         tgsi_dump(cso->tokens, 0);
2447                         fprintf(stderr, "\n");
2448                 }
2449                 s = tgsi_to_nir(cso->tokens, &nir_options);
2450         }
2451 
2452         NIR_PASS_V(s, nir_opt_global_to_local);
2453         NIR_PASS_V(s, nir_lower_regs_to_ssa);
2454         NIR_PASS_V(s, nir_normalize_cubemap_coords);
2455 
2456         NIR_PASS_V(s, nir_lower_load_const_to_scalar);
2457 
2458         vc4_optimize_nir(s);
2459 
2460         NIR_PASS_V(s, nir_remove_dead_variables, nir_var_local);
2461 
2462         /* Garbage collect dead instructions */
2463         nir_sweep(s);
2464 
2465         so->base.type = PIPE_SHADER_IR_NIR;
2466         so->base.ir.nir = s;
2467 
2468         if (vc4_debug & VC4_DEBUG_NIR) {
2469                 fprintf(stderr, "%s prog %d NIR:\n",
2470                         gl_shader_stage_name(s->info.stage),
2471                         so->program_id);
2472                 nir_print_shader(s, stderr);
2473                 fprintf(stderr, "\n");
2474         }
2475 
2476         return so;
2477 }
2478 
2479 static void
copy_uniform_state_to_shader(struct vc4_compiled_shader * shader,struct vc4_compile * c)2480 copy_uniform_state_to_shader(struct vc4_compiled_shader *shader,
2481                              struct vc4_compile *c)
2482 {
2483         int count = c->num_uniforms;
2484         struct vc4_shader_uniform_info *uinfo = &shader->uniforms;
2485 
2486         uinfo->count = count;
2487         uinfo->data = ralloc_array(shader, uint32_t, count);
2488         memcpy(uinfo->data, c->uniform_data,
2489                count * sizeof(*uinfo->data));
2490         uinfo->contents = ralloc_array(shader, enum quniform_contents, count);
2491         memcpy(uinfo->contents, c->uniform_contents,
2492                count * sizeof(*uinfo->contents));
2493         uinfo->num_texture_samples = c->num_texture_samples;
2494 
2495         vc4_set_shader_uniform_dirty_flags(shader);
2496 }
2497 
2498 static void
vc4_setup_compiled_fs_inputs(struct vc4_context * vc4,struct vc4_compile * c,struct vc4_compiled_shader * shader)2499 vc4_setup_compiled_fs_inputs(struct vc4_context *vc4, struct vc4_compile *c,
2500                              struct vc4_compiled_shader *shader)
2501 {
2502         struct vc4_fs_inputs inputs;
2503 
2504         memset(&inputs, 0, sizeof(inputs));
2505         inputs.input_slots = ralloc_array(shader,
2506                                           struct vc4_varying_slot,
2507                                           c->num_input_slots);
2508 
2509         bool input_live[c->num_input_slots];
2510 
2511         memset(input_live, 0, sizeof(input_live));
2512         qir_for_each_inst_inorder(inst, c) {
2513                 for (int i = 0; i < qir_get_nsrc(inst); i++) {
2514                         if (inst->src[i].file == QFILE_VARY)
2515                                 input_live[inst->src[i].index] = true;
2516                 }
2517         }
2518 
2519         for (int i = 0; i < c->num_input_slots; i++) {
2520                 struct vc4_varying_slot *slot = &c->input_slots[i];
2521 
2522                 if (!input_live[i])
2523                         continue;
2524 
2525                 /* Skip non-VS-output inputs. */
2526                 if (slot->slot == (uint8_t)~0)
2527                         continue;
2528 
2529                 if (slot->slot == VARYING_SLOT_COL0 ||
2530                     slot->slot == VARYING_SLOT_COL1 ||
2531                     slot->slot == VARYING_SLOT_BFC0 ||
2532                     slot->slot == VARYING_SLOT_BFC1) {
2533                         shader->color_inputs |= (1 << inputs.num_inputs);
2534                 }
2535 
2536                 inputs.input_slots[inputs.num_inputs] = *slot;
2537                 inputs.num_inputs++;
2538         }
2539         shader->num_inputs = inputs.num_inputs;
2540 
2541         /* Add our set of inputs to the set of all inputs seen.  This way, we
2542          * can have a single pointer that identifies an FS inputs set,
2543          * allowing VS to avoid recompiling when the FS is recompiled (or a
2544          * new one is bound using separate shader objects) but the inputs
2545          * don't change.
2546          */
2547         struct set_entry *entry = _mesa_set_search(vc4->fs_inputs_set, &inputs);
2548         if (entry) {
2549                 shader->fs_inputs = entry->key;
2550                 ralloc_free(inputs.input_slots);
2551         } else {
2552                 struct vc4_fs_inputs *alloc_inputs;
2553 
2554                 alloc_inputs = rzalloc(vc4->fs_inputs_set, struct vc4_fs_inputs);
2555                 memcpy(alloc_inputs, &inputs, sizeof(inputs));
2556                 ralloc_steal(alloc_inputs, inputs.input_slots);
2557                 _mesa_set_add(vc4->fs_inputs_set, alloc_inputs);
2558 
2559                 shader->fs_inputs = alloc_inputs;
2560         }
2561 }
2562 
2563 static struct vc4_compiled_shader *
vc4_get_compiled_shader(struct vc4_context * vc4,enum qstage stage,struct vc4_key * key)2564 vc4_get_compiled_shader(struct vc4_context *vc4, enum qstage stage,
2565                         struct vc4_key *key)
2566 {
2567         struct hash_table *ht;
2568         uint32_t key_size;
2569         bool try_threading;
2570 
2571         if (stage == QSTAGE_FRAG) {
2572                 ht = vc4->fs_cache;
2573                 key_size = sizeof(struct vc4_fs_key);
2574                 try_threading = vc4->screen->has_threaded_fs;
2575         } else {
2576                 ht = vc4->vs_cache;
2577                 key_size = sizeof(struct vc4_vs_key);
2578                 try_threading = false;
2579         }
2580 
2581         struct vc4_compiled_shader *shader;
2582         struct hash_entry *entry = _mesa_hash_table_search(ht, key);
2583         if (entry)
2584                 return entry->data;
2585 
2586         struct vc4_compile *c = vc4_shader_ntq(vc4, stage, key, try_threading);
2587         /* If the FS failed to compile threaded, fall back to single threaded. */
2588         if (try_threading && c->failed) {
2589                 qir_compile_destroy(c);
2590                 c = vc4_shader_ntq(vc4, stage, key, false);
2591         }
2592 
2593         shader = rzalloc(NULL, struct vc4_compiled_shader);
2594 
2595         shader->program_id = vc4->next_compiled_program_id++;
2596         if (stage == QSTAGE_FRAG) {
2597                 vc4_setup_compiled_fs_inputs(vc4, c, shader);
2598 
2599                 /* Note: the temporary clone in c->s has been freed. */
2600                 nir_shader *orig_shader = key->shader_state->base.ir.nir;
2601                 if (orig_shader->info.outputs_written & (1 << FRAG_RESULT_DEPTH))
2602                         shader->disable_early_z = true;
2603         } else {
2604                 shader->num_inputs = c->num_inputs;
2605 
2606                 shader->vattr_offsets[0] = 0;
2607                 for (int i = 0; i < 8; i++) {
2608                         shader->vattr_offsets[i + 1] =
2609                                 shader->vattr_offsets[i] + c->vattr_sizes[i];
2610 
2611                         if (c->vattr_sizes[i])
2612                                 shader->vattrs_live |= (1 << i);
2613                 }
2614         }
2615 
2616         shader->failed = c->failed;
2617         if (c->failed) {
2618                 shader->failed = true;
2619         } else {
2620                 copy_uniform_state_to_shader(shader, c);
2621                 shader->bo = vc4_bo_alloc_shader(vc4->screen, c->qpu_insts,
2622                                                  c->qpu_inst_count *
2623                                                  sizeof(uint64_t));
2624         }
2625 
2626         shader->fs_threaded = c->fs_threaded;
2627 
2628         /* Copy the compiler UBO range state to the compiled shader, dropping
2629          * out arrays that were never referenced by an indirect load.
2630          *
2631          * (Note that QIR dead code elimination of an array access still
2632          * leaves that array alive, though)
2633          */
2634         if (c->num_ubo_ranges) {
2635                 shader->num_ubo_ranges = c->num_ubo_ranges;
2636                 shader->ubo_ranges = ralloc_array(shader, struct vc4_ubo_range,
2637                                                   c->num_ubo_ranges);
2638                 uint32_t j = 0;
2639                 for (int i = 0; i < c->num_uniform_ranges; i++) {
2640                         struct vc4_compiler_ubo_range *range =
2641                                 &c->ubo_ranges[i];
2642                         if (!range->used)
2643                                 continue;
2644 
2645                         shader->ubo_ranges[j].dst_offset = range->dst_offset;
2646                         shader->ubo_ranges[j].src_offset = range->src_offset;
2647                         shader->ubo_ranges[j].size = range->size;
2648                         shader->ubo_size += c->ubo_ranges[i].size;
2649                         j++;
2650                 }
2651         }
2652         if (shader->ubo_size) {
2653                 if (vc4_debug & VC4_DEBUG_SHADERDB) {
2654                         fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d UBO uniforms\n",
2655                                 qir_get_stage_name(c->stage),
2656                                 c->program_id, c->variant_id,
2657                                 shader->ubo_size / 4);
2658                 }
2659         }
2660 
2661         if ((vc4_debug & VC4_DEBUG_SHADERDB) && stage == QSTAGE_FRAG) {
2662                 fprintf(stderr, "SHADER-DB: %s prog %d/%d: %d FS threads\n",
2663                         qir_get_stage_name(c->stage),
2664                         c->program_id, c->variant_id,
2665                         1 + shader->fs_threaded);
2666         }
2667 
2668         qir_compile_destroy(c);
2669 
2670         struct vc4_key *dup_key;
2671         dup_key = rzalloc_size(shader, key_size); /* TODO: don't use rzalloc */
2672         memcpy(dup_key, key, key_size);
2673         _mesa_hash_table_insert(ht, dup_key, shader);
2674 
2675         return shader;
2676 }
2677 
2678 static void
vc4_setup_shared_key(struct vc4_context * vc4,struct vc4_key * key,struct vc4_texture_stateobj * texstate)2679 vc4_setup_shared_key(struct vc4_context *vc4, struct vc4_key *key,
2680                      struct vc4_texture_stateobj *texstate)
2681 {
2682         for (int i = 0; i < texstate->num_textures; i++) {
2683                 struct pipe_sampler_view *sampler = texstate->textures[i];
2684                 struct vc4_sampler_view *vc4_sampler = vc4_sampler_view(sampler);
2685                 struct pipe_sampler_state *sampler_state =
2686                         texstate->samplers[i];
2687 
2688                 if (!sampler)
2689                         continue;
2690 
2691                 key->tex[i].format = sampler->format;
2692                 key->tex[i].swizzle[0] = sampler->swizzle_r;
2693                 key->tex[i].swizzle[1] = sampler->swizzle_g;
2694                 key->tex[i].swizzle[2] = sampler->swizzle_b;
2695                 key->tex[i].swizzle[3] = sampler->swizzle_a;
2696 
2697                 if (sampler->texture->nr_samples > 1) {
2698                         key->tex[i].msaa_width = sampler->texture->width0;
2699                         key->tex[i].msaa_height = sampler->texture->height0;
2700                 } else if (sampler){
2701                         key->tex[i].compare_mode = sampler_state->compare_mode;
2702                         key->tex[i].compare_func = sampler_state->compare_func;
2703                         key->tex[i].wrap_s = sampler_state->wrap_s;
2704                         key->tex[i].wrap_t = sampler_state->wrap_t;
2705                         key->tex[i].force_first_level =
2706                                 vc4_sampler->force_first_level;
2707                 }
2708         }
2709 
2710         key->ucp_enables = vc4->rasterizer->base.clip_plane_enable;
2711 }
2712 
2713 static void
vc4_update_compiled_fs(struct vc4_context * vc4,uint8_t prim_mode)2714 vc4_update_compiled_fs(struct vc4_context *vc4, uint8_t prim_mode)
2715 {
2716         struct vc4_job *job = vc4->job;
2717         struct vc4_fs_key local_key;
2718         struct vc4_fs_key *key = &local_key;
2719 
2720         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2721                             VC4_DIRTY_BLEND |
2722                             VC4_DIRTY_FRAMEBUFFER |
2723                             VC4_DIRTY_ZSA |
2724                             VC4_DIRTY_RASTERIZER |
2725                             VC4_DIRTY_SAMPLE_MASK |
2726                             VC4_DIRTY_FRAGTEX |
2727                             VC4_DIRTY_UNCOMPILED_FS))) {
2728                 return;
2729         }
2730 
2731         memset(key, 0, sizeof(*key));
2732         vc4_setup_shared_key(vc4, &key->base, &vc4->fragtex);
2733         key->base.shader_state = vc4->prog.bind_fs;
2734         key->is_points = (prim_mode == PIPE_PRIM_POINTS);
2735         key->is_lines = (prim_mode >= PIPE_PRIM_LINES &&
2736                          prim_mode <= PIPE_PRIM_LINE_STRIP);
2737         key->blend = vc4->blend->rt[0];
2738         if (vc4->blend->logicop_enable) {
2739                 key->logicop_func = vc4->blend->logicop_func;
2740         } else {
2741                 key->logicop_func = PIPE_LOGICOP_COPY;
2742         }
2743         if (job->msaa) {
2744                 key->msaa = vc4->rasterizer->base.multisample;
2745                 key->sample_coverage = (vc4->sample_mask != (1 << VC4_MAX_SAMPLES) - 1);
2746                 key->sample_alpha_to_coverage = vc4->blend->alpha_to_coverage;
2747                 key->sample_alpha_to_one = vc4->blend->alpha_to_one;
2748         }
2749 
2750         if (vc4->framebuffer.cbufs[0])
2751                 key->color_format = vc4->framebuffer.cbufs[0]->format;
2752 
2753         key->stencil_enabled = vc4->zsa->stencil_uniforms[0] != 0;
2754         key->stencil_twoside = vc4->zsa->stencil_uniforms[1] != 0;
2755         key->stencil_full_writemasks = vc4->zsa->stencil_uniforms[2] != 0;
2756         key->depth_enabled = (vc4->zsa->base.depth.enabled ||
2757                               key->stencil_enabled);
2758         if (vc4->zsa->base.alpha.enabled)
2759                 key->alpha_test_func = vc4->zsa->base.alpha.func;
2760         else
2761                 key->alpha_test_func = COMPARE_FUNC_ALWAYS;
2762 
2763         if (key->is_points) {
2764                 key->point_sprite_mask =
2765                         vc4->rasterizer->base.sprite_coord_enable;
2766                 key->point_coord_upper_left =
2767                         (vc4->rasterizer->base.sprite_coord_mode ==
2768                          PIPE_SPRITE_COORD_UPPER_LEFT);
2769         }
2770 
2771         key->light_twoside = vc4->rasterizer->base.light_twoside;
2772 
2773         struct vc4_compiled_shader *old_fs = vc4->prog.fs;
2774         vc4->prog.fs = vc4_get_compiled_shader(vc4, QSTAGE_FRAG, &key->base);
2775         if (vc4->prog.fs == old_fs)
2776                 return;
2777 
2778         vc4->dirty |= VC4_DIRTY_COMPILED_FS;
2779 
2780         if (vc4->rasterizer->base.flatshade &&
2781             (!old_fs || vc4->prog.fs->color_inputs != old_fs->color_inputs)) {
2782                 vc4->dirty |= VC4_DIRTY_FLAT_SHADE_FLAGS;
2783         }
2784 
2785         if (!old_fs || vc4->prog.fs->fs_inputs != old_fs->fs_inputs)
2786                 vc4->dirty |= VC4_DIRTY_FS_INPUTS;
2787 }
2788 
2789 static void
vc4_update_compiled_vs(struct vc4_context * vc4,uint8_t prim_mode)2790 vc4_update_compiled_vs(struct vc4_context *vc4, uint8_t prim_mode)
2791 {
2792         struct vc4_vs_key local_key;
2793         struct vc4_vs_key *key = &local_key;
2794 
2795         if (!(vc4->dirty & (VC4_DIRTY_PRIM_MODE |
2796                             VC4_DIRTY_RASTERIZER |
2797                             VC4_DIRTY_VERTTEX |
2798                             VC4_DIRTY_VTXSTATE |
2799                             VC4_DIRTY_UNCOMPILED_VS |
2800                             VC4_DIRTY_FS_INPUTS))) {
2801                 return;
2802         }
2803 
2804         memset(key, 0, sizeof(*key));
2805         vc4_setup_shared_key(vc4, &key->base, &vc4->verttex);
2806         key->base.shader_state = vc4->prog.bind_vs;
2807         key->fs_inputs = vc4->prog.fs->fs_inputs;
2808         key->clamp_color = vc4->rasterizer->base.clamp_vertex_color;
2809 
2810         for (int i = 0; i < ARRAY_SIZE(key->attr_formats); i++)
2811                 key->attr_formats[i] = vc4->vtx->pipe[i].src_format;
2812 
2813         key->per_vertex_point_size =
2814                 (prim_mode == PIPE_PRIM_POINTS &&
2815                  vc4->rasterizer->base.point_size_per_vertex);
2816 
2817         struct vc4_compiled_shader *vs =
2818                 vc4_get_compiled_shader(vc4, QSTAGE_VERT, &key->base);
2819         if (vs != vc4->prog.vs) {
2820                 vc4->prog.vs = vs;
2821                 vc4->dirty |= VC4_DIRTY_COMPILED_VS;
2822         }
2823 
2824         key->is_coord = true;
2825         /* Coord shaders don't care what the FS inputs are. */
2826         key->fs_inputs = NULL;
2827         struct vc4_compiled_shader *cs =
2828                 vc4_get_compiled_shader(vc4, QSTAGE_COORD, &key->base);
2829         if (cs != vc4->prog.cs) {
2830                 vc4->prog.cs = cs;
2831                 vc4->dirty |= VC4_DIRTY_COMPILED_CS;
2832         }
2833 }
2834 
2835 bool
vc4_update_compiled_shaders(struct vc4_context * vc4,uint8_t prim_mode)2836 vc4_update_compiled_shaders(struct vc4_context *vc4, uint8_t prim_mode)
2837 {
2838         vc4_update_compiled_fs(vc4, prim_mode);
2839         vc4_update_compiled_vs(vc4, prim_mode);
2840 
2841         return !(vc4->prog.cs->failed ||
2842                  vc4->prog.vs->failed ||
2843                  vc4->prog.fs->failed);
2844 }
2845 
2846 static uint32_t
fs_cache_hash(const void * key)2847 fs_cache_hash(const void *key)
2848 {
2849         return _mesa_hash_data(key, sizeof(struct vc4_fs_key));
2850 }
2851 
2852 static uint32_t
vs_cache_hash(const void * key)2853 vs_cache_hash(const void *key)
2854 {
2855         return _mesa_hash_data(key, sizeof(struct vc4_vs_key));
2856 }
2857 
2858 static bool
fs_cache_compare(const void * key1,const void * key2)2859 fs_cache_compare(const void *key1, const void *key2)
2860 {
2861         return memcmp(key1, key2, sizeof(struct vc4_fs_key)) == 0;
2862 }
2863 
2864 static bool
vs_cache_compare(const void * key1,const void * key2)2865 vs_cache_compare(const void *key1, const void *key2)
2866 {
2867         return memcmp(key1, key2, sizeof(struct vc4_vs_key)) == 0;
2868 }
2869 
2870 static uint32_t
fs_inputs_hash(const void * key)2871 fs_inputs_hash(const void *key)
2872 {
2873         const struct vc4_fs_inputs *inputs = key;
2874 
2875         return _mesa_hash_data(inputs->input_slots,
2876                                sizeof(*inputs->input_slots) *
2877                                inputs->num_inputs);
2878 }
2879 
2880 static bool
fs_inputs_compare(const void * key1,const void * key2)2881 fs_inputs_compare(const void *key1, const void *key2)
2882 {
2883         const struct vc4_fs_inputs *inputs1 = key1;
2884         const struct vc4_fs_inputs *inputs2 = key2;
2885 
2886         return (inputs1->num_inputs == inputs2->num_inputs &&
2887                 memcmp(inputs1->input_slots,
2888                        inputs2->input_slots,
2889                        sizeof(*inputs1->input_slots) *
2890                        inputs1->num_inputs) == 0);
2891 }
2892 
2893 static void
delete_from_cache_if_matches(struct hash_table * ht,struct vc4_compiled_shader ** last_compile,struct hash_entry * entry,struct vc4_uncompiled_shader * so)2894 delete_from_cache_if_matches(struct hash_table *ht,
2895                              struct vc4_compiled_shader **last_compile,
2896                              struct hash_entry *entry,
2897                              struct vc4_uncompiled_shader *so)
2898 {
2899         const struct vc4_key *key = entry->key;
2900 
2901         if (key->shader_state == so) {
2902                 struct vc4_compiled_shader *shader = entry->data;
2903                 _mesa_hash_table_remove(ht, entry);
2904                 vc4_bo_unreference(&shader->bo);
2905 
2906                 if (shader == *last_compile)
2907                         *last_compile = NULL;
2908 
2909                 ralloc_free(shader);
2910         }
2911 }
2912 
2913 static void
vc4_shader_state_delete(struct pipe_context * pctx,void * hwcso)2914 vc4_shader_state_delete(struct pipe_context *pctx, void *hwcso)
2915 {
2916         struct vc4_context *vc4 = vc4_context(pctx);
2917         struct vc4_uncompiled_shader *so = hwcso;
2918 
2919         struct hash_entry *entry;
2920         hash_table_foreach(vc4->fs_cache, entry) {
2921                 delete_from_cache_if_matches(vc4->fs_cache, &vc4->prog.fs,
2922                                              entry, so);
2923         }
2924         hash_table_foreach(vc4->vs_cache, entry) {
2925                 delete_from_cache_if_matches(vc4->vs_cache, &vc4->prog.vs,
2926                                              entry, so);
2927         }
2928 
2929         ralloc_free(so->base.ir.nir);
2930         free(so);
2931 }
2932 
2933 static void
vc4_fp_state_bind(struct pipe_context * pctx,void * hwcso)2934 vc4_fp_state_bind(struct pipe_context *pctx, void *hwcso)
2935 {
2936         struct vc4_context *vc4 = vc4_context(pctx);
2937         vc4->prog.bind_fs = hwcso;
2938         vc4->dirty |= VC4_DIRTY_UNCOMPILED_FS;
2939 }
2940 
2941 static void
vc4_vp_state_bind(struct pipe_context * pctx,void * hwcso)2942 vc4_vp_state_bind(struct pipe_context *pctx, void *hwcso)
2943 {
2944         struct vc4_context *vc4 = vc4_context(pctx);
2945         vc4->prog.bind_vs = hwcso;
2946         vc4->dirty |= VC4_DIRTY_UNCOMPILED_VS;
2947 }
2948 
2949 void
vc4_program_init(struct pipe_context * pctx)2950 vc4_program_init(struct pipe_context *pctx)
2951 {
2952         struct vc4_context *vc4 = vc4_context(pctx);
2953 
2954         pctx->create_vs_state = vc4_shader_state_create;
2955         pctx->delete_vs_state = vc4_shader_state_delete;
2956 
2957         pctx->create_fs_state = vc4_shader_state_create;
2958         pctx->delete_fs_state = vc4_shader_state_delete;
2959 
2960         pctx->bind_fs_state = vc4_fp_state_bind;
2961         pctx->bind_vs_state = vc4_vp_state_bind;
2962 
2963         vc4->fs_cache = _mesa_hash_table_create(pctx, fs_cache_hash,
2964                                                 fs_cache_compare);
2965         vc4->vs_cache = _mesa_hash_table_create(pctx, vs_cache_hash,
2966                                                 vs_cache_compare);
2967         vc4->fs_inputs_set = _mesa_set_create(pctx, fs_inputs_hash,
2968                                               fs_inputs_compare);
2969 }
2970 
2971 void
vc4_program_fini(struct pipe_context * pctx)2972 vc4_program_fini(struct pipe_context *pctx)
2973 {
2974         struct vc4_context *vc4 = vc4_context(pctx);
2975 
2976         struct hash_entry *entry;
2977         hash_table_foreach(vc4->fs_cache, entry) {
2978                 struct vc4_compiled_shader *shader = entry->data;
2979                 vc4_bo_unreference(&shader->bo);
2980                 ralloc_free(shader);
2981                 _mesa_hash_table_remove(vc4->fs_cache, entry);
2982         }
2983 
2984         hash_table_foreach(vc4->vs_cache, entry) {
2985                 struct vc4_compiled_shader *shader = entry->data;
2986                 vc4_bo_unreference(&shader->bo);
2987                 ralloc_free(shader);
2988                 _mesa_hash_table_remove(vc4->vs_cache, entry);
2989         }
2990 }
2991