1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/Module.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <algorithm>
36
37 using namespace clang;
38
getPrimaryMergedDecl(Decl * D)39 Decl *clang::getPrimaryMergedDecl(Decl *D) {
40 return D->getASTContext().getPrimaryMergedDecl(D);
41 }
42
43 // Defined here so that it can be inlined into its direct callers.
isOutOfLine() const44 bool Decl::isOutOfLine() const {
45 return !getLexicalDeclContext()->Equals(getDeclContext());
46 }
47
TranslationUnitDecl(ASTContext & ctx)48 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
49 : Decl(TranslationUnit, nullptr, SourceLocation()),
50 DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
51 Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
52 }
53
54 //===----------------------------------------------------------------------===//
55 // NamedDecl Implementation
56 //===----------------------------------------------------------------------===//
57
58 // Visibility rules aren't rigorously externally specified, but here
59 // are the basic principles behind what we implement:
60 //
61 // 1. An explicit visibility attribute is generally a direct expression
62 // of the user's intent and should be honored. Only the innermost
63 // visibility attribute applies. If no visibility attribute applies,
64 // global visibility settings are considered.
65 //
66 // 2. There is one caveat to the above: on or in a template pattern,
67 // an explicit visibility attribute is just a default rule, and
68 // visibility can be decreased by the visibility of template
69 // arguments. But this, too, has an exception: an attribute on an
70 // explicit specialization or instantiation causes all the visibility
71 // restrictions of the template arguments to be ignored.
72 //
73 // 3. A variable that does not otherwise have explicit visibility can
74 // be restricted by the visibility of its type.
75 //
76 // 4. A visibility restriction is explicit if it comes from an
77 // attribute (or something like it), not a global visibility setting.
78 // When emitting a reference to an external symbol, visibility
79 // restrictions are ignored unless they are explicit.
80 //
81 // 5. When computing the visibility of a non-type, including a
82 // non-type member of a class, only non-type visibility restrictions
83 // are considered: the 'visibility' attribute, global value-visibility
84 // settings, and a few special cases like __private_extern.
85 //
86 // 6. When computing the visibility of a type, including a type member
87 // of a class, only type visibility restrictions are considered:
88 // the 'type_visibility' attribute and global type-visibility settings.
89 // However, a 'visibility' attribute counts as a 'type_visibility'
90 // attribute on any declaration that only has the former.
91 //
92 // The visibility of a "secondary" entity, like a template argument,
93 // is computed using the kind of that entity, not the kind of the
94 // primary entity for which we are computing visibility. For example,
95 // the visibility of a specialization of either of these templates:
96 // template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
97 // template <class T, bool (&compare)(T, X)> class matcher;
98 // is restricted according to the type visibility of the argument 'T',
99 // the type visibility of 'bool(&)(T,X)', and the value visibility of
100 // the argument function 'compare'. That 'has_match' is a value
101 // and 'matcher' is a type only matters when looking for attributes
102 // and settings from the immediate context.
103
104 const unsigned IgnoreExplicitVisibilityBit = 2;
105 const unsigned IgnoreAllVisibilityBit = 4;
106
107 /// Kinds of LV computation. The linkage side of the computation is
108 /// always the same, but different things can change how visibility is
109 /// computed.
110 enum LVComputationKind {
111 /// Do an LV computation for, ultimately, a type.
112 /// Visibility may be restricted by type visibility settings and
113 /// the visibility of template arguments.
114 LVForType = NamedDecl::VisibilityForType,
115
116 /// Do an LV computation for, ultimately, a non-type declaration.
117 /// Visibility may be restricted by value visibility settings and
118 /// the visibility of template arguments.
119 LVForValue = NamedDecl::VisibilityForValue,
120
121 /// Do an LV computation for, ultimately, a type that already has
122 /// some sort of explicit visibility. Visibility may only be
123 /// restricted by the visibility of template arguments.
124 LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
125
126 /// Do an LV computation for, ultimately, a non-type declaration
127 /// that already has some sort of explicit visibility. Visibility
128 /// may only be restricted by the visibility of template arguments.
129 LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
130
131 /// Do an LV computation when we only care about the linkage.
132 LVForLinkageOnly =
133 LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
134 };
135
136 /// Does this computation kind permit us to consider additional
137 /// visibility settings from attributes and the like?
hasExplicitVisibilityAlready(LVComputationKind computation)138 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
139 return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
140 }
141
142 /// Given an LVComputationKind, return one of the same type/value sort
143 /// that records that it already has explicit visibility.
144 static LVComputationKind
withExplicitVisibilityAlready(LVComputationKind oldKind)145 withExplicitVisibilityAlready(LVComputationKind oldKind) {
146 LVComputationKind newKind =
147 static_cast<LVComputationKind>(unsigned(oldKind) |
148 IgnoreExplicitVisibilityBit);
149 assert(oldKind != LVForType || newKind == LVForExplicitType);
150 assert(oldKind != LVForValue || newKind == LVForExplicitValue);
151 assert(oldKind != LVForExplicitType || newKind == LVForExplicitType);
152 assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
153 return newKind;
154 }
155
getExplicitVisibility(const NamedDecl * D,LVComputationKind kind)156 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
157 LVComputationKind kind) {
158 assert(!hasExplicitVisibilityAlready(kind) &&
159 "asking for explicit visibility when we shouldn't be");
160 return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
161 }
162
163 /// Is the given declaration a "type" or a "value" for the purposes of
164 /// visibility computation?
usesTypeVisibility(const NamedDecl * D)165 static bool usesTypeVisibility(const NamedDecl *D) {
166 return isa<TypeDecl>(D) ||
167 isa<ClassTemplateDecl>(D) ||
168 isa<ObjCInterfaceDecl>(D);
169 }
170
171 /// Does the given declaration have member specialization information,
172 /// and if so, is it an explicit specialization?
173 template <class T> static typename
174 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
isExplicitMemberSpecialization(const T * D)175 isExplicitMemberSpecialization(const T *D) {
176 if (const MemberSpecializationInfo *member =
177 D->getMemberSpecializationInfo()) {
178 return member->isExplicitSpecialization();
179 }
180 return false;
181 }
182
183 /// For templates, this question is easier: a member template can't be
184 /// explicitly instantiated, so there's a single bit indicating whether
185 /// or not this is an explicit member specialization.
isExplicitMemberSpecialization(const RedeclarableTemplateDecl * D)186 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
187 return D->isMemberSpecialization();
188 }
189
190 /// Given a visibility attribute, return the explicit visibility
191 /// associated with it.
192 template <class T>
getVisibilityFromAttr(const T * attr)193 static Visibility getVisibilityFromAttr(const T *attr) {
194 switch (attr->getVisibility()) {
195 case T::Default:
196 return DefaultVisibility;
197 case T::Hidden:
198 return HiddenVisibility;
199 case T::Protected:
200 return ProtectedVisibility;
201 }
202 llvm_unreachable("bad visibility kind");
203 }
204
205 /// Return the explicit visibility of the given declaration.
getVisibilityOf(const NamedDecl * D,NamedDecl::ExplicitVisibilityKind kind)206 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
207 NamedDecl::ExplicitVisibilityKind kind) {
208 // If we're ultimately computing the visibility of a type, look for
209 // a 'type_visibility' attribute before looking for 'visibility'.
210 if (kind == NamedDecl::VisibilityForType) {
211 if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
212 return getVisibilityFromAttr(A);
213 }
214 }
215
216 // If this declaration has an explicit visibility attribute, use it.
217 if (const auto *A = D->getAttr<VisibilityAttr>()) {
218 return getVisibilityFromAttr(A);
219 }
220
221 // If we're on Mac OS X, an 'availability' for Mac OS X attribute
222 // implies visibility(default).
223 if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
224 for (const auto *A : D->specific_attrs<AvailabilityAttr>())
225 if (A->getPlatform()->getName().equals("macos"))
226 return DefaultVisibility;
227 }
228
229 return None;
230 }
231
232 static LinkageInfo
getLVForType(const Type & T,LVComputationKind computation)233 getLVForType(const Type &T, LVComputationKind computation) {
234 if (computation == LVForLinkageOnly)
235 return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
236 return T.getLinkageAndVisibility();
237 }
238
239 /// \brief Get the most restrictive linkage for the types in the given
240 /// template parameter list. For visibility purposes, template
241 /// parameters are part of the signature of a template.
242 static LinkageInfo
getLVForTemplateParameterList(const TemplateParameterList * Params,LVComputationKind computation)243 getLVForTemplateParameterList(const TemplateParameterList *Params,
244 LVComputationKind computation) {
245 LinkageInfo LV;
246 for (const NamedDecl *P : *Params) {
247 // Template type parameters are the most common and never
248 // contribute to visibility, pack or not.
249 if (isa<TemplateTypeParmDecl>(P))
250 continue;
251
252 // Non-type template parameters can be restricted by the value type, e.g.
253 // template <enum X> class A { ... };
254 // We have to be careful here, though, because we can be dealing with
255 // dependent types.
256 if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
257 // Handle the non-pack case first.
258 if (!NTTP->isExpandedParameterPack()) {
259 if (!NTTP->getType()->isDependentType()) {
260 LV.merge(getLVForType(*NTTP->getType(), computation));
261 }
262 continue;
263 }
264
265 // Look at all the types in an expanded pack.
266 for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
267 QualType type = NTTP->getExpansionType(i);
268 if (!type->isDependentType())
269 LV.merge(type->getLinkageAndVisibility());
270 }
271 continue;
272 }
273
274 // Template template parameters can be restricted by their
275 // template parameters, recursively.
276 const auto *TTP = cast<TemplateTemplateParmDecl>(P);
277
278 // Handle the non-pack case first.
279 if (!TTP->isExpandedParameterPack()) {
280 LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
281 computation));
282 continue;
283 }
284
285 // Look at all expansions in an expanded pack.
286 for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
287 i != n; ++i) {
288 LV.merge(getLVForTemplateParameterList(
289 TTP->getExpansionTemplateParameters(i), computation));
290 }
291 }
292
293 return LV;
294 }
295
296 /// getLVForDecl - Get the linkage and visibility for the given declaration.
297 static LinkageInfo getLVForDecl(const NamedDecl *D,
298 LVComputationKind computation);
299
getOutermostFuncOrBlockContext(const Decl * D)300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
301 const Decl *Ret = nullptr;
302 const DeclContext *DC = D->getDeclContext();
303 while (DC->getDeclKind() != Decl::TranslationUnit) {
304 if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
305 Ret = cast<Decl>(DC);
306 DC = DC->getParent();
307 }
308 return Ret;
309 }
310
311 /// \brief Get the most restrictive linkage for the types and
312 /// declarations in the given template argument list.
313 ///
314 /// Note that we don't take an LVComputationKind because we always
315 /// want to honor the visibility of template arguments in the same way.
getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,LVComputationKind computation)316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
317 LVComputationKind computation) {
318 LinkageInfo LV;
319
320 for (const TemplateArgument &Arg : Args) {
321 switch (Arg.getKind()) {
322 case TemplateArgument::Null:
323 case TemplateArgument::Integral:
324 case TemplateArgument::Expression:
325 continue;
326
327 case TemplateArgument::Type:
328 LV.merge(getLVForType(*Arg.getAsType(), computation));
329 continue;
330
331 case TemplateArgument::Declaration:
332 if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
333 assert(!usesTypeVisibility(ND));
334 LV.merge(getLVForDecl(ND, computation));
335 }
336 continue;
337
338 case TemplateArgument::NullPtr:
339 LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
340 continue;
341
342 case TemplateArgument::Template:
343 case TemplateArgument::TemplateExpansion:
344 if (TemplateDecl *Template =
345 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
346 LV.merge(getLVForDecl(Template, computation));
347 continue;
348
349 case TemplateArgument::Pack:
350 LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
351 continue;
352 }
353 llvm_unreachable("bad template argument kind");
354 }
355
356 return LV;
357 }
358
359 static LinkageInfo
getLVForTemplateArgumentList(const TemplateArgumentList & TArgs,LVComputationKind computation)360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
361 LVComputationKind computation) {
362 return getLVForTemplateArgumentList(TArgs.asArray(), computation);
363 }
364
shouldConsiderTemplateVisibility(const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo)365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
366 const FunctionTemplateSpecializationInfo *specInfo) {
367 // Include visibility from the template parameters and arguments
368 // only if this is not an explicit instantiation or specialization
369 // with direct explicit visibility. (Implicit instantiations won't
370 // have a direct attribute.)
371 if (!specInfo->isExplicitInstantiationOrSpecialization())
372 return true;
373
374 return !fn->hasAttr<VisibilityAttr>();
375 }
376
377 /// Merge in template-related linkage and visibility for the given
378 /// function template specialization.
379 ///
380 /// We don't need a computation kind here because we can assume
381 /// LVForValue.
382 ///
383 /// \param[out] LV the computation to use for the parent
384 static void
mergeTemplateLV(LinkageInfo & LV,const FunctionDecl * fn,const FunctionTemplateSpecializationInfo * specInfo,LVComputationKind computation)385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
386 const FunctionTemplateSpecializationInfo *specInfo,
387 LVComputationKind computation) {
388 bool considerVisibility =
389 shouldConsiderTemplateVisibility(fn, specInfo);
390
391 // Merge information from the template parameters.
392 FunctionTemplateDecl *temp = specInfo->getTemplate();
393 LinkageInfo tempLV =
394 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
395 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
396
397 // Merge information from the template arguments.
398 const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
399 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
400 LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
401 }
402
403 /// Does the given declaration have a direct visibility attribute
404 /// that would match the given rules?
hasDirectVisibilityAttribute(const NamedDecl * D,LVComputationKind computation)405 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
406 LVComputationKind computation) {
407 switch (computation) {
408 case LVForType:
409 case LVForExplicitType:
410 if (D->hasAttr<TypeVisibilityAttr>())
411 return true;
412 // fallthrough
413 case LVForValue:
414 case LVForExplicitValue:
415 if (D->hasAttr<VisibilityAttr>())
416 return true;
417 return false;
418 case LVForLinkageOnly:
419 return false;
420 }
421 llvm_unreachable("bad visibility computation kind");
422 }
423
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
shouldConsiderTemplateVisibility(const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)426 static bool shouldConsiderTemplateVisibility(
427 const ClassTemplateSpecializationDecl *spec,
428 LVComputationKind computation) {
429 // Include visibility from the template parameters and arguments
430 // only if this is not an explicit instantiation or specialization
431 // with direct explicit visibility (and note that implicit
432 // instantiations won't have a direct attribute).
433 //
434 // Furthermore, we want to ignore template parameters and arguments
435 // for an explicit specialization when computing the visibility of a
436 // member thereof with explicit visibility.
437 //
438 // This is a bit complex; let's unpack it.
439 //
440 // An explicit class specialization is an independent, top-level
441 // declaration. As such, if it or any of its members has an
442 // explicit visibility attribute, that must directly express the
443 // user's intent, and we should honor it. The same logic applies to
444 // an explicit instantiation of a member of such a thing.
445
446 // Fast path: if this is not an explicit instantiation or
447 // specialization, we always want to consider template-related
448 // visibility restrictions.
449 if (!spec->isExplicitInstantiationOrSpecialization())
450 return true;
451
452 // This is the 'member thereof' check.
453 if (spec->isExplicitSpecialization() &&
454 hasExplicitVisibilityAlready(computation))
455 return false;
456
457 return !hasDirectVisibilityAttribute(spec, computation);
458 }
459
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
mergeTemplateLV(LinkageInfo & LV,const ClassTemplateSpecializationDecl * spec,LVComputationKind computation)462 static void mergeTemplateLV(LinkageInfo &LV,
463 const ClassTemplateSpecializationDecl *spec,
464 LVComputationKind computation) {
465 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466
467 // Merge information from the template parameters, but ignore
468 // visibility if we're only considering template arguments.
469
470 ClassTemplateDecl *temp = spec->getSpecializedTemplate();
471 LinkageInfo tempLV =
472 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
473 LV.mergeMaybeWithVisibility(tempLV,
474 considerVisibility && !hasExplicitVisibilityAlready(computation));
475
476 // Merge information from the template arguments. We ignore
477 // template-argument visibility if we've got an explicit
478 // instantiation with a visibility attribute.
479 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
480 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
481 if (considerVisibility)
482 LV.mergeVisibility(argsLV);
483 LV.mergeExternalVisibility(argsLV);
484 }
485
486 /// Should we consider visibility associated with the template
487 /// arguments and parameters of the given variable template
488 /// specialization? As usual, follow class template specialization
489 /// logic up to initialization.
shouldConsiderTemplateVisibility(const VarTemplateSpecializationDecl * spec,LVComputationKind computation)490 static bool shouldConsiderTemplateVisibility(
491 const VarTemplateSpecializationDecl *spec,
492 LVComputationKind computation) {
493 // Include visibility from the template parameters and arguments
494 // only if this is not an explicit instantiation or specialization
495 // with direct explicit visibility (and note that implicit
496 // instantiations won't have a direct attribute).
497 if (!spec->isExplicitInstantiationOrSpecialization())
498 return true;
499
500 // An explicit variable specialization is an independent, top-level
501 // declaration. As such, if it has an explicit visibility attribute,
502 // that must directly express the user's intent, and we should honor
503 // it.
504 if (spec->isExplicitSpecialization() &&
505 hasExplicitVisibilityAlready(computation))
506 return false;
507
508 return !hasDirectVisibilityAttribute(spec, computation);
509 }
510
511 /// Merge in template-related linkage and visibility for the given
512 /// variable template specialization. As usual, follow class template
513 /// specialization logic up to initialization.
mergeTemplateLV(LinkageInfo & LV,const VarTemplateSpecializationDecl * spec,LVComputationKind computation)514 static void mergeTemplateLV(LinkageInfo &LV,
515 const VarTemplateSpecializationDecl *spec,
516 LVComputationKind computation) {
517 bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
518
519 // Merge information from the template parameters, but ignore
520 // visibility if we're only considering template arguments.
521
522 VarTemplateDecl *temp = spec->getSpecializedTemplate();
523 LinkageInfo tempLV =
524 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
525 LV.mergeMaybeWithVisibility(tempLV,
526 considerVisibility && !hasExplicitVisibilityAlready(computation));
527
528 // Merge information from the template arguments. We ignore
529 // template-argument visibility if we've got an explicit
530 // instantiation with a visibility attribute.
531 const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
532 LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
533 if (considerVisibility)
534 LV.mergeVisibility(argsLV);
535 LV.mergeExternalVisibility(argsLV);
536 }
537
useInlineVisibilityHidden(const NamedDecl * D)538 static bool useInlineVisibilityHidden(const NamedDecl *D) {
539 // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
540 const LangOptions &Opts = D->getASTContext().getLangOpts();
541 if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
542 return false;
543
544 const auto *FD = dyn_cast<FunctionDecl>(D);
545 if (!FD)
546 return false;
547
548 TemplateSpecializationKind TSK = TSK_Undeclared;
549 if (FunctionTemplateSpecializationInfo *spec
550 = FD->getTemplateSpecializationInfo()) {
551 TSK = spec->getTemplateSpecializationKind();
552 } else if (MemberSpecializationInfo *MSI =
553 FD->getMemberSpecializationInfo()) {
554 TSK = MSI->getTemplateSpecializationKind();
555 }
556
557 const FunctionDecl *Def = nullptr;
558 // InlineVisibilityHidden only applies to definitions, and
559 // isInlined() only gives meaningful answers on definitions
560 // anyway.
561 return TSK != TSK_ExplicitInstantiationDeclaration &&
562 TSK != TSK_ExplicitInstantiationDefinition &&
563 FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
564 }
565
isFirstInExternCContext(T * D)566 template <typename T> static bool isFirstInExternCContext(T *D) {
567 const T *First = D->getFirstDecl();
568 return First->isInExternCContext();
569 }
570
isSingleLineLanguageLinkage(const Decl & D)571 static bool isSingleLineLanguageLinkage(const Decl &D) {
572 if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
573 if (!SD->hasBraces())
574 return true;
575 return false;
576 }
577
getLVForNamespaceScopeDecl(const NamedDecl * D,LVComputationKind computation)578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
579 LVComputationKind computation) {
580 assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
581 "Not a name having namespace scope");
582 ASTContext &Context = D->getASTContext();
583
584 // C++ [basic.link]p3:
585 // A name having namespace scope (3.3.6) has internal linkage if it
586 // is the name of
587 // - an object, reference, function or function template that is
588 // explicitly declared static; or,
589 // (This bullet corresponds to C99 6.2.2p3.)
590 if (const auto *Var = dyn_cast<VarDecl>(D)) {
591 // Explicitly declared static.
592 if (Var->getStorageClass() == SC_Static)
593 return LinkageInfo::internal();
594
595 // - a non-inline, non-volatile object or reference that is explicitly
596 // declared const or constexpr and neither explicitly declared extern
597 // nor previously declared to have external linkage; or (there is no
598 // equivalent in C99)
599 if (Context.getLangOpts().CPlusPlus &&
600 Var->getType().isConstQualified() &&
601 !Var->getType().isVolatileQualified() &&
602 !Var->isInline()) {
603 const VarDecl *PrevVar = Var->getPreviousDecl();
604 if (PrevVar)
605 return getLVForDecl(PrevVar, computation);
606
607 if (Var->getStorageClass() != SC_Extern &&
608 Var->getStorageClass() != SC_PrivateExtern &&
609 !isSingleLineLanguageLinkage(*Var))
610 return LinkageInfo::internal();
611 }
612
613 for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
614 PrevVar = PrevVar->getPreviousDecl()) {
615 if (PrevVar->getStorageClass() == SC_PrivateExtern &&
616 Var->getStorageClass() == SC_None)
617 return PrevVar->getLinkageAndVisibility();
618 // Explicitly declared static.
619 if (PrevVar->getStorageClass() == SC_Static)
620 return LinkageInfo::internal();
621 }
622 } else if (const FunctionDecl *Function = D->getAsFunction()) {
623 // C++ [temp]p4:
624 // A non-member function template can have internal linkage; any
625 // other template name shall have external linkage.
626
627 // Explicitly declared static.
628 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
629 return LinkageInfo(InternalLinkage, DefaultVisibility, false);
630 } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
631 // - a data member of an anonymous union.
632 const VarDecl *VD = IFD->getVarDecl();
633 assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
634 return getLVForNamespaceScopeDecl(VD, computation);
635 }
636 assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
637
638 if (D->isInAnonymousNamespace()) {
639 const auto *Var = dyn_cast<VarDecl>(D);
640 const auto *Func = dyn_cast<FunctionDecl>(D);
641 // FIXME: In C++11 onwards, anonymous namespaces should give decls
642 // within them internal linkage, not unique external linkage.
643 if ((!Var || !isFirstInExternCContext(Var)) &&
644 (!Func || !isFirstInExternCContext(Func)))
645 return LinkageInfo::uniqueExternal();
646 }
647
648 // Set up the defaults.
649
650 // C99 6.2.2p5:
651 // If the declaration of an identifier for an object has file
652 // scope and no storage-class specifier, its linkage is
653 // external.
654 LinkageInfo LV;
655
656 if (!hasExplicitVisibilityAlready(computation)) {
657 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
658 LV.mergeVisibility(*Vis, true);
659 } else {
660 // If we're declared in a namespace with a visibility attribute,
661 // use that namespace's visibility, and it still counts as explicit.
662 for (const DeclContext *DC = D->getDeclContext();
663 !isa<TranslationUnitDecl>(DC);
664 DC = DC->getParent()) {
665 const auto *ND = dyn_cast<NamespaceDecl>(DC);
666 if (!ND) continue;
667 if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
668 LV.mergeVisibility(*Vis, true);
669 break;
670 }
671 }
672 }
673
674 // Add in global settings if the above didn't give us direct visibility.
675 if (!LV.isVisibilityExplicit()) {
676 // Use global type/value visibility as appropriate.
677 Visibility globalVisibility;
678 if (computation == LVForValue) {
679 globalVisibility = Context.getLangOpts().getValueVisibilityMode();
680 } else {
681 assert(computation == LVForType);
682 globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
683 }
684 LV.mergeVisibility(globalVisibility, /*explicit*/ false);
685
686 // If we're paying attention to global visibility, apply
687 // -finline-visibility-hidden if this is an inline method.
688 if (useInlineVisibilityHidden(D))
689 LV.mergeVisibility(HiddenVisibility, true);
690 }
691 }
692
693 // C++ [basic.link]p4:
694
695 // A name having namespace scope has external linkage if it is the
696 // name of
697 //
698 // - an object or reference, unless it has internal linkage; or
699 if (const auto *Var = dyn_cast<VarDecl>(D)) {
700 // GCC applies the following optimization to variables and static
701 // data members, but not to functions:
702 //
703 // Modify the variable's LV by the LV of its type unless this is
704 // C or extern "C". This follows from [basic.link]p9:
705 // A type without linkage shall not be used as the type of a
706 // variable or function with external linkage unless
707 // - the entity has C language linkage, or
708 // - the entity is declared within an unnamed namespace, or
709 // - the entity is not used or is defined in the same
710 // translation unit.
711 // and [basic.link]p10:
712 // ...the types specified by all declarations referring to a
713 // given variable or function shall be identical...
714 // C does not have an equivalent rule.
715 //
716 // Ignore this if we've got an explicit attribute; the user
717 // probably knows what they're doing.
718 //
719 // Note that we don't want to make the variable non-external
720 // because of this, but unique-external linkage suits us.
721 if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
722 LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
723 if (TypeLV.getLinkage() != ExternalLinkage)
724 return LinkageInfo::uniqueExternal();
725 if (!LV.isVisibilityExplicit())
726 LV.mergeVisibility(TypeLV);
727 }
728
729 if (Var->getStorageClass() == SC_PrivateExtern)
730 LV.mergeVisibility(HiddenVisibility, true);
731
732 // Note that Sema::MergeVarDecl already takes care of implementing
733 // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
734 // to do it here.
735
736 // As per function and class template specializations (below),
737 // consider LV for the template and template arguments. We're at file
738 // scope, so we do not need to worry about nested specializations.
739 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
740 mergeTemplateLV(LV, spec, computation);
741 }
742
743 // - a function, unless it has internal linkage; or
744 } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
745 // In theory, we can modify the function's LV by the LV of its
746 // type unless it has C linkage (see comment above about variables
747 // for justification). In practice, GCC doesn't do this, so it's
748 // just too painful to make work.
749
750 if (Function->getStorageClass() == SC_PrivateExtern)
751 LV.mergeVisibility(HiddenVisibility, true);
752
753 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
754 // merging storage classes and visibility attributes, so we don't have to
755 // look at previous decls in here.
756
757 // In C++, then if the type of the function uses a type with
758 // unique-external linkage, it's not legally usable from outside
759 // this translation unit. However, we should use the C linkage
760 // rules instead for extern "C" declarations.
761 if (Context.getLangOpts().CPlusPlus &&
762 !Function->isInExternCContext()) {
763 // Only look at the type-as-written. If this function has an auto-deduced
764 // return type, we can't compute the linkage of that type because it could
765 // require looking at the linkage of this function, and we don't need this
766 // for correctness because the type is not part of the function's
767 // signature.
768 // FIXME: This is a hack. We should be able to solve this circularity and
769 // the one in getLVForClassMember for Functions some other way.
770 QualType TypeAsWritten = Function->getType();
771 if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
772 TypeAsWritten = TSI->getType();
773 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
774 return LinkageInfo::uniqueExternal();
775 }
776
777 // Consider LV from the template and the template arguments.
778 // We're at file scope, so we do not need to worry about nested
779 // specializations.
780 if (FunctionTemplateSpecializationInfo *specInfo
781 = Function->getTemplateSpecializationInfo()) {
782 mergeTemplateLV(LV, Function, specInfo, computation);
783 }
784
785 // - a named class (Clause 9), or an unnamed class defined in a
786 // typedef declaration in which the class has the typedef name
787 // for linkage purposes (7.1.3); or
788 // - a named enumeration (7.2), or an unnamed enumeration
789 // defined in a typedef declaration in which the enumeration
790 // has the typedef name for linkage purposes (7.1.3); or
791 } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
792 // Unnamed tags have no linkage.
793 if (!Tag->hasNameForLinkage())
794 return LinkageInfo::none();
795
796 // If this is a class template specialization, consider the
797 // linkage of the template and template arguments. We're at file
798 // scope, so we do not need to worry about nested specializations.
799 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
800 mergeTemplateLV(LV, spec, computation);
801 }
802
803 // - an enumerator belonging to an enumeration with external linkage;
804 } else if (isa<EnumConstantDecl>(D)) {
805 LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
806 computation);
807 if (!isExternalFormalLinkage(EnumLV.getLinkage()))
808 return LinkageInfo::none();
809 LV.merge(EnumLV);
810
811 // - a template, unless it is a function template that has
812 // internal linkage (Clause 14);
813 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
814 bool considerVisibility = !hasExplicitVisibilityAlready(computation);
815 LinkageInfo tempLV =
816 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
817 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
818
819 // - a namespace (7.3), unless it is declared within an unnamed
820 // namespace.
821 } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
822 return LV;
823
824 // By extension, we assign external linkage to Objective-C
825 // interfaces.
826 } else if (isa<ObjCInterfaceDecl>(D)) {
827 // fallout
828
829 } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
830 // A typedef declaration has linkage if it gives a type a name for
831 // linkage purposes.
832 if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
833 return LinkageInfo::none();
834
835 // Everything not covered here has no linkage.
836 } else {
837 return LinkageInfo::none();
838 }
839
840 // If we ended up with non-external linkage, visibility should
841 // always be default.
842 if (LV.getLinkage() != ExternalLinkage)
843 return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
844
845 return LV;
846 }
847
getLVForClassMember(const NamedDecl * D,LVComputationKind computation)848 static LinkageInfo getLVForClassMember(const NamedDecl *D,
849 LVComputationKind computation) {
850 // Only certain class members have linkage. Note that fields don't
851 // really have linkage, but it's convenient to say they do for the
852 // purposes of calculating linkage of pointer-to-data-member
853 // template arguments.
854 //
855 // Templates also don't officially have linkage, but since we ignore
856 // the C++ standard and look at template arguments when determining
857 // linkage and visibility of a template specialization, we might hit
858 // a template template argument that way. If we do, we need to
859 // consider its linkage.
860 if (!(isa<CXXMethodDecl>(D) ||
861 isa<VarDecl>(D) ||
862 isa<FieldDecl>(D) ||
863 isa<IndirectFieldDecl>(D) ||
864 isa<TagDecl>(D) ||
865 isa<TemplateDecl>(D)))
866 return LinkageInfo::none();
867
868 LinkageInfo LV;
869
870 // If we have an explicit visibility attribute, merge that in.
871 if (!hasExplicitVisibilityAlready(computation)) {
872 if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
873 LV.mergeVisibility(*Vis, true);
874 // If we're paying attention to global visibility, apply
875 // -finline-visibility-hidden if this is an inline method.
876 //
877 // Note that we do this before merging information about
878 // the class visibility.
879 if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
880 LV.mergeVisibility(HiddenVisibility, true);
881 }
882
883 // If this class member has an explicit visibility attribute, the only
884 // thing that can change its visibility is the template arguments, so
885 // only look for them when processing the class.
886 LVComputationKind classComputation = computation;
887 if (LV.isVisibilityExplicit())
888 classComputation = withExplicitVisibilityAlready(computation);
889
890 LinkageInfo classLV =
891 getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
892 // If the class already has unique-external linkage, we can't improve.
893 if (classLV.getLinkage() == UniqueExternalLinkage)
894 return LinkageInfo::uniqueExternal();
895
896 if (!isExternallyVisible(classLV.getLinkage()))
897 return LinkageInfo::none();
898
899
900 // Otherwise, don't merge in classLV yet, because in certain cases
901 // we need to completely ignore the visibility from it.
902
903 // Specifically, if this decl exists and has an explicit attribute.
904 const NamedDecl *explicitSpecSuppressor = nullptr;
905
906 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
907 // If the type of the function uses a type with unique-external
908 // linkage, it's not legally usable from outside this translation unit.
909 // But only look at the type-as-written. If this function has an
910 // auto-deduced return type, we can't compute the linkage of that type
911 // because it could require looking at the linkage of this function, and we
912 // don't need this for correctness because the type is not part of the
913 // function's signature.
914 // FIXME: This is a hack. We should be able to solve this circularity and
915 // the one in getLVForNamespaceScopeDecl for Functions some other way.
916 {
917 QualType TypeAsWritten = MD->getType();
918 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
919 TypeAsWritten = TSI->getType();
920 if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
921 return LinkageInfo::uniqueExternal();
922 }
923 // If this is a method template specialization, use the linkage for
924 // the template parameters and arguments.
925 if (FunctionTemplateSpecializationInfo *spec
926 = MD->getTemplateSpecializationInfo()) {
927 mergeTemplateLV(LV, MD, spec, computation);
928 if (spec->isExplicitSpecialization()) {
929 explicitSpecSuppressor = MD;
930 } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
931 explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
932 }
933 } else if (isExplicitMemberSpecialization(MD)) {
934 explicitSpecSuppressor = MD;
935 }
936
937 } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
938 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
939 mergeTemplateLV(LV, spec, computation);
940 if (spec->isExplicitSpecialization()) {
941 explicitSpecSuppressor = spec;
942 } else {
943 const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
944 if (isExplicitMemberSpecialization(temp)) {
945 explicitSpecSuppressor = temp->getTemplatedDecl();
946 }
947 }
948 } else if (isExplicitMemberSpecialization(RD)) {
949 explicitSpecSuppressor = RD;
950 }
951
952 // Static data members.
953 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
954 if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
955 mergeTemplateLV(LV, spec, computation);
956
957 // Modify the variable's linkage by its type, but ignore the
958 // type's visibility unless it's a definition.
959 LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
960 if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
961 LV.mergeVisibility(typeLV);
962 LV.mergeExternalVisibility(typeLV);
963
964 if (isExplicitMemberSpecialization(VD)) {
965 explicitSpecSuppressor = VD;
966 }
967
968 // Template members.
969 } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
970 bool considerVisibility =
971 (!LV.isVisibilityExplicit() &&
972 !classLV.isVisibilityExplicit() &&
973 !hasExplicitVisibilityAlready(computation));
974 LinkageInfo tempLV =
975 getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
976 LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
977
978 if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
979 if (isExplicitMemberSpecialization(redeclTemp)) {
980 explicitSpecSuppressor = temp->getTemplatedDecl();
981 }
982 }
983 }
984
985 // We should never be looking for an attribute directly on a template.
986 assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
987
988 // If this member is an explicit member specialization, and it has
989 // an explicit attribute, ignore visibility from the parent.
990 bool considerClassVisibility = true;
991 if (explicitSpecSuppressor &&
992 // optimization: hasDVA() is true only with explicit visibility.
993 LV.isVisibilityExplicit() &&
994 classLV.getVisibility() != DefaultVisibility &&
995 hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
996 considerClassVisibility = false;
997 }
998
999 // Finally, merge in information from the class.
1000 LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1001 return LV;
1002 }
1003
anchor()1004 void NamedDecl::anchor() { }
1005
1006 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1007 LVComputationKind computation);
1008
isLinkageValid() const1009 bool NamedDecl::isLinkageValid() const {
1010 if (!hasCachedLinkage())
1011 return true;
1012
1013 return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1014 getCachedLinkage();
1015 }
1016
getObjCFStringFormattingFamily() const1017 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1018 StringRef name = getName();
1019 if (name.empty()) return SFF_None;
1020
1021 if (name.front() == 'C')
1022 if (name == "CFStringCreateWithFormat" ||
1023 name == "CFStringCreateWithFormatAndArguments" ||
1024 name == "CFStringAppendFormat" ||
1025 name == "CFStringAppendFormatAndArguments")
1026 return SFF_CFString;
1027 return SFF_None;
1028 }
1029
getLinkageInternal() const1030 Linkage NamedDecl::getLinkageInternal() const {
1031 // We don't care about visibility here, so ask for the cheapest
1032 // possible visibility analysis.
1033 return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1034 }
1035
getLinkageAndVisibility() const1036 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1037 LVComputationKind computation =
1038 (usesTypeVisibility(this) ? LVForType : LVForValue);
1039 return getLVForDecl(this, computation);
1040 }
1041
1042 static Optional<Visibility>
getExplicitVisibilityAux(const NamedDecl * ND,NamedDecl::ExplicitVisibilityKind kind,bool IsMostRecent)1043 getExplicitVisibilityAux(const NamedDecl *ND,
1044 NamedDecl::ExplicitVisibilityKind kind,
1045 bool IsMostRecent) {
1046 assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1047
1048 // Check the declaration itself first.
1049 if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1050 return V;
1051
1052 // If this is a member class of a specialization of a class template
1053 // and the corresponding decl has explicit visibility, use that.
1054 if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1055 CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1056 if (InstantiatedFrom)
1057 return getVisibilityOf(InstantiatedFrom, kind);
1058 }
1059
1060 // If there wasn't explicit visibility there, and this is a
1061 // specialization of a class template, check for visibility
1062 // on the pattern.
1063 if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1064 return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1065 kind);
1066
1067 // Use the most recent declaration.
1068 if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1069 const NamedDecl *MostRecent = ND->getMostRecentDecl();
1070 if (MostRecent != ND)
1071 return getExplicitVisibilityAux(MostRecent, kind, true);
1072 }
1073
1074 if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1075 if (Var->isStaticDataMember()) {
1076 VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1077 if (InstantiatedFrom)
1078 return getVisibilityOf(InstantiatedFrom, kind);
1079 }
1080
1081 if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1082 return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1083 kind);
1084
1085 return None;
1086 }
1087 // Also handle function template specializations.
1088 if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1089 // If the function is a specialization of a template with an
1090 // explicit visibility attribute, use that.
1091 if (FunctionTemplateSpecializationInfo *templateInfo
1092 = fn->getTemplateSpecializationInfo())
1093 return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1094 kind);
1095
1096 // If the function is a member of a specialization of a class template
1097 // and the corresponding decl has explicit visibility, use that.
1098 FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1099 if (InstantiatedFrom)
1100 return getVisibilityOf(InstantiatedFrom, kind);
1101
1102 return None;
1103 }
1104
1105 // The visibility of a template is stored in the templated decl.
1106 if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1107 return getVisibilityOf(TD->getTemplatedDecl(), kind);
1108
1109 return None;
1110 }
1111
1112 Optional<Visibility>
getExplicitVisibility(ExplicitVisibilityKind kind) const1113 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1114 return getExplicitVisibilityAux(this, kind, false);
1115 }
1116
getLVForClosure(const DeclContext * DC,Decl * ContextDecl,LVComputationKind computation)1117 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1118 LVComputationKind computation) {
1119 // This lambda has its linkage/visibility determined by its owner.
1120 if (ContextDecl) {
1121 if (isa<ParmVarDecl>(ContextDecl))
1122 DC = ContextDecl->getDeclContext()->getRedeclContext();
1123 else
1124 return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1125 }
1126
1127 if (const auto *ND = dyn_cast<NamedDecl>(DC))
1128 return getLVForDecl(ND, computation);
1129
1130 return LinkageInfo::external();
1131 }
1132
getLVForLocalDecl(const NamedDecl * D,LVComputationKind computation)1133 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1134 LVComputationKind computation) {
1135 if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1136 if (Function->isInAnonymousNamespace() &&
1137 !Function->isInExternCContext())
1138 return LinkageInfo::uniqueExternal();
1139
1140 // This is a "void f();" which got merged with a file static.
1141 if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1142 return LinkageInfo::internal();
1143
1144 LinkageInfo LV;
1145 if (!hasExplicitVisibilityAlready(computation)) {
1146 if (Optional<Visibility> Vis =
1147 getExplicitVisibility(Function, computation))
1148 LV.mergeVisibility(*Vis, true);
1149 }
1150
1151 // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1152 // merging storage classes and visibility attributes, so we don't have to
1153 // look at previous decls in here.
1154
1155 return LV;
1156 }
1157
1158 if (const auto *Var = dyn_cast<VarDecl>(D)) {
1159 if (Var->hasExternalStorage()) {
1160 if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1161 return LinkageInfo::uniqueExternal();
1162
1163 LinkageInfo LV;
1164 if (Var->getStorageClass() == SC_PrivateExtern)
1165 LV.mergeVisibility(HiddenVisibility, true);
1166 else if (!hasExplicitVisibilityAlready(computation)) {
1167 if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1168 LV.mergeVisibility(*Vis, true);
1169 }
1170
1171 if (const VarDecl *Prev = Var->getPreviousDecl()) {
1172 LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1173 if (PrevLV.getLinkage())
1174 LV.setLinkage(PrevLV.getLinkage());
1175 LV.mergeVisibility(PrevLV);
1176 }
1177
1178 return LV;
1179 }
1180
1181 if (!Var->isStaticLocal())
1182 return LinkageInfo::none();
1183 }
1184
1185 ASTContext &Context = D->getASTContext();
1186 if (!Context.getLangOpts().CPlusPlus)
1187 return LinkageInfo::none();
1188
1189 const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1190 if (!OuterD || OuterD->isInvalidDecl())
1191 return LinkageInfo::none();
1192
1193 LinkageInfo LV;
1194 if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1195 if (!BD->getBlockManglingNumber())
1196 return LinkageInfo::none();
1197
1198 LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1199 BD->getBlockManglingContextDecl(), computation);
1200 } else {
1201 const auto *FD = cast<FunctionDecl>(OuterD);
1202 if (!FD->isInlined() &&
1203 !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1204 return LinkageInfo::none();
1205
1206 LV = getLVForDecl(FD, computation);
1207 }
1208 if (!isExternallyVisible(LV.getLinkage()))
1209 return LinkageInfo::none();
1210 return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1211 LV.isVisibilityExplicit());
1212 }
1213
1214 static inline const CXXRecordDecl*
getOutermostEnclosingLambda(const CXXRecordDecl * Record)1215 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1216 const CXXRecordDecl *Ret = Record;
1217 while (Record && Record->isLambda()) {
1218 Ret = Record;
1219 if (!Record->getParent()) break;
1220 // Get the Containing Class of this Lambda Class
1221 Record = dyn_cast_or_null<CXXRecordDecl>(
1222 Record->getParent()->getParent());
1223 }
1224 return Ret;
1225 }
1226
computeLVForDecl(const NamedDecl * D,LVComputationKind computation)1227 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1228 LVComputationKind computation) {
1229 // Internal_linkage attribute overrides other considerations.
1230 if (D->hasAttr<InternalLinkageAttr>())
1231 return LinkageInfo::internal();
1232
1233 // Objective-C: treat all Objective-C declarations as having external
1234 // linkage.
1235 switch (D->getKind()) {
1236 default:
1237 break;
1238
1239 // Per C++ [basic.link]p2, only the names of objects, references,
1240 // functions, types, templates, namespaces, and values ever have linkage.
1241 //
1242 // Note that the name of a typedef, namespace alias, using declaration,
1243 // and so on are not the name of the corresponding type, namespace, or
1244 // declaration, so they do *not* have linkage.
1245 case Decl::ImplicitParam:
1246 case Decl::Label:
1247 case Decl::NamespaceAlias:
1248 case Decl::ParmVar:
1249 case Decl::Using:
1250 case Decl::UsingShadow:
1251 case Decl::UsingDirective:
1252 return LinkageInfo::none();
1253
1254 case Decl::EnumConstant:
1255 // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1256 return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1257
1258 case Decl::Typedef:
1259 case Decl::TypeAlias:
1260 // A typedef declaration has linkage if it gives a type a name for
1261 // linkage purposes.
1262 if (!D->getASTContext().getLangOpts().CPlusPlus ||
1263 !cast<TypedefNameDecl>(D)
1264 ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1265 return LinkageInfo::none();
1266 break;
1267
1268 case Decl::TemplateTemplateParm: // count these as external
1269 case Decl::NonTypeTemplateParm:
1270 case Decl::ObjCAtDefsField:
1271 case Decl::ObjCCategory:
1272 case Decl::ObjCCategoryImpl:
1273 case Decl::ObjCCompatibleAlias:
1274 case Decl::ObjCImplementation:
1275 case Decl::ObjCMethod:
1276 case Decl::ObjCProperty:
1277 case Decl::ObjCPropertyImpl:
1278 case Decl::ObjCProtocol:
1279 return LinkageInfo::external();
1280
1281 case Decl::CXXRecord: {
1282 const auto *Record = cast<CXXRecordDecl>(D);
1283 if (Record->isLambda()) {
1284 if (!Record->getLambdaManglingNumber()) {
1285 // This lambda has no mangling number, so it's internal.
1286 return LinkageInfo::internal();
1287 }
1288
1289 // This lambda has its linkage/visibility determined:
1290 // - either by the outermost lambda if that lambda has no mangling
1291 // number.
1292 // - or by the parent of the outer most lambda
1293 // This prevents infinite recursion in settings such as nested lambdas
1294 // used in NSDMI's, for e.g.
1295 // struct L {
1296 // int t{};
1297 // int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);
1298 // };
1299 const CXXRecordDecl *OuterMostLambda =
1300 getOutermostEnclosingLambda(Record);
1301 if (!OuterMostLambda->getLambdaManglingNumber())
1302 return LinkageInfo::internal();
1303
1304 return getLVForClosure(
1305 OuterMostLambda->getDeclContext()->getRedeclContext(),
1306 OuterMostLambda->getLambdaContextDecl(), computation);
1307 }
1308
1309 break;
1310 }
1311 }
1312
1313 // Handle linkage for namespace-scope names.
1314 if (D->getDeclContext()->getRedeclContext()->isFileContext())
1315 return getLVForNamespaceScopeDecl(D, computation);
1316
1317 // C++ [basic.link]p5:
1318 // In addition, a member function, static data member, a named
1319 // class or enumeration of class scope, or an unnamed class or
1320 // enumeration defined in a class-scope typedef declaration such
1321 // that the class or enumeration has the typedef name for linkage
1322 // purposes (7.1.3), has external linkage if the name of the class
1323 // has external linkage.
1324 if (D->getDeclContext()->isRecord())
1325 return getLVForClassMember(D, computation);
1326
1327 // C++ [basic.link]p6:
1328 // The name of a function declared in block scope and the name of
1329 // an object declared by a block scope extern declaration have
1330 // linkage. If there is a visible declaration of an entity with
1331 // linkage having the same name and type, ignoring entities
1332 // declared outside the innermost enclosing namespace scope, the
1333 // block scope declaration declares that same entity and receives
1334 // the linkage of the previous declaration. If there is more than
1335 // one such matching entity, the program is ill-formed. Otherwise,
1336 // if no matching entity is found, the block scope entity receives
1337 // external linkage.
1338 if (D->getDeclContext()->isFunctionOrMethod())
1339 return getLVForLocalDecl(D, computation);
1340
1341 // C++ [basic.link]p6:
1342 // Names not covered by these rules have no linkage.
1343 return LinkageInfo::none();
1344 }
1345
1346 namespace clang {
1347 class LinkageComputer {
1348 public:
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1349 static LinkageInfo getLVForDecl(const NamedDecl *D,
1350 LVComputationKind computation) {
1351 // Internal_linkage attribute overrides other considerations.
1352 if (D->hasAttr<InternalLinkageAttr>())
1353 return LinkageInfo::internal();
1354
1355 if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1356 return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1357
1358 LinkageInfo LV = computeLVForDecl(D, computation);
1359 if (D->hasCachedLinkage())
1360 assert(D->getCachedLinkage() == LV.getLinkage());
1361
1362 D->setCachedLinkage(LV.getLinkage());
1363
1364 #ifndef NDEBUG
1365 // In C (because of gnu inline) and in c++ with microsoft extensions an
1366 // static can follow an extern, so we can have two decls with different
1367 // linkages.
1368 const LangOptions &Opts = D->getASTContext().getLangOpts();
1369 if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1370 return LV;
1371
1372 // We have just computed the linkage for this decl. By induction we know
1373 // that all other computed linkages match, check that the one we just
1374 // computed also does.
1375 NamedDecl *Old = nullptr;
1376 for (auto I : D->redecls()) {
1377 auto *T = cast<NamedDecl>(I);
1378 if (T == D)
1379 continue;
1380 if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1381 Old = T;
1382 break;
1383 }
1384 }
1385 assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1386 #endif
1387
1388 return LV;
1389 }
1390 };
1391 }
1392
getLVForDecl(const NamedDecl * D,LVComputationKind computation)1393 static LinkageInfo getLVForDecl(const NamedDecl *D,
1394 LVComputationKind computation) {
1395 return clang::LinkageComputer::getLVForDecl(D, computation);
1396 }
1397
getQualifiedNameAsString() const1398 std::string NamedDecl::getQualifiedNameAsString() const {
1399 std::string QualName;
1400 llvm::raw_string_ostream OS(QualName);
1401 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1402 return OS.str();
1403 }
1404
printQualifiedName(raw_ostream & OS) const1405 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1406 printQualifiedName(OS, getASTContext().getPrintingPolicy());
1407 }
1408
printQualifiedName(raw_ostream & OS,const PrintingPolicy & P) const1409 void NamedDecl::printQualifiedName(raw_ostream &OS,
1410 const PrintingPolicy &P) const {
1411 const DeclContext *Ctx = getDeclContext();
1412
1413 if (Ctx->isFunctionOrMethod()) {
1414 printName(OS);
1415 return;
1416 }
1417
1418 typedef SmallVector<const DeclContext *, 8> ContextsTy;
1419 ContextsTy Contexts;
1420
1421 // Collect contexts.
1422 while (Ctx && isa<NamedDecl>(Ctx)) {
1423 Contexts.push_back(Ctx);
1424 Ctx = Ctx->getParent();
1425 }
1426
1427 for (const DeclContext *DC : reverse(Contexts)) {
1428 if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1429 OS << Spec->getName();
1430 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1431 TemplateSpecializationType::PrintTemplateArgumentList(
1432 OS, TemplateArgs.asArray(), P);
1433 } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1434 if (P.SuppressUnwrittenScope &&
1435 (ND->isAnonymousNamespace() || ND->isInline()))
1436 continue;
1437 if (ND->isAnonymousNamespace()) {
1438 OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1439 : "(anonymous namespace)");
1440 }
1441 else
1442 OS << *ND;
1443 } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1444 if (!RD->getIdentifier())
1445 OS << "(anonymous " << RD->getKindName() << ')';
1446 else
1447 OS << *RD;
1448 } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1449 const FunctionProtoType *FT = nullptr;
1450 if (FD->hasWrittenPrototype())
1451 FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1452
1453 OS << *FD << '(';
1454 if (FT) {
1455 unsigned NumParams = FD->getNumParams();
1456 for (unsigned i = 0; i < NumParams; ++i) {
1457 if (i)
1458 OS << ", ";
1459 OS << FD->getParamDecl(i)->getType().stream(P);
1460 }
1461
1462 if (FT->isVariadic()) {
1463 if (NumParams > 0)
1464 OS << ", ";
1465 OS << "...";
1466 }
1467 }
1468 OS << ')';
1469 } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1470 // C++ [dcl.enum]p10: Each enum-name and each unscoped
1471 // enumerator is declared in the scope that immediately contains
1472 // the enum-specifier. Each scoped enumerator is declared in the
1473 // scope of the enumeration.
1474 if (ED->isScoped() || ED->getIdentifier())
1475 OS << *ED;
1476 else
1477 continue;
1478 } else {
1479 OS << *cast<NamedDecl>(DC);
1480 }
1481 OS << "::";
1482 }
1483
1484 if (getDeclName())
1485 OS << *this;
1486 else
1487 OS << "(anonymous)";
1488 }
1489
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1491 const PrintingPolicy &Policy,
1492 bool Qualified) const {
1493 if (Qualified)
1494 printQualifiedName(OS, Policy);
1495 else
1496 printName(OS);
1497 }
1498
isRedeclarableImpl(Redeclarable<T> *)1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1500 return true;
1501 }
isRedeclarableImpl(...)1502 static bool isRedeclarableImpl(...) { return false; }
isRedeclarable(Decl::Kind K)1503 static bool isRedeclarable(Decl::Kind K) {
1504 switch (K) {
1505 #define DECL(Type, Base) \
1506 case Decl::Type: \
1507 return isRedeclarableImpl((Type##Decl *)nullptr);
1508 #define ABSTRACT_DECL(DECL)
1509 #include "clang/AST/DeclNodes.inc"
1510 }
1511 llvm_unreachable("unknown decl kind");
1512 }
1513
declarationReplaces(NamedDecl * OldD,bool IsKnownNewer) const1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1515 assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1516
1517 // Never replace one imported declaration with another; we need both results
1518 // when re-exporting.
1519 if (OldD->isFromASTFile() && isFromASTFile())
1520 return false;
1521
1522 // A kind mismatch implies that the declaration is not replaced.
1523 if (OldD->getKind() != getKind())
1524 return false;
1525
1526 // For method declarations, we never replace. (Why?)
1527 if (isa<ObjCMethodDecl>(this))
1528 return false;
1529
1530 // For parameters, pick the newer one. This is either an error or (in
1531 // Objective-C) permitted as an extension.
1532 if (isa<ParmVarDecl>(this))
1533 return true;
1534
1535 // Inline namespaces can give us two declarations with the same
1536 // name and kind in the same scope but different contexts; we should
1537 // keep both declarations in this case.
1538 if (!this->getDeclContext()->getRedeclContext()->Equals(
1539 OldD->getDeclContext()->getRedeclContext()))
1540 return false;
1541
1542 // Using declarations can be replaced if they import the same name from the
1543 // same context.
1544 if (auto *UD = dyn_cast<UsingDecl>(this)) {
1545 ASTContext &Context = getASTContext();
1546 return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1547 Context.getCanonicalNestedNameSpecifier(
1548 cast<UsingDecl>(OldD)->getQualifier());
1549 }
1550 if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1551 ASTContext &Context = getASTContext();
1552 return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1553 Context.getCanonicalNestedNameSpecifier(
1554 cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1555 }
1556
1557 // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1558 // They can be replaced if they nominate the same namespace.
1559 // FIXME: Is this true even if they have different module visibility?
1560 if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1561 return UD->getNominatedNamespace()->getOriginalNamespace() ==
1562 cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1563 ->getOriginalNamespace();
1564
1565 if (isRedeclarable(getKind())) {
1566 if (getCanonicalDecl() != OldD->getCanonicalDecl())
1567 return false;
1568
1569 if (IsKnownNewer)
1570 return true;
1571
1572 // Check whether this is actually newer than OldD. We want to keep the
1573 // newer declaration. This loop will usually only iterate once, because
1574 // OldD is usually the previous declaration.
1575 for (auto D : redecls()) {
1576 if (D == OldD)
1577 break;
1578
1579 // If we reach the canonical declaration, then OldD is not actually older
1580 // than this one.
1581 //
1582 // FIXME: In this case, we should not add this decl to the lookup table.
1583 if (D->isCanonicalDecl())
1584 return false;
1585 }
1586
1587 // It's a newer declaration of the same kind of declaration in the same
1588 // scope: we want this decl instead of the existing one.
1589 return true;
1590 }
1591
1592 // In all other cases, we need to keep both declarations in case they have
1593 // different visibility. Any attempt to use the name will result in an
1594 // ambiguity if more than one is visible.
1595 return false;
1596 }
1597
hasLinkage() const1598 bool NamedDecl::hasLinkage() const {
1599 return getFormalLinkage() != NoLinkage;
1600 }
1601
getUnderlyingDeclImpl()1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1603 NamedDecl *ND = this;
1604 while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1605 ND = UD->getTargetDecl();
1606
1607 if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1608 return AD->getClassInterface();
1609
1610 if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1611 return AD->getNamespace();
1612
1613 return ND;
1614 }
1615
isCXXInstanceMember() const1616 bool NamedDecl::isCXXInstanceMember() const {
1617 if (!isCXXClassMember())
1618 return false;
1619
1620 const NamedDecl *D = this;
1621 if (isa<UsingShadowDecl>(D))
1622 D = cast<UsingShadowDecl>(D)->getTargetDecl();
1623
1624 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1625 return true;
1626 if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1627 return MD->isInstance();
1628 return false;
1629 }
1630
1631 //===----------------------------------------------------------------------===//
1632 // DeclaratorDecl Implementation
1633 //===----------------------------------------------------------------------===//
1634
1635 template <typename DeclT>
getTemplateOrInnerLocStart(const DeclT * decl)1636 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1637 if (decl->getNumTemplateParameterLists() > 0)
1638 return decl->getTemplateParameterList(0)->getTemplateLoc();
1639 else
1640 return decl->getInnerLocStart();
1641 }
1642
getTypeSpecStartLoc() const1643 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1644 TypeSourceInfo *TSI = getTypeSourceInfo();
1645 if (TSI) return TSI->getTypeLoc().getBeginLoc();
1646 return SourceLocation();
1647 }
1648
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)1649 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1650 if (QualifierLoc) {
1651 // Make sure the extended decl info is allocated.
1652 if (!hasExtInfo()) {
1653 // Save (non-extended) type source info pointer.
1654 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1655 // Allocate external info struct.
1656 DeclInfo = new (getASTContext()) ExtInfo;
1657 // Restore savedTInfo into (extended) decl info.
1658 getExtInfo()->TInfo = savedTInfo;
1659 }
1660 // Set qualifier info.
1661 getExtInfo()->QualifierLoc = QualifierLoc;
1662 } else {
1663 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1664 if (hasExtInfo()) {
1665 if (getExtInfo()->NumTemplParamLists == 0) {
1666 // Save type source info pointer.
1667 TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1668 // Deallocate the extended decl info.
1669 getASTContext().Deallocate(getExtInfo());
1670 // Restore savedTInfo into (non-extended) decl info.
1671 DeclInfo = savedTInfo;
1672 }
1673 else
1674 getExtInfo()->QualifierLoc = QualifierLoc;
1675 }
1676 }
1677 }
1678
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1679 void DeclaratorDecl::setTemplateParameterListsInfo(
1680 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1681 assert(!TPLists.empty());
1682 // Make sure the extended decl info is allocated.
1683 if (!hasExtInfo()) {
1684 // Save (non-extended) type source info pointer.
1685 auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1686 // Allocate external info struct.
1687 DeclInfo = new (getASTContext()) ExtInfo;
1688 // Restore savedTInfo into (extended) decl info.
1689 getExtInfo()->TInfo = savedTInfo;
1690 }
1691 // Set the template parameter lists info.
1692 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1693 }
1694
getOuterLocStart() const1695 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1696 return getTemplateOrInnerLocStart(this);
1697 }
1698
1699 namespace {
1700
1701 // Helper function: returns true if QT is or contains a type
1702 // having a postfix component.
typeIsPostfix(clang::QualType QT)1703 bool typeIsPostfix(clang::QualType QT) {
1704 while (true) {
1705 const Type* T = QT.getTypePtr();
1706 switch (T->getTypeClass()) {
1707 default:
1708 return false;
1709 case Type::Pointer:
1710 QT = cast<PointerType>(T)->getPointeeType();
1711 break;
1712 case Type::BlockPointer:
1713 QT = cast<BlockPointerType>(T)->getPointeeType();
1714 break;
1715 case Type::MemberPointer:
1716 QT = cast<MemberPointerType>(T)->getPointeeType();
1717 break;
1718 case Type::LValueReference:
1719 case Type::RValueReference:
1720 QT = cast<ReferenceType>(T)->getPointeeType();
1721 break;
1722 case Type::PackExpansion:
1723 QT = cast<PackExpansionType>(T)->getPattern();
1724 break;
1725 case Type::Paren:
1726 case Type::ConstantArray:
1727 case Type::DependentSizedArray:
1728 case Type::IncompleteArray:
1729 case Type::VariableArray:
1730 case Type::FunctionProto:
1731 case Type::FunctionNoProto:
1732 return true;
1733 }
1734 }
1735 }
1736
1737 } // namespace
1738
getSourceRange() const1739 SourceRange DeclaratorDecl::getSourceRange() const {
1740 SourceLocation RangeEnd = getLocation();
1741 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1742 // If the declaration has no name or the type extends past the name take the
1743 // end location of the type.
1744 if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1745 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1746 }
1747 return SourceRange(getOuterLocStart(), RangeEnd);
1748 }
1749
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)1750 void QualifierInfo::setTemplateParameterListsInfo(
1751 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1752 // Free previous template parameters (if any).
1753 if (NumTemplParamLists > 0) {
1754 Context.Deallocate(TemplParamLists);
1755 TemplParamLists = nullptr;
1756 NumTemplParamLists = 0;
1757 }
1758 // Set info on matched template parameter lists (if any).
1759 if (!TPLists.empty()) {
1760 TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1761 NumTemplParamLists = TPLists.size();
1762 std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1763 }
1764 }
1765
1766 //===----------------------------------------------------------------------===//
1767 // VarDecl Implementation
1768 //===----------------------------------------------------------------------===//
1769
getStorageClassSpecifierString(StorageClass SC)1770 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1771 switch (SC) {
1772 case SC_None: break;
1773 case SC_Auto: return "auto";
1774 case SC_Extern: return "extern";
1775 case SC_PrivateExtern: return "__private_extern__";
1776 case SC_Register: return "register";
1777 case SC_Static: return "static";
1778 }
1779
1780 llvm_unreachable("Invalid storage class");
1781 }
1782
VarDecl(Kind DK,ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass SC)1783 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1784 SourceLocation StartLoc, SourceLocation IdLoc,
1785 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1786 StorageClass SC)
1787 : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1788 redeclarable_base(C), Init() {
1789 static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1790 "VarDeclBitfields too large!");
1791 static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1792 "ParmVarDeclBitfields too large!");
1793 static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1794 "NonParmVarDeclBitfields too large!");
1795 AllBits = 0;
1796 VarDeclBits.SClass = SC;
1797 // Everything else is implicitly initialized to false.
1798 }
1799
Create(ASTContext & C,DeclContext * DC,SourceLocation StartL,SourceLocation IdL,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S)1800 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1801 SourceLocation StartL, SourceLocation IdL,
1802 IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1803 StorageClass S) {
1804 return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1805 }
1806
CreateDeserialized(ASTContext & C,unsigned ID)1807 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1808 return new (C, ID)
1809 VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1810 QualType(), nullptr, SC_None);
1811 }
1812
setStorageClass(StorageClass SC)1813 void VarDecl::setStorageClass(StorageClass SC) {
1814 assert(isLegalForVariable(SC));
1815 VarDeclBits.SClass = SC;
1816 }
1817
getTLSKind() const1818 VarDecl::TLSKind VarDecl::getTLSKind() const {
1819 switch (VarDeclBits.TSCSpec) {
1820 case TSCS_unspecified:
1821 if (!hasAttr<ThreadAttr>() &&
1822 !(getASTContext().getLangOpts().OpenMPUseTLS &&
1823 getASTContext().getTargetInfo().isTLSSupported() &&
1824 hasAttr<OMPThreadPrivateDeclAttr>()))
1825 return TLS_None;
1826 return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1827 LangOptions::MSVC2015)) ||
1828 hasAttr<OMPThreadPrivateDeclAttr>())
1829 ? TLS_Dynamic
1830 : TLS_Static;
1831 case TSCS___thread: // Fall through.
1832 case TSCS__Thread_local:
1833 return TLS_Static;
1834 case TSCS_thread_local:
1835 return TLS_Dynamic;
1836 }
1837 llvm_unreachable("Unknown thread storage class specifier!");
1838 }
1839
getSourceRange() const1840 SourceRange VarDecl::getSourceRange() const {
1841 if (const Expr *Init = getInit()) {
1842 SourceLocation InitEnd = Init->getLocEnd();
1843 // If Init is implicit, ignore its source range and fallback on
1844 // DeclaratorDecl::getSourceRange() to handle postfix elements.
1845 if (InitEnd.isValid() && InitEnd != getLocation())
1846 return SourceRange(getOuterLocStart(), InitEnd);
1847 }
1848 return DeclaratorDecl::getSourceRange();
1849 }
1850
1851 template<typename T>
getDeclLanguageLinkage(const T & D)1852 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1853 // C++ [dcl.link]p1: All function types, function names with external linkage,
1854 // and variable names with external linkage have a language linkage.
1855 if (!D.hasExternalFormalLinkage())
1856 return NoLanguageLinkage;
1857
1858 // Language linkage is a C++ concept, but saying that everything else in C has
1859 // C language linkage fits the implementation nicely.
1860 ASTContext &Context = D.getASTContext();
1861 if (!Context.getLangOpts().CPlusPlus)
1862 return CLanguageLinkage;
1863
1864 // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1865 // language linkage of the names of class members and the function type of
1866 // class member functions.
1867 const DeclContext *DC = D.getDeclContext();
1868 if (DC->isRecord())
1869 return CXXLanguageLinkage;
1870
1871 // If the first decl is in an extern "C" context, any other redeclaration
1872 // will have C language linkage. If the first one is not in an extern "C"
1873 // context, we would have reported an error for any other decl being in one.
1874 if (isFirstInExternCContext(&D))
1875 return CLanguageLinkage;
1876 return CXXLanguageLinkage;
1877 }
1878
1879 template<typename T>
isDeclExternC(const T & D)1880 static bool isDeclExternC(const T &D) {
1881 // Since the context is ignored for class members, they can only have C++
1882 // language linkage or no language linkage.
1883 const DeclContext *DC = D.getDeclContext();
1884 if (DC->isRecord()) {
1885 assert(D.getASTContext().getLangOpts().CPlusPlus);
1886 return false;
1887 }
1888
1889 return D.getLanguageLinkage() == CLanguageLinkage;
1890 }
1891
getLanguageLinkage() const1892 LanguageLinkage VarDecl::getLanguageLinkage() const {
1893 return getDeclLanguageLinkage(*this);
1894 }
1895
isExternC() const1896 bool VarDecl::isExternC() const {
1897 return isDeclExternC(*this);
1898 }
1899
isInExternCContext() const1900 bool VarDecl::isInExternCContext() const {
1901 return getLexicalDeclContext()->isExternCContext();
1902 }
1903
isInExternCXXContext() const1904 bool VarDecl::isInExternCXXContext() const {
1905 return getLexicalDeclContext()->isExternCXXContext();
1906 }
1907
getCanonicalDecl()1908 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1909
1910 VarDecl::DefinitionKind
isThisDeclarationADefinition(ASTContext & C) const1911 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1912 // C++ [basic.def]p2:
1913 // A declaration is a definition unless [...] it contains the 'extern'
1914 // specifier or a linkage-specification and neither an initializer [...],
1915 // it declares a non-inline static data member in a class declaration [...],
1916 // it declares a static data member outside a class definition and the variable
1917 // was defined within the class with the constexpr specifier [...],
1918 // C++1y [temp.expl.spec]p15:
1919 // An explicit specialization of a static data member or an explicit
1920 // specialization of a static data member template is a definition if the
1921 // declaration includes an initializer; otherwise, it is a declaration.
1922 //
1923 // FIXME: How do you declare (but not define) a partial specialization of
1924 // a static data member template outside the containing class?
1925 if (isStaticDataMember()) {
1926 if (isOutOfLine() &&
1927 !(getCanonicalDecl()->isInline() &&
1928 getCanonicalDecl()->isConstexpr()) &&
1929 (hasInit() ||
1930 // If the first declaration is out-of-line, this may be an
1931 // instantiation of an out-of-line partial specialization of a variable
1932 // template for which we have not yet instantiated the initializer.
1933 (getFirstDecl()->isOutOfLine()
1934 ? getTemplateSpecializationKind() == TSK_Undeclared
1935 : getTemplateSpecializationKind() !=
1936 TSK_ExplicitSpecialization) ||
1937 isa<VarTemplatePartialSpecializationDecl>(this)))
1938 return Definition;
1939 else if (!isOutOfLine() && isInline())
1940 return Definition;
1941 else
1942 return DeclarationOnly;
1943 }
1944 // C99 6.7p5:
1945 // A definition of an identifier is a declaration for that identifier that
1946 // [...] causes storage to be reserved for that object.
1947 // Note: that applies for all non-file-scope objects.
1948 // C99 6.9.2p1:
1949 // If the declaration of an identifier for an object has file scope and an
1950 // initializer, the declaration is an external definition for the identifier
1951 if (hasInit())
1952 return Definition;
1953
1954 if (hasDefiningAttr())
1955 return Definition;
1956
1957 if (const auto *SAA = getAttr<SelectAnyAttr>())
1958 if (!SAA->isInherited())
1959 return Definition;
1960
1961 // A variable template specialization (other than a static data member
1962 // template or an explicit specialization) is a declaration until we
1963 // instantiate its initializer.
1964 if (isa<VarTemplateSpecializationDecl>(this) &&
1965 getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1966 return DeclarationOnly;
1967
1968 if (hasExternalStorage())
1969 return DeclarationOnly;
1970
1971 // [dcl.link] p7:
1972 // A declaration directly contained in a linkage-specification is treated
1973 // as if it contains the extern specifier for the purpose of determining
1974 // the linkage of the declared name and whether it is a definition.
1975 if (isSingleLineLanguageLinkage(*this))
1976 return DeclarationOnly;
1977
1978 // C99 6.9.2p2:
1979 // A declaration of an object that has file scope without an initializer,
1980 // and without a storage class specifier or the scs 'static', constitutes
1981 // a tentative definition.
1982 // No such thing in C++.
1983 if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1984 return TentativeDefinition;
1985
1986 // What's left is (in C, block-scope) declarations without initializers or
1987 // external storage. These are definitions.
1988 return Definition;
1989 }
1990
getActingDefinition()1991 VarDecl *VarDecl::getActingDefinition() {
1992 DefinitionKind Kind = isThisDeclarationADefinition();
1993 if (Kind != TentativeDefinition)
1994 return nullptr;
1995
1996 VarDecl *LastTentative = nullptr;
1997 VarDecl *First = getFirstDecl();
1998 for (auto I : First->redecls()) {
1999 Kind = I->isThisDeclarationADefinition();
2000 if (Kind == Definition)
2001 return nullptr;
2002 else if (Kind == TentativeDefinition)
2003 LastTentative = I;
2004 }
2005 return LastTentative;
2006 }
2007
getDefinition(ASTContext & C)2008 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2009 VarDecl *First = getFirstDecl();
2010 for (auto I : First->redecls()) {
2011 if (I->isThisDeclarationADefinition(C) == Definition)
2012 return I;
2013 }
2014 return nullptr;
2015 }
2016
hasDefinition(ASTContext & C) const2017 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2018 DefinitionKind Kind = DeclarationOnly;
2019
2020 const VarDecl *First = getFirstDecl();
2021 for (auto I : First->redecls()) {
2022 Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2023 if (Kind == Definition)
2024 break;
2025 }
2026
2027 return Kind;
2028 }
2029
getAnyInitializer(const VarDecl * & D) const2030 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2031 for (auto I : redecls()) {
2032 if (auto Expr = I->getInit()) {
2033 D = I;
2034 return Expr;
2035 }
2036 }
2037 return nullptr;
2038 }
2039
hasInit() const2040 bool VarDecl::hasInit() const {
2041 if (auto *P = dyn_cast<ParmVarDecl>(this))
2042 if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2043 return false;
2044
2045 return !Init.isNull();
2046 }
2047
getInit()2048 Expr *VarDecl::getInit() {
2049 if (!hasInit())
2050 return nullptr;
2051
2052 if (auto *S = Init.dyn_cast<Stmt *>())
2053 return cast<Expr>(S);
2054
2055 return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2056 }
2057
getInitAddress()2058 Stmt **VarDecl::getInitAddress() {
2059 if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2060 return &ES->Value;
2061
2062 return Init.getAddrOfPtr1();
2063 }
2064
isOutOfLine() const2065 bool VarDecl::isOutOfLine() const {
2066 if (Decl::isOutOfLine())
2067 return true;
2068
2069 if (!isStaticDataMember())
2070 return false;
2071
2072 // If this static data member was instantiated from a static data member of
2073 // a class template, check whether that static data member was defined
2074 // out-of-line.
2075 if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2076 return VD->isOutOfLine();
2077
2078 return false;
2079 }
2080
setInit(Expr * I)2081 void VarDecl::setInit(Expr *I) {
2082 if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2083 Eval->~EvaluatedStmt();
2084 getASTContext().Deallocate(Eval);
2085 }
2086
2087 Init = I;
2088 }
2089
isUsableInConstantExpressions(ASTContext & C) const2090 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2091 const LangOptions &Lang = C.getLangOpts();
2092
2093 if (!Lang.CPlusPlus)
2094 return false;
2095
2096 // In C++11, any variable of reference type can be used in a constant
2097 // expression if it is initialized by a constant expression.
2098 if (Lang.CPlusPlus11 && getType()->isReferenceType())
2099 return true;
2100
2101 // Only const objects can be used in constant expressions in C++. C++98 does
2102 // not require the variable to be non-volatile, but we consider this to be a
2103 // defect.
2104 if (!getType().isConstQualified() || getType().isVolatileQualified())
2105 return false;
2106
2107 // In C++, const, non-volatile variables of integral or enumeration types
2108 // can be used in constant expressions.
2109 if (getType()->isIntegralOrEnumerationType())
2110 return true;
2111
2112 // Additionally, in C++11, non-volatile constexpr variables can be used in
2113 // constant expressions.
2114 return Lang.CPlusPlus11 && isConstexpr();
2115 }
2116
2117 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2118 /// form, which contains extra information on the evaluated value of the
2119 /// initializer.
ensureEvaluatedStmt() const2120 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2121 auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2122 if (!Eval) {
2123 // Note: EvaluatedStmt contains an APValue, which usually holds
2124 // resources not allocated from the ASTContext. We need to do some
2125 // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2126 // where we can detect whether there's anything to clean up or not.
2127 Eval = new (getASTContext()) EvaluatedStmt;
2128 Eval->Value = Init.get<Stmt *>();
2129 Init = Eval;
2130 }
2131 return Eval;
2132 }
2133
evaluateValue() const2134 APValue *VarDecl::evaluateValue() const {
2135 SmallVector<PartialDiagnosticAt, 8> Notes;
2136 return evaluateValue(Notes);
2137 }
2138
2139 namespace {
2140 // Destroy an APValue that was allocated in an ASTContext.
DestroyAPValue(void * UntypedValue)2141 void DestroyAPValue(void* UntypedValue) {
2142 static_cast<APValue*>(UntypedValue)->~APValue();
2143 }
2144 } // namespace
2145
evaluateValue(SmallVectorImpl<PartialDiagnosticAt> & Notes) const2146 APValue *VarDecl::evaluateValue(
2147 SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2148 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2149
2150 // We only produce notes indicating why an initializer is non-constant the
2151 // first time it is evaluated. FIXME: The notes won't always be emitted the
2152 // first time we try evaluation, so might not be produced at all.
2153 if (Eval->WasEvaluated)
2154 return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2155
2156 const auto *Init = cast<Expr>(Eval->Value);
2157 assert(!Init->isValueDependent());
2158
2159 if (Eval->IsEvaluating) {
2160 // FIXME: Produce a diagnostic for self-initialization.
2161 Eval->CheckedICE = true;
2162 Eval->IsICE = false;
2163 return nullptr;
2164 }
2165
2166 Eval->IsEvaluating = true;
2167
2168 bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2169 this, Notes);
2170
2171 // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2172 // or that it's empty (so that there's nothing to clean up) if evaluation
2173 // failed.
2174 if (!Result)
2175 Eval->Evaluated = APValue();
2176 else if (Eval->Evaluated.needsCleanup())
2177 getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2178
2179 Eval->IsEvaluating = false;
2180 Eval->WasEvaluated = true;
2181
2182 // In C++11, we have determined whether the initializer was a constant
2183 // expression as a side-effect.
2184 if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2185 Eval->CheckedICE = true;
2186 Eval->IsICE = Result && Notes.empty();
2187 }
2188
2189 return Result ? &Eval->Evaluated : nullptr;
2190 }
2191
getEvaluatedValue() const2192 APValue *VarDecl::getEvaluatedValue() const {
2193 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2194 if (Eval->WasEvaluated)
2195 return &Eval->Evaluated;
2196
2197 return nullptr;
2198 }
2199
isInitKnownICE() const2200 bool VarDecl::isInitKnownICE() const {
2201 if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2202 return Eval->CheckedICE;
2203
2204 return false;
2205 }
2206
isInitICE() const2207 bool VarDecl::isInitICE() const {
2208 assert(isInitKnownICE() &&
2209 "Check whether we already know that the initializer is an ICE");
2210 return Init.get<EvaluatedStmt *>()->IsICE;
2211 }
2212
checkInitIsICE() const2213 bool VarDecl::checkInitIsICE() const {
2214 // Initializers of weak variables are never ICEs.
2215 if (isWeak())
2216 return false;
2217
2218 EvaluatedStmt *Eval = ensureEvaluatedStmt();
2219 if (Eval->CheckedICE)
2220 // We have already checked whether this subexpression is an
2221 // integral constant expression.
2222 return Eval->IsICE;
2223
2224 const auto *Init = cast<Expr>(Eval->Value);
2225 assert(!Init->isValueDependent());
2226
2227 // In C++11, evaluate the initializer to check whether it's a constant
2228 // expression.
2229 if (getASTContext().getLangOpts().CPlusPlus11) {
2230 SmallVector<PartialDiagnosticAt, 8> Notes;
2231 evaluateValue(Notes);
2232 return Eval->IsICE;
2233 }
2234
2235 // It's an ICE whether or not the definition we found is
2236 // out-of-line. See DR 721 and the discussion in Clang PR
2237 // 6206 for details.
2238
2239 if (Eval->CheckingICE)
2240 return false;
2241 Eval->CheckingICE = true;
2242
2243 Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2244 Eval->CheckingICE = false;
2245 Eval->CheckedICE = true;
2246 return Eval->IsICE;
2247 }
2248
getInstantiatedFromStaticDataMember() const2249 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2250 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2251 return cast<VarDecl>(MSI->getInstantiatedFrom());
2252
2253 return nullptr;
2254 }
2255
getTemplateSpecializationKind() const2256 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2257 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2258 return Spec->getSpecializationKind();
2259
2260 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2261 return MSI->getTemplateSpecializationKind();
2262
2263 return TSK_Undeclared;
2264 }
2265
getPointOfInstantiation() const2266 SourceLocation VarDecl::getPointOfInstantiation() const {
2267 if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2268 return Spec->getPointOfInstantiation();
2269
2270 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2271 return MSI->getPointOfInstantiation();
2272
2273 return SourceLocation();
2274 }
2275
getDescribedVarTemplate() const2276 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2277 return getASTContext().getTemplateOrSpecializationInfo(this)
2278 .dyn_cast<VarTemplateDecl *>();
2279 }
2280
setDescribedVarTemplate(VarTemplateDecl * Template)2281 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2282 getASTContext().setTemplateOrSpecializationInfo(this, Template);
2283 }
2284
getMemberSpecializationInfo() const2285 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2286 if (isStaticDataMember())
2287 // FIXME: Remove ?
2288 // return getASTContext().getInstantiatedFromStaticDataMember(this);
2289 return getASTContext().getTemplateOrSpecializationInfo(this)
2290 .dyn_cast<MemberSpecializationInfo *>();
2291 return nullptr;
2292 }
2293
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)2294 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2295 SourceLocation PointOfInstantiation) {
2296 assert((isa<VarTemplateSpecializationDecl>(this) ||
2297 getMemberSpecializationInfo()) &&
2298 "not a variable or static data member template specialization");
2299
2300 if (VarTemplateSpecializationDecl *Spec =
2301 dyn_cast<VarTemplateSpecializationDecl>(this)) {
2302 Spec->setSpecializationKind(TSK);
2303 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2304 Spec->getPointOfInstantiation().isInvalid())
2305 Spec->setPointOfInstantiation(PointOfInstantiation);
2306 }
2307
2308 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2309 MSI->setTemplateSpecializationKind(TSK);
2310 if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2311 MSI->getPointOfInstantiation().isInvalid())
2312 MSI->setPointOfInstantiation(PointOfInstantiation);
2313 }
2314 }
2315
2316 void
setInstantiationOfStaticDataMember(VarDecl * VD,TemplateSpecializationKind TSK)2317 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2318 TemplateSpecializationKind TSK) {
2319 assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2320 "Previous template or instantiation?");
2321 getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2322 }
2323
2324 //===----------------------------------------------------------------------===//
2325 // ParmVarDecl Implementation
2326 //===----------------------------------------------------------------------===//
2327
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,StorageClass S,Expr * DefArg)2328 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2329 SourceLocation StartLoc,
2330 SourceLocation IdLoc, IdentifierInfo *Id,
2331 QualType T, TypeSourceInfo *TInfo,
2332 StorageClass S, Expr *DefArg) {
2333 return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2334 S, DefArg);
2335 }
2336
getOriginalType() const2337 QualType ParmVarDecl::getOriginalType() const {
2338 TypeSourceInfo *TSI = getTypeSourceInfo();
2339 QualType T = TSI ? TSI->getType() : getType();
2340 if (const auto *DT = dyn_cast<DecayedType>(T))
2341 return DT->getOriginalType();
2342 return T;
2343 }
2344
CreateDeserialized(ASTContext & C,unsigned ID)2345 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2346 return new (C, ID)
2347 ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2348 nullptr, QualType(), nullptr, SC_None, nullptr);
2349 }
2350
getSourceRange() const2351 SourceRange ParmVarDecl::getSourceRange() const {
2352 if (!hasInheritedDefaultArg()) {
2353 SourceRange ArgRange = getDefaultArgRange();
2354 if (ArgRange.isValid())
2355 return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2356 }
2357
2358 // DeclaratorDecl considers the range of postfix types as overlapping with the
2359 // declaration name, but this is not the case with parameters in ObjC methods.
2360 if (isa<ObjCMethodDecl>(getDeclContext()))
2361 return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2362
2363 return DeclaratorDecl::getSourceRange();
2364 }
2365
getDefaultArg()2366 Expr *ParmVarDecl::getDefaultArg() {
2367 assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2368 assert(!hasUninstantiatedDefaultArg() &&
2369 "Default argument is not yet instantiated!");
2370
2371 Expr *Arg = getInit();
2372 if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2373 return E->getSubExpr();
2374
2375 return Arg;
2376 }
2377
setDefaultArg(Expr * defarg)2378 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2379 ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2380 Init = defarg;
2381 }
2382
getDefaultArgRange() const2383 SourceRange ParmVarDecl::getDefaultArgRange() const {
2384 switch (ParmVarDeclBits.DefaultArgKind) {
2385 case DAK_None:
2386 case DAK_Unparsed:
2387 // Nothing we can do here.
2388 return SourceRange();
2389
2390 case DAK_Uninstantiated:
2391 return getUninstantiatedDefaultArg()->getSourceRange();
2392
2393 case DAK_Normal:
2394 if (const Expr *E = getInit())
2395 return E->getSourceRange();
2396
2397 // Missing an actual expression, may be invalid.
2398 return SourceRange();
2399 }
2400 llvm_unreachable("Invalid default argument kind.");
2401 }
2402
setUninstantiatedDefaultArg(Expr * arg)2403 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2404 ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2405 Init = arg;
2406 }
2407
getUninstantiatedDefaultArg()2408 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2409 assert(hasUninstantiatedDefaultArg() &&
2410 "Wrong kind of initialization expression!");
2411 return cast_or_null<Expr>(Init.get<Stmt *>());
2412 }
2413
hasDefaultArg() const2414 bool ParmVarDecl::hasDefaultArg() const {
2415 // FIXME: We should just return false for DAK_None here once callers are
2416 // prepared for the case that we encountered an invalid default argument and
2417 // were unable to even build an invalid expression.
2418 return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2419 !Init.isNull();
2420 }
2421
isParameterPack() const2422 bool ParmVarDecl::isParameterPack() const {
2423 return isa<PackExpansionType>(getType());
2424 }
2425
setParameterIndexLarge(unsigned parameterIndex)2426 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2427 getASTContext().setParameterIndex(this, parameterIndex);
2428 ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2429 }
2430
getParameterIndexLarge() const2431 unsigned ParmVarDecl::getParameterIndexLarge() const {
2432 return getASTContext().getParameterIndex(this);
2433 }
2434
2435 //===----------------------------------------------------------------------===//
2436 // FunctionDecl Implementation
2437 //===----------------------------------------------------------------------===//
2438
getNameForDiagnostic(raw_ostream & OS,const PrintingPolicy & Policy,bool Qualified) const2439 void FunctionDecl::getNameForDiagnostic(
2440 raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2441 NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2442 const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2443 if (TemplateArgs)
2444 TemplateSpecializationType::PrintTemplateArgumentList(
2445 OS, TemplateArgs->asArray(), Policy);
2446 }
2447
isVariadic() const2448 bool FunctionDecl::isVariadic() const {
2449 if (const auto *FT = getType()->getAs<FunctionProtoType>())
2450 return FT->isVariadic();
2451 return false;
2452 }
2453
hasBody(const FunctionDecl * & Definition) const2454 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2455 for (auto I : redecls()) {
2456 if (I->Body || I->IsLateTemplateParsed) {
2457 Definition = I;
2458 return true;
2459 }
2460 }
2461
2462 return false;
2463 }
2464
hasTrivialBody() const2465 bool FunctionDecl::hasTrivialBody() const
2466 {
2467 Stmt *S = getBody();
2468 if (!S) {
2469 // Since we don't have a body for this function, we don't know if it's
2470 // trivial or not.
2471 return false;
2472 }
2473
2474 if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2475 return true;
2476 return false;
2477 }
2478
isDefined(const FunctionDecl * & Definition) const2479 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2480 for (auto I : redecls()) {
2481 if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2482 I->hasDefiningAttr()) {
2483 Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2484 return true;
2485 }
2486 }
2487
2488 return false;
2489 }
2490
getBody(const FunctionDecl * & Definition) const2491 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2492 if (!hasBody(Definition))
2493 return nullptr;
2494
2495 if (Definition->Body)
2496 return Definition->Body.get(getASTContext().getExternalSource());
2497
2498 return nullptr;
2499 }
2500
setBody(Stmt * B)2501 void FunctionDecl::setBody(Stmt *B) {
2502 Body = B;
2503 if (B)
2504 EndRangeLoc = B->getLocEnd();
2505 }
2506
setPure(bool P)2507 void FunctionDecl::setPure(bool P) {
2508 IsPure = P;
2509 if (P)
2510 if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2511 Parent->markedVirtualFunctionPure();
2512 }
2513
2514 template<std::size_t Len>
isNamed(const NamedDecl * ND,const char (& Str)[Len])2515 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2516 IdentifierInfo *II = ND->getIdentifier();
2517 return II && II->isStr(Str);
2518 }
2519
isMain() const2520 bool FunctionDecl::isMain() const {
2521 const TranslationUnitDecl *tunit =
2522 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2523 return tunit &&
2524 !tunit->getASTContext().getLangOpts().Freestanding &&
2525 isNamed(this, "main");
2526 }
2527
isMSVCRTEntryPoint() const2528 bool FunctionDecl::isMSVCRTEntryPoint() const {
2529 const TranslationUnitDecl *TUnit =
2530 dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2531 if (!TUnit)
2532 return false;
2533
2534 // Even though we aren't really targeting MSVCRT if we are freestanding,
2535 // semantic analysis for these functions remains the same.
2536
2537 // MSVCRT entry points only exist on MSVCRT targets.
2538 if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2539 return false;
2540
2541 // Nameless functions like constructors cannot be entry points.
2542 if (!getIdentifier())
2543 return false;
2544
2545 return llvm::StringSwitch<bool>(getName())
2546 .Cases("main", // an ANSI console app
2547 "wmain", // a Unicode console App
2548 "WinMain", // an ANSI GUI app
2549 "wWinMain", // a Unicode GUI app
2550 "DllMain", // a DLL
2551 true)
2552 .Default(false);
2553 }
2554
isReservedGlobalPlacementOperator() const2555 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2556 assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2557 assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2558 getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2559 getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2560 getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2561
2562 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2563 return false;
2564
2565 const auto *proto = getType()->castAs<FunctionProtoType>();
2566 if (proto->getNumParams() != 2 || proto->isVariadic())
2567 return false;
2568
2569 ASTContext &Context =
2570 cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2571 ->getASTContext();
2572
2573 // The result type and first argument type are constant across all
2574 // these operators. The second argument must be exactly void*.
2575 return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2576 }
2577
isReplaceableGlobalAllocationFunction() const2578 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2579 if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2580 return false;
2581 if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2582 getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2583 getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2584 getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2585 return false;
2586
2587 if (isa<CXXRecordDecl>(getDeclContext()))
2588 return false;
2589
2590 // This can only fail for an invalid 'operator new' declaration.
2591 if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2592 return false;
2593
2594 const auto *FPT = getType()->castAs<FunctionProtoType>();
2595 if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2596 return false;
2597
2598 // If this is a single-parameter function, it must be a replaceable global
2599 // allocation or deallocation function.
2600 if (FPT->getNumParams() == 1)
2601 return true;
2602
2603 // Otherwise, we're looking for a second parameter whose type is
2604 // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2605 QualType Ty = FPT->getParamType(1);
2606 ASTContext &Ctx = getASTContext();
2607 if (Ctx.getLangOpts().SizedDeallocation &&
2608 Ctx.hasSameType(Ty, Ctx.getSizeType()))
2609 return true;
2610 if (!Ty->isReferenceType())
2611 return false;
2612 Ty = Ty->getPointeeType();
2613 if (Ty.getCVRQualifiers() != Qualifiers::Const)
2614 return false;
2615 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2616 return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2617 }
2618
getLanguageLinkage() const2619 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2620 return getDeclLanguageLinkage(*this);
2621 }
2622
isExternC() const2623 bool FunctionDecl::isExternC() const {
2624 return isDeclExternC(*this);
2625 }
2626
isInExternCContext() const2627 bool FunctionDecl::isInExternCContext() const {
2628 return getLexicalDeclContext()->isExternCContext();
2629 }
2630
isInExternCXXContext() const2631 bool FunctionDecl::isInExternCXXContext() const {
2632 return getLexicalDeclContext()->isExternCXXContext();
2633 }
2634
isGlobal() const2635 bool FunctionDecl::isGlobal() const {
2636 if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2637 return Method->isStatic();
2638
2639 if (getCanonicalDecl()->getStorageClass() == SC_Static)
2640 return false;
2641
2642 for (const DeclContext *DC = getDeclContext();
2643 DC->isNamespace();
2644 DC = DC->getParent()) {
2645 if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2646 if (!Namespace->getDeclName())
2647 return false;
2648 break;
2649 }
2650 }
2651
2652 return true;
2653 }
2654
isNoReturn() const2655 bool FunctionDecl::isNoReturn() const {
2656 return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2657 hasAttr<C11NoReturnAttr>() ||
2658 getType()->getAs<FunctionType>()->getNoReturnAttr();
2659 }
2660
2661 void
setPreviousDeclaration(FunctionDecl * PrevDecl)2662 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2663 redeclarable_base::setPreviousDecl(PrevDecl);
2664
2665 if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2666 FunctionTemplateDecl *PrevFunTmpl
2667 = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2668 assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2669 FunTmpl->setPreviousDecl(PrevFunTmpl);
2670 }
2671
2672 if (PrevDecl && PrevDecl->IsInline)
2673 IsInline = true;
2674 }
2675
getCanonicalDecl()2676 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2677
2678 /// \brief Returns a value indicating whether this function
2679 /// corresponds to a builtin function.
2680 ///
2681 /// The function corresponds to a built-in function if it is
2682 /// declared at translation scope or within an extern "C" block and
2683 /// its name matches with the name of a builtin. The returned value
2684 /// will be 0 for functions that do not correspond to a builtin, a
2685 /// value of type \c Builtin::ID if in the target-independent range
2686 /// \c [1,Builtin::First), or a target-specific builtin value.
getBuiltinID() const2687 unsigned FunctionDecl::getBuiltinID() const {
2688 if (!getIdentifier())
2689 return 0;
2690
2691 unsigned BuiltinID = getIdentifier()->getBuiltinID();
2692 if (!BuiltinID)
2693 return 0;
2694
2695 ASTContext &Context = getASTContext();
2696 if (Context.getLangOpts().CPlusPlus) {
2697 const auto *LinkageDecl =
2698 dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2699 // In C++, the first declaration of a builtin is always inside an implicit
2700 // extern "C".
2701 // FIXME: A recognised library function may not be directly in an extern "C"
2702 // declaration, for instance "extern "C" { namespace std { decl } }".
2703 if (!LinkageDecl) {
2704 if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2705 Context.getTargetInfo().getCXXABI().isMicrosoft())
2706 return Builtin::BI__GetExceptionInfo;
2707 return 0;
2708 }
2709 if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2710 return 0;
2711 }
2712
2713 // If the function is marked "overloadable", it has a different mangled name
2714 // and is not the C library function.
2715 if (hasAttr<OverloadableAttr>())
2716 return 0;
2717
2718 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2719 return BuiltinID;
2720
2721 // This function has the name of a known C library
2722 // function. Determine whether it actually refers to the C library
2723 // function or whether it just has the same name.
2724
2725 // If this is a static function, it's not a builtin.
2726 if (getStorageClass() == SC_Static)
2727 return 0;
2728
2729 // OpenCL v1.2 s6.9.f - The library functions defined in
2730 // the C99 standard headers are not available.
2731 if (Context.getLangOpts().OpenCL &&
2732 Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2733 return 0;
2734
2735 return BuiltinID;
2736 }
2737
2738
2739 /// getNumParams - Return the number of parameters this function must have
2740 /// based on its FunctionType. This is the length of the ParamInfo array
2741 /// after it has been created.
getNumParams() const2742 unsigned FunctionDecl::getNumParams() const {
2743 const auto *FPT = getType()->getAs<FunctionProtoType>();
2744 return FPT ? FPT->getNumParams() : 0;
2745 }
2746
setParams(ASTContext & C,ArrayRef<ParmVarDecl * > NewParamInfo)2747 void FunctionDecl::setParams(ASTContext &C,
2748 ArrayRef<ParmVarDecl *> NewParamInfo) {
2749 assert(!ParamInfo && "Already has param info!");
2750 assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2751
2752 // Zero params -> null pointer.
2753 if (!NewParamInfo.empty()) {
2754 ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2755 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2756 }
2757 }
2758
setDeclsInPrototypeScope(ArrayRef<NamedDecl * > NewDecls)2759 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2760 assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2761
2762 if (!NewDecls.empty()) {
2763 NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2764 std::copy(NewDecls.begin(), NewDecls.end(), A);
2765 DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2766 // Move declarations introduced in prototype to the function context.
2767 for (auto I : NewDecls) {
2768 DeclContext *DC = I->getDeclContext();
2769 // Forward-declared reference to an enumeration is not added to
2770 // declaration scope, so skip declaration that is absent from its
2771 // declaration contexts.
2772 if (DC->containsDecl(I)) {
2773 DC->removeDecl(I);
2774 I->setDeclContext(this);
2775 addDecl(I);
2776 }
2777 }
2778 }
2779 }
2780
2781 /// getMinRequiredArguments - Returns the minimum number of arguments
2782 /// needed to call this function. This may be fewer than the number of
2783 /// function parameters, if some of the parameters have default
2784 /// arguments (in C++) or are parameter packs (C++11).
getMinRequiredArguments() const2785 unsigned FunctionDecl::getMinRequiredArguments() const {
2786 if (!getASTContext().getLangOpts().CPlusPlus)
2787 return getNumParams();
2788
2789 unsigned NumRequiredArgs = 0;
2790 for (auto *Param : parameters())
2791 if (!Param->isParameterPack() && !Param->hasDefaultArg())
2792 ++NumRequiredArgs;
2793 return NumRequiredArgs;
2794 }
2795
2796 /// \brief The combination of the extern and inline keywords under MSVC forces
2797 /// the function to be required.
2798 ///
2799 /// Note: This function assumes that we will only get called when isInlined()
2800 /// would return true for this FunctionDecl.
isMSExternInline() const2801 bool FunctionDecl::isMSExternInline() const {
2802 assert(isInlined() && "expected to get called on an inlined function!");
2803
2804 const ASTContext &Context = getASTContext();
2805 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2806 !hasAttr<DLLExportAttr>())
2807 return false;
2808
2809 for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2810 FD = FD->getPreviousDecl())
2811 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2812 return true;
2813
2814 return false;
2815 }
2816
redeclForcesDefMSVC(const FunctionDecl * Redecl)2817 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2818 if (Redecl->getStorageClass() != SC_Extern)
2819 return false;
2820
2821 for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2822 FD = FD->getPreviousDecl())
2823 if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2824 return false;
2825
2826 return true;
2827 }
2828
RedeclForcesDefC99(const FunctionDecl * Redecl)2829 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2830 // Only consider file-scope declarations in this test.
2831 if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2832 return false;
2833
2834 // Only consider explicit declarations; the presence of a builtin for a
2835 // libcall shouldn't affect whether a definition is externally visible.
2836 if (Redecl->isImplicit())
2837 return false;
2838
2839 if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern)
2840 return true; // Not an inline definition
2841
2842 return false;
2843 }
2844
2845 /// \brief For a function declaration in C or C++, determine whether this
2846 /// declaration causes the definition to be externally visible.
2847 ///
2848 /// For instance, this determines if adding the current declaration to the set
2849 /// of redeclarations of the given functions causes
2850 /// isInlineDefinitionExternallyVisible to change from false to true.
doesDeclarationForceExternallyVisibleDefinition() const2851 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2852 assert(!doesThisDeclarationHaveABody() &&
2853 "Must have a declaration without a body.");
2854
2855 ASTContext &Context = getASTContext();
2856
2857 if (Context.getLangOpts().MSVCCompat) {
2858 const FunctionDecl *Definition;
2859 if (hasBody(Definition) && Definition->isInlined() &&
2860 redeclForcesDefMSVC(this))
2861 return true;
2862 }
2863
2864 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2865 // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2866 // an externally visible definition.
2867 //
2868 // FIXME: What happens if gnu_inline gets added on after the first
2869 // declaration?
2870 if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2871 return false;
2872
2873 const FunctionDecl *Prev = this;
2874 bool FoundBody = false;
2875 while ((Prev = Prev->getPreviousDecl())) {
2876 FoundBody |= Prev->Body.isValid();
2877
2878 if (Prev->Body) {
2879 // If it's not the case that both 'inline' and 'extern' are
2880 // specified on the definition, then it is always externally visible.
2881 if (!Prev->isInlineSpecified() ||
2882 Prev->getStorageClass() != SC_Extern)
2883 return false;
2884 } else if (Prev->isInlineSpecified() &&
2885 Prev->getStorageClass() != SC_Extern) {
2886 return false;
2887 }
2888 }
2889 return FoundBody;
2890 }
2891
2892 if (Context.getLangOpts().CPlusPlus)
2893 return false;
2894
2895 // C99 6.7.4p6:
2896 // [...] If all of the file scope declarations for a function in a
2897 // translation unit include the inline function specifier without extern,
2898 // then the definition in that translation unit is an inline definition.
2899 if (isInlineSpecified() && getStorageClass() != SC_Extern)
2900 return false;
2901 const FunctionDecl *Prev = this;
2902 bool FoundBody = false;
2903 while ((Prev = Prev->getPreviousDecl())) {
2904 FoundBody |= Prev->Body.isValid();
2905 if (RedeclForcesDefC99(Prev))
2906 return false;
2907 }
2908 return FoundBody;
2909 }
2910
getReturnTypeSourceRange() const2911 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2912 const TypeSourceInfo *TSI = getTypeSourceInfo();
2913 if (!TSI)
2914 return SourceRange();
2915 FunctionTypeLoc FTL =
2916 TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2917 if (!FTL)
2918 return SourceRange();
2919
2920 // Skip self-referential return types.
2921 const SourceManager &SM = getASTContext().getSourceManager();
2922 SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2923 SourceLocation Boundary = getNameInfo().getLocStart();
2924 if (RTRange.isInvalid() || Boundary.isInvalid() ||
2925 !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2926 return SourceRange();
2927
2928 return RTRange;
2929 }
2930
getUnusedResultAttr() const2931 const Attr *FunctionDecl::getUnusedResultAttr() const {
2932 QualType RetType = getReturnType();
2933 if (RetType->isRecordType()) {
2934 const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2935 const auto *MD = dyn_cast<CXXMethodDecl>(this);
2936 if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
2937 if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
2938 return R;
2939 }
2940 } else if (const auto *ET = RetType->getAs<EnumType>()) {
2941 if (const EnumDecl *ED = ET->getDecl()) {
2942 if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
2943 return R;
2944 }
2945 }
2946 return getAttr<WarnUnusedResultAttr>();
2947 }
2948
2949 /// \brief For an inline function definition in C, or for a gnu_inline function
2950 /// in C++, determine whether the definition will be externally visible.
2951 ///
2952 /// Inline function definitions are always available for inlining optimizations.
2953 /// However, depending on the language dialect, declaration specifiers, and
2954 /// attributes, the definition of an inline function may or may not be
2955 /// "externally" visible to other translation units in the program.
2956 ///
2957 /// In C99, inline definitions are not externally visible by default. However,
2958 /// if even one of the global-scope declarations is marked "extern inline", the
2959 /// inline definition becomes externally visible (C99 6.7.4p6).
2960 ///
2961 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2962 /// definition, we use the GNU semantics for inline, which are nearly the
2963 /// opposite of C99 semantics. In particular, "inline" by itself will create
2964 /// an externally visible symbol, but "extern inline" will not create an
2965 /// externally visible symbol.
isInlineDefinitionExternallyVisible() const2966 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2967 assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2968 assert(isInlined() && "Function must be inline");
2969 ASTContext &Context = getASTContext();
2970
2971 if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2972 // Note: If you change the logic here, please change
2973 // doesDeclarationForceExternallyVisibleDefinition as well.
2974 //
2975 // If it's not the case that both 'inline' and 'extern' are
2976 // specified on the definition, then this inline definition is
2977 // externally visible.
2978 if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2979 return true;
2980
2981 // If any declaration is 'inline' but not 'extern', then this definition
2982 // is externally visible.
2983 for (auto Redecl : redecls()) {
2984 if (Redecl->isInlineSpecified() &&
2985 Redecl->getStorageClass() != SC_Extern)
2986 return true;
2987 }
2988
2989 return false;
2990 }
2991
2992 // The rest of this function is C-only.
2993 assert(!Context.getLangOpts().CPlusPlus &&
2994 "should not use C inline rules in C++");
2995
2996 // C99 6.7.4p6:
2997 // [...] If all of the file scope declarations for a function in a
2998 // translation unit include the inline function specifier without extern,
2999 // then the definition in that translation unit is an inline definition.
3000 for (auto Redecl : redecls()) {
3001 if (RedeclForcesDefC99(Redecl))
3002 return true;
3003 }
3004
3005 // C99 6.7.4p6:
3006 // An inline definition does not provide an external definition for the
3007 // function, and does not forbid an external definition in another
3008 // translation unit.
3009 return false;
3010 }
3011
3012 /// getOverloadedOperator - Which C++ overloaded operator this
3013 /// function represents, if any.
getOverloadedOperator() const3014 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3015 if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3016 return getDeclName().getCXXOverloadedOperator();
3017 else
3018 return OO_None;
3019 }
3020
3021 /// getLiteralIdentifier - The literal suffix identifier this function
3022 /// represents, if any.
getLiteralIdentifier() const3023 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3024 if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3025 return getDeclName().getCXXLiteralIdentifier();
3026 else
3027 return nullptr;
3028 }
3029
getTemplatedKind() const3030 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3031 if (TemplateOrSpecialization.isNull())
3032 return TK_NonTemplate;
3033 if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3034 return TK_FunctionTemplate;
3035 if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3036 return TK_MemberSpecialization;
3037 if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3038 return TK_FunctionTemplateSpecialization;
3039 if (TemplateOrSpecialization.is
3040 <DependentFunctionTemplateSpecializationInfo*>())
3041 return TK_DependentFunctionTemplateSpecialization;
3042
3043 llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3044 }
3045
getInstantiatedFromMemberFunction() const3046 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3047 if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3048 return cast<FunctionDecl>(Info->getInstantiatedFrom());
3049
3050 return nullptr;
3051 }
3052
getMemberSpecializationInfo() const3053 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3054 return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3055 }
3056
3057 void
setInstantiationOfMemberFunction(ASTContext & C,FunctionDecl * FD,TemplateSpecializationKind TSK)3058 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3059 FunctionDecl *FD,
3060 TemplateSpecializationKind TSK) {
3061 assert(TemplateOrSpecialization.isNull() &&
3062 "Member function is already a specialization");
3063 MemberSpecializationInfo *Info
3064 = new (C) MemberSpecializationInfo(FD, TSK);
3065 TemplateOrSpecialization = Info;
3066 }
3067
getDescribedFunctionTemplate() const3068 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3069 return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3070 }
3071
setDescribedFunctionTemplate(FunctionTemplateDecl * Template)3072 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3073 TemplateOrSpecialization = Template;
3074 }
3075
isImplicitlyInstantiable() const3076 bool FunctionDecl::isImplicitlyInstantiable() const {
3077 // If the function is invalid, it can't be implicitly instantiated.
3078 if (isInvalidDecl())
3079 return false;
3080
3081 switch (getTemplateSpecializationKind()) {
3082 case TSK_Undeclared:
3083 case TSK_ExplicitInstantiationDefinition:
3084 return false;
3085
3086 case TSK_ImplicitInstantiation:
3087 return true;
3088
3089 // It is possible to instantiate TSK_ExplicitSpecialization kind
3090 // if the FunctionDecl has a class scope specialization pattern.
3091 case TSK_ExplicitSpecialization:
3092 return getClassScopeSpecializationPattern() != nullptr;
3093
3094 case TSK_ExplicitInstantiationDeclaration:
3095 // Handled below.
3096 break;
3097 }
3098
3099 // Find the actual template from which we will instantiate.
3100 const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3101 bool HasPattern = false;
3102 if (PatternDecl)
3103 HasPattern = PatternDecl->hasBody(PatternDecl);
3104
3105 // C++0x [temp.explicit]p9:
3106 // Except for inline functions, other explicit instantiation declarations
3107 // have the effect of suppressing the implicit instantiation of the entity
3108 // to which they refer.
3109 if (!HasPattern || !PatternDecl)
3110 return true;
3111
3112 return PatternDecl->isInlined();
3113 }
3114
isTemplateInstantiation() const3115 bool FunctionDecl::isTemplateInstantiation() const {
3116 switch (getTemplateSpecializationKind()) {
3117 case TSK_Undeclared:
3118 case TSK_ExplicitSpecialization:
3119 return false;
3120 case TSK_ImplicitInstantiation:
3121 case TSK_ExplicitInstantiationDeclaration:
3122 case TSK_ExplicitInstantiationDefinition:
3123 return true;
3124 }
3125 llvm_unreachable("All TSK values handled.");
3126 }
3127
getTemplateInstantiationPattern() const3128 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3129 // Handle class scope explicit specialization special case.
3130 if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3131 return getClassScopeSpecializationPattern();
3132
3133 // If this is a generic lambda call operator specialization, its
3134 // instantiation pattern is always its primary template's pattern
3135 // even if its primary template was instantiated from another
3136 // member template (which happens with nested generic lambdas).
3137 // Since a lambda's call operator's body is transformed eagerly,
3138 // we don't have to go hunting for a prototype definition template
3139 // (i.e. instantiated-from-member-template) to use as an instantiation
3140 // pattern.
3141
3142 if (isGenericLambdaCallOperatorSpecialization(
3143 dyn_cast<CXXMethodDecl>(this))) {
3144 assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3145 "generated from a primary call operator "
3146 "template");
3147 assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3148 "A generic lambda call operator template must always have a body - "
3149 "even if instantiated from a prototype (i.e. as written) member "
3150 "template");
3151 return getPrimaryTemplate()->getTemplatedDecl();
3152 }
3153
3154 if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3155 while (Primary->getInstantiatedFromMemberTemplate()) {
3156 // If we have hit a point where the user provided a specialization of
3157 // this template, we're done looking.
3158 if (Primary->isMemberSpecialization())
3159 break;
3160 Primary = Primary->getInstantiatedFromMemberTemplate();
3161 }
3162
3163 return Primary->getTemplatedDecl();
3164 }
3165
3166 return getInstantiatedFromMemberFunction();
3167 }
3168
getPrimaryTemplate() const3169 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3170 if (FunctionTemplateSpecializationInfo *Info
3171 = TemplateOrSpecialization
3172 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3173 return Info->Template.getPointer();
3174 }
3175 return nullptr;
3176 }
3177
getClassScopeSpecializationPattern() const3178 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3179 return getASTContext().getClassScopeSpecializationPattern(this);
3180 }
3181
3182 FunctionTemplateSpecializationInfo *
getTemplateSpecializationInfo() const3183 FunctionDecl::getTemplateSpecializationInfo() const {
3184 return TemplateOrSpecialization
3185 .dyn_cast<FunctionTemplateSpecializationInfo *>();
3186 }
3187
3188 const TemplateArgumentList *
getTemplateSpecializationArgs() const3189 FunctionDecl::getTemplateSpecializationArgs() const {
3190 if (FunctionTemplateSpecializationInfo *Info
3191 = TemplateOrSpecialization
3192 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3193 return Info->TemplateArguments;
3194 }
3195 return nullptr;
3196 }
3197
3198 const ASTTemplateArgumentListInfo *
getTemplateSpecializationArgsAsWritten() const3199 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3200 if (FunctionTemplateSpecializationInfo *Info
3201 = TemplateOrSpecialization
3202 .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3203 return Info->TemplateArgumentsAsWritten;
3204 }
3205 return nullptr;
3206 }
3207
3208 void
setFunctionTemplateSpecialization(ASTContext & C,FunctionTemplateDecl * Template,const TemplateArgumentList * TemplateArgs,void * InsertPos,TemplateSpecializationKind TSK,const TemplateArgumentListInfo * TemplateArgsAsWritten,SourceLocation PointOfInstantiation)3209 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3210 FunctionTemplateDecl *Template,
3211 const TemplateArgumentList *TemplateArgs,
3212 void *InsertPos,
3213 TemplateSpecializationKind TSK,
3214 const TemplateArgumentListInfo *TemplateArgsAsWritten,
3215 SourceLocation PointOfInstantiation) {
3216 assert(TSK != TSK_Undeclared &&
3217 "Must specify the type of function template specialization");
3218 FunctionTemplateSpecializationInfo *Info
3219 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3220 if (!Info)
3221 Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3222 TemplateArgs,
3223 TemplateArgsAsWritten,
3224 PointOfInstantiation);
3225 TemplateOrSpecialization = Info;
3226 Template->addSpecialization(Info, InsertPos);
3227 }
3228
3229 void
setDependentTemplateSpecialization(ASTContext & Context,const UnresolvedSetImpl & Templates,const TemplateArgumentListInfo & TemplateArgs)3230 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3231 const UnresolvedSetImpl &Templates,
3232 const TemplateArgumentListInfo &TemplateArgs) {
3233 assert(TemplateOrSpecialization.isNull());
3234 DependentFunctionTemplateSpecializationInfo *Info =
3235 DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3236 TemplateArgs);
3237 TemplateOrSpecialization = Info;
3238 }
3239
3240 DependentFunctionTemplateSpecializationInfo *
getDependentSpecializationInfo() const3241 FunctionDecl::getDependentSpecializationInfo() const {
3242 return TemplateOrSpecialization
3243 .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3244 }
3245
3246 DependentFunctionTemplateSpecializationInfo *
Create(ASTContext & Context,const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3247 DependentFunctionTemplateSpecializationInfo::Create(
3248 ASTContext &Context, const UnresolvedSetImpl &Ts,
3249 const TemplateArgumentListInfo &TArgs) {
3250 void *Buffer = Context.Allocate(
3251 totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3252 TArgs.size(), Ts.size()));
3253 return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3254 }
3255
3256 DependentFunctionTemplateSpecializationInfo::
DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl & Ts,const TemplateArgumentListInfo & TArgs)3257 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3258 const TemplateArgumentListInfo &TArgs)
3259 : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3260
3261 NumTemplates = Ts.size();
3262 NumArgs = TArgs.size();
3263
3264 FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3265 for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3266 TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3267
3268 TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3269 for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3270 new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3271 }
3272
getTemplateSpecializationKind() const3273 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3274 // For a function template specialization, query the specialization
3275 // information object.
3276 FunctionTemplateSpecializationInfo *FTSInfo
3277 = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3278 if (FTSInfo)
3279 return FTSInfo->getTemplateSpecializationKind();
3280
3281 MemberSpecializationInfo *MSInfo
3282 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3283 if (MSInfo)
3284 return MSInfo->getTemplateSpecializationKind();
3285
3286 return TSK_Undeclared;
3287 }
3288
3289 void
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3290 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3291 SourceLocation PointOfInstantiation) {
3292 if (FunctionTemplateSpecializationInfo *FTSInfo
3293 = TemplateOrSpecialization.dyn_cast<
3294 FunctionTemplateSpecializationInfo*>()) {
3295 FTSInfo->setTemplateSpecializationKind(TSK);
3296 if (TSK != TSK_ExplicitSpecialization &&
3297 PointOfInstantiation.isValid() &&
3298 FTSInfo->getPointOfInstantiation().isInvalid())
3299 FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3300 } else if (MemberSpecializationInfo *MSInfo
3301 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3302 MSInfo->setTemplateSpecializationKind(TSK);
3303 if (TSK != TSK_ExplicitSpecialization &&
3304 PointOfInstantiation.isValid() &&
3305 MSInfo->getPointOfInstantiation().isInvalid())
3306 MSInfo->setPointOfInstantiation(PointOfInstantiation);
3307 } else
3308 llvm_unreachable("Function cannot have a template specialization kind");
3309 }
3310
getPointOfInstantiation() const3311 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3312 if (FunctionTemplateSpecializationInfo *FTSInfo
3313 = TemplateOrSpecialization.dyn_cast<
3314 FunctionTemplateSpecializationInfo*>())
3315 return FTSInfo->getPointOfInstantiation();
3316 else if (MemberSpecializationInfo *MSInfo
3317 = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3318 return MSInfo->getPointOfInstantiation();
3319
3320 return SourceLocation();
3321 }
3322
isOutOfLine() const3323 bool FunctionDecl::isOutOfLine() const {
3324 if (Decl::isOutOfLine())
3325 return true;
3326
3327 // If this function was instantiated from a member function of a
3328 // class template, check whether that member function was defined out-of-line.
3329 if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3330 const FunctionDecl *Definition;
3331 if (FD->hasBody(Definition))
3332 return Definition->isOutOfLine();
3333 }
3334
3335 // If this function was instantiated from a function template,
3336 // check whether that function template was defined out-of-line.
3337 if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3338 const FunctionDecl *Definition;
3339 if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3340 return Definition->isOutOfLine();
3341 }
3342
3343 return false;
3344 }
3345
getSourceRange() const3346 SourceRange FunctionDecl::getSourceRange() const {
3347 return SourceRange(getOuterLocStart(), EndRangeLoc);
3348 }
3349
getMemoryFunctionKind() const3350 unsigned FunctionDecl::getMemoryFunctionKind() const {
3351 IdentifierInfo *FnInfo = getIdentifier();
3352
3353 if (!FnInfo)
3354 return 0;
3355
3356 // Builtin handling.
3357 switch (getBuiltinID()) {
3358 case Builtin::BI__builtin_memset:
3359 case Builtin::BI__builtin___memset_chk:
3360 case Builtin::BImemset:
3361 return Builtin::BImemset;
3362
3363 case Builtin::BI__builtin_memcpy:
3364 case Builtin::BI__builtin___memcpy_chk:
3365 case Builtin::BImemcpy:
3366 return Builtin::BImemcpy;
3367
3368 case Builtin::BI__builtin_memmove:
3369 case Builtin::BI__builtin___memmove_chk:
3370 case Builtin::BImemmove:
3371 return Builtin::BImemmove;
3372
3373 case Builtin::BIstrlcpy:
3374 case Builtin::BI__builtin___strlcpy_chk:
3375 return Builtin::BIstrlcpy;
3376
3377 case Builtin::BIstrlcat:
3378 case Builtin::BI__builtin___strlcat_chk:
3379 return Builtin::BIstrlcat;
3380
3381 case Builtin::BI__builtin_memcmp:
3382 case Builtin::BImemcmp:
3383 return Builtin::BImemcmp;
3384
3385 case Builtin::BI__builtin_strncpy:
3386 case Builtin::BI__builtin___strncpy_chk:
3387 case Builtin::BIstrncpy:
3388 return Builtin::BIstrncpy;
3389
3390 case Builtin::BI__builtin_strncmp:
3391 case Builtin::BIstrncmp:
3392 return Builtin::BIstrncmp;
3393
3394 case Builtin::BI__builtin_strncasecmp:
3395 case Builtin::BIstrncasecmp:
3396 return Builtin::BIstrncasecmp;
3397
3398 case Builtin::BI__builtin_strncat:
3399 case Builtin::BI__builtin___strncat_chk:
3400 case Builtin::BIstrncat:
3401 return Builtin::BIstrncat;
3402
3403 case Builtin::BI__builtin_strndup:
3404 case Builtin::BIstrndup:
3405 return Builtin::BIstrndup;
3406
3407 case Builtin::BI__builtin_strlen:
3408 case Builtin::BIstrlen:
3409 return Builtin::BIstrlen;
3410
3411 default:
3412 if (isExternC()) {
3413 if (FnInfo->isStr("memset"))
3414 return Builtin::BImemset;
3415 else if (FnInfo->isStr("memcpy"))
3416 return Builtin::BImemcpy;
3417 else if (FnInfo->isStr("memmove"))
3418 return Builtin::BImemmove;
3419 else if (FnInfo->isStr("memcmp"))
3420 return Builtin::BImemcmp;
3421 else if (FnInfo->isStr("strncpy"))
3422 return Builtin::BIstrncpy;
3423 else if (FnInfo->isStr("strncmp"))
3424 return Builtin::BIstrncmp;
3425 else if (FnInfo->isStr("strncasecmp"))
3426 return Builtin::BIstrncasecmp;
3427 else if (FnInfo->isStr("strncat"))
3428 return Builtin::BIstrncat;
3429 else if (FnInfo->isStr("strndup"))
3430 return Builtin::BIstrndup;
3431 else if (FnInfo->isStr("strlen"))
3432 return Builtin::BIstrlen;
3433 }
3434 break;
3435 }
3436 return 0;
3437 }
3438
3439 //===----------------------------------------------------------------------===//
3440 // FieldDecl Implementation
3441 //===----------------------------------------------------------------------===//
3442
Create(const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,QualType T,TypeSourceInfo * TInfo,Expr * BW,bool Mutable,InClassInitStyle InitStyle)3443 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3444 SourceLocation StartLoc, SourceLocation IdLoc,
3445 IdentifierInfo *Id, QualType T,
3446 TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3447 InClassInitStyle InitStyle) {
3448 return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3449 BW, Mutable, InitStyle);
3450 }
3451
CreateDeserialized(ASTContext & C,unsigned ID)3452 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3453 return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3454 SourceLocation(), nullptr, QualType(), nullptr,
3455 nullptr, false, ICIS_NoInit);
3456 }
3457
isAnonymousStructOrUnion() const3458 bool FieldDecl::isAnonymousStructOrUnion() const {
3459 if (!isImplicit() || getDeclName())
3460 return false;
3461
3462 if (const auto *Record = getType()->getAs<RecordType>())
3463 return Record->getDecl()->isAnonymousStructOrUnion();
3464
3465 return false;
3466 }
3467
getBitWidthValue(const ASTContext & Ctx) const3468 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3469 assert(isBitField() && "not a bitfield");
3470 auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3471 return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3472 }
3473
getFieldIndex() const3474 unsigned FieldDecl::getFieldIndex() const {
3475 const FieldDecl *Canonical = getCanonicalDecl();
3476 if (Canonical != this)
3477 return Canonical->getFieldIndex();
3478
3479 if (CachedFieldIndex) return CachedFieldIndex - 1;
3480
3481 unsigned Index = 0;
3482 const RecordDecl *RD = getParent();
3483
3484 for (auto *Field : RD->fields()) {
3485 Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3486 ++Index;
3487 }
3488
3489 assert(CachedFieldIndex && "failed to find field in parent");
3490 return CachedFieldIndex - 1;
3491 }
3492
getSourceRange() const3493 SourceRange FieldDecl::getSourceRange() const {
3494 switch (InitStorage.getInt()) {
3495 // All three of these cases store an optional Expr*.
3496 case ISK_BitWidthOrNothing:
3497 case ISK_InClassCopyInit:
3498 case ISK_InClassListInit:
3499 if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
3500 return SourceRange(getInnerLocStart(), E->getLocEnd());
3501 // FALLTHROUGH
3502
3503 case ISK_CapturedVLAType:
3504 return DeclaratorDecl::getSourceRange();
3505 }
3506 llvm_unreachable("bad init storage kind");
3507 }
3508
setCapturedVLAType(const VariableArrayType * VLAType)3509 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3510 assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3511 "capturing type in non-lambda or captured record.");
3512 assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3513 InitStorage.getPointer() == nullptr &&
3514 "bit width, initializer or captured type already set");
3515 InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3516 ISK_CapturedVLAType);
3517 }
3518
3519 //===----------------------------------------------------------------------===//
3520 // TagDecl Implementation
3521 //===----------------------------------------------------------------------===//
3522
getOuterLocStart() const3523 SourceLocation TagDecl::getOuterLocStart() const {
3524 return getTemplateOrInnerLocStart(this);
3525 }
3526
getSourceRange() const3527 SourceRange TagDecl::getSourceRange() const {
3528 SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3529 return SourceRange(getOuterLocStart(), E);
3530 }
3531
getCanonicalDecl()3532 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3533
setTypedefNameForAnonDecl(TypedefNameDecl * TDD)3534 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3535 TypedefNameDeclOrQualifier = TDD;
3536 if (const Type *T = getTypeForDecl()) {
3537 (void)T;
3538 assert(T->isLinkageValid());
3539 }
3540 assert(isLinkageValid());
3541 }
3542
startDefinition()3543 void TagDecl::startDefinition() {
3544 IsBeingDefined = true;
3545
3546 if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3547 struct CXXRecordDecl::DefinitionData *Data =
3548 new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3549 for (auto I : redecls())
3550 cast<CXXRecordDecl>(I)->DefinitionData = Data;
3551 }
3552 }
3553
completeDefinition()3554 void TagDecl::completeDefinition() {
3555 assert((!isa<CXXRecordDecl>(this) ||
3556 cast<CXXRecordDecl>(this)->hasDefinition()) &&
3557 "definition completed but not started");
3558
3559 IsCompleteDefinition = true;
3560 IsBeingDefined = false;
3561
3562 if (ASTMutationListener *L = getASTMutationListener())
3563 L->CompletedTagDefinition(this);
3564 }
3565
getDefinition() const3566 TagDecl *TagDecl::getDefinition() const {
3567 if (isCompleteDefinition())
3568 return const_cast<TagDecl *>(this);
3569
3570 // If it's possible for us to have an out-of-date definition, check now.
3571 if (MayHaveOutOfDateDef) {
3572 if (IdentifierInfo *II = getIdentifier()) {
3573 if (II->isOutOfDate()) {
3574 updateOutOfDate(*II);
3575 }
3576 }
3577 }
3578
3579 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3580 return CXXRD->getDefinition();
3581
3582 for (auto R : redecls())
3583 if (R->isCompleteDefinition())
3584 return R;
3585
3586 return nullptr;
3587 }
3588
setQualifierInfo(NestedNameSpecifierLoc QualifierLoc)3589 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3590 if (QualifierLoc) {
3591 // Make sure the extended qualifier info is allocated.
3592 if (!hasExtInfo())
3593 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3594 // Set qualifier info.
3595 getExtInfo()->QualifierLoc = QualifierLoc;
3596 } else {
3597 // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3598 if (hasExtInfo()) {
3599 if (getExtInfo()->NumTemplParamLists == 0) {
3600 getASTContext().Deallocate(getExtInfo());
3601 TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3602 }
3603 else
3604 getExtInfo()->QualifierLoc = QualifierLoc;
3605 }
3606 }
3607 }
3608
setTemplateParameterListsInfo(ASTContext & Context,ArrayRef<TemplateParameterList * > TPLists)3609 void TagDecl::setTemplateParameterListsInfo(
3610 ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3611 assert(!TPLists.empty());
3612 // Make sure the extended decl info is allocated.
3613 if (!hasExtInfo())
3614 // Allocate external info struct.
3615 TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3616 // Set the template parameter lists info.
3617 getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3618 }
3619
3620 //===----------------------------------------------------------------------===//
3621 // EnumDecl Implementation
3622 //===----------------------------------------------------------------------===//
3623
anchor()3624 void EnumDecl::anchor() { }
3625
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,EnumDecl * PrevDecl,bool IsScoped,bool IsScopedUsingClassTag,bool IsFixed)3626 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3627 SourceLocation StartLoc, SourceLocation IdLoc,
3628 IdentifierInfo *Id,
3629 EnumDecl *PrevDecl, bool IsScoped,
3630 bool IsScopedUsingClassTag, bool IsFixed) {
3631 auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3632 IsScoped, IsScopedUsingClassTag, IsFixed);
3633 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3634 C.getTypeDeclType(Enum, PrevDecl);
3635 return Enum;
3636 }
3637
CreateDeserialized(ASTContext & C,unsigned ID)3638 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3639 EnumDecl *Enum =
3640 new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3641 nullptr, nullptr, false, false, false);
3642 Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3643 return Enum;
3644 }
3645
getIntegerTypeRange() const3646 SourceRange EnumDecl::getIntegerTypeRange() const {
3647 if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3648 return TI->getTypeLoc().getSourceRange();
3649 return SourceRange();
3650 }
3651
completeDefinition(QualType NewType,QualType NewPromotionType,unsigned NumPositiveBits,unsigned NumNegativeBits)3652 void EnumDecl::completeDefinition(QualType NewType,
3653 QualType NewPromotionType,
3654 unsigned NumPositiveBits,
3655 unsigned NumNegativeBits) {
3656 assert(!isCompleteDefinition() && "Cannot redefine enums!");
3657 if (!IntegerType)
3658 IntegerType = NewType.getTypePtr();
3659 PromotionType = NewPromotionType;
3660 setNumPositiveBits(NumPositiveBits);
3661 setNumNegativeBits(NumNegativeBits);
3662 TagDecl::completeDefinition();
3663 }
3664
getTemplateSpecializationKind() const3665 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3666 if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3667 return MSI->getTemplateSpecializationKind();
3668
3669 return TSK_Undeclared;
3670 }
3671
setTemplateSpecializationKind(TemplateSpecializationKind TSK,SourceLocation PointOfInstantiation)3672 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3673 SourceLocation PointOfInstantiation) {
3674 MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3675 assert(MSI && "Not an instantiated member enumeration?");
3676 MSI->setTemplateSpecializationKind(TSK);
3677 if (TSK != TSK_ExplicitSpecialization &&
3678 PointOfInstantiation.isValid() &&
3679 MSI->getPointOfInstantiation().isInvalid())
3680 MSI->setPointOfInstantiation(PointOfInstantiation);
3681 }
3682
getTemplateInstantiationPattern() const3683 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
3684 if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
3685 if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
3686 EnumDecl *ED = getInstantiatedFromMemberEnum();
3687 while (auto *NewED = ED->getInstantiatedFromMemberEnum())
3688 ED = NewED;
3689 return ED;
3690 }
3691 }
3692
3693 assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
3694 "couldn't find pattern for enum instantiation");
3695 return nullptr;
3696 }
3697
getInstantiatedFromMemberEnum() const3698 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3699 if (SpecializationInfo)
3700 return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3701
3702 return nullptr;
3703 }
3704
setInstantiationOfMemberEnum(ASTContext & C,EnumDecl * ED,TemplateSpecializationKind TSK)3705 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3706 TemplateSpecializationKind TSK) {
3707 assert(!SpecializationInfo && "Member enum is already a specialization");
3708 SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3709 }
3710
3711 //===----------------------------------------------------------------------===//
3712 // RecordDecl Implementation
3713 //===----------------------------------------------------------------------===//
3714
RecordDecl(Kind DK,TagKind TK,const ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3715 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3716 DeclContext *DC, SourceLocation StartLoc,
3717 SourceLocation IdLoc, IdentifierInfo *Id,
3718 RecordDecl *PrevDecl)
3719 : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3720 HasFlexibleArrayMember = false;
3721 AnonymousStructOrUnion = false;
3722 HasObjectMember = false;
3723 HasVolatileMember = false;
3724 LoadedFieldsFromExternalStorage = false;
3725 assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3726 }
3727
Create(const ASTContext & C,TagKind TK,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,RecordDecl * PrevDecl)3728 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3729 SourceLocation StartLoc, SourceLocation IdLoc,
3730 IdentifierInfo *Id, RecordDecl* PrevDecl) {
3731 RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3732 StartLoc, IdLoc, Id, PrevDecl);
3733 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3734
3735 C.getTypeDeclType(R, PrevDecl);
3736 return R;
3737 }
3738
CreateDeserialized(const ASTContext & C,unsigned ID)3739 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3740 RecordDecl *R =
3741 new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3742 SourceLocation(), nullptr, nullptr);
3743 R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3744 return R;
3745 }
3746
isInjectedClassName() const3747 bool RecordDecl::isInjectedClassName() const {
3748 return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3749 cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3750 }
3751
isLambda() const3752 bool RecordDecl::isLambda() const {
3753 if (auto RD = dyn_cast<CXXRecordDecl>(this))
3754 return RD->isLambda();
3755 return false;
3756 }
3757
isCapturedRecord() const3758 bool RecordDecl::isCapturedRecord() const {
3759 return hasAttr<CapturedRecordAttr>();
3760 }
3761
setCapturedRecord()3762 void RecordDecl::setCapturedRecord() {
3763 addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3764 }
3765
field_begin() const3766 RecordDecl::field_iterator RecordDecl::field_begin() const {
3767 if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3768 LoadFieldsFromExternalStorage();
3769
3770 return field_iterator(decl_iterator(FirstDecl));
3771 }
3772
3773 /// completeDefinition - Notes that the definition of this type is now
3774 /// complete.
completeDefinition()3775 void RecordDecl::completeDefinition() {
3776 assert(!isCompleteDefinition() && "Cannot redefine record!");
3777 TagDecl::completeDefinition();
3778 }
3779
3780 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3781 /// This which can be turned on with an attribute, pragma, or the
3782 /// -mms-bitfields command-line option.
isMsStruct(const ASTContext & C) const3783 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3784 return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3785 }
3786
LoadFieldsFromExternalStorage() const3787 void RecordDecl::LoadFieldsFromExternalStorage() const {
3788 ExternalASTSource *Source = getASTContext().getExternalSource();
3789 assert(hasExternalLexicalStorage() && Source && "No external storage?");
3790
3791 // Notify that we have a RecordDecl doing some initialization.
3792 ExternalASTSource::Deserializing TheFields(Source);
3793
3794 SmallVector<Decl*, 64> Decls;
3795 LoadedFieldsFromExternalStorage = true;
3796 Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3797 return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3798 }, Decls);
3799
3800 #ifndef NDEBUG
3801 // Check that all decls we got were FieldDecls.
3802 for (unsigned i=0, e=Decls.size(); i != e; ++i)
3803 assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3804 #endif
3805
3806 if (Decls.empty())
3807 return;
3808
3809 std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3810 /*FieldsAlreadyLoaded=*/false);
3811 }
3812
mayInsertExtraPadding(bool EmitRemark) const3813 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3814 ASTContext &Context = getASTContext();
3815 if (!Context.getLangOpts().Sanitize.hasOneOf(
3816 SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3817 !Context.getLangOpts().SanitizeAddressFieldPadding)
3818 return false;
3819 const auto &Blacklist = Context.getSanitizerBlacklist();
3820 const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
3821 // We may be able to relax some of these requirements.
3822 int ReasonToReject = -1;
3823 if (!CXXRD || CXXRD->isExternCContext())
3824 ReasonToReject = 0; // is not C++.
3825 else if (CXXRD->hasAttr<PackedAttr>())
3826 ReasonToReject = 1; // is packed.
3827 else if (CXXRD->isUnion())
3828 ReasonToReject = 2; // is a union.
3829 else if (CXXRD->isTriviallyCopyable())
3830 ReasonToReject = 3; // is trivially copyable.
3831 else if (CXXRD->hasTrivialDestructor())
3832 ReasonToReject = 4; // has trivial destructor.
3833 else if (CXXRD->isStandardLayout())
3834 ReasonToReject = 5; // is standard layout.
3835 else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3836 ReasonToReject = 6; // is in a blacklisted file.
3837 else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3838 "field-padding"))
3839 ReasonToReject = 7; // is blacklisted.
3840
3841 if (EmitRemark) {
3842 if (ReasonToReject >= 0)
3843 Context.getDiagnostics().Report(
3844 getLocation(),
3845 diag::remark_sanitize_address_insert_extra_padding_rejected)
3846 << getQualifiedNameAsString() << ReasonToReject;
3847 else
3848 Context.getDiagnostics().Report(
3849 getLocation(),
3850 diag::remark_sanitize_address_insert_extra_padding_accepted)
3851 << getQualifiedNameAsString();
3852 }
3853 return ReasonToReject < 0;
3854 }
3855
findFirstNamedDataMember() const3856 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3857 for (const auto *I : fields()) {
3858 if (I->getIdentifier())
3859 return I;
3860
3861 if (const auto *RT = I->getType()->getAs<RecordType>())
3862 if (const FieldDecl *NamedDataMember =
3863 RT->getDecl()->findFirstNamedDataMember())
3864 return NamedDataMember;
3865 }
3866
3867 // We didn't find a named data member.
3868 return nullptr;
3869 }
3870
3871
3872 //===----------------------------------------------------------------------===//
3873 // BlockDecl Implementation
3874 //===----------------------------------------------------------------------===//
3875
setParams(ArrayRef<ParmVarDecl * > NewParamInfo)3876 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3877 assert(!ParamInfo && "Already has param info!");
3878
3879 // Zero params -> null pointer.
3880 if (!NewParamInfo.empty()) {
3881 NumParams = NewParamInfo.size();
3882 ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3883 std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3884 }
3885 }
3886
setCaptures(ASTContext & Context,ArrayRef<Capture> Captures,bool CapturesCXXThis)3887 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3888 bool CapturesCXXThis) {
3889 this->CapturesCXXThis = CapturesCXXThis;
3890 this->NumCaptures = Captures.size();
3891
3892 if (Captures.empty()) {
3893 this->Captures = nullptr;
3894 return;
3895 }
3896
3897 this->Captures = Captures.copy(Context).data();
3898 }
3899
capturesVariable(const VarDecl * variable) const3900 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3901 for (const auto &I : captures())
3902 // Only auto vars can be captured, so no redeclaration worries.
3903 if (I.getVariable() == variable)
3904 return true;
3905
3906 return false;
3907 }
3908
getSourceRange() const3909 SourceRange BlockDecl::getSourceRange() const {
3910 return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3911 }
3912
3913 //===----------------------------------------------------------------------===//
3914 // Other Decl Allocation/Deallocation Method Implementations
3915 //===----------------------------------------------------------------------===//
3916
anchor()3917 void TranslationUnitDecl::anchor() { }
3918
Create(ASTContext & C)3919 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3920 return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3921 }
3922
anchor()3923 void PragmaCommentDecl::anchor() { }
3924
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation CommentLoc,PragmaMSCommentKind CommentKind,StringRef Arg)3925 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
3926 TranslationUnitDecl *DC,
3927 SourceLocation CommentLoc,
3928 PragmaMSCommentKind CommentKind,
3929 StringRef Arg) {
3930 PragmaCommentDecl *PCD =
3931 new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
3932 PragmaCommentDecl(DC, CommentLoc, CommentKind);
3933 memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
3934 PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
3935 return PCD;
3936 }
3937
CreateDeserialized(ASTContext & C,unsigned ID,unsigned ArgSize)3938 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
3939 unsigned ID,
3940 unsigned ArgSize) {
3941 return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
3942 PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
3943 }
3944
anchor()3945 void PragmaDetectMismatchDecl::anchor() { }
3946
3947 PragmaDetectMismatchDecl *
Create(const ASTContext & C,TranslationUnitDecl * DC,SourceLocation Loc,StringRef Name,StringRef Value)3948 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
3949 SourceLocation Loc, StringRef Name,
3950 StringRef Value) {
3951 size_t ValueStart = Name.size() + 1;
3952 PragmaDetectMismatchDecl *PDMD =
3953 new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
3954 PragmaDetectMismatchDecl(DC, Loc, ValueStart);
3955 memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
3956 PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
3957 memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
3958 Value.size());
3959 PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
3960 return PDMD;
3961 }
3962
3963 PragmaDetectMismatchDecl *
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NameValueSize)3964 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3965 unsigned NameValueSize) {
3966 return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
3967 PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
3968 }
3969
anchor()3970 void ExternCContextDecl::anchor() { }
3971
Create(const ASTContext & C,TranslationUnitDecl * DC)3972 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3973 TranslationUnitDecl *DC) {
3974 return new (C, DC) ExternCContextDecl(DC);
3975 }
3976
anchor()3977 void LabelDecl::anchor() { }
3978
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II)3979 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3980 SourceLocation IdentL, IdentifierInfo *II) {
3981 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3982 }
3983
Create(ASTContext & C,DeclContext * DC,SourceLocation IdentL,IdentifierInfo * II,SourceLocation GnuLabelL)3984 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3985 SourceLocation IdentL, IdentifierInfo *II,
3986 SourceLocation GnuLabelL) {
3987 assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3988 return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3989 }
3990
CreateDeserialized(ASTContext & C,unsigned ID)3991 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3992 return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3993 SourceLocation());
3994 }
3995
setMSAsmLabel(StringRef Name)3996 void LabelDecl::setMSAsmLabel(StringRef Name) {
3997 char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3998 memcpy(Buffer, Name.data(), Name.size());
3999 Buffer[Name.size()] = '\0';
4000 MSAsmName = Buffer;
4001 }
4002
anchor()4003 void ValueDecl::anchor() { }
4004
isWeak() const4005 bool ValueDecl::isWeak() const {
4006 for (const auto *I : attrs())
4007 if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4008 return true;
4009
4010 return isWeakImported();
4011 }
4012
anchor()4013 void ImplicitParamDecl::anchor() { }
4014
Create(ASTContext & C,DeclContext * DC,SourceLocation IdLoc,IdentifierInfo * Id,QualType Type)4015 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4016 SourceLocation IdLoc,
4017 IdentifierInfo *Id,
4018 QualType Type) {
4019 return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
4020 }
4021
CreateDeserialized(ASTContext & C,unsigned ID)4022 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4023 unsigned ID) {
4024 return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
4025 QualType());
4026 }
4027
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,const DeclarationNameInfo & NameInfo,QualType T,TypeSourceInfo * TInfo,StorageClass SC,bool isInlineSpecified,bool hasWrittenPrototype,bool isConstexprSpecified)4028 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4029 SourceLocation StartLoc,
4030 const DeclarationNameInfo &NameInfo,
4031 QualType T, TypeSourceInfo *TInfo,
4032 StorageClass SC,
4033 bool isInlineSpecified,
4034 bool hasWrittenPrototype,
4035 bool isConstexprSpecified) {
4036 FunctionDecl *New =
4037 new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4038 SC, isInlineSpecified, isConstexprSpecified);
4039 New->HasWrittenPrototype = hasWrittenPrototype;
4040 return New;
4041 }
4042
CreateDeserialized(ASTContext & C,unsigned ID)4043 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4044 return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4045 DeclarationNameInfo(), QualType(), nullptr,
4046 SC_None, false, false);
4047 }
4048
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4049 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4050 return new (C, DC) BlockDecl(DC, L);
4051 }
4052
CreateDeserialized(ASTContext & C,unsigned ID)4053 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4054 return new (C, ID) BlockDecl(nullptr, SourceLocation());
4055 }
4056
CapturedDecl(DeclContext * DC,unsigned NumParams)4057 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4058 : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4059 NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4060
Create(ASTContext & C,DeclContext * DC,unsigned NumParams)4061 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4062 unsigned NumParams) {
4063 return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4064 CapturedDecl(DC, NumParams);
4065 }
4066
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumParams)4067 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4068 unsigned NumParams) {
4069 return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4070 CapturedDecl(nullptr, NumParams);
4071 }
4072
getBody() const4073 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
setBody(Stmt * B)4074 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4075
isNothrow() const4076 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
setNothrow(bool Nothrow)4077 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4078
Create(ASTContext & C,EnumDecl * CD,SourceLocation L,IdentifierInfo * Id,QualType T,Expr * E,const llvm::APSInt & V)4079 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4080 SourceLocation L,
4081 IdentifierInfo *Id, QualType T,
4082 Expr *E, const llvm::APSInt &V) {
4083 return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4084 }
4085
4086 EnumConstantDecl *
CreateDeserialized(ASTContext & C,unsigned ID)4087 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4088 return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4089 QualType(), nullptr, llvm::APSInt());
4090 }
4091
anchor()4092 void IndirectFieldDecl::anchor() { }
4093
IndirectFieldDecl(ASTContext & C,DeclContext * DC,SourceLocation L,DeclarationName N,QualType T,MutableArrayRef<NamedDecl * > CH)4094 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4095 SourceLocation L, DeclarationName N,
4096 QualType T,
4097 MutableArrayRef<NamedDecl *> CH)
4098 : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4099 ChainingSize(CH.size()) {
4100 // In C++, indirect field declarations conflict with tag declarations in the
4101 // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4102 if (C.getLangOpts().CPlusPlus)
4103 IdentifierNamespace |= IDNS_Tag;
4104 }
4105
4106 IndirectFieldDecl *
Create(ASTContext & C,DeclContext * DC,SourceLocation L,IdentifierInfo * Id,QualType T,llvm::MutableArrayRef<NamedDecl * > CH)4107 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4108 IdentifierInfo *Id, QualType T,
4109 llvm::MutableArrayRef<NamedDecl *> CH) {
4110 return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4111 }
4112
CreateDeserialized(ASTContext & C,unsigned ID)4113 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4114 unsigned ID) {
4115 return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4116 DeclarationName(), QualType(), None);
4117 }
4118
getSourceRange() const4119 SourceRange EnumConstantDecl::getSourceRange() const {
4120 SourceLocation End = getLocation();
4121 if (Init)
4122 End = Init->getLocEnd();
4123 return SourceRange(getLocation(), End);
4124 }
4125
anchor()4126 void TypeDecl::anchor() { }
4127
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4128 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4129 SourceLocation StartLoc, SourceLocation IdLoc,
4130 IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4131 return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4132 }
4133
anchor()4134 void TypedefNameDecl::anchor() { }
4135
getAnonDeclWithTypedefName(bool AnyRedecl) const4136 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4137 if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4138 auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4139 auto *ThisTypedef = this;
4140 if (AnyRedecl && OwningTypedef) {
4141 OwningTypedef = OwningTypedef->getCanonicalDecl();
4142 ThisTypedef = ThisTypedef->getCanonicalDecl();
4143 }
4144 if (OwningTypedef == ThisTypedef)
4145 return TT->getDecl();
4146 }
4147
4148 return nullptr;
4149 }
4150
CreateDeserialized(ASTContext & C,unsigned ID)4151 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4152 return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4153 nullptr, nullptr);
4154 }
4155
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,SourceLocation IdLoc,IdentifierInfo * Id,TypeSourceInfo * TInfo)4156 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4157 SourceLocation StartLoc,
4158 SourceLocation IdLoc, IdentifierInfo *Id,
4159 TypeSourceInfo *TInfo) {
4160 return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4161 }
4162
CreateDeserialized(ASTContext & C,unsigned ID)4163 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4164 return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4165 SourceLocation(), nullptr, nullptr);
4166 }
4167
getSourceRange() const4168 SourceRange TypedefDecl::getSourceRange() const {
4169 SourceLocation RangeEnd = getLocation();
4170 if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4171 if (typeIsPostfix(TInfo->getType()))
4172 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4173 }
4174 return SourceRange(getLocStart(), RangeEnd);
4175 }
4176
getSourceRange() const4177 SourceRange TypeAliasDecl::getSourceRange() const {
4178 SourceLocation RangeEnd = getLocStart();
4179 if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4180 RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4181 return SourceRange(getLocStart(), RangeEnd);
4182 }
4183
anchor()4184 void FileScopeAsmDecl::anchor() { }
4185
Create(ASTContext & C,DeclContext * DC,StringLiteral * Str,SourceLocation AsmLoc,SourceLocation RParenLoc)4186 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4187 StringLiteral *Str,
4188 SourceLocation AsmLoc,
4189 SourceLocation RParenLoc) {
4190 return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4191 }
4192
CreateDeserialized(ASTContext & C,unsigned ID)4193 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4194 unsigned ID) {
4195 return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4196 SourceLocation());
4197 }
4198
anchor()4199 void EmptyDecl::anchor() {}
4200
Create(ASTContext & C,DeclContext * DC,SourceLocation L)4201 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4202 return new (C, DC) EmptyDecl(DC, L);
4203 }
4204
CreateDeserialized(ASTContext & C,unsigned ID)4205 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4206 return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4207 }
4208
4209 //===----------------------------------------------------------------------===//
4210 // ImportDecl Implementation
4211 //===----------------------------------------------------------------------===//
4212
4213 /// \brief Retrieve the number of module identifiers needed to name the given
4214 /// module.
getNumModuleIdentifiers(Module * Mod)4215 static unsigned getNumModuleIdentifiers(Module *Mod) {
4216 unsigned Result = 1;
4217 while (Mod->Parent) {
4218 Mod = Mod->Parent;
4219 ++Result;
4220 }
4221 return Result;
4222 }
4223
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4224 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4225 Module *Imported,
4226 ArrayRef<SourceLocation> IdentifierLocs)
4227 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4228 NextLocalImport()
4229 {
4230 assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4231 auto *StoredLocs = getTrailingObjects<SourceLocation>();
4232 std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4233 StoredLocs);
4234 }
4235
ImportDecl(DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4236 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc,
4237 Module *Imported, SourceLocation EndLoc)
4238 : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4239 NextLocalImport()
4240 {
4241 *getTrailingObjects<SourceLocation>() = EndLoc;
4242 }
4243
Create(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,ArrayRef<SourceLocation> IdentifierLocs)4244 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4245 SourceLocation StartLoc, Module *Imported,
4246 ArrayRef<SourceLocation> IdentifierLocs) {
4247 return new (C, DC,
4248 additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4249 ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4250 }
4251
CreateImplicit(ASTContext & C,DeclContext * DC,SourceLocation StartLoc,Module * Imported,SourceLocation EndLoc)4252 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4253 SourceLocation StartLoc,
4254 Module *Imported,
4255 SourceLocation EndLoc) {
4256 ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4257 ImportDecl(DC, StartLoc, Imported, EndLoc);
4258 Import->setImplicit();
4259 return Import;
4260 }
4261
CreateDeserialized(ASTContext & C,unsigned ID,unsigned NumLocations)4262 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4263 unsigned NumLocations) {
4264 return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4265 ImportDecl(EmptyShell());
4266 }
4267
getIdentifierLocs() const4268 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4269 if (!ImportedAndComplete.getInt())
4270 return None;
4271
4272 const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4273 return llvm::makeArrayRef(StoredLocs,
4274 getNumModuleIdentifiers(getImportedModule()));
4275 }
4276
getSourceRange() const4277 SourceRange ImportDecl::getSourceRange() const {
4278 if (!ImportedAndComplete.getInt())
4279 return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4280
4281 return SourceRange(getLocation(), getIdentifierLocs().back());
4282 }
4283