1 /*-------------------------------------------------------------------------
2 * drawElements Quality Program Tester Core
3 * ----------------------------------------
4 *
5 * Copyright 2016 The Android Open Source Project
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License");
8 * you may not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS,
15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 *
19 *//*!
20 * \file
21 * \brief ASTC Utilities.
22 *//*--------------------------------------------------------------------*/
23
24 #include "tcuAstcUtil.hpp"
25 #include "deFloat16.h"
26 #include "deRandom.hpp"
27 #include "deMeta.hpp"
28
29 #include <algorithm>
30
31 namespace tcu
32 {
33 namespace astc
34 {
35
36 using std::vector;
37
38 namespace
39 {
40
41 // Common utilities
42
43 enum
44 {
45 MAX_BLOCK_WIDTH = 12,
46 MAX_BLOCK_HEIGHT = 12
47 };
48
getBit(deUint32 src,int ndx)49 inline deUint32 getBit (deUint32 src, int ndx)
50 {
51 DE_ASSERT(de::inBounds(ndx, 0, 32));
52 return (src >> ndx) & 1;
53 }
54
getBits(deUint32 src,int low,int high)55 inline deUint32 getBits (deUint32 src, int low, int high)
56 {
57 const int numBits = (high-low) + 1;
58
59 DE_ASSERT(de::inRange(numBits, 1, 32));
60
61 if (numBits < 32)
62 return (deUint32)((src >> low) & ((1u<<numBits)-1));
63 else
64 return (deUint32)((src >> low) & 0xFFFFFFFFu);
65 }
66
isBitSet(deUint32 src,int ndx)67 inline bool isBitSet (deUint32 src, int ndx)
68 {
69 return getBit(src, ndx) != 0;
70 }
71
reverseBits(deUint32 src,int numBits)72 inline deUint32 reverseBits (deUint32 src, int numBits)
73 {
74 DE_ASSERT(de::inRange(numBits, 0, 32));
75 deUint32 result = 0;
76 for (int i = 0; i < numBits; i++)
77 result |= ((src >> i) & 1) << (numBits-1-i);
78 return result;
79 }
80
bitReplicationScale(deUint32 src,int numSrcBits,int numDstBits)81 inline deUint32 bitReplicationScale (deUint32 src, int numSrcBits, int numDstBits)
82 {
83 DE_ASSERT(numSrcBits <= numDstBits);
84 DE_ASSERT((src & ((1<<numSrcBits)-1)) == src);
85 deUint32 dst = 0;
86 for (int shift = numDstBits-numSrcBits; shift > -numSrcBits; shift -= numSrcBits)
87 dst |= shift >= 0 ? src << shift : src >> -shift;
88 return dst;
89 }
90
signExtend(deInt32 src,int numSrcBits)91 inline deInt32 signExtend (deInt32 src, int numSrcBits)
92 {
93 DE_ASSERT(de::inRange(numSrcBits, 2, 31));
94 const bool negative = (src & (1 << (numSrcBits-1))) != 0;
95 return src | (negative ? ~((1 << numSrcBits) - 1) : 0);
96 }
97
isFloat16InfOrNan(deFloat16 v)98 inline bool isFloat16InfOrNan (deFloat16 v)
99 {
100 return getBits(v, 10, 14) == 31;
101 }
102
103 enum ISEMode
104 {
105 ISEMODE_TRIT = 0,
106 ISEMODE_QUINT,
107 ISEMODE_PLAIN_BIT,
108
109 ISEMODE_LAST
110 };
111
112 struct ISEParams
113 {
114 ISEMode mode;
115 int numBits;
116
ISEParamstcu::astc::__anon8b756cce0111::ISEParams117 ISEParams (ISEMode mode_, int numBits_) : mode(mode_), numBits(numBits_) {}
118 };
119
computeNumRequiredBits(const ISEParams & iseParams,int numValues)120 inline int computeNumRequiredBits (const ISEParams& iseParams, int numValues)
121 {
122 switch (iseParams.mode)
123 {
124 case ISEMODE_TRIT: return deDivRoundUp32(numValues*8, 5) + numValues*iseParams.numBits;
125 case ISEMODE_QUINT: return deDivRoundUp32(numValues*7, 3) + numValues*iseParams.numBits;
126 case ISEMODE_PLAIN_BIT: return numValues*iseParams.numBits;
127 default:
128 DE_ASSERT(false);
129 return -1;
130 }
131 }
132
computeMaximumRangeISEParams(int numAvailableBits,int numValuesInSequence)133 ISEParams computeMaximumRangeISEParams (int numAvailableBits, int numValuesInSequence)
134 {
135 int curBitsForTritMode = 6;
136 int curBitsForQuintMode = 5;
137 int curBitsForPlainBitMode = 8;
138
139 while (true)
140 {
141 DE_ASSERT(curBitsForTritMode > 0 || curBitsForQuintMode > 0 || curBitsForPlainBitMode > 0);
142
143 const int tritRange = curBitsForTritMode > 0 ? (3 << curBitsForTritMode) - 1 : -1;
144 const int quintRange = curBitsForQuintMode > 0 ? (5 << curBitsForQuintMode) - 1 : -1;
145 const int plainBitRange = curBitsForPlainBitMode > 0 ? (1 << curBitsForPlainBitMode) - 1 : -1;
146 const int maxRange = de::max(de::max(tritRange, quintRange), plainBitRange);
147
148 if (maxRange == tritRange)
149 {
150 const ISEParams params(ISEMODE_TRIT, curBitsForTritMode);
151 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
152 return ISEParams(ISEMODE_TRIT, curBitsForTritMode);
153 curBitsForTritMode--;
154 }
155 else if (maxRange == quintRange)
156 {
157 const ISEParams params(ISEMODE_QUINT, curBitsForQuintMode);
158 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
159 return ISEParams(ISEMODE_QUINT, curBitsForQuintMode);
160 curBitsForQuintMode--;
161 }
162 else
163 {
164 const ISEParams params(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
165 DE_ASSERT(maxRange == plainBitRange);
166 if (computeNumRequiredBits(params, numValuesInSequence) <= numAvailableBits)
167 return ISEParams(ISEMODE_PLAIN_BIT, curBitsForPlainBitMode);
168 curBitsForPlainBitMode--;
169 }
170 }
171 }
172
computeNumColorEndpointValues(deUint32 endpointMode)173 inline int computeNumColorEndpointValues (deUint32 endpointMode)
174 {
175 DE_ASSERT(endpointMode < 16);
176 return (endpointMode/4 + 1) * 2;
177 }
178
179 // Decompression utilities
180
181 enum DecompressResult
182 {
183 DECOMPRESS_RESULT_VALID_BLOCK = 0, //!< Decompressed valid block
184 DECOMPRESS_RESULT_ERROR, //!< Encountered error while decompressing, error color written
185
186 DECOMPRESS_RESULT_LAST
187 };
188
189 // A helper for getting bits from a 128-bit block.
190 class Block128
191 {
192 private:
193 typedef deUint64 Word;
194
195 enum
196 {
197 WORD_BYTES = sizeof(Word),
198 WORD_BITS = 8*WORD_BYTES,
199 NUM_WORDS = 128 / WORD_BITS
200 };
201
202 DE_STATIC_ASSERT(128 % WORD_BITS == 0);
203
204 public:
Block128(const deUint8 * src)205 Block128 (const deUint8* src)
206 {
207 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
208 {
209 m_words[wordNdx] = 0;
210 for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
211 m_words[wordNdx] |= (Word)src[wordNdx*WORD_BYTES + byteNdx] << (8*byteNdx);
212 }
213 }
214
getBit(int ndx) const215 deUint32 getBit (int ndx) const
216 {
217 DE_ASSERT(de::inBounds(ndx, 0, 128));
218 return (m_words[ndx / WORD_BITS] >> (ndx % WORD_BITS)) & 1;
219 }
220
getBits(int low,int high) const221 deUint32 getBits (int low, int high) const
222 {
223 DE_ASSERT(de::inBounds(low, 0, 128));
224 DE_ASSERT(de::inBounds(high, 0, 128));
225 DE_ASSERT(de::inRange(high-low+1, 0, 32));
226
227 if (high-low+1 == 0)
228 return 0;
229
230 const int word0Ndx = low / WORD_BITS;
231 const int word1Ndx = high / WORD_BITS;
232
233 // \note "foo << bar << 1" done instead of "foo << (bar+1)" to avoid overflow, i.e. shift amount being too big.
234
235 if (word0Ndx == word1Ndx)
236 return (deUint32)((m_words[word0Ndx] & ((((Word)1 << high%WORD_BITS << 1) - 1))) >> ((Word)low % WORD_BITS));
237 else
238 {
239 DE_ASSERT(word1Ndx == word0Ndx + 1);
240
241 return (deUint32)(m_words[word0Ndx] >> (low%WORD_BITS)) |
242 (deUint32)((m_words[word1Ndx] & (((Word)1 << high%WORD_BITS << 1) - 1)) << (high-low - high%WORD_BITS));
243 }
244 }
245
isBitSet(int ndx) const246 bool isBitSet (int ndx) const
247 {
248 DE_ASSERT(de::inBounds(ndx, 0, 128));
249 return getBit(ndx) != 0;
250 }
251
252 private:
253 Word m_words[NUM_WORDS];
254 };
255
256 // A helper for sequential access into a Block128.
257 class BitAccessStream
258 {
259 public:
BitAccessStream(const Block128 & src,int startNdxInSrc,int length,bool forward)260 BitAccessStream (const Block128& src, int startNdxInSrc, int length, bool forward)
261 : m_src (src)
262 , m_startNdxInSrc (startNdxInSrc)
263 , m_length (length)
264 , m_forward (forward)
265 , m_ndx (0)
266 {
267 }
268
269 // Get the next num bits. Bits at positions greater than or equal to m_length are zeros.
getNext(int num)270 deUint32 getNext (int num)
271 {
272 if (num == 0 || m_ndx >= m_length)
273 return 0;
274
275 const int end = m_ndx + num;
276 const int numBitsFromSrc = de::max(0, de::min(m_length, end) - m_ndx);
277 const int low = m_ndx;
278 const int high = m_ndx + numBitsFromSrc - 1;
279
280 m_ndx += num;
281
282 return m_forward ? m_src.getBits(m_startNdxInSrc + low, m_startNdxInSrc + high)
283 : reverseBits(m_src.getBits(m_startNdxInSrc - high, m_startNdxInSrc - low), numBitsFromSrc);
284 }
285
286 private:
287 const Block128& m_src;
288 const int m_startNdxInSrc;
289 const int m_length;
290 const bool m_forward;
291
292 int m_ndx;
293 };
294
295 struct ISEDecodedResult
296 {
297 deUint32 m;
298 deUint32 tq; //!< Trit or quint value, depending on ISE mode.
299 deUint32 v;
300 };
301
302 // Data from an ASTC block's "block mode" part (i.e. bits [0,10]).
303 struct ASTCBlockMode
304 {
305 bool isError;
306 // \note Following fields only relevant if !isError.
307 bool isVoidExtent;
308 // \note Following fields only relevant if !isVoidExtent.
309 bool isDualPlane;
310 int weightGridWidth;
311 int weightGridHeight;
312 ISEParams weightISEParams;
313
ASTCBlockModetcu::astc::__anon8b756cce0111::ASTCBlockMode314 ASTCBlockMode (void)
315 : isError (true)
316 , isVoidExtent (true)
317 , isDualPlane (true)
318 , weightGridWidth (-1)
319 , weightGridHeight (-1)
320 , weightISEParams (ISEMODE_LAST, -1)
321 {
322 }
323 };
324
computeNumWeights(const ASTCBlockMode & mode)325 inline int computeNumWeights (const ASTCBlockMode& mode)
326 {
327 return mode.weightGridWidth * mode.weightGridHeight * (mode.isDualPlane ? 2 : 1);
328 }
329
330 struct ColorEndpointPair
331 {
332 UVec4 e0;
333 UVec4 e1;
334 };
335
336 struct TexelWeightPair
337 {
338 deUint32 w[2];
339 };
340
getASTCBlockMode(deUint32 blockModeData)341 ASTCBlockMode getASTCBlockMode (deUint32 blockModeData)
342 {
343 ASTCBlockMode blockMode;
344 blockMode.isError = true; // \note Set to false later, if not error.
345
346 blockMode.isVoidExtent = getBits(blockModeData, 0, 8) == 0x1fc;
347
348 if (!blockMode.isVoidExtent)
349 {
350 if ((getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 6, 8) == 7) || getBits(blockModeData, 0, 3) == 0)
351 return blockMode; // Invalid ("reserved").
352
353 deUint32 r = (deUint32)-1; // \note Set in the following branches.
354
355 if (getBits(blockModeData, 0, 1) == 0)
356 {
357 const deUint32 r0 = getBit(blockModeData, 4);
358 const deUint32 r1 = getBit(blockModeData, 2);
359 const deUint32 r2 = getBit(blockModeData, 3);
360 const deUint32 i78 = getBits(blockModeData, 7, 8);
361
362 r = (r2 << 2) | (r1 << 1) | (r0 << 0);
363
364 if (i78 == 3)
365 {
366 const bool i5 = isBitSet(blockModeData, 5);
367 blockMode.weightGridWidth = i5 ? 10 : 6;
368 blockMode.weightGridHeight = i5 ? 6 : 10;
369 }
370 else
371 {
372 const deUint32 a = getBits(blockModeData, 5, 6);
373 switch (i78)
374 {
375 case 0: blockMode.weightGridWidth = 12; blockMode.weightGridHeight = a + 2; break;
376 case 1: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = 12; break;
377 case 2: blockMode.weightGridWidth = a + 6; blockMode.weightGridHeight = getBits(blockModeData, 9, 10) + 6; break;
378 default: DE_ASSERT(false);
379 }
380 }
381 }
382 else
383 {
384 const deUint32 r0 = getBit(blockModeData, 4);
385 const deUint32 r1 = getBit(blockModeData, 0);
386 const deUint32 r2 = getBit(blockModeData, 1);
387 const deUint32 i23 = getBits(blockModeData, 2, 3);
388 const deUint32 a = getBits(blockModeData, 5, 6);
389
390 r = (r2 << 2) | (r1 << 1) | (r0 << 0);
391
392 if (i23 == 3)
393 {
394 const deUint32 b = getBit(blockModeData, 7);
395 const bool i8 = isBitSet(blockModeData, 8);
396 blockMode.weightGridWidth = i8 ? b+2 : a+2;
397 blockMode.weightGridHeight = i8 ? a+2 : b+6;
398 }
399 else
400 {
401 const deUint32 b = getBits(blockModeData, 7, 8);
402
403 switch (i23)
404 {
405 case 0: blockMode.weightGridWidth = b + 4; blockMode.weightGridHeight = a + 2; break;
406 case 1: blockMode.weightGridWidth = b + 8; blockMode.weightGridHeight = a + 2; break;
407 case 2: blockMode.weightGridWidth = a + 2; blockMode.weightGridHeight = b + 8; break;
408 default: DE_ASSERT(false);
409 }
410 }
411 }
412
413 const bool zeroDH = getBits(blockModeData, 0, 1) == 0 && getBits(blockModeData, 7, 8) == 2;
414 const bool h = zeroDH ? 0 : isBitSet(blockModeData, 9);
415 blockMode.isDualPlane = zeroDH ? 0 : isBitSet(blockModeData, 10);
416
417 {
418 ISEMode& m = blockMode.weightISEParams.mode;
419 int& b = blockMode.weightISEParams.numBits;
420 m = ISEMODE_PLAIN_BIT;
421 b = 0;
422
423 if (h)
424 {
425 switch (r)
426 {
427 case 2: m = ISEMODE_QUINT; b = 1; break;
428 case 3: m = ISEMODE_TRIT; b = 2; break;
429 case 4: b = 4; break;
430 case 5: m = ISEMODE_QUINT; b = 2; break;
431 case 6: m = ISEMODE_TRIT; b = 3; break;
432 case 7: b = 5; break;
433 default: DE_ASSERT(false);
434 }
435 }
436 else
437 {
438 switch (r)
439 {
440 case 2: b = 1; break;
441 case 3: m = ISEMODE_TRIT; break;
442 case 4: b = 2; break;
443 case 5: m = ISEMODE_QUINT; break;
444 case 6: m = ISEMODE_TRIT; b = 1; break;
445 case 7: b = 3; break;
446 default: DE_ASSERT(false);
447 }
448 }
449 }
450 }
451
452 blockMode.isError = false;
453 return blockMode;
454 }
455
setASTCErrorColorBlock(void * dst,int blockWidth,int blockHeight,bool isSRGB)456 inline void setASTCErrorColorBlock (void* dst, int blockWidth, int blockHeight, bool isSRGB)
457 {
458 if (isSRGB)
459 {
460 deUint8* const dstU = (deUint8*)dst;
461
462 for (int i = 0; i < blockWidth*blockHeight; i++)
463 {
464 dstU[4*i + 0] = 0xff;
465 dstU[4*i + 1] = 0;
466 dstU[4*i + 2] = 0xff;
467 dstU[4*i + 3] = 0xff;
468 }
469 }
470 else
471 {
472 float* const dstF = (float*)dst;
473
474 for (int i = 0; i < blockWidth*blockHeight; i++)
475 {
476 dstF[4*i + 0] = 1.0f;
477 dstF[4*i + 1] = 0.0f;
478 dstF[4*i + 2] = 1.0f;
479 dstF[4*i + 3] = 1.0f;
480 }
481 }
482 }
483
decodeVoidExtentBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode)484 DecompressResult decodeVoidExtentBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode)
485 {
486 const deUint32 minSExtent = blockData.getBits(12, 24);
487 const deUint32 maxSExtent = blockData.getBits(25, 37);
488 const deUint32 minTExtent = blockData.getBits(38, 50);
489 const deUint32 maxTExtent = blockData.getBits(51, 63);
490 const bool allExtentsAllOnes = minSExtent == 0x1fff && maxSExtent == 0x1fff && minTExtent == 0x1fff && maxTExtent == 0x1fff;
491 const bool isHDRBlock = blockData.isBitSet(9);
492
493 if ((isLDRMode && isHDRBlock) || (!allExtentsAllOnes && (minSExtent >= maxSExtent || minTExtent >= maxTExtent)))
494 {
495 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
496 return DECOMPRESS_RESULT_ERROR;
497 }
498
499 const deUint32 rgba[4] =
500 {
501 blockData.getBits(64, 79),
502 blockData.getBits(80, 95),
503 blockData.getBits(96, 111),
504 blockData.getBits(112, 127)
505 };
506
507 if (isSRGB)
508 {
509 deUint8* const dstU = (deUint8*)dst;
510 for (int i = 0; i < blockWidth*blockHeight; i++)
511 for (int c = 0; c < 4; c++)
512 dstU[i*4 + c] = (deUint8)((rgba[c] & 0xff00) >> 8);
513 }
514 else
515 {
516 float* const dstF = (float*)dst;
517
518 if (isHDRBlock)
519 {
520 for (int c = 0; c < 4; c++)
521 {
522 if (isFloat16InfOrNan((deFloat16)rgba[c]))
523 throw InternalError("Infinity or NaN color component in HDR void extent block in ASTC texture (behavior undefined by ASTC specification)");
524 }
525
526 for (int i = 0; i < blockWidth*blockHeight; i++)
527 for (int c = 0; c < 4; c++)
528 dstF[i*4 + c] = deFloat16To32((deFloat16)rgba[c]);
529 }
530 else
531 {
532 for (int i = 0; i < blockWidth*blockHeight; i++)
533 for (int c = 0; c < 4; c++)
534 dstF[i*4 + c] = rgba[c] == 65535 ? 1.0f : (float)rgba[c] / 65536.0f;
535 }
536 }
537
538 return DECOMPRESS_RESULT_VALID_BLOCK;
539 }
540
decodeColorEndpointModes(deUint32 * endpointModesDst,const Block128 & blockData,int numPartitions,int extraCemBitsStart)541 void decodeColorEndpointModes (deUint32* endpointModesDst, const Block128& blockData, int numPartitions, int extraCemBitsStart)
542 {
543 if (numPartitions == 1)
544 endpointModesDst[0] = blockData.getBits(13, 16);
545 else
546 {
547 const deUint32 highLevelSelector = blockData.getBits(23, 24);
548
549 if (highLevelSelector == 0)
550 {
551 const deUint32 mode = blockData.getBits(25, 28);
552 for (int i = 0; i < numPartitions; i++)
553 endpointModesDst[i] = mode;
554 }
555 else
556 {
557 for (int partNdx = 0; partNdx < numPartitions; partNdx++)
558 {
559 const deUint32 cemClass = highLevelSelector - (blockData.isBitSet(25 + partNdx) ? 0 : 1);
560 const deUint32 lowBit0Ndx = numPartitions + 2*partNdx;
561 const deUint32 lowBit1Ndx = numPartitions + 2*partNdx + 1;
562 const deUint32 lowBit0 = blockData.getBit(lowBit0Ndx < 4 ? 25+lowBit0Ndx : extraCemBitsStart+lowBit0Ndx-4);
563 const deUint32 lowBit1 = blockData.getBit(lowBit1Ndx < 4 ? 25+lowBit1Ndx : extraCemBitsStart+lowBit1Ndx-4);
564
565 endpointModesDst[partNdx] = (cemClass << 2) | (lowBit1 << 1) | lowBit0;
566 }
567 }
568 }
569 }
570
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions)571 int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions)
572 {
573 int result = 0;
574 for (int i = 0; i < numPartitions; i++)
575 result += computeNumColorEndpointValues(endpointModes[i]);
576 return result;
577 }
578
decodeISETritBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)579 void decodeISETritBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
580 {
581 DE_ASSERT(de::inRange(numValues, 1, 5));
582
583 deUint32 m[5];
584
585 m[0] = data.getNext(numBits);
586 deUint32 T01 = data.getNext(2);
587 m[1] = data.getNext(numBits);
588 deUint32 T23 = data.getNext(2);
589 m[2] = data.getNext(numBits);
590 deUint32 T4 = data.getNext(1);
591 m[3] = data.getNext(numBits);
592 deUint32 T56 = data.getNext(2);
593 m[4] = data.getNext(numBits);
594 deUint32 T7 = data.getNext(1);
595
596 switch (numValues)
597 {
598 case 1:
599 T23 = 0;
600 // Fallthrough
601 case 2:
602 T4 = 0;
603 // Fallthrough
604 case 3:
605 T56 = 0;
606 // Fallthrough
607 case 4:
608 T7 = 0;
609 // Fallthrough
610 case 5:
611 break;
612 default:
613 DE_ASSERT(false);
614 }
615
616 const deUint32 T = (T7 << 7) | (T56 << 5) | (T4 << 4) | (T23 << 2) | (T01 << 0);
617
618 static const deUint32 tritsFromT[256][5] =
619 {
620 { 0,0,0,0,0 }, { 1,0,0,0,0 }, { 2,0,0,0,0 }, { 0,0,2,0,0 }, { 0,1,0,0,0 }, { 1,1,0,0,0 }, { 2,1,0,0,0 }, { 1,0,2,0,0 }, { 0,2,0,0,0 }, { 1,2,0,0,0 }, { 2,2,0,0,0 }, { 2,0,2,0,0 }, { 0,2,2,0,0 }, { 1,2,2,0,0 }, { 2,2,2,0,0 }, { 2,0,2,0,0 },
621 { 0,0,1,0,0 }, { 1,0,1,0,0 }, { 2,0,1,0,0 }, { 0,1,2,0,0 }, { 0,1,1,0,0 }, { 1,1,1,0,0 }, { 2,1,1,0,0 }, { 1,1,2,0,0 }, { 0,2,1,0,0 }, { 1,2,1,0,0 }, { 2,2,1,0,0 }, { 2,1,2,0,0 }, { 0,0,0,2,2 }, { 1,0,0,2,2 }, { 2,0,0,2,2 }, { 0,0,2,2,2 },
622 { 0,0,0,1,0 }, { 1,0,0,1,0 }, { 2,0,0,1,0 }, { 0,0,2,1,0 }, { 0,1,0,1,0 }, { 1,1,0,1,0 }, { 2,1,0,1,0 }, { 1,0,2,1,0 }, { 0,2,0,1,0 }, { 1,2,0,1,0 }, { 2,2,0,1,0 }, { 2,0,2,1,0 }, { 0,2,2,1,0 }, { 1,2,2,1,0 }, { 2,2,2,1,0 }, { 2,0,2,1,0 },
623 { 0,0,1,1,0 }, { 1,0,1,1,0 }, { 2,0,1,1,0 }, { 0,1,2,1,0 }, { 0,1,1,1,0 }, { 1,1,1,1,0 }, { 2,1,1,1,0 }, { 1,1,2,1,0 }, { 0,2,1,1,0 }, { 1,2,1,1,0 }, { 2,2,1,1,0 }, { 2,1,2,1,0 }, { 0,1,0,2,2 }, { 1,1,0,2,2 }, { 2,1,0,2,2 }, { 1,0,2,2,2 },
624 { 0,0,0,2,0 }, { 1,0,0,2,0 }, { 2,0,0,2,0 }, { 0,0,2,2,0 }, { 0,1,0,2,0 }, { 1,1,0,2,0 }, { 2,1,0,2,0 }, { 1,0,2,2,0 }, { 0,2,0,2,0 }, { 1,2,0,2,0 }, { 2,2,0,2,0 }, { 2,0,2,2,0 }, { 0,2,2,2,0 }, { 1,2,2,2,0 }, { 2,2,2,2,0 }, { 2,0,2,2,0 },
625 { 0,0,1,2,0 }, { 1,0,1,2,0 }, { 2,0,1,2,0 }, { 0,1,2,2,0 }, { 0,1,1,2,0 }, { 1,1,1,2,0 }, { 2,1,1,2,0 }, { 1,1,2,2,0 }, { 0,2,1,2,0 }, { 1,2,1,2,0 }, { 2,2,1,2,0 }, { 2,1,2,2,0 }, { 0,2,0,2,2 }, { 1,2,0,2,2 }, { 2,2,0,2,2 }, { 2,0,2,2,2 },
626 { 0,0,0,0,2 }, { 1,0,0,0,2 }, { 2,0,0,0,2 }, { 0,0,2,0,2 }, { 0,1,0,0,2 }, { 1,1,0,0,2 }, { 2,1,0,0,2 }, { 1,0,2,0,2 }, { 0,2,0,0,2 }, { 1,2,0,0,2 }, { 2,2,0,0,2 }, { 2,0,2,0,2 }, { 0,2,2,0,2 }, { 1,2,2,0,2 }, { 2,2,2,0,2 }, { 2,0,2,0,2 },
627 { 0,0,1,0,2 }, { 1,0,1,0,2 }, { 2,0,1,0,2 }, { 0,1,2,0,2 }, { 0,1,1,0,2 }, { 1,1,1,0,2 }, { 2,1,1,0,2 }, { 1,1,2,0,2 }, { 0,2,1,0,2 }, { 1,2,1,0,2 }, { 2,2,1,0,2 }, { 2,1,2,0,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,0,2,2,2 },
628 { 0,0,0,0,1 }, { 1,0,0,0,1 }, { 2,0,0,0,1 }, { 0,0,2,0,1 }, { 0,1,0,0,1 }, { 1,1,0,0,1 }, { 2,1,0,0,1 }, { 1,0,2,0,1 }, { 0,2,0,0,1 }, { 1,2,0,0,1 }, { 2,2,0,0,1 }, { 2,0,2,0,1 }, { 0,2,2,0,1 }, { 1,2,2,0,1 }, { 2,2,2,0,1 }, { 2,0,2,0,1 },
629 { 0,0,1,0,1 }, { 1,0,1,0,1 }, { 2,0,1,0,1 }, { 0,1,2,0,1 }, { 0,1,1,0,1 }, { 1,1,1,0,1 }, { 2,1,1,0,1 }, { 1,1,2,0,1 }, { 0,2,1,0,1 }, { 1,2,1,0,1 }, { 2,2,1,0,1 }, { 2,1,2,0,1 }, { 0,0,1,2,2 }, { 1,0,1,2,2 }, { 2,0,1,2,2 }, { 0,1,2,2,2 },
630 { 0,0,0,1,1 }, { 1,0,0,1,1 }, { 2,0,0,1,1 }, { 0,0,2,1,1 }, { 0,1,0,1,1 }, { 1,1,0,1,1 }, { 2,1,0,1,1 }, { 1,0,2,1,1 }, { 0,2,0,1,1 }, { 1,2,0,1,1 }, { 2,2,0,1,1 }, { 2,0,2,1,1 }, { 0,2,2,1,1 }, { 1,2,2,1,1 }, { 2,2,2,1,1 }, { 2,0,2,1,1 },
631 { 0,0,1,1,1 }, { 1,0,1,1,1 }, { 2,0,1,1,1 }, { 0,1,2,1,1 }, { 0,1,1,1,1 }, { 1,1,1,1,1 }, { 2,1,1,1,1 }, { 1,1,2,1,1 }, { 0,2,1,1,1 }, { 1,2,1,1,1 }, { 2,2,1,1,1 }, { 2,1,2,1,1 }, { 0,1,1,2,2 }, { 1,1,1,2,2 }, { 2,1,1,2,2 }, { 1,1,2,2,2 },
632 { 0,0,0,2,1 }, { 1,0,0,2,1 }, { 2,0,0,2,1 }, { 0,0,2,2,1 }, { 0,1,0,2,1 }, { 1,1,0,2,1 }, { 2,1,0,2,1 }, { 1,0,2,2,1 }, { 0,2,0,2,1 }, { 1,2,0,2,1 }, { 2,2,0,2,1 }, { 2,0,2,2,1 }, { 0,2,2,2,1 }, { 1,2,2,2,1 }, { 2,2,2,2,1 }, { 2,0,2,2,1 },
633 { 0,0,1,2,1 }, { 1,0,1,2,1 }, { 2,0,1,2,1 }, { 0,1,2,2,1 }, { 0,1,1,2,1 }, { 1,1,1,2,1 }, { 2,1,1,2,1 }, { 1,1,2,2,1 }, { 0,2,1,2,1 }, { 1,2,1,2,1 }, { 2,2,1,2,1 }, { 2,1,2,2,1 }, { 0,2,1,2,2 }, { 1,2,1,2,2 }, { 2,2,1,2,2 }, { 2,1,2,2,2 },
634 { 0,0,0,1,2 }, { 1,0,0,1,2 }, { 2,0,0,1,2 }, { 0,0,2,1,2 }, { 0,1,0,1,2 }, { 1,1,0,1,2 }, { 2,1,0,1,2 }, { 1,0,2,1,2 }, { 0,2,0,1,2 }, { 1,2,0,1,2 }, { 2,2,0,1,2 }, { 2,0,2,1,2 }, { 0,2,2,1,2 }, { 1,2,2,1,2 }, { 2,2,2,1,2 }, { 2,0,2,1,2 },
635 { 0,0,1,1,2 }, { 1,0,1,1,2 }, { 2,0,1,1,2 }, { 0,1,2,1,2 }, { 0,1,1,1,2 }, { 1,1,1,1,2 }, { 2,1,1,1,2 }, { 1,1,2,1,2 }, { 0,2,1,1,2 }, { 1,2,1,1,2 }, { 2,2,1,1,2 }, { 2,1,2,1,2 }, { 0,2,2,2,2 }, { 1,2,2,2,2 }, { 2,2,2,2,2 }, { 2,1,2,2,2 }
636 };
637
638 const deUint32 (& trits)[5] = tritsFromT[T];
639
640 for (int i = 0; i < numValues; i++)
641 {
642 dst[i].m = m[i];
643 dst[i].tq = trits[i];
644 dst[i].v = (trits[i] << numBits) + m[i];
645 }
646 }
647
decodeISEQuintBlock(ISEDecodedResult * dst,int numValues,BitAccessStream & data,int numBits)648 void decodeISEQuintBlock (ISEDecodedResult* dst, int numValues, BitAccessStream& data, int numBits)
649 {
650 DE_ASSERT(de::inRange(numValues, 1, 3));
651
652 deUint32 m[3];
653
654 m[0] = data.getNext(numBits);
655 deUint32 Q012 = data.getNext(3);
656 m[1] = data.getNext(numBits);
657 deUint32 Q34 = data.getNext(2);
658 m[2] = data.getNext(numBits);
659 deUint32 Q56 = data.getNext(2);
660
661 switch (numValues)
662 {
663 case 1:
664 Q34 = 0;
665 // Fallthrough
666 case 2:
667 Q56 = 0;
668 // Fallthrough
669 case 3:
670 break;
671 default:
672 DE_ASSERT(false);
673 }
674
675 const deUint32 Q = (Q56 << 5) | (Q34 << 3) | (Q012 << 0);
676
677 static const deUint32 quintsFromQ[256][3] =
678 {
679 { 0,0,0 }, { 1,0,0 }, { 2,0,0 }, { 3,0,0 }, { 4,0,0 }, { 0,4,0 }, { 4,4,0 }, { 4,4,4 }, { 0,1,0 }, { 1,1,0 }, { 2,1,0 }, { 3,1,0 }, { 4,1,0 }, { 1,4,0 }, { 4,4,1 }, { 4,4,4 },
680 { 0,2,0 }, { 1,2,0 }, { 2,2,0 }, { 3,2,0 }, { 4,2,0 }, { 2,4,0 }, { 4,4,2 }, { 4,4,4 }, { 0,3,0 }, { 1,3,0 }, { 2,3,0 }, { 3,3,0 }, { 4,3,0 }, { 3,4,0 }, { 4,4,3 }, { 4,4,4 },
681 { 0,0,1 }, { 1,0,1 }, { 2,0,1 }, { 3,0,1 }, { 4,0,1 }, { 0,4,1 }, { 4,0,4 }, { 0,4,4 }, { 0,1,1 }, { 1,1,1 }, { 2,1,1 }, { 3,1,1 }, { 4,1,1 }, { 1,4,1 }, { 4,1,4 }, { 1,4,4 },
682 { 0,2,1 }, { 1,2,1 }, { 2,2,1 }, { 3,2,1 }, { 4,2,1 }, { 2,4,1 }, { 4,2,4 }, { 2,4,4 }, { 0,3,1 }, { 1,3,1 }, { 2,3,1 }, { 3,3,1 }, { 4,3,1 }, { 3,4,1 }, { 4,3,4 }, { 3,4,4 },
683 { 0,0,2 }, { 1,0,2 }, { 2,0,2 }, { 3,0,2 }, { 4,0,2 }, { 0,4,2 }, { 2,0,4 }, { 3,0,4 }, { 0,1,2 }, { 1,1,2 }, { 2,1,2 }, { 3,1,2 }, { 4,1,2 }, { 1,4,2 }, { 2,1,4 }, { 3,1,4 },
684 { 0,2,2 }, { 1,2,2 }, { 2,2,2 }, { 3,2,2 }, { 4,2,2 }, { 2,4,2 }, { 2,2,4 }, { 3,2,4 }, { 0,3,2 }, { 1,3,2 }, { 2,3,2 }, { 3,3,2 }, { 4,3,2 }, { 3,4,2 }, { 2,3,4 }, { 3,3,4 },
685 { 0,0,3 }, { 1,0,3 }, { 2,0,3 }, { 3,0,3 }, { 4,0,3 }, { 0,4,3 }, { 0,0,4 }, { 1,0,4 }, { 0,1,3 }, { 1,1,3 }, { 2,1,3 }, { 3,1,3 }, { 4,1,3 }, { 1,4,3 }, { 0,1,4 }, { 1,1,4 },
686 { 0,2,3 }, { 1,2,3 }, { 2,2,3 }, { 3,2,3 }, { 4,2,3 }, { 2,4,3 }, { 0,2,4 }, { 1,2,4 }, { 0,3,3 }, { 1,3,3 }, { 2,3,3 }, { 3,3,3 }, { 4,3,3 }, { 3,4,3 }, { 0,3,4 }, { 1,3,4 }
687 };
688
689 const deUint32 (& quints)[3] = quintsFromQ[Q];
690
691 for (int i = 0; i < numValues; i++)
692 {
693 dst[i].m = m[i];
694 dst[i].tq = quints[i];
695 dst[i].v = (quints[i] << numBits) + m[i];
696 }
697 }
698
decodeISEBitBlock(ISEDecodedResult * dst,BitAccessStream & data,int numBits)699 inline void decodeISEBitBlock (ISEDecodedResult* dst, BitAccessStream& data, int numBits)
700 {
701 dst[0].m = data.getNext(numBits);
702 dst[0].v = dst[0].m;
703 }
704
decodeISE(ISEDecodedResult * dst,int numValues,BitAccessStream & data,const ISEParams & params)705 void decodeISE (ISEDecodedResult* dst, int numValues, BitAccessStream& data, const ISEParams& params)
706 {
707 if (params.mode == ISEMODE_TRIT)
708 {
709 const int numBlocks = deDivRoundUp32(numValues, 5);
710 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
711 {
712 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
713 decodeISETritBlock(&dst[5*blockNdx], numValuesInBlock, data, params.numBits);
714 }
715 }
716 else if (params.mode == ISEMODE_QUINT)
717 {
718 const int numBlocks = deDivRoundUp32(numValues, 3);
719 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
720 {
721 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
722 decodeISEQuintBlock(&dst[3*blockNdx], numValuesInBlock, data, params.numBits);
723 }
724 }
725 else
726 {
727 DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
728 for (int i = 0; i < numValues; i++)
729 decodeISEBitBlock(&dst[i], data, params.numBits);
730 }
731 }
732
unquantizeColorEndpoints(deUint32 * dst,const ISEDecodedResult * iseResults,int numEndpoints,const ISEParams & iseParams)733 void unquantizeColorEndpoints (deUint32* dst, const ISEDecodedResult* iseResults, int numEndpoints, const ISEParams& iseParams)
734 {
735 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
736 {
737 const int rangeCase = iseParams.numBits*2 - (iseParams.mode == ISEMODE_TRIT ? 2 : 1);
738 DE_ASSERT(de::inRange(rangeCase, 0, 10));
739 static const deUint32 Ca[11] = { 204, 113, 93, 54, 44, 26, 22, 13, 11, 6, 5 };
740 const deUint32 C = Ca[rangeCase];
741
742 for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
743 {
744 const deUint32 a = getBit(iseResults[endpointNdx].m, 0);
745 const deUint32 b = getBit(iseResults[endpointNdx].m, 1);
746 const deUint32 c = getBit(iseResults[endpointNdx].m, 2);
747 const deUint32 d = getBit(iseResults[endpointNdx].m, 3);
748 const deUint32 e = getBit(iseResults[endpointNdx].m, 4);
749 const deUint32 f = getBit(iseResults[endpointNdx].m, 5);
750
751 const deUint32 A = a == 0 ? 0 : (1<<9)-1;
752 const deUint32 B = rangeCase == 0 ? 0
753 : rangeCase == 1 ? 0
754 : rangeCase == 2 ? (b << 8) | (b << 4) | (b << 2) | (b << 1)
755 : rangeCase == 3 ? (b << 8) | (b << 3) | (b << 2)
756 : rangeCase == 4 ? (c << 8) | (b << 7) | (c << 3) | (b << 2) | (c << 1) | (b << 0)
757 : rangeCase == 5 ? (c << 8) | (b << 7) | (c << 2) | (b << 1) | (c << 0)
758 : rangeCase == 6 ? (d << 8) | (c << 7) | (b << 6) | (d << 2) | (c << 1) | (b << 0)
759 : rangeCase == 7 ? (d << 8) | (c << 7) | (b << 6) | (d << 1) | (c << 0)
760 : rangeCase == 8 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 1) | (d << 0)
761 : rangeCase == 9 ? (e << 8) | (d << 7) | (c << 6) | (b << 5) | (e << 0)
762 : rangeCase == 10 ? (f << 8) | (e << 7) | (d << 6) | (c << 5) | (b << 4) | (f << 0)
763 : (deUint32)-1;
764 DE_ASSERT(B != (deUint32)-1);
765
766 dst[endpointNdx] = (((iseResults[endpointNdx].tq*C + B) ^ A) >> 2) | (A & 0x80);
767 }
768 }
769 else
770 {
771 DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
772
773 for (int endpointNdx = 0; endpointNdx < numEndpoints; endpointNdx++)
774 dst[endpointNdx] = bitReplicationScale(iseResults[endpointNdx].v, iseParams.numBits, 8);
775 }
776 }
777
bitTransferSigned(deInt32 & a,deInt32 & b)778 inline void bitTransferSigned (deInt32& a, deInt32& b)
779 {
780 b >>= 1;
781 b |= a & 0x80;
782 a >>= 1;
783 a &= 0x3f;
784 if (isBitSet(a, 5))
785 a -= 0x40;
786 }
787
clampedRGBA(const IVec4 & rgba)788 inline UVec4 clampedRGBA (const IVec4& rgba)
789 {
790 return UVec4(de::clamp(rgba.x(), 0, 0xff),
791 de::clamp(rgba.y(), 0, 0xff),
792 de::clamp(rgba.z(), 0, 0xff),
793 de::clamp(rgba.w(), 0, 0xff));
794 }
795
blueContract(int r,int g,int b,int a)796 inline IVec4 blueContract (int r, int g, int b, int a)
797 {
798 return IVec4((r+b)>>1, (g+b)>>1, b, a);
799 }
800
isColorEndpointModeHDR(deUint32 mode)801 inline bool isColorEndpointModeHDR (deUint32 mode)
802 {
803 return mode == 2 ||
804 mode == 3 ||
805 mode == 7 ||
806 mode == 11 ||
807 mode == 14 ||
808 mode == 15;
809 }
810
decodeHDREndpointMode7(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3)811 void decodeHDREndpointMode7 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3)
812 {
813 const deUint32 m10 = getBit(v1, 7) | (getBit(v2, 7) << 1);
814 const deUint32 m23 = getBits(v0, 6, 7);
815 const deUint32 majComp = m10 != 3 ? m10
816 : m23 != 3 ? m23
817 : 0;
818 const deUint32 mode = m10 != 3 ? m23
819 : m23 != 3 ? 4
820 : 5;
821
822 deInt32 red = (deInt32)getBits(v0, 0, 5);
823 deInt32 green = (deInt32)getBits(v1, 0, 4);
824 deInt32 blue = (deInt32)getBits(v2, 0, 4);
825 deInt32 scale = (deInt32)getBits(v3, 0, 4);
826
827 {
828 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
829 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5, V6,S6) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); SHOR(V6,S6,x6); } while (false)
830
831 const deUint32 x0 = getBit(v1, 6);
832 const deUint32 x1 = getBit(v1, 5);
833 const deUint32 x2 = getBit(v2, 6);
834 const deUint32 x3 = getBit(v2, 5);
835 const deUint32 x4 = getBit(v3, 7);
836 const deUint32 x5 = getBit(v3, 6);
837 const deUint32 x6 = getBit(v3, 5);
838
839 deInt32& R = red;
840 deInt32& G = green;
841 deInt32& B = blue;
842 deInt32& S = scale;
843
844 switch (mode)
845 {
846 case 0: ASSIGN_X_BITS(R,9, R,8, R,7, R,10, R,6, S,6, S,5); break;
847 case 1: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, R,10, R,9); break;
848 case 2: ASSIGN_X_BITS(R,9, R,8, R,7, R,6, S,7, S,6, S,5); break;
849 case 3: ASSIGN_X_BITS(R,8, G,5, R,7, B,5, R,6, S,6, S,5); break;
850 case 4: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, R,7, S,5); break;
851 case 5: ASSIGN_X_BITS(G,6, G,5, B,6, B,5, R,6, S,6, S,5); break;
852 default:
853 DE_ASSERT(false);
854 }
855
856 #undef ASSIGN_X_BITS
857 #undef SHOR
858 }
859
860 static const int shiftAmounts[] = { 1, 1, 2, 3, 4, 5 };
861 DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(shiftAmounts));
862
863 red <<= shiftAmounts[mode];
864 green <<= shiftAmounts[mode];
865 blue <<= shiftAmounts[mode];
866 scale <<= shiftAmounts[mode];
867
868 if (mode != 5)
869 {
870 green = red - green;
871 blue = red - blue;
872 }
873
874 if (majComp == 1)
875 std::swap(red, green);
876 else if (majComp == 2)
877 std::swap(red, blue);
878
879 e0 = UVec4(de::clamp(red - scale, 0, 0xfff),
880 de::clamp(green - scale, 0, 0xfff),
881 de::clamp(blue - scale, 0, 0xfff),
882 0x780);
883
884 e1 = UVec4(de::clamp(red, 0, 0xfff),
885 de::clamp(green, 0, 0xfff),
886 de::clamp(blue, 0, 0xfff),
887 0x780);
888 }
889
decodeHDREndpointMode11(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5)890 void decodeHDREndpointMode11 (UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5)
891 {
892 const deUint32 major = (getBit(v5, 7) << 1) | getBit(v4, 7);
893
894 if (major == 3)
895 {
896 e0 = UVec4(v0<<4, v2<<4, getBits(v4,0,6)<<5, 0x780);
897 e1 = UVec4(v1<<4, v3<<4, getBits(v5,0,6)<<5, 0x780);
898 }
899 else
900 {
901 const deUint32 mode = (getBit(v3, 7) << 2) | (getBit(v2, 7) << 1) | getBit(v1, 7);
902
903 deInt32 a = (deInt32)((getBit(v1, 6) << 8) | v0);
904 deInt32 c = (deInt32)(getBits(v1, 0, 5));
905 deInt32 b0 = (deInt32)(getBits(v2, 0, 5));
906 deInt32 b1 = (deInt32)(getBits(v3, 0, 5));
907 deInt32 d0 = (deInt32)(getBits(v4, 0, 4));
908 deInt32 d1 = (deInt32)(getBits(v5, 0, 4));
909
910 {
911 #define SHOR(DST_VAR, SHIFT, BIT_VAR) (DST_VAR) |= (BIT_VAR) << (SHIFT)
912 #define ASSIGN_X_BITS(V0,S0, V1,S1, V2,S2, V3,S3, V4,S4, V5,S5) do { SHOR(V0,S0,x0); SHOR(V1,S1,x1); SHOR(V2,S2,x2); SHOR(V3,S3,x3); SHOR(V4,S4,x4); SHOR(V5,S5,x5); } while (false)
913
914 const deUint32 x0 = getBit(v2, 6);
915 const deUint32 x1 = getBit(v3, 6);
916 const deUint32 x2 = getBit(v4, 6);
917 const deUint32 x3 = getBit(v5, 6);
918 const deUint32 x4 = getBit(v4, 5);
919 const deUint32 x5 = getBit(v5, 5);
920
921 switch (mode)
922 {
923 case 0: ASSIGN_X_BITS(b0,6, b1,6, d0,6, d1,6, d0,5, d1,5); break;
924 case 1: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, d0,5, d1,5); break;
925 case 2: ASSIGN_X_BITS(a,9, c,6, d0,6, d1,6, d0,5, d1,5); break;
926 case 3: ASSIGN_X_BITS(b0,6, b1,6, a,9, c,6, d0,5, d1,5); break;
927 case 4: ASSIGN_X_BITS(b0,6, b1,6, b0,7, b1,7, a,9, a,10); break;
928 case 5: ASSIGN_X_BITS(a,9, a,10, c,7, c,6, d0,5, d1,5); break;
929 case 6: ASSIGN_X_BITS(b0,6, b1,6, a,11, c,6, a,9, a,10); break;
930 case 7: ASSIGN_X_BITS(a,9, a,10, a,11, c,6, d0,5, d1,5); break;
931 default:
932 DE_ASSERT(false);
933 }
934
935 #undef ASSIGN_X_BITS
936 #undef SHOR
937 }
938
939 static const int numDBits[] = { 7, 6, 7, 6, 5, 6, 5, 6 };
940 DE_ASSERT(mode < DE_LENGTH_OF_ARRAY(numDBits));
941
942 d0 = signExtend(d0, numDBits[mode]);
943 d1 = signExtend(d1, numDBits[mode]);
944
945 const int shiftAmount = (mode >> 1) ^ 3;
946 a <<= shiftAmount;
947 c <<= shiftAmount;
948 b0 <<= shiftAmount;
949 b1 <<= shiftAmount;
950 d0 <<= shiftAmount;
951 d1 <<= shiftAmount;
952
953 e0 = UVec4(de::clamp(a-c, 0, 0xfff),
954 de::clamp(a-b0-c-d0, 0, 0xfff),
955 de::clamp(a-b1-c-d1, 0, 0xfff),
956 0x780);
957
958 e1 = UVec4(de::clamp(a, 0, 0xfff),
959 de::clamp(a-b0, 0, 0xfff),
960 de::clamp(a-b1, 0, 0xfff),
961 0x780);
962
963 if (major == 1)
964 {
965 std::swap(e0.x(), e0.y());
966 std::swap(e1.x(), e1.y());
967 }
968 else if (major == 2)
969 {
970 std::swap(e0.x(), e0.z());
971 std::swap(e1.x(), e1.z());
972 }
973 }
974 }
975
decodeHDREndpointMode15(UVec4 & e0,UVec4 & e1,deUint32 v0,deUint32 v1,deUint32 v2,deUint32 v3,deUint32 v4,deUint32 v5,deUint32 v6In,deUint32 v7In)976 void decodeHDREndpointMode15(UVec4& e0, UVec4& e1, deUint32 v0, deUint32 v1, deUint32 v2, deUint32 v3, deUint32 v4, deUint32 v5, deUint32 v6In, deUint32 v7In)
977 {
978 decodeHDREndpointMode11(e0, e1, v0, v1, v2, v3, v4, v5);
979
980 const deUint32 mode = (getBit(v7In, 7) << 1) | getBit(v6In, 7);
981 deInt32 v6 = (deInt32)getBits(v6In, 0, 6);
982 deInt32 v7 = (deInt32)getBits(v7In, 0, 6);
983
984 if (mode == 3)
985 {
986 e0.w() = v6 << 5;
987 e1.w() = v7 << 5;
988 }
989 else
990 {
991 v6 |= (v7 << (mode+1)) & 0x780;
992 v7 &= (0x3f >> mode);
993 v7 ^= 0x20 >> mode;
994 v7 -= 0x20 >> mode;
995 v6 <<= 4-mode;
996 v7 <<= 4-mode;
997
998 v7 += v6;
999 v7 = de::clamp(v7, 0, 0xfff);
1000 e0.w() = v6;
1001 e1.w() = v7;
1002 }
1003 }
1004
decodeColorEndpoints(ColorEndpointPair * dst,const deUint32 * unquantizedEndpoints,const deUint32 * endpointModes,int numPartitions)1005 void decodeColorEndpoints (ColorEndpointPair* dst, const deUint32* unquantizedEndpoints, const deUint32* endpointModes, int numPartitions)
1006 {
1007 int unquantizedNdx = 0;
1008
1009 for (int partitionNdx = 0; partitionNdx < numPartitions; partitionNdx++)
1010 {
1011 const deUint32 endpointMode = endpointModes[partitionNdx];
1012 const deUint32* v = &unquantizedEndpoints[unquantizedNdx];
1013 UVec4& e0 = dst[partitionNdx].e0;
1014 UVec4& e1 = dst[partitionNdx].e1;
1015
1016 unquantizedNdx += computeNumColorEndpointValues(endpointMode);
1017
1018 switch (endpointMode)
1019 {
1020 case 0:
1021 e0 = UVec4(v[0], v[0], v[0], 0xff);
1022 e1 = UVec4(v[1], v[1], v[1], 0xff);
1023 break;
1024
1025 case 1:
1026 {
1027 const deUint32 L0 = (v[0] >> 2) | (getBits(v[1], 6, 7) << 6);
1028 const deUint32 L1 = de::min(0xffu, L0 + getBits(v[1], 0, 5));
1029 e0 = UVec4(L0, L0, L0, 0xff);
1030 e1 = UVec4(L1, L1, L1, 0xff);
1031 break;
1032 }
1033
1034 case 2:
1035 {
1036 const deUint32 v1Gr = v[1] >= v[0];
1037 const deUint32 y0 = v1Gr ? v[0]<<4 : (v[1]<<4) + 8;
1038 const deUint32 y1 = v1Gr ? v[1]<<4 : (v[0]<<4) - 8;
1039
1040 e0 = UVec4(y0, y0, y0, 0x780);
1041 e1 = UVec4(y1, y1, y1, 0x780);
1042 break;
1043 }
1044
1045 case 3:
1046 {
1047 const bool m = isBitSet(v[0], 7);
1048 const deUint32 y0 = m ? (getBits(v[1], 5, 7) << 9) | (getBits(v[0], 0, 6) << 2)
1049 : (getBits(v[1], 4, 7) << 8) | (getBits(v[0], 0, 6) << 1);
1050 const deUint32 d = m ? getBits(v[1], 0, 4) << 2
1051 : getBits(v[1], 0, 3) << 1;
1052 const deUint32 y1 = de::min(0xfffu, y0+d);
1053
1054 e0 = UVec4(y0, y0, y0, 0x780);
1055 e1 = UVec4(y1, y1, y1, 0x780);
1056 break;
1057 }
1058
1059 case 4:
1060 e0 = UVec4(v[0], v[0], v[0], v[2]);
1061 e1 = UVec4(v[1], v[1], v[1], v[3]);
1062 break;
1063
1064 case 5:
1065 {
1066 deInt32 v0 = (deInt32)v[0];
1067 deInt32 v1 = (deInt32)v[1];
1068 deInt32 v2 = (deInt32)v[2];
1069 deInt32 v3 = (deInt32)v[3];
1070 bitTransferSigned(v1, v0);
1071 bitTransferSigned(v3, v2);
1072
1073 e0 = clampedRGBA(IVec4(v0, v0, v0, v2));
1074 e1 = clampedRGBA(IVec4(v0+v1, v0+v1, v0+v1, v2+v3));
1075 break;
1076 }
1077
1078 case 6:
1079 e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, 0xff);
1080 e1 = UVec4(v[0], v[1], v[2], 0xff);
1081 break;
1082
1083 case 7:
1084 decodeHDREndpointMode7(e0, e1, v[0], v[1], v[2], v[3]);
1085 break;
1086
1087 case 8:
1088 if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1089 {
1090 e0 = UVec4(v[0], v[2], v[4], 0xff);
1091 e1 = UVec4(v[1], v[3], v[5], 0xff);
1092 }
1093 else
1094 {
1095 e0 = blueContract(v[1], v[3], v[5], 0xff).asUint();
1096 e1 = blueContract(v[0], v[2], v[4], 0xff).asUint();
1097 }
1098 break;
1099
1100 case 9:
1101 {
1102 deInt32 v0 = (deInt32)v[0];
1103 deInt32 v1 = (deInt32)v[1];
1104 deInt32 v2 = (deInt32)v[2];
1105 deInt32 v3 = (deInt32)v[3];
1106 deInt32 v4 = (deInt32)v[4];
1107 deInt32 v5 = (deInt32)v[5];
1108 bitTransferSigned(v1, v0);
1109 bitTransferSigned(v3, v2);
1110 bitTransferSigned(v5, v4);
1111
1112 if (v1+v3+v5 >= 0)
1113 {
1114 e0 = clampedRGBA(IVec4(v0, v2, v4, 0xff));
1115 e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, 0xff));
1116 }
1117 else
1118 {
1119 e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, 0xff));
1120 e1 = clampedRGBA(blueContract(v0, v2, v4, 0xff));
1121 }
1122 break;
1123 }
1124
1125 case 10:
1126 e0 = UVec4((v[0]*v[3]) >> 8, (v[1]*v[3]) >> 8, (v[2]*v[3]) >> 8, v[4]);
1127 e1 = UVec4(v[0], v[1], v[2], v[5]);
1128 break;
1129
1130 case 11:
1131 decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1132 break;
1133
1134 case 12:
1135 if (v[1]+v[3]+v[5] >= v[0]+v[2]+v[4])
1136 {
1137 e0 = UVec4(v[0], v[2], v[4], v[6]);
1138 e1 = UVec4(v[1], v[3], v[5], v[7]);
1139 }
1140 else
1141 {
1142 e0 = clampedRGBA(blueContract(v[1], v[3], v[5], v[7]));
1143 e1 = clampedRGBA(blueContract(v[0], v[2], v[4], v[6]));
1144 }
1145 break;
1146
1147 case 13:
1148 {
1149 deInt32 v0 = (deInt32)v[0];
1150 deInt32 v1 = (deInt32)v[1];
1151 deInt32 v2 = (deInt32)v[2];
1152 deInt32 v3 = (deInt32)v[3];
1153 deInt32 v4 = (deInt32)v[4];
1154 deInt32 v5 = (deInt32)v[5];
1155 deInt32 v6 = (deInt32)v[6];
1156 deInt32 v7 = (deInt32)v[7];
1157 bitTransferSigned(v1, v0);
1158 bitTransferSigned(v3, v2);
1159 bitTransferSigned(v5, v4);
1160 bitTransferSigned(v7, v6);
1161
1162 if (v1+v3+v5 >= 0)
1163 {
1164 e0 = clampedRGBA(IVec4(v0, v2, v4, v6));
1165 e1 = clampedRGBA(IVec4(v0+v1, v2+v3, v4+v5, v6+v7));
1166 }
1167 else
1168 {
1169 e0 = clampedRGBA(blueContract(v0+v1, v2+v3, v4+v5, v6+v7));
1170 e1 = clampedRGBA(blueContract(v0, v2, v4, v6));
1171 }
1172
1173 break;
1174 }
1175
1176 case 14:
1177 decodeHDREndpointMode11(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5]);
1178 e0.w() = v[6];
1179 e1.w() = v[7];
1180 break;
1181
1182 case 15:
1183 decodeHDREndpointMode15(e0, e1, v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);
1184 break;
1185
1186 default:
1187 DE_ASSERT(false);
1188 }
1189 }
1190 }
1191
computeColorEndpoints(ColorEndpointPair * dst,const Block128 & blockData,const deUint32 * endpointModes,int numPartitions,int numColorEndpointValues,const ISEParams & iseParams,int numBitsAvailable)1192 void computeColorEndpoints (ColorEndpointPair* dst, const Block128& blockData, const deUint32* endpointModes, int numPartitions, int numColorEndpointValues, const ISEParams& iseParams, int numBitsAvailable)
1193 {
1194 const int colorEndpointDataStart = numPartitions == 1 ? 17 : 29;
1195 ISEDecodedResult colorEndpointData[18];
1196
1197 {
1198 BitAccessStream dataStream(blockData, colorEndpointDataStart, numBitsAvailable, true);
1199 decodeISE(&colorEndpointData[0], numColorEndpointValues, dataStream, iseParams);
1200 }
1201
1202 {
1203 deUint32 unquantizedEndpoints[18];
1204 unquantizeColorEndpoints(&unquantizedEndpoints[0], &colorEndpointData[0], numColorEndpointValues, iseParams);
1205 decodeColorEndpoints(dst, &unquantizedEndpoints[0], &endpointModes[0], numPartitions);
1206 }
1207 }
1208
unquantizeWeights(deUint32 dst[64],const ISEDecodedResult * weightGrid,const ASTCBlockMode & blockMode)1209 void unquantizeWeights (deUint32 dst[64], const ISEDecodedResult* weightGrid, const ASTCBlockMode& blockMode)
1210 {
1211 const int numWeights = computeNumWeights(blockMode);
1212 const ISEParams& iseParams = blockMode.weightISEParams;
1213
1214 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
1215 {
1216 const int rangeCase = iseParams.numBits*2 + (iseParams.mode == ISEMODE_QUINT ? 1 : 0);
1217
1218 if (rangeCase == 0 || rangeCase == 1)
1219 {
1220 static const deUint32 map0[3] = { 0, 32, 63 };
1221 static const deUint32 map1[5] = { 0, 16, 32, 47, 63 };
1222 const deUint32* const map = rangeCase == 0 ? &map0[0] : &map1[0];
1223 for (int i = 0; i < numWeights; i++)
1224 {
1225 DE_ASSERT(weightGrid[i].v < (rangeCase == 0 ? 3u : 5u));
1226 dst[i] = map[weightGrid[i].v];
1227 }
1228 }
1229 else
1230 {
1231 DE_ASSERT(rangeCase <= 6);
1232 static const deUint32 Ca[5] = { 50, 28, 23, 13, 11 };
1233 const deUint32 C = Ca[rangeCase-2];
1234
1235 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1236 {
1237 const deUint32 a = getBit(weightGrid[weightNdx].m, 0);
1238 const deUint32 b = getBit(weightGrid[weightNdx].m, 1);
1239 const deUint32 c = getBit(weightGrid[weightNdx].m, 2);
1240
1241 const deUint32 A = a == 0 ? 0 : (1<<7)-1;
1242 const deUint32 B = rangeCase == 2 ? 0
1243 : rangeCase == 3 ? 0
1244 : rangeCase == 4 ? (b << 6) | (b << 2) | (b << 0)
1245 : rangeCase == 5 ? (b << 6) | (b << 1)
1246 : rangeCase == 6 ? (c << 6) | (b << 5) | (c << 1) | (b << 0)
1247 : (deUint32)-1;
1248
1249 dst[weightNdx] = (((weightGrid[weightNdx].tq*C + B) ^ A) >> 2) | (A & 0x20);
1250 }
1251 }
1252 }
1253 else
1254 {
1255 DE_ASSERT(iseParams.mode == ISEMODE_PLAIN_BIT);
1256
1257 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1258 dst[weightNdx] = bitReplicationScale(weightGrid[weightNdx].v, iseParams.numBits, 6);
1259 }
1260
1261 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
1262 dst[weightNdx] += dst[weightNdx] > 32 ? 1 : 0;
1263
1264 // Initialize nonexistent weights to poison values
1265 for (int weightNdx = numWeights; weightNdx < 64; weightNdx++)
1266 dst[weightNdx] = ~0u;
1267
1268 }
1269
interpolateWeights(TexelWeightPair * dst,const deUint32 (& unquantizedWeights)[64],int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1270 void interpolateWeights (TexelWeightPair* dst, const deUint32 (&unquantizedWeights) [64], int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1271 {
1272 const int numWeightsPerTexel = blockMode.isDualPlane ? 2 : 1;
1273 const deUint32 scaleX = (1024 + blockWidth/2) / (blockWidth-1);
1274 const deUint32 scaleY = (1024 + blockHeight/2) / (blockHeight-1);
1275
1276 DE_ASSERT(blockMode.weightGridWidth*blockMode.weightGridHeight*numWeightsPerTexel <= DE_LENGTH_OF_ARRAY(unquantizedWeights));
1277
1278 for (int texelY = 0; texelY < blockHeight; texelY++)
1279 {
1280 for (int texelX = 0; texelX < blockWidth; texelX++)
1281 {
1282 const deUint32 gX = (scaleX*texelX*(blockMode.weightGridWidth-1) + 32) >> 6;
1283 const deUint32 gY = (scaleY*texelY*(blockMode.weightGridHeight-1) + 32) >> 6;
1284 const deUint32 jX = gX >> 4;
1285 const deUint32 jY = gY >> 4;
1286 const deUint32 fX = gX & 0xf;
1287 const deUint32 fY = gY & 0xf;
1288
1289 const deUint32 w11 = (fX*fY + 8) >> 4;
1290 const deUint32 w10 = fY - w11;
1291 const deUint32 w01 = fX - w11;
1292 const deUint32 w00 = 16 - fX - fY + w11;
1293
1294 const deUint32 i00 = jY*blockMode.weightGridWidth + jX;
1295 const deUint32 i01 = i00 + 1;
1296 const deUint32 i10 = i00 + blockMode.weightGridWidth;
1297 const deUint32 i11 = i00 + blockMode.weightGridWidth + 1;
1298
1299 // These addresses can be out of bounds, but respective weights will be 0 then.
1300 DE_ASSERT(deInBounds32(i00, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w00 == 0);
1301 DE_ASSERT(deInBounds32(i01, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w01 == 0);
1302 DE_ASSERT(deInBounds32(i10, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w10 == 0);
1303 DE_ASSERT(deInBounds32(i11, 0, blockMode.weightGridWidth*blockMode.weightGridHeight) || w11 == 0);
1304
1305 for (int texelWeightNdx = 0; texelWeightNdx < numWeightsPerTexel; texelWeightNdx++)
1306 {
1307 // & 0x3f clamps address to bounds of unquantizedWeights
1308 const deUint32 p00 = unquantizedWeights[(i00 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1309 const deUint32 p01 = unquantizedWeights[(i01 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1310 const deUint32 p10 = unquantizedWeights[(i10 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1311 const deUint32 p11 = unquantizedWeights[(i11 * numWeightsPerTexel + texelWeightNdx) & 0x3f];
1312
1313 dst[texelY*blockWidth + texelX].w[texelWeightNdx] = (p00*w00 + p01*w01 + p10*w10 + p11*w11 + 8) >> 4;
1314 }
1315 }
1316 }
1317 }
1318
computeTexelWeights(TexelWeightPair * dst,const Block128 & blockData,int blockWidth,int blockHeight,const ASTCBlockMode & blockMode)1319 void computeTexelWeights (TexelWeightPair* dst, const Block128& blockData, int blockWidth, int blockHeight, const ASTCBlockMode& blockMode)
1320 {
1321 ISEDecodedResult weightGrid[64];
1322
1323 {
1324 BitAccessStream dataStream(blockData, 127, computeNumRequiredBits(blockMode.weightISEParams, computeNumWeights(blockMode)), false);
1325 decodeISE(&weightGrid[0], computeNumWeights(blockMode), dataStream, blockMode.weightISEParams);
1326 }
1327
1328 {
1329 deUint32 unquantizedWeights[64];
1330 unquantizeWeights(&unquantizedWeights[0], &weightGrid[0], blockMode);
1331 interpolateWeights(dst, unquantizedWeights, blockWidth, blockHeight, blockMode);
1332 }
1333 }
1334
hash52(deUint32 v)1335 inline deUint32 hash52 (deUint32 v)
1336 {
1337 deUint32 p = v;
1338 p ^= p >> 15; p -= p << 17; p += p << 7; p += p << 4;
1339 p ^= p >> 5; p += p << 16; p ^= p >> 7; p ^= p >> 3;
1340 p ^= p << 6; p ^= p >> 17;
1341 return p;
1342 }
1343
computeTexelPartition(deUint32 seedIn,deUint32 xIn,deUint32 yIn,deUint32 zIn,int numPartitions,bool smallBlock)1344 int computeTexelPartition (deUint32 seedIn, deUint32 xIn, deUint32 yIn, deUint32 zIn, int numPartitions, bool smallBlock)
1345 {
1346 DE_ASSERT(zIn == 0);
1347 const deUint32 x = smallBlock ? xIn << 1 : xIn;
1348 const deUint32 y = smallBlock ? yIn << 1 : yIn;
1349 const deUint32 z = smallBlock ? zIn << 1 : zIn;
1350 const deUint32 seed = seedIn + 1024*(numPartitions-1);
1351 const deUint32 rnum = hash52(seed);
1352 deUint8 seed1 = (deUint8)( rnum & 0xf);
1353 deUint8 seed2 = (deUint8)((rnum >> 4) & 0xf);
1354 deUint8 seed3 = (deUint8)((rnum >> 8) & 0xf);
1355 deUint8 seed4 = (deUint8)((rnum >> 12) & 0xf);
1356 deUint8 seed5 = (deUint8)((rnum >> 16) & 0xf);
1357 deUint8 seed6 = (deUint8)((rnum >> 20) & 0xf);
1358 deUint8 seed7 = (deUint8)((rnum >> 24) & 0xf);
1359 deUint8 seed8 = (deUint8)((rnum >> 28) & 0xf);
1360 deUint8 seed9 = (deUint8)((rnum >> 18) & 0xf);
1361 deUint8 seed10 = (deUint8)((rnum >> 22) & 0xf);
1362 deUint8 seed11 = (deUint8)((rnum >> 26) & 0xf);
1363 deUint8 seed12 = (deUint8)(((rnum >> 30) | (rnum << 2)) & 0xf);
1364
1365 seed1 = (deUint8)(seed1 * seed1 );
1366 seed2 = (deUint8)(seed2 * seed2 );
1367 seed3 = (deUint8)(seed3 * seed3 );
1368 seed4 = (deUint8)(seed4 * seed4 );
1369 seed5 = (deUint8)(seed5 * seed5 );
1370 seed6 = (deUint8)(seed6 * seed6 );
1371 seed7 = (deUint8)(seed7 * seed7 );
1372 seed8 = (deUint8)(seed8 * seed8 );
1373 seed9 = (deUint8)(seed9 * seed9 );
1374 seed10 = (deUint8)(seed10 * seed10);
1375 seed11 = (deUint8)(seed11 * seed11);
1376 seed12 = (deUint8)(seed12 * seed12);
1377
1378 const int shA = (seed & 2) != 0 ? 4 : 5;
1379 const int shB = numPartitions == 3 ? 6 : 5;
1380 const int sh1 = (seed & 1) != 0 ? shA : shB;
1381 const int sh2 = (seed & 1) != 0 ? shB : shA;
1382 const int sh3 = (seed & 0x10) != 0 ? sh1 : sh2;
1383
1384 seed1 = (deUint8)(seed1 >> sh1);
1385 seed2 = (deUint8)(seed2 >> sh2);
1386 seed3 = (deUint8)(seed3 >> sh1);
1387 seed4 = (deUint8)(seed4 >> sh2);
1388 seed5 = (deUint8)(seed5 >> sh1);
1389 seed6 = (deUint8)(seed6 >> sh2);
1390 seed7 = (deUint8)(seed7 >> sh1);
1391 seed8 = (deUint8)(seed8 >> sh2);
1392 seed9 = (deUint8)(seed9 >> sh3);
1393 seed10 = (deUint8)(seed10 >> sh3);
1394 seed11 = (deUint8)(seed11 >> sh3);
1395 seed12 = (deUint8)(seed12 >> sh3);
1396
1397 const int a = 0x3f & (seed1*x + seed2*y + seed11*z + (rnum >> 14));
1398 const int b = 0x3f & (seed3*x + seed4*y + seed12*z + (rnum >> 10));
1399 const int c = numPartitions >= 3 ? 0x3f & (seed5*x + seed6*y + seed9*z + (rnum >> 6)) : 0;
1400 const int d = numPartitions >= 4 ? 0x3f & (seed7*x + seed8*y + seed10*z + (rnum >> 2)) : 0;
1401
1402 return a >= b && a >= c && a >= d ? 0
1403 : b >= c && b >= d ? 1
1404 : c >= d ? 2
1405 : 3;
1406 }
1407
setTexelColors(void * dst,ColorEndpointPair * colorEndpoints,TexelWeightPair * texelWeights,int ccs,deUint32 partitionIndexSeed,int numPartitions,int blockWidth,int blockHeight,bool isSRGB,bool isLDRMode,const deUint32 * colorEndpointModes)1408 DecompressResult setTexelColors (void* dst, ColorEndpointPair* colorEndpoints, TexelWeightPair* texelWeights, int ccs, deUint32 partitionIndexSeed,
1409 int numPartitions, int blockWidth, int blockHeight, bool isSRGB, bool isLDRMode, const deUint32* colorEndpointModes)
1410 {
1411 const bool smallBlock = blockWidth*blockHeight < 31;
1412 DecompressResult result = DECOMPRESS_RESULT_VALID_BLOCK;
1413 bool isHDREndpoint[4];
1414
1415 for (int i = 0; i < numPartitions; i++)
1416 isHDREndpoint[i] = isColorEndpointModeHDR(colorEndpointModes[i]);
1417
1418 for (int texelY = 0; texelY < blockHeight; texelY++)
1419 for (int texelX = 0; texelX < blockWidth; texelX++)
1420 {
1421 const int texelNdx = texelY*blockWidth + texelX;
1422 const int colorEndpointNdx = numPartitions == 1 ? 0 : computeTexelPartition(partitionIndexSeed, texelX, texelY, 0, numPartitions, smallBlock);
1423 DE_ASSERT(colorEndpointNdx < numPartitions);
1424 const UVec4& e0 = colorEndpoints[colorEndpointNdx].e0;
1425 const UVec4& e1 = colorEndpoints[colorEndpointNdx].e1;
1426 const TexelWeightPair& weight = texelWeights[texelNdx];
1427
1428 if (isLDRMode && isHDREndpoint[colorEndpointNdx])
1429 {
1430 if (isSRGB)
1431 {
1432 ((deUint8*)dst)[texelNdx*4 + 0] = 0xff;
1433 ((deUint8*)dst)[texelNdx*4 + 1] = 0;
1434 ((deUint8*)dst)[texelNdx*4 + 2] = 0xff;
1435 ((deUint8*)dst)[texelNdx*4 + 3] = 0xff;
1436 }
1437 else
1438 {
1439 ((float*)dst)[texelNdx*4 + 0] = 1.0f;
1440 ((float*)dst)[texelNdx*4 + 1] = 0;
1441 ((float*)dst)[texelNdx*4 + 2] = 1.0f;
1442 ((float*)dst)[texelNdx*4 + 3] = 1.0f;
1443 }
1444
1445 result = DECOMPRESS_RESULT_ERROR;
1446 }
1447 else
1448 {
1449 for (int channelNdx = 0; channelNdx < 4; channelNdx++)
1450 {
1451 if (!isHDREndpoint[colorEndpointNdx] || (channelNdx == 3 && colorEndpointModes[colorEndpointNdx] == 14)) // \note Alpha for mode 14 is treated the same as LDR.
1452 {
1453 const deUint32 c0 = (e0[channelNdx] << 8) | (isSRGB ? 0x80 : e0[channelNdx]);
1454 const deUint32 c1 = (e1[channelNdx] << 8) | (isSRGB ? 0x80 : e1[channelNdx]);
1455 const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0];
1456 const deUint32 c = (c0*(64-w) + c1*w + 32) / 64;
1457
1458 if (isSRGB)
1459 ((deUint8*)dst)[texelNdx*4 + channelNdx] = (deUint8)((c & 0xff00) >> 8);
1460 else
1461 ((float*)dst)[texelNdx*4 + channelNdx] = c == 65535 ? 1.0f : (float)c / 65536.0f;
1462 }
1463 else
1464 {
1465 DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1466 const deUint32 c0 = e0[channelNdx] << 4;
1467 const deUint32 c1 = e1[channelNdx] << 4;
1468 const deUint32 w = weight.w[ccs == channelNdx ? 1 : 0];
1469 const deUint32 c = (c0*(64-w) + c1*w + 32) / 64;
1470 const deUint32 e = getBits(c, 11, 15);
1471 const deUint32 m = getBits(c, 0, 10);
1472 const deUint32 mt = m < 512 ? 3*m
1473 : m >= 1536 ? 5*m - 2048
1474 : 4*m - 512;
1475 const deFloat16 cf = (deFloat16)((e << 10) + (mt >> 3));
1476
1477 ((float*)dst)[texelNdx*4 + channelNdx] = deFloat16To32(isFloat16InfOrNan(cf) ? 0x7bff : cf);
1478 }
1479 }
1480 }
1481 }
1482
1483 return result;
1484 }
1485
decompressBlock(void * dst,const Block128 & blockData,int blockWidth,int blockHeight,bool isSRGB,bool isLDR)1486 DecompressResult decompressBlock (void* dst, const Block128& blockData, int blockWidth, int blockHeight, bool isSRGB, bool isLDR)
1487 {
1488 DE_ASSERT(isLDR || !isSRGB);
1489
1490 // Decode block mode.
1491
1492 const ASTCBlockMode blockMode = getASTCBlockMode(blockData.getBits(0, 10));
1493
1494 // Check for block mode errors.
1495
1496 if (blockMode.isError)
1497 {
1498 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1499 return DECOMPRESS_RESULT_ERROR;
1500 }
1501
1502 // Separate path for void-extent.
1503
1504 if (blockMode.isVoidExtent)
1505 return decodeVoidExtentBlock(dst, blockData, blockWidth, blockHeight, isSRGB, isLDR);
1506
1507 // Compute weight grid values.
1508
1509 const int numWeights = computeNumWeights(blockMode);
1510 const int numWeightDataBits = computeNumRequiredBits(blockMode.weightISEParams, numWeights);
1511 const int numPartitions = (int)blockData.getBits(11, 12) + 1;
1512
1513 // Check for errors in weight grid, partition and dual-plane parameters.
1514
1515 if (numWeights > 64 ||
1516 numWeightDataBits > 96 ||
1517 numWeightDataBits < 24 ||
1518 blockMode.weightGridWidth > blockWidth ||
1519 blockMode.weightGridHeight > blockHeight ||
1520 (numPartitions == 4 && blockMode.isDualPlane))
1521 {
1522 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1523 return DECOMPRESS_RESULT_ERROR;
1524 }
1525
1526 // Compute number of bits available for color endpoint data.
1527
1528 const bool isSingleUniqueCem = numPartitions == 1 || blockData.getBits(23, 24) == 0;
1529 const int numConfigDataBits = (numPartitions == 1 ? 17 : isSingleUniqueCem ? 29 : 25 + 3*numPartitions) +
1530 (blockMode.isDualPlane ? 2 : 0);
1531 const int numBitsForColorEndpoints = 128 - numWeightDataBits - numConfigDataBits;
1532 const int extraCemBitsStart = 127 - numWeightDataBits - (isSingleUniqueCem ? -1
1533 : numPartitions == 4 ? 7
1534 : numPartitions == 3 ? 4
1535 : numPartitions == 2 ? 1
1536 : 0);
1537 // Decode color endpoint modes.
1538
1539 deUint32 colorEndpointModes[4];
1540 decodeColorEndpointModes(&colorEndpointModes[0], blockData, numPartitions, extraCemBitsStart);
1541
1542 const int numColorEndpointValues = computeNumColorEndpointValues(colorEndpointModes, numPartitions);
1543
1544 // Check for errors in color endpoint value count.
1545
1546 if (numColorEndpointValues > 18 || numBitsForColorEndpoints < deDivRoundUp32(13*numColorEndpointValues, 5))
1547 {
1548 setASTCErrorColorBlock(dst, blockWidth, blockHeight, isSRGB);
1549 return DECOMPRESS_RESULT_ERROR;
1550 }
1551
1552 // Compute color endpoints.
1553
1554 ColorEndpointPair colorEndpoints[4];
1555 computeColorEndpoints(&colorEndpoints[0], blockData, &colorEndpointModes[0], numPartitions, numColorEndpointValues,
1556 computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues), numBitsForColorEndpoints);
1557
1558 // Compute texel weights.
1559
1560 TexelWeightPair texelWeights[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT];
1561 computeTexelWeights(&texelWeights[0], blockData, blockWidth, blockHeight, blockMode);
1562
1563 // Set texel colors.
1564
1565 const int ccs = blockMode.isDualPlane ? (int)blockData.getBits(extraCemBitsStart-2, extraCemBitsStart-1) : -1;
1566 const deUint32 partitionIndexSeed = numPartitions > 1 ? blockData.getBits(13, 22) : (deUint32)-1;
1567
1568 return setTexelColors(dst, &colorEndpoints[0], &texelWeights[0], ccs, partitionIndexSeed, numPartitions, blockWidth, blockHeight, isSRGB, isLDR, &colorEndpointModes[0]);
1569 }
1570
decompress(const PixelBufferAccess & dst,const deUint8 * data,bool isSRGB,bool isLDR)1571 void decompress (const PixelBufferAccess& dst, const deUint8* data, bool isSRGB, bool isLDR)
1572 {
1573 DE_ASSERT(isLDR || !isSRGB);
1574
1575 const int blockWidth = dst.getWidth();
1576 const int blockHeight = dst.getHeight();
1577
1578 union
1579 {
1580 deUint8 sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1581 float linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
1582 } decompressedBuffer;
1583
1584 const Block128 blockData(data);
1585 decompressBlock(isSRGB ? (void*)&decompressedBuffer.sRGB[0] : (void*)&decompressedBuffer.linear[0],
1586 blockData, dst.getWidth(), dst.getHeight(), isSRGB, isLDR);
1587
1588 if (isSRGB)
1589 {
1590 for (int i = 0; i < blockHeight; i++)
1591 for (int j = 0; j < blockWidth; j++)
1592 {
1593 dst.setPixel(IVec4(decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 0],
1594 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 1],
1595 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 2],
1596 decompressedBuffer.sRGB[(i*blockWidth + j) * 4 + 3]), j, i);
1597 }
1598 }
1599 else
1600 {
1601 for (int i = 0; i < blockHeight; i++)
1602 for (int j = 0; j < blockWidth; j++)
1603 {
1604 dst.setPixel(Vec4(decompressedBuffer.linear[(i*blockWidth + j) * 4 + 0],
1605 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 1],
1606 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 2],
1607 decompressedBuffer.linear[(i*blockWidth + j) * 4 + 3]), j, i);
1608 }
1609 }
1610 }
1611
1612 // Helper class for setting bits in a 128-bit block.
1613 class AssignBlock128
1614 {
1615 private:
1616 typedef deUint64 Word;
1617
1618 enum
1619 {
1620 WORD_BYTES = sizeof(Word),
1621 WORD_BITS = 8*WORD_BYTES,
1622 NUM_WORDS = 128 / WORD_BITS
1623 };
1624
1625 DE_STATIC_ASSERT(128 % WORD_BITS == 0);
1626
1627 public:
AssignBlock128(void)1628 AssignBlock128 (void)
1629 {
1630 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1631 m_words[wordNdx] = 0;
1632 }
1633
setBit(int ndx,deUint32 val)1634 void setBit (int ndx, deUint32 val)
1635 {
1636 DE_ASSERT(de::inBounds(ndx, 0, 128));
1637 DE_ASSERT((val & 1) == val);
1638 const int wordNdx = ndx / WORD_BITS;
1639 const int bitNdx = ndx % WORD_BITS;
1640 m_words[wordNdx] = (m_words[wordNdx] & ~((Word)1 << bitNdx)) | ((Word)val << bitNdx);
1641 }
1642
setBits(int low,int high,deUint32 bits)1643 void setBits (int low, int high, deUint32 bits)
1644 {
1645 DE_ASSERT(de::inBounds(low, 0, 128));
1646 DE_ASSERT(de::inBounds(high, 0, 128));
1647 DE_ASSERT(de::inRange(high-low+1, 0, 32));
1648 DE_ASSERT((bits & (((Word)1 << (high-low+1)) - 1)) == bits);
1649
1650 if (high-low+1 == 0)
1651 return;
1652
1653 const int word0Ndx = low / WORD_BITS;
1654 const int word1Ndx = high / WORD_BITS;
1655 const int lowNdxInW0 = low % WORD_BITS;
1656
1657 if (word0Ndx == word1Ndx)
1658 m_words[word0Ndx] = (m_words[word0Ndx] & ~((((Word)1 << (high-low+1)) - 1) << lowNdxInW0)) | ((Word)bits << lowNdxInW0);
1659 else
1660 {
1661 DE_ASSERT(word1Ndx == word0Ndx + 1);
1662
1663 const int highNdxInW1 = high % WORD_BITS;
1664 const int numBitsToSetInW0 = WORD_BITS - lowNdxInW0;
1665 const Word bitsLowMask = ((Word)1 << numBitsToSetInW0) - 1;
1666
1667 m_words[word0Ndx] = (m_words[word0Ndx] & (((Word)1 << lowNdxInW0) - 1)) | (((Word)bits & bitsLowMask) << lowNdxInW0);
1668 m_words[word1Ndx] = (m_words[word1Ndx] & ~(((Word)1 << (highNdxInW1+1)) - 1)) | (((Word)bits & ~bitsLowMask) >> numBitsToSetInW0);
1669 }
1670 }
1671
assignToMemory(deUint8 * dst) const1672 void assignToMemory (deUint8* dst) const
1673 {
1674 for (int wordNdx = 0; wordNdx < NUM_WORDS; wordNdx++)
1675 {
1676 for (int byteNdx = 0; byteNdx < WORD_BYTES; byteNdx++)
1677 dst[wordNdx*WORD_BYTES + byteNdx] = (deUint8)((m_words[wordNdx] >> (8*byteNdx)) & 0xff);
1678 }
1679 }
1680
pushBytesToVector(vector<deUint8> & dst) const1681 void pushBytesToVector (vector<deUint8>& dst) const
1682 {
1683 const int assignStartIndex = (int)dst.size();
1684 dst.resize(dst.size() + BLOCK_SIZE_BYTES);
1685 assignToMemory(&dst[assignStartIndex]);
1686 }
1687
1688 private:
1689 Word m_words[NUM_WORDS];
1690 };
1691
1692 // A helper for sequential access into a AssignBlock128.
1693 class BitAssignAccessStream
1694 {
1695 public:
BitAssignAccessStream(AssignBlock128 & dst,int startNdxInSrc,int length,bool forward)1696 BitAssignAccessStream (AssignBlock128& dst, int startNdxInSrc, int length, bool forward)
1697 : m_dst (dst)
1698 , m_startNdxInSrc (startNdxInSrc)
1699 , m_length (length)
1700 , m_forward (forward)
1701 , m_ndx (0)
1702 {
1703 }
1704
1705 // Set the next num bits. Bits at positions greater than or equal to m_length are not touched.
setNext(int num,deUint32 bits)1706 void setNext (int num, deUint32 bits)
1707 {
1708 DE_ASSERT((bits & (((deUint64)1 << num) - 1)) == bits);
1709
1710 if (num == 0 || m_ndx >= m_length)
1711 return;
1712
1713 const int end = m_ndx + num;
1714 const int numBitsToDst = de::max(0, de::min(m_length, end) - m_ndx);
1715 const int low = m_ndx;
1716 const int high = m_ndx + numBitsToDst - 1;
1717 const deUint32 actualBits = getBits(bits, 0, numBitsToDst-1);
1718
1719 m_ndx += num;
1720
1721 return m_forward ? m_dst.setBits(m_startNdxInSrc + low, m_startNdxInSrc + high, actualBits)
1722 : m_dst.setBits(m_startNdxInSrc - high, m_startNdxInSrc - low, reverseBits(actualBits, numBitsToDst));
1723 }
1724
1725 private:
1726 AssignBlock128& m_dst;
1727 const int m_startNdxInSrc;
1728 const int m_length;
1729 const bool m_forward;
1730
1731 int m_ndx;
1732 };
1733
1734 struct VoidExtentParams
1735 {
1736 DE_STATIC_ASSERT((de::meta::TypesSame<deFloat16, deUint16>::Value));
1737 bool isHDR;
1738 deUint16 r;
1739 deUint16 g;
1740 deUint16 b;
1741 deUint16 a;
1742 // \note Currently extent coordinates are all set to all-ones.
1743
VoidExtentParamstcu::astc::__anon8b756cce0111::VoidExtentParams1744 VoidExtentParams (bool isHDR_, deUint16 r_, deUint16 g_, deUint16 b_, deUint16 a_) : isHDR(isHDR_), r(r_), g(g_), b(b_), a(a_) {}
1745 };
1746
generateVoidExtentBlock(const VoidExtentParams & params)1747 static AssignBlock128 generateVoidExtentBlock (const VoidExtentParams& params)
1748 {
1749 AssignBlock128 block;
1750
1751 block.setBits(0, 8, 0x1fc); // \note Marks void-extent block.
1752 block.setBit(9, params.isHDR);
1753 block.setBits(10, 11, 3); // \note Spec shows that these bits are both set, although they serve no purpose.
1754
1755 // Extent coordinates - currently all-ones.
1756 block.setBits(12, 24, 0x1fff);
1757 block.setBits(25, 37, 0x1fff);
1758 block.setBits(38, 50, 0x1fff);
1759 block.setBits(51, 63, 0x1fff);
1760
1761 DE_ASSERT(!params.isHDR || (!isFloat16InfOrNan(params.r) &&
1762 !isFloat16InfOrNan(params.g) &&
1763 !isFloat16InfOrNan(params.b) &&
1764 !isFloat16InfOrNan(params.a)));
1765
1766 block.setBits(64, 79, params.r);
1767 block.setBits(80, 95, params.g);
1768 block.setBits(96, 111, params.b);
1769 block.setBits(112, 127, params.a);
1770
1771 return block;
1772 }
1773
1774 // An input array of ISE inputs for an entire ASTC block. Can be given as either single values in the
1775 // range [0, maximumValueOfISERange] or as explicit block value specifications. The latter is needed
1776 // so we can test all possible values of T and Q in a block, since multiple T or Q values may map
1777 // to the same set of decoded values.
1778 struct ISEInput
1779 {
1780 struct Block
1781 {
1782 deUint32 tOrQValue; //!< The 8-bit T or 7-bit Q in a trit or quint ISE block.
1783 deUint32 bitValues[5];
1784 };
1785
1786 bool isGivenInBlockForm;
1787 union
1788 {
1789 //!< \note 64 comes from the maximum number of weight values in an ASTC block.
1790 deUint32 plain[64];
1791 Block block[64];
1792 } value;
1793
ISEInputtcu::astc::__anon8b756cce0111::ISEInput1794 ISEInput (void)
1795 : isGivenInBlockForm (false)
1796 {
1797 }
1798 };
1799
computeISERangeMax(const ISEParams & iseParams)1800 static inline deUint32 computeISERangeMax (const ISEParams& iseParams)
1801 {
1802 switch (iseParams.mode)
1803 {
1804 case ISEMODE_TRIT: return (1u << iseParams.numBits) * 3 - 1;
1805 case ISEMODE_QUINT: return (1u << iseParams.numBits) * 5 - 1;
1806 case ISEMODE_PLAIN_BIT: return (1u << iseParams.numBits) - 1;
1807 default:
1808 DE_ASSERT(false);
1809 return -1;
1810 }
1811 }
1812
1813 struct NormalBlockParams
1814 {
1815 int weightGridWidth;
1816 int weightGridHeight;
1817 ISEParams weightISEParams;
1818 bool isDualPlane;
1819 deUint32 ccs; //! \note Irrelevant if !isDualPlane.
1820 int numPartitions;
1821 deUint32 colorEndpointModes[4];
1822 // \note Below members are irrelevant if numPartitions == 1.
1823 bool isMultiPartSingleCemMode; //! \note If true, the single CEM is at colorEndpointModes[0].
1824 deUint32 partitionSeed;
1825
NormalBlockParamstcu::astc::__anon8b756cce0111::NormalBlockParams1826 NormalBlockParams (void)
1827 : weightGridWidth (-1)
1828 , weightGridHeight (-1)
1829 , weightISEParams (ISEMODE_LAST, -1)
1830 , isDualPlane (true)
1831 , ccs ((deUint32)-1)
1832 , numPartitions (-1)
1833 , isMultiPartSingleCemMode (false)
1834 , partitionSeed ((deUint32)-1)
1835 {
1836 colorEndpointModes[0] = 0;
1837 colorEndpointModes[1] = 0;
1838 colorEndpointModes[2] = 0;
1839 colorEndpointModes[3] = 0;
1840 }
1841 };
1842
1843 struct NormalBlockISEInputs
1844 {
1845 ISEInput weight;
1846 ISEInput endpoint;
1847
NormalBlockISEInputstcu::astc::__anon8b756cce0111::NormalBlockISEInputs1848 NormalBlockISEInputs (void)
1849 : weight ()
1850 , endpoint ()
1851 {
1852 }
1853 };
1854
computeNumWeights(const NormalBlockParams & params)1855 static inline int computeNumWeights (const NormalBlockParams& params)
1856 {
1857 return params.weightGridWidth * params.weightGridHeight * (params.isDualPlane ? 2 : 1);
1858 }
1859
computeNumBitsForColorEndpoints(const NormalBlockParams & params)1860 static inline int computeNumBitsForColorEndpoints (const NormalBlockParams& params)
1861 {
1862 const int numWeightBits = computeNumRequiredBits(params.weightISEParams, computeNumWeights(params));
1863 const int numConfigDataBits = (params.numPartitions == 1 ? 17 : params.isMultiPartSingleCemMode ? 29 : 25 + 3*params.numPartitions) +
1864 (params.isDualPlane ? 2 : 0);
1865
1866 return 128 - numWeightBits - numConfigDataBits;
1867 }
1868
computeNumColorEndpointValues(const deUint32 * endpointModes,int numPartitions,bool isMultiPartSingleCemMode)1869 static inline int computeNumColorEndpointValues (const deUint32* endpointModes, int numPartitions, bool isMultiPartSingleCemMode)
1870 {
1871 if (isMultiPartSingleCemMode)
1872 return numPartitions * computeNumColorEndpointValues(endpointModes[0]);
1873 else
1874 {
1875 int result = 0;
1876 for (int i = 0; i < numPartitions; i++)
1877 result += computeNumColorEndpointValues(endpointModes[i]);
1878 return result;
1879 }
1880 }
1881
isValidBlockParams(const NormalBlockParams & params,int blockWidth,int blockHeight)1882 static inline bool isValidBlockParams (const NormalBlockParams& params, int blockWidth, int blockHeight)
1883 {
1884 const int numWeights = computeNumWeights(params);
1885 const int numWeightBits = computeNumRequiredBits(params.weightISEParams, numWeights);
1886 const int numColorEndpointValues = computeNumColorEndpointValues(¶ms.colorEndpointModes[0], params.numPartitions, params.isMultiPartSingleCemMode);
1887 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(params);
1888
1889 return numWeights <= 64 &&
1890 de::inRange(numWeightBits, 24, 96) &&
1891 params.weightGridWidth <= blockWidth &&
1892 params.weightGridHeight <= blockHeight &&
1893 !(params.numPartitions == 4 && params.isDualPlane) &&
1894 numColorEndpointValues <= 18 &&
1895 numBitsForColorEndpoints >= deDivRoundUp32(13*numColorEndpointValues, 5);
1896 }
1897
1898 // Write bits 0 to 10 of an ASTC block.
writeBlockMode(AssignBlock128 & dst,const NormalBlockParams & blockParams)1899 static void writeBlockMode (AssignBlock128& dst, const NormalBlockParams& blockParams)
1900 {
1901 const deUint32 d = blockParams.isDualPlane != 0;
1902 // r and h initialized in switch below.
1903 deUint32 r;
1904 deUint32 h;
1905 // a, b and blockModeLayoutNdx initialized in block mode layout index detecting loop below.
1906 deUint32 a = (deUint32)-1;
1907 deUint32 b = (deUint32)-1;
1908 int blockModeLayoutNdx;
1909
1910 // Find the values of r and h (ISE range).
1911 switch (computeISERangeMax(blockParams.weightISEParams))
1912 {
1913 case 1: r = 2; h = 0; break;
1914 case 2: r = 3; h = 0; break;
1915 case 3: r = 4; h = 0; break;
1916 case 4: r = 5; h = 0; break;
1917 case 5: r = 6; h = 0; break;
1918 case 7: r = 7; h = 0; break;
1919
1920 case 9: r = 2; h = 1; break;
1921 case 11: r = 3; h = 1; break;
1922 case 15: r = 4; h = 1; break;
1923 case 19: r = 5; h = 1; break;
1924 case 23: r = 6; h = 1; break;
1925 case 31: r = 7; h = 1; break;
1926
1927 default:
1928 DE_ASSERT(false);
1929 r = (deUint32)-1;
1930 h = (deUint32)-1;
1931 }
1932
1933 // Find block mode layout index, i.e. appropriate row in the "2d block mode layout" table in ASTC spec.
1934
1935 {
1936 enum BlockModeLayoutABVariable { Z=0, A=1, B=2 };
1937
1938 static const struct BlockModeLayout
1939 {
1940 int aNumBits;
1941 int bNumBits;
1942 BlockModeLayoutABVariable gridWidthVariableTerm;
1943 int gridWidthConstantTerm;
1944 BlockModeLayoutABVariable gridHeightVariableTerm;
1945 int gridHeightConstantTerm;
1946 } blockModeLayouts[] =
1947 {
1948 { 2, 2, B, 4, A, 2},
1949 { 2, 2, B, 8, A, 2},
1950 { 2, 2, A, 2, B, 8},
1951 { 2, 1, A, 2, B, 6},
1952 { 2, 1, B, 2, A, 2},
1953 { 2, 0, Z, 12, A, 2},
1954 { 2, 0, A, 2, Z, 12},
1955 { 0, 0, Z, 6, Z, 10},
1956 { 0, 0, Z, 10, Z, 6},
1957 { 2, 2, A, 6, B, 6}
1958 };
1959
1960 for (blockModeLayoutNdx = 0; blockModeLayoutNdx < DE_LENGTH_OF_ARRAY(blockModeLayouts); blockModeLayoutNdx++)
1961 {
1962 const BlockModeLayout& layout = blockModeLayouts[blockModeLayoutNdx];
1963 const int aMax = (1 << layout.aNumBits) - 1;
1964 const int bMax = (1 << layout.bNumBits) - 1;
1965 const int variableOffsetsMax[3] = { 0, aMax, bMax };
1966 const int widthMin = layout.gridWidthConstantTerm;
1967 const int heightMin = layout.gridHeightConstantTerm;
1968 const int widthMax = widthMin + variableOffsetsMax[layout.gridWidthVariableTerm];
1969 const int heightMax = heightMin + variableOffsetsMax[layout.gridHeightVariableTerm];
1970
1971 DE_ASSERT(layout.gridWidthVariableTerm != layout.gridHeightVariableTerm || layout.gridWidthVariableTerm == Z);
1972
1973 if (de::inRange(blockParams.weightGridWidth, widthMin, widthMax) &&
1974 de::inRange(blockParams.weightGridHeight, heightMin, heightMax))
1975 {
1976 deUint32 dummy = 0;
1977 deUint32& widthVariable = layout.gridWidthVariableTerm == A ? a : layout.gridWidthVariableTerm == B ? b : dummy;
1978 deUint32& heightVariable = layout.gridHeightVariableTerm == A ? a : layout.gridHeightVariableTerm == B ? b : dummy;
1979
1980 widthVariable = blockParams.weightGridWidth - layout.gridWidthConstantTerm;
1981 heightVariable = blockParams.weightGridHeight - layout.gridHeightConstantTerm;
1982
1983 break;
1984 }
1985 }
1986 }
1987
1988 // Set block mode bits.
1989
1990 const deUint32 a0 = getBit(a, 0);
1991 const deUint32 a1 = getBit(a, 1);
1992 const deUint32 b0 = getBit(b, 0);
1993 const deUint32 b1 = getBit(b, 1);
1994 const deUint32 r0 = getBit(r, 0);
1995 const deUint32 r1 = getBit(r, 1);
1996 const deUint32 r2 = getBit(r, 2);
1997
1998 #define SB(NDX, VAL) dst.setBit((NDX), (VAL))
1999 #define ASSIGN_BITS(B10, B9, B8, B7, B6, B5, B4, B3, B2, B1, B0) do { SB(10,(B10)); SB(9,(B9)); SB(8,(B8)); SB(7,(B7)); SB(6,(B6)); SB(5,(B5)); SB(4,(B4)); SB(3,(B3)); SB(2,(B2)); SB(1,(B1)); SB(0,(B0)); } while (false)
2000
2001 switch (blockModeLayoutNdx)
2002 {
2003 case 0: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 0, r2, r1); break;
2004 case 1: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 0, 1, r2, r1); break;
2005 case 2: ASSIGN_BITS(d, h, b1, b0, a1, a0, r0, 1, 0, r2, r1); break;
2006 case 3: ASSIGN_BITS(d, h, 0, b, a1, a0, r0, 1, 1, r2, r1); break;
2007 case 4: ASSIGN_BITS(d, h, 1, b, a1, a0, r0, 1, 1, r2, r1); break;
2008 case 5: ASSIGN_BITS(d, h, 0, 0, a1, a0, r0, r2, r1, 0, 0); break;
2009 case 6: ASSIGN_BITS(d, h, 0, 1, a1, a0, r0, r2, r1, 0, 0); break;
2010 case 7: ASSIGN_BITS(d, h, 1, 1, 0, 0, r0, r2, r1, 0, 0); break;
2011 case 8: ASSIGN_BITS(d, h, 1, 1, 0, 1, r0, r2, r1, 0, 0); break;
2012 case 9: ASSIGN_BITS(b1, b0, 1, 0, a1, a0, r0, r2, r1, 0, 0); DE_ASSERT(d == 0 && h == 0); break;
2013 default:
2014 DE_ASSERT(false);
2015 }
2016
2017 #undef ASSIGN_BITS
2018 #undef SB
2019 }
2020
2021 // Write color endpoint mode data of an ASTC block.
writeColorEndpointModes(AssignBlock128 & dst,const deUint32 * colorEndpointModes,bool isMultiPartSingleCemMode,int numPartitions,int extraCemBitsStart)2022 static void writeColorEndpointModes (AssignBlock128& dst, const deUint32* colorEndpointModes, bool isMultiPartSingleCemMode, int numPartitions, int extraCemBitsStart)
2023 {
2024 if (numPartitions == 1)
2025 dst.setBits(13, 16, colorEndpointModes[0]);
2026 else
2027 {
2028 if (isMultiPartSingleCemMode)
2029 {
2030 dst.setBits(23, 24, 0);
2031 dst.setBits(25, 28, colorEndpointModes[0]);
2032 }
2033 else
2034 {
2035 DE_ASSERT(numPartitions > 0);
2036 const deUint32 minCem = *std::min_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2037 const deUint32 maxCem = *std::max_element(&colorEndpointModes[0], &colorEndpointModes[numPartitions]);
2038 const deUint32 minCemClass = minCem/4;
2039 const deUint32 maxCemClass = maxCem/4;
2040 DE_ASSERT(maxCemClass - minCemClass <= 1);
2041 DE_UNREF(minCemClass); // \note For non-debug builds.
2042 const deUint32 highLevelSelector = de::max(1u, maxCemClass);
2043
2044 dst.setBits(23, 24, highLevelSelector);
2045
2046 for (int partNdx = 0; partNdx < numPartitions; partNdx++)
2047 {
2048 const deUint32 c = colorEndpointModes[partNdx] / 4 == highLevelSelector ? 1 : 0;
2049 const deUint32 m = colorEndpointModes[partNdx] % 4;
2050 const deUint32 lowMBit0Ndx = numPartitions + 2*partNdx;
2051 const deUint32 lowMBit1Ndx = numPartitions + 2*partNdx + 1;
2052 dst.setBit(25 + partNdx, c);
2053 dst.setBit(lowMBit0Ndx < 4 ? 25+lowMBit0Ndx : extraCemBitsStart+lowMBit0Ndx-4, getBit(m, 0));
2054 dst.setBit(lowMBit1Ndx < 4 ? 25+lowMBit1Ndx : extraCemBitsStart+lowMBit1Ndx-4, getBit(m, 1));
2055 }
2056 }
2057 }
2058 }
2059
encodeISETritBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2060 static void encodeISETritBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2061 {
2062 // tritBlockTValue[t0][t1][t2][t3][t4] is a value of T (not necessarily the only one) that will yield the given trits when decoded.
2063 static const deUint32 tritBlockTValue[3][3][3][3][3] =
2064 {
2065 {
2066 {{{0, 128, 96}, {32, 160, 224}, {64, 192, 28}}, {{16, 144, 112}, {48, 176, 240}, {80, 208, 156}}, {{3, 131, 99}, {35, 163, 227}, {67, 195, 31}}},
2067 {{{4, 132, 100}, {36, 164, 228}, {68, 196, 60}}, {{20, 148, 116}, {52, 180, 244}, {84, 212, 188}}, {{19, 147, 115}, {51, 179, 243}, {83, 211, 159}}},
2068 {{{8, 136, 104}, {40, 168, 232}, {72, 200, 92}}, {{24, 152, 120}, {56, 184, 248}, {88, 216, 220}}, {{12, 140, 108}, {44, 172, 236}, {76, 204, 124}}}
2069 },
2070 {
2071 {{{1, 129, 97}, {33, 161, 225}, {65, 193, 29}}, {{17, 145, 113}, {49, 177, 241}, {81, 209, 157}}, {{7, 135, 103}, {39, 167, 231}, {71, 199, 63}}},
2072 {{{5, 133, 101}, {37, 165, 229}, {69, 197, 61}}, {{21, 149, 117}, {53, 181, 245}, {85, 213, 189}}, {{23, 151, 119}, {55, 183, 247}, {87, 215, 191}}},
2073 {{{9, 137, 105}, {41, 169, 233}, {73, 201, 93}}, {{25, 153, 121}, {57, 185, 249}, {89, 217, 221}}, {{13, 141, 109}, {45, 173, 237}, {77, 205, 125}}}
2074 },
2075 {
2076 {{{2, 130, 98}, {34, 162, 226}, {66, 194, 30}}, {{18, 146, 114}, {50, 178, 242}, {82, 210, 158}}, {{11, 139, 107}, {43, 171, 235}, {75, 203, 95}}},
2077 {{{6, 134, 102}, {38, 166, 230}, {70, 198, 62}}, {{22, 150, 118}, {54, 182, 246}, {86, 214, 190}}, {{27, 155, 123}, {59, 187, 251}, {91, 219, 223}}},
2078 {{{10, 138, 106}, {42, 170, 234}, {74, 202, 94}}, {{26, 154, 122}, {58, 186, 250}, {90, 218, 222}}, {{14, 142, 110}, {46, 174, 238}, {78, 206, 126}}}
2079 }
2080 };
2081
2082 DE_ASSERT(de::inRange(numValues, 1, 5));
2083
2084 deUint32 tritParts[5];
2085 deUint32 bitParts[5];
2086
2087 for (int i = 0; i < 5; i++)
2088 {
2089 if (i < numValues)
2090 {
2091 if (fromExplicitInputBlock)
2092 {
2093 bitParts[i] = blockInput.bitValues[i];
2094 tritParts[i] = -1; // \note Won't be used, but silences warning.
2095 }
2096 else
2097 {
2098 // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2099 bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2100 tritParts[i] = nonBlockInput[i] >> numBits;
2101 }
2102 }
2103 else
2104 {
2105 bitParts[i] = 0;
2106 tritParts[i] = 0;
2107 }
2108 }
2109
2110 const deUint32 T = fromExplicitInputBlock ? blockInput.tOrQValue : tritBlockTValue[tritParts[0]]
2111 [tritParts[1]]
2112 [tritParts[2]]
2113 [tritParts[3]]
2114 [tritParts[4]];
2115
2116 dst.setNext(numBits, bitParts[0]);
2117 dst.setNext(2, getBits(T, 0, 1));
2118 dst.setNext(numBits, bitParts[1]);
2119 dst.setNext(2, getBits(T, 2, 3));
2120 dst.setNext(numBits, bitParts[2]);
2121 dst.setNext(1, getBit(T, 4));
2122 dst.setNext(numBits, bitParts[3]);
2123 dst.setNext(2, getBits(T, 5, 6));
2124 dst.setNext(numBits, bitParts[4]);
2125 dst.setNext(1, getBit(T, 7));
2126 }
2127
encodeISEQuintBlock(BitAssignAccessStream & dst,int numBits,bool fromExplicitInputBlock,const ISEInput::Block & blockInput,const deUint32 * nonBlockInput,int numValues)2128 static void encodeISEQuintBlock (BitAssignAccessStream& dst, int numBits, bool fromExplicitInputBlock, const ISEInput::Block& blockInput, const deUint32* nonBlockInput, int numValues)
2129 {
2130 // quintBlockQValue[q0][q1][q2] is a value of Q (not necessarily the only one) that will yield the given quints when decoded.
2131 static const deUint32 quintBlockQValue[5][5][5] =
2132 {
2133 {{0, 32, 64, 96, 102}, {8, 40, 72, 104, 110}, {16, 48, 80, 112, 118}, {24, 56, 88, 120, 126}, {5, 37, 69, 101, 39}},
2134 {{1, 33, 65, 97, 103}, {9, 41, 73, 105, 111}, {17, 49, 81, 113, 119}, {25, 57, 89, 121, 127}, {13, 45, 77, 109, 47}},
2135 {{2, 34, 66, 98, 70}, {10, 42, 74, 106, 78}, {18, 50, 82, 114, 86}, {26, 58, 90, 122, 94}, {21, 53, 85, 117, 55}},
2136 {{3, 35, 67, 99, 71}, {11, 43, 75, 107, 79}, {19, 51, 83, 115, 87}, {27, 59, 91, 123, 95}, {29, 61, 93, 125, 63}},
2137 {{4, 36, 68, 100, 38}, {12, 44, 76, 108, 46}, {20, 52, 84, 116, 54}, {28, 60, 92, 124, 62}, {6, 14, 22, 30, 7}}
2138 };
2139
2140 DE_ASSERT(de::inRange(numValues, 1, 3));
2141
2142 deUint32 quintParts[3];
2143 deUint32 bitParts[3];
2144
2145 for (int i = 0; i < 3; i++)
2146 {
2147 if (i < numValues)
2148 {
2149 if (fromExplicitInputBlock)
2150 {
2151 bitParts[i] = blockInput.bitValues[i];
2152 quintParts[i] = -1; // \note Won't be used, but silences warning.
2153 }
2154 else
2155 {
2156 // \todo [2016-01-20 pyry] numBits = 0 doesn't make sense
2157 bitParts[i] = numBits > 0 ? getBits(nonBlockInput[i], 0, numBits-1) : 0;
2158 quintParts[i] = nonBlockInput[i] >> numBits;
2159 }
2160 }
2161 else
2162 {
2163 bitParts[i] = 0;
2164 quintParts[i] = 0;
2165 }
2166 }
2167
2168 const deUint32 Q = fromExplicitInputBlock ? blockInput.tOrQValue : quintBlockQValue[quintParts[0]]
2169 [quintParts[1]]
2170 [quintParts[2]];
2171
2172 dst.setNext(numBits, bitParts[0]);
2173 dst.setNext(3, getBits(Q, 0, 2));
2174 dst.setNext(numBits, bitParts[1]);
2175 dst.setNext(2, getBits(Q, 3, 4));
2176 dst.setNext(numBits, bitParts[2]);
2177 dst.setNext(2, getBits(Q, 5, 6));
2178 }
2179
encodeISEBitBlock(BitAssignAccessStream & dst,int numBits,deUint32 value)2180 static void encodeISEBitBlock (BitAssignAccessStream& dst, int numBits, deUint32 value)
2181 {
2182 DE_ASSERT(de::inRange(value, 0u, (1u<<numBits)-1));
2183 dst.setNext(numBits, value);
2184 }
2185
encodeISE(BitAssignAccessStream & dst,const ISEParams & params,const ISEInput & input,int numValues)2186 static void encodeISE (BitAssignAccessStream& dst, const ISEParams& params, const ISEInput& input, int numValues)
2187 {
2188 if (params.mode == ISEMODE_TRIT)
2189 {
2190 const int numBlocks = deDivRoundUp32(numValues, 5);
2191 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2192 {
2193 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 5*(numBlocks-1) : 5;
2194 encodeISETritBlock(dst, params.numBits, input.isGivenInBlockForm,
2195 input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(),
2196 input.isGivenInBlockForm ? DE_NULL : &input.value.plain[5*blockNdx],
2197 numValuesInBlock);
2198 }
2199 }
2200 else if (params.mode == ISEMODE_QUINT)
2201 {
2202 const int numBlocks = deDivRoundUp32(numValues, 3);
2203 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2204 {
2205 const int numValuesInBlock = blockNdx == numBlocks-1 ? numValues - 3*(numBlocks-1) : 3;
2206 encodeISEQuintBlock(dst, params.numBits, input.isGivenInBlockForm,
2207 input.isGivenInBlockForm ? input.value.block[blockNdx] : ISEInput::Block(),
2208 input.isGivenInBlockForm ? DE_NULL : &input.value.plain[3*blockNdx],
2209 numValuesInBlock);
2210 }
2211 }
2212 else
2213 {
2214 DE_ASSERT(params.mode == ISEMODE_PLAIN_BIT);
2215 for (int i = 0; i < numValues; i++)
2216 encodeISEBitBlock(dst, params.numBits, input.isGivenInBlockForm ? input.value.block[i].bitValues[0] : input.value.plain[i]);
2217 }
2218 }
2219
writeWeightData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numWeights)2220 static void writeWeightData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numWeights)
2221 {
2222 const int numWeightBits = computeNumRequiredBits(iseParams, numWeights);
2223 BitAssignAccessStream access (dst, 127, numWeightBits, false);
2224 encodeISE(access, iseParams, input, numWeights);
2225 }
2226
writeColorEndpointData(AssignBlock128 & dst,const ISEParams & iseParams,const ISEInput & input,int numEndpoints,int numBitsForColorEndpoints,int colorEndpointDataStartNdx)2227 static void writeColorEndpointData (AssignBlock128& dst, const ISEParams& iseParams, const ISEInput& input, int numEndpoints, int numBitsForColorEndpoints, int colorEndpointDataStartNdx)
2228 {
2229 BitAssignAccessStream access(dst, colorEndpointDataStartNdx, numBitsForColorEndpoints, true);
2230 encodeISE(access, iseParams, input, numEndpoints);
2231 }
2232
generateNormalBlock(const NormalBlockParams & blockParams,int blockWidth,int blockHeight,const NormalBlockISEInputs & iseInputs)2233 static AssignBlock128 generateNormalBlock (const NormalBlockParams& blockParams, int blockWidth, int blockHeight, const NormalBlockISEInputs& iseInputs)
2234 {
2235 DE_ASSERT(isValidBlockParams(blockParams, blockWidth, blockHeight));
2236 DE_UNREF(blockWidth); // \note For non-debug builds.
2237 DE_UNREF(blockHeight); // \note For non-debug builds.
2238
2239 AssignBlock128 block;
2240 const int numWeights = computeNumWeights(blockParams);
2241 const int numWeightBits = computeNumRequiredBits(blockParams.weightISEParams, numWeights);
2242
2243 writeBlockMode(block, blockParams);
2244
2245 block.setBits(11, 12, blockParams.numPartitions - 1);
2246 if (blockParams.numPartitions > 1)
2247 block.setBits(13, 22, blockParams.partitionSeed);
2248
2249 {
2250 const int extraCemBitsStart = 127 - numWeightBits - (blockParams.numPartitions == 1 || blockParams.isMultiPartSingleCemMode ? -1
2251 : blockParams.numPartitions == 4 ? 7
2252 : blockParams.numPartitions == 3 ? 4
2253 : blockParams.numPartitions == 2 ? 1
2254 : 0);
2255
2256 writeColorEndpointModes(block, &blockParams.colorEndpointModes[0], blockParams.isMultiPartSingleCemMode, blockParams.numPartitions, extraCemBitsStart);
2257
2258 if (blockParams.isDualPlane)
2259 block.setBits(extraCemBitsStart-2, extraCemBitsStart-1, blockParams.ccs);
2260 }
2261
2262 writeWeightData(block, blockParams.weightISEParams, iseInputs.weight, numWeights);
2263
2264 {
2265 const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2266 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams);
2267 const int colorEndpointDataStartNdx = blockParams.numPartitions == 1 ? 17 : 29;
2268 const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2269
2270 writeColorEndpointData(block, colorEndpointISEParams, iseInputs.endpoint, numColorEndpointValues, numBitsForColorEndpoints, colorEndpointDataStartNdx);
2271 }
2272
2273 return block;
2274 }
2275
2276 // Generate default ISE inputs for weight and endpoint data - gradient-ish values.
generateDefaultISEInputs(const NormalBlockParams & blockParams)2277 static NormalBlockISEInputs generateDefaultISEInputs (const NormalBlockParams& blockParams)
2278 {
2279 NormalBlockISEInputs result;
2280
2281 {
2282 result.weight.isGivenInBlockForm = false;
2283
2284 const int numWeights = computeNumWeights(blockParams);
2285 const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams);
2286
2287 if (blockParams.isDualPlane)
2288 {
2289 for (int i = 0; i < numWeights; i += 2)
2290 result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2291
2292 for (int i = 1; i < numWeights; i += 2)
2293 result.weight.value.plain[i] = weightRangeMax - (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2294 }
2295 else
2296 {
2297 for (int i = 0; i < numWeights; i++)
2298 result.weight.value.plain[i] = (i*weightRangeMax + (numWeights-1)/2) / (numWeights-1);
2299 }
2300 }
2301
2302 {
2303 result.endpoint.isGivenInBlockForm = false;
2304
2305 const int numColorEndpointValues = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2306 const int numBitsForColorEndpoints = computeNumBitsForColorEndpoints(blockParams);
2307 const ISEParams& colorEndpointISEParams = computeMaximumRangeISEParams(numBitsForColorEndpoints, numColorEndpointValues);
2308 const int colorEndpointRangeMax = computeISERangeMax(colorEndpointISEParams);
2309
2310 for (int i = 0; i < numColorEndpointValues; i++)
2311 result.endpoint.value.plain[i] = (i*colorEndpointRangeMax + (numColorEndpointValues-1)/2) / (numColorEndpointValues-1);
2312 }
2313
2314 return result;
2315 }
2316
2317 static const ISEParams s_weightISEParamsCandidates[] =
2318 {
2319 ISEParams(ISEMODE_PLAIN_BIT, 1),
2320 ISEParams(ISEMODE_TRIT, 0),
2321 ISEParams(ISEMODE_PLAIN_BIT, 2),
2322 ISEParams(ISEMODE_QUINT, 0),
2323 ISEParams(ISEMODE_TRIT, 1),
2324 ISEParams(ISEMODE_PLAIN_BIT, 3),
2325 ISEParams(ISEMODE_QUINT, 1),
2326 ISEParams(ISEMODE_TRIT, 2),
2327 ISEParams(ISEMODE_PLAIN_BIT, 4),
2328 ISEParams(ISEMODE_QUINT, 2),
2329 ISEParams(ISEMODE_TRIT, 3),
2330 ISEParams(ISEMODE_PLAIN_BIT, 5)
2331 };
2332
generateRandomBlock(deUint8 * dst,const IVec3 & blockSize,de::Random & rnd)2333 void generateRandomBlock (deUint8* dst, const IVec3& blockSize, de::Random& rnd)
2334 {
2335 DE_ASSERT(blockSize.z() == 1);
2336
2337 if (rnd.getFloat() < 0.1f)
2338 {
2339 // Void extent block.
2340 const bool isVoidExtentHDR = rnd.getBool();
2341 const deUint16 r = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2342 const deUint16 g = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2343 const deUint16 b = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2344 const deUint16 a = isVoidExtentHDR ? deFloat32To16(rnd.getFloat(0.0f, 1.0f)) : (deUint16)rnd.getInt(0, 0xffff);
2345 generateVoidExtentBlock(VoidExtentParams(isVoidExtentHDR, r, g, b, a)).assignToMemory(dst);
2346 }
2347 else
2348 {
2349 // Not void extent block.
2350
2351 // Generate block params.
2352
2353 NormalBlockParams blockParams;
2354
2355 do
2356 {
2357 blockParams.weightGridWidth = rnd.getInt(2, blockSize.x());
2358 blockParams.weightGridHeight = rnd.getInt(2, blockSize.y());
2359 blockParams.weightISEParams = s_weightISEParamsCandidates[rnd.getInt(0, DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates)-1)];
2360 blockParams.numPartitions = rnd.getInt(1, 4);
2361 blockParams.isMultiPartSingleCemMode = rnd.getFloat() < 0.25f;
2362 blockParams.isDualPlane = blockParams.numPartitions != 4 && rnd.getBool();
2363 blockParams.ccs = rnd.getInt(0, 3);
2364 blockParams.partitionSeed = rnd.getInt(0, 1023);
2365
2366 blockParams.colorEndpointModes[0] = rnd.getInt(0, 15);
2367
2368 {
2369 const int cemDiff = blockParams.isMultiPartSingleCemMode ? 0
2370 : blockParams.colorEndpointModes[0] == 0 ? 1
2371 : blockParams.colorEndpointModes[0] == 15 ? -1
2372 : rnd.getBool() ? 1 : -1;
2373
2374 for (int i = 1; i < blockParams.numPartitions; i++)
2375 blockParams.colorEndpointModes[i] = blockParams.colorEndpointModes[0] + (cemDiff == -1 ? rnd.getInt(-1, 0) : cemDiff == 1 ? rnd.getInt(0, 1) : 0);
2376 }
2377 } while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()));
2378
2379 // Generate ISE inputs for both weight and endpoint data.
2380
2381 NormalBlockISEInputs iseInputs;
2382
2383 for (int weightOrEndpoints = 0; weightOrEndpoints <= 1; weightOrEndpoints++)
2384 {
2385 const bool setWeights = weightOrEndpoints == 0;
2386 const int numValues = setWeights ? computeNumWeights(blockParams) :
2387 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], blockParams.numPartitions, blockParams.isMultiPartSingleCemMode);
2388 const ISEParams iseParams = setWeights ? blockParams.weightISEParams : computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams), numValues);
2389 ISEInput& iseInput = setWeights ? iseInputs.weight : iseInputs.endpoint;
2390
2391 iseInput.isGivenInBlockForm = rnd.getBool();
2392
2393 if (iseInput.isGivenInBlockForm)
2394 {
2395 const int numValuesPerISEBlock = iseParams.mode == ISEMODE_TRIT ? 5
2396 : iseParams.mode == ISEMODE_QUINT ? 3
2397 : 1;
2398 const int iseBitMax = (1 << iseParams.numBits) - 1;
2399 const int numISEBlocks = deDivRoundUp32(numValues, numValuesPerISEBlock);
2400
2401 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocks; iseBlockNdx++)
2402 {
2403 iseInput.value.block[iseBlockNdx].tOrQValue = rnd.getInt(0, 255);
2404 for (int i = 0; i < numValuesPerISEBlock; i++)
2405 iseInput.value.block[iseBlockNdx].bitValues[i] = rnd.getInt(0, iseBitMax);
2406 }
2407 }
2408 else
2409 {
2410 const int rangeMax = computeISERangeMax(iseParams);
2411
2412 for (int valueNdx = 0; valueNdx < numValues; valueNdx++)
2413 iseInput.value.plain[valueNdx] = rnd.getInt(0, rangeMax);
2414 }
2415 }
2416
2417 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).assignToMemory(dst);
2418 }
2419 }
2420
2421 } // anonymous
2422
2423 // Generate block data for a given BlockTestType and format.
generateBlockCaseTestData(vector<deUint8> & dst,CompressedTexFormat format,BlockTestType testType)2424 void generateBlockCaseTestData (vector<deUint8>& dst, CompressedTexFormat format, BlockTestType testType)
2425 {
2426 DE_ASSERT(isAstcFormat(format));
2427 DE_ASSERT(!(isAstcSRGBFormat(format) && isBlockTestTypeHDROnly(testType)));
2428
2429 const IVec3 blockSize = getBlockPixelSize(format);
2430 DE_ASSERT(blockSize.z() == 1);
2431
2432 switch (testType)
2433 {
2434 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR:
2435 // Generate a gradient-like set of LDR void-extent blocks.
2436 {
2437 const int numBlocks = 1<<13;
2438 const deUint32 numValues = 1<<16;
2439 dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2440
2441 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2442 {
2443 const deUint32 baseValue = blockNdx*(numValues-1) / (numBlocks-1);
2444 const deUint16 r = (deUint16)((baseValue + numValues*0/4) % numValues);
2445 const deUint16 g = (deUint16)((baseValue + numValues*1/4) % numValues);
2446 const deUint16 b = (deUint16)((baseValue + numValues*2/4) % numValues);
2447 const deUint16 a = (deUint16)((baseValue + numValues*3/4) % numValues);
2448 AssignBlock128 block;
2449
2450 generateVoidExtentBlock(VoidExtentParams(false, r, g, b, a)).pushBytesToVector(dst);
2451 }
2452
2453 break;
2454 }
2455
2456 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR:
2457 // Generate a gradient-like set of HDR void-extent blocks, with values ranging from the largest finite negative to largest finite positive of fp16.
2458 {
2459 const float minValue = -65504.0f;
2460 const float maxValue = +65504.0f;
2461 const int numBlocks = 1<<13;
2462 dst.reserve(numBlocks*BLOCK_SIZE_BYTES);
2463
2464 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2465 {
2466 const int rNdx = (blockNdx + numBlocks*0/4) % numBlocks;
2467 const int gNdx = (blockNdx + numBlocks*1/4) % numBlocks;
2468 const int bNdx = (blockNdx + numBlocks*2/4) % numBlocks;
2469 const int aNdx = (blockNdx + numBlocks*3/4) % numBlocks;
2470 const deFloat16 r = deFloat32To16(minValue + (float)rNdx * (maxValue - minValue) / (float)(numBlocks-1));
2471 const deFloat16 g = deFloat32To16(minValue + (float)gNdx * (maxValue - minValue) / (float)(numBlocks-1));
2472 const deFloat16 b = deFloat32To16(minValue + (float)bNdx * (maxValue - minValue) / (float)(numBlocks-1));
2473 const deFloat16 a = deFloat32To16(minValue + (float)aNdx * (maxValue - minValue) / (float)(numBlocks-1));
2474
2475 generateVoidExtentBlock(VoidExtentParams(true, r, g, b, a)).pushBytesToVector(dst);
2476 }
2477
2478 break;
2479 }
2480
2481 case BLOCK_TEST_TYPE_WEIGHT_GRID:
2482 // Generate different combinations of plane count, weight ISE params, and grid size.
2483 {
2484 for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++)
2485 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2486 for (int weightGridWidth = 2; weightGridWidth <= 12; weightGridWidth++)
2487 for (int weightGridHeight = 2; weightGridHeight <= 12; weightGridHeight++)
2488 {
2489 NormalBlockParams blockParams;
2490 NormalBlockISEInputs iseInputs;
2491
2492 blockParams.weightGridWidth = weightGridWidth;
2493 blockParams.weightGridHeight = weightGridHeight;
2494 blockParams.isDualPlane = isDualPlane != 0;
2495 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2496 blockParams.ccs = 0;
2497 blockParams.numPartitions = 1;
2498 blockParams.colorEndpointModes[0] = 0;
2499
2500 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2501 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2502 }
2503
2504 break;
2505 }
2506
2507 case BLOCK_TEST_TYPE_WEIGHT_ISE:
2508 // For each weight ISE param set, generate blocks that cover:
2509 // - each single value of the ISE's range, at each position inside an ISE block
2510 // - for trit and quint ISEs, each single T or Q value of an ISE block
2511 {
2512 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2513 {
2514 const ISEParams& iseParams = s_weightISEParamsCandidates[iseParamsNdx];
2515 NormalBlockParams blockParams;
2516
2517 blockParams.weightGridWidth = 4;
2518 blockParams.weightGridHeight = 4;
2519 blockParams.weightISEParams = iseParams;
2520 blockParams.numPartitions = 1;
2521 blockParams.isDualPlane = blockParams.weightGridWidth * blockParams.weightGridHeight < 24 ? true : false;
2522 blockParams.ccs = 0;
2523 blockParams.colorEndpointModes[0] = 0;
2524
2525 while (!isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2526 {
2527 blockParams.weightGridWidth--;
2528 blockParams.weightGridHeight--;
2529 }
2530
2531 const int numValuesInISEBlock = iseParams.mode == ISEMODE_TRIT ? 5 : iseParams.mode == ISEMODE_QUINT ? 3 : 1;
2532 const int numWeights = computeNumWeights(blockParams);
2533
2534 {
2535 const int numWeightValues = (int)computeISERangeMax(iseParams) + 1;
2536 const int numBlocks = deDivRoundUp32(numWeightValues, numWeights);
2537 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2538 iseInputs.weight.isGivenInBlockForm = false;
2539
2540 for (int offset = 0; offset < numValuesInISEBlock; offset++)
2541 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2542 {
2543 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2544 iseInputs.weight.value.plain[weightNdx] = (blockNdx*numWeights + weightNdx + offset) % numWeightValues;
2545
2546 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2547 }
2548 }
2549
2550 if (iseParams.mode == ISEMODE_TRIT || iseParams.mode == ISEMODE_QUINT)
2551 {
2552 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2553 iseInputs.weight.isGivenInBlockForm = true;
2554
2555 const int numTQValues = 1 << (iseParams.mode == ISEMODE_TRIT ? 8 : 7);
2556 const int numISEBlocksPerBlock = deDivRoundUp32(numWeights, numValuesInISEBlock);
2557 const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2558
2559 for (int offset = 0; offset < numValuesInISEBlock; offset++)
2560 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2561 {
2562 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2563 {
2564 for (int i = 0; i < numValuesInISEBlock; i++)
2565 iseInputs.weight.value.block[iseBlockNdx].bitValues[i] = 0;
2566 iseInputs.weight.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2567 }
2568
2569 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2570 }
2571 }
2572 }
2573
2574 break;
2575 }
2576
2577 case BLOCK_TEST_TYPE_CEMS:
2578 // For each plane count & partition count combination, generate all color endpoint mode combinations.
2579 {
2580 for (int isDualPlane = 0; isDualPlane <= 1; isDualPlane++)
2581 for (int numPartitions = 1; numPartitions <= (isDualPlane != 0 ? 3 : 4); numPartitions++)
2582 {
2583 // Multi-partition, single-CEM mode.
2584 if (numPartitions > 1)
2585 {
2586 for (deUint32 singleCem = 0; singleCem < 16; singleCem++)
2587 {
2588 NormalBlockParams blockParams;
2589 blockParams.weightGridWidth = 4;
2590 blockParams.weightGridHeight = 4;
2591 blockParams.isDualPlane = isDualPlane != 0;
2592 blockParams.ccs = 0;
2593 blockParams.numPartitions = numPartitions;
2594 blockParams.isMultiPartSingleCemMode = true;
2595 blockParams.colorEndpointModes[0] = singleCem;
2596 blockParams.partitionSeed = 634;
2597
2598 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2599 {
2600 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2601 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2602 {
2603 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2604 break;
2605 }
2606 }
2607 }
2608 }
2609
2610 // Separate-CEM mode.
2611 for (deUint32 cem0 = 0; cem0 < 16; cem0++)
2612 for (deUint32 cem1 = 0; cem1 < (numPartitions >= 2 ? 16u : 1u); cem1++)
2613 for (deUint32 cem2 = 0; cem2 < (numPartitions >= 3 ? 16u : 1u); cem2++)
2614 for (deUint32 cem3 = 0; cem3 < (numPartitions >= 4 ? 16u : 1u); cem3++)
2615 {
2616 NormalBlockParams blockParams;
2617 blockParams.weightGridWidth = 4;
2618 blockParams.weightGridHeight = 4;
2619 blockParams.isDualPlane = isDualPlane != 0;
2620 blockParams.ccs = 0;
2621 blockParams.numPartitions = numPartitions;
2622 blockParams.isMultiPartSingleCemMode = false;
2623 blockParams.colorEndpointModes[0] = cem0;
2624 blockParams.colorEndpointModes[1] = cem1;
2625 blockParams.colorEndpointModes[2] = cem2;
2626 blockParams.colorEndpointModes[3] = cem3;
2627 blockParams.partitionSeed = 634;
2628
2629 {
2630 const deUint32 minCem = *std::min_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2631 const deUint32 maxCem = *std::max_element(&blockParams.colorEndpointModes[0], &blockParams.colorEndpointModes[numPartitions]);
2632 const deUint32 minCemClass = minCem/4;
2633 const deUint32 maxCemClass = maxCem/4;
2634
2635 if (maxCemClass - minCemClass > 1)
2636 continue;
2637 }
2638
2639 for (int iseParamsNdx = 0; iseParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); iseParamsNdx++)
2640 {
2641 blockParams.weightISEParams = s_weightISEParamsCandidates[iseParamsNdx];
2642 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2643 {
2644 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2645 break;
2646 }
2647 }
2648 }
2649 }
2650
2651 break;
2652 }
2653
2654 case BLOCK_TEST_TYPE_PARTITION_SEED:
2655 // Test all partition seeds ("partition pattern indices").
2656 {
2657 for (int numPartitions = 2; numPartitions <= 4; numPartitions++)
2658 for (deUint32 partitionSeed = 0; partitionSeed < 1<<10; partitionSeed++)
2659 {
2660 NormalBlockParams blockParams;
2661 blockParams.weightGridWidth = 4;
2662 blockParams.weightGridHeight = 4;
2663 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
2664 blockParams.isDualPlane = false;
2665 blockParams.numPartitions = numPartitions;
2666 blockParams.isMultiPartSingleCemMode = true;
2667 blockParams.colorEndpointModes[0] = 0;
2668 blockParams.partitionSeed = partitionSeed;
2669
2670 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2671 }
2672
2673 break;
2674 }
2675
2676 // \note Fall-through.
2677 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR:
2678 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15:
2679 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15:
2680 // For each endpoint mode, for each pair of components in the endpoint value, test 10x10 combinations of values for that pair.
2681 // \note Separate modes for HDR and mode 15 due to different color scales and biases.
2682 {
2683 for (deUint32 cem = 0; cem < 16; cem++)
2684 {
2685 const bool isHDRCem = cem == 2 ||
2686 cem == 3 ||
2687 cem == 7 ||
2688 cem == 11 ||
2689 cem == 14 ||
2690 cem == 15;
2691
2692 if ((testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR && isHDRCem) ||
2693 (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 && (!isHDRCem || cem == 15)) ||
2694 (testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15 && cem != 15))
2695 continue;
2696
2697 NormalBlockParams blockParams;
2698 blockParams.weightGridWidth = 3;
2699 blockParams.weightGridHeight = 4;
2700 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
2701 blockParams.isDualPlane = false;
2702 blockParams.numPartitions = 1;
2703 blockParams.colorEndpointModes[0] = cem;
2704
2705 {
2706 const int numBitsForEndpoints = computeNumBitsForColorEndpoints(blockParams);
2707 const int numEndpointParts = computeNumColorEndpointValues(cem);
2708 const ISEParams endpointISE = computeMaximumRangeISEParams(numBitsForEndpoints, numEndpointParts);
2709 const int endpointISERangeMax = computeISERangeMax(endpointISE);
2710
2711 for (int endpointPartNdx0 = 0; endpointPartNdx0 < numEndpointParts; endpointPartNdx0++)
2712 for (int endpointPartNdx1 = endpointPartNdx0+1; endpointPartNdx1 < numEndpointParts; endpointPartNdx1++)
2713 {
2714 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2715 const int numEndpointValues = de::min(10, endpointISERangeMax+1);
2716
2717 for (int endpointValueNdx0 = 0; endpointValueNdx0 < numEndpointValues; endpointValueNdx0++)
2718 for (int endpointValueNdx1 = 0; endpointValueNdx1 < numEndpointValues; endpointValueNdx1++)
2719 {
2720 const int endpointValue0 = endpointValueNdx0 * endpointISERangeMax / (numEndpointValues-1);
2721 const int endpointValue1 = endpointValueNdx1 * endpointISERangeMax / (numEndpointValues-1);
2722
2723 iseInputs.endpoint.value.plain[endpointPartNdx0] = endpointValue0;
2724 iseInputs.endpoint.value.plain[endpointPartNdx1] = endpointValue1;
2725
2726 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2727 }
2728 }
2729 }
2730 }
2731
2732 break;
2733 }
2734
2735 case BLOCK_TEST_TYPE_ENDPOINT_ISE:
2736 // Similar to BLOCK_TEST_TYPE_WEIGHT_ISE, see above.
2737 {
2738 static const deUint32 endpointRangeMaximums[] = { 5, 9, 11, 19, 23, 39, 47, 79, 95, 159, 191 };
2739
2740 for (int endpointRangeNdx = 0; endpointRangeNdx < DE_LENGTH_OF_ARRAY(endpointRangeMaximums); endpointRangeNdx++)
2741 {
2742 bool validCaseGenerated = false;
2743
2744 for (int numPartitions = 1; !validCaseGenerated && numPartitions <= 4; numPartitions++)
2745 for (int isDual = 0; !validCaseGenerated && isDual <= 1; isDual++)
2746 for (int weightISEParamsNdx = 0; !validCaseGenerated && weightISEParamsNdx < DE_LENGTH_OF_ARRAY(s_weightISEParamsCandidates); weightISEParamsNdx++)
2747 for (int weightGridWidth = 2; !validCaseGenerated && weightGridWidth <= 12; weightGridWidth++)
2748 for (int weightGridHeight = 2; !validCaseGenerated && weightGridHeight <= 12; weightGridHeight++)
2749 {
2750 NormalBlockParams blockParams;
2751 blockParams.weightGridWidth = weightGridWidth;
2752 blockParams.weightGridHeight = weightGridHeight;
2753 blockParams.weightISEParams = s_weightISEParamsCandidates[weightISEParamsNdx];
2754 blockParams.isDualPlane = isDual != 0;
2755 blockParams.ccs = 0;
2756 blockParams.numPartitions = numPartitions;
2757 blockParams.isMultiPartSingleCemMode = true;
2758 blockParams.colorEndpointModes[0] = 12;
2759 blockParams.partitionSeed = 634;
2760
2761 if (isValidBlockParams(blockParams, blockSize.x(), blockSize.y()))
2762 {
2763 const ISEParams endpointISEParams = computeMaximumRangeISEParams(computeNumBitsForColorEndpoints(blockParams),
2764 computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, true));
2765
2766 if (computeISERangeMax(endpointISEParams) == endpointRangeMaximums[endpointRangeNdx])
2767 {
2768 validCaseGenerated = true;
2769
2770 const int numColorEndpoints = computeNumColorEndpointValues(&blockParams.colorEndpointModes[0], numPartitions, blockParams.isMultiPartSingleCemMode);
2771 const int numValuesInISEBlock = endpointISEParams.mode == ISEMODE_TRIT ? 5 : endpointISEParams.mode == ISEMODE_QUINT ? 3 : 1;
2772
2773 {
2774 const int numColorEndpointValues = (int)computeISERangeMax(endpointISEParams) + 1;
2775 const int numBlocks = deDivRoundUp32(numColorEndpointValues, numColorEndpoints);
2776 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2777 iseInputs.endpoint.isGivenInBlockForm = false;
2778
2779 for (int offset = 0; offset < numValuesInISEBlock; offset++)
2780 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2781 {
2782 for (int endpointNdx = 0; endpointNdx < numColorEndpoints; endpointNdx++)
2783 iseInputs.endpoint.value.plain[endpointNdx] = (blockNdx*numColorEndpoints + endpointNdx + offset) % numColorEndpointValues;
2784
2785 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2786 }
2787 }
2788
2789 if (endpointISEParams.mode == ISEMODE_TRIT || endpointISEParams.mode == ISEMODE_QUINT)
2790 {
2791 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2792 iseInputs.endpoint.isGivenInBlockForm = true;
2793
2794 const int numTQValues = 1 << (endpointISEParams.mode == ISEMODE_TRIT ? 8 : 7);
2795 const int numISEBlocksPerBlock = deDivRoundUp32(numColorEndpoints, numValuesInISEBlock);
2796 const int numBlocks = deDivRoundUp32(numTQValues, numISEBlocksPerBlock);
2797
2798 for (int offset = 0; offset < numValuesInISEBlock; offset++)
2799 for (int blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2800 {
2801 for (int iseBlockNdx = 0; iseBlockNdx < numISEBlocksPerBlock; iseBlockNdx++)
2802 {
2803 for (int i = 0; i < numValuesInISEBlock; i++)
2804 iseInputs.endpoint.value.block[iseBlockNdx].bitValues[i] = 0;
2805 iseInputs.endpoint.value.block[iseBlockNdx].tOrQValue = (blockNdx*numISEBlocksPerBlock + iseBlockNdx + offset) % numTQValues;
2806 }
2807
2808 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), iseInputs).pushBytesToVector(dst);
2809 }
2810 }
2811 }
2812 }
2813 }
2814
2815 DE_ASSERT(validCaseGenerated);
2816 }
2817
2818 break;
2819 }
2820
2821 case BLOCK_TEST_TYPE_CCS:
2822 // For all partition counts, test all values of the CCS (color component selector).
2823 {
2824 for (int numPartitions = 1; numPartitions <= 3; numPartitions++)
2825 for (deUint32 ccs = 0; ccs < 4; ccs++)
2826 {
2827 NormalBlockParams blockParams;
2828 blockParams.weightGridWidth = 3;
2829 blockParams.weightGridHeight = 3;
2830 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 2);
2831 blockParams.isDualPlane = true;
2832 blockParams.ccs = ccs;
2833 blockParams.numPartitions = numPartitions;
2834 blockParams.isMultiPartSingleCemMode = true;
2835 blockParams.colorEndpointModes[0] = 8;
2836 blockParams.partitionSeed = 634;
2837
2838 generateNormalBlock(blockParams, blockSize.x(), blockSize.y(), generateDefaultISEInputs(blockParams)).pushBytesToVector(dst);
2839 }
2840
2841 break;
2842 }
2843
2844 case BLOCK_TEST_TYPE_RANDOM:
2845 // Generate a number of random (including invalid) blocks.
2846 {
2847 const int numBlocks = 16384;
2848 const deUint32 seed = 1;
2849
2850 dst.resize(numBlocks*BLOCK_SIZE_BYTES);
2851
2852 generateRandomBlocks(&dst[0], numBlocks, format, seed);
2853
2854 break;
2855 }
2856
2857 default:
2858 DE_ASSERT(false);
2859 }
2860 }
2861
generateRandomBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,deUint32 seed)2862 void generateRandomBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, deUint32 seed)
2863 {
2864 const IVec3 blockSize = getBlockPixelSize(format);
2865 de::Random rnd (seed);
2866 size_t numBlocksGenerated = 0;
2867
2868 DE_ASSERT(isAstcFormat(format));
2869 DE_ASSERT(blockSize.z() == 1);
2870
2871 for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2872 {
2873 deUint8* const curBlockPtr = dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2874
2875 generateRandomBlock(curBlockPtr, blockSize, rnd);
2876 }
2877 }
2878
generateRandomValidBlocks(deUint8 * dst,size_t numBlocks,CompressedTexFormat format,TexDecompressionParams::AstcMode mode,deUint32 seed)2879 void generateRandomValidBlocks (deUint8* dst, size_t numBlocks, CompressedTexFormat format, TexDecompressionParams::AstcMode mode, deUint32 seed)
2880 {
2881 const IVec3 blockSize = getBlockPixelSize(format);
2882 de::Random rnd (seed);
2883 size_t numBlocksGenerated = 0;
2884
2885 DE_ASSERT(isAstcFormat(format));
2886 DE_ASSERT(blockSize.z() == 1);
2887
2888 for (numBlocksGenerated = 0; numBlocksGenerated < numBlocks; numBlocksGenerated++)
2889 {
2890 deUint8* const curBlockPtr = dst + numBlocksGenerated*BLOCK_SIZE_BYTES;
2891
2892 do
2893 {
2894 generateRandomBlock(curBlockPtr, blockSize, rnd);
2895 } while (!isValidBlock(curBlockPtr, format, mode));
2896 }
2897 }
2898
2899 // Generate a number of trivial dummy blocks to fill unneeded space in a texture.
generateDummyVoidExtentBlocks(deUint8 * dst,size_t numBlocks)2900 void generateDummyVoidExtentBlocks (deUint8* dst, size_t numBlocks)
2901 {
2902 AssignBlock128 block = generateVoidExtentBlock(VoidExtentParams(false, 0, 0, 0, 0));
2903 for (size_t ndx = 0; ndx < numBlocks; ndx++)
2904 block.assignToMemory(&dst[ndx * BLOCK_SIZE_BYTES]);
2905 }
2906
generateDummyNormalBlocks(deUint8 * dst,size_t numBlocks,int blockWidth,int blockHeight)2907 void generateDummyNormalBlocks (deUint8* dst, size_t numBlocks, int blockWidth, int blockHeight)
2908 {
2909 NormalBlockParams blockParams;
2910
2911 blockParams.weightGridWidth = 3;
2912 blockParams.weightGridHeight = 3;
2913 blockParams.weightISEParams = ISEParams(ISEMODE_PLAIN_BIT, 5);
2914 blockParams.isDualPlane = false;
2915 blockParams.numPartitions = 1;
2916 blockParams.colorEndpointModes[0] = 8;
2917
2918 NormalBlockISEInputs iseInputs = generateDefaultISEInputs(blockParams);
2919 iseInputs.weight.isGivenInBlockForm = false;
2920
2921 const int numWeights = computeNumWeights(blockParams);
2922 const int weightRangeMax = computeISERangeMax(blockParams.weightISEParams);
2923
2924 for (size_t blockNdx = 0; blockNdx < numBlocks; blockNdx++)
2925 {
2926 for (int weightNdx = 0; weightNdx < numWeights; weightNdx++)
2927 iseInputs.weight.value.plain[weightNdx] = (deUint32)((blockNdx*numWeights + weightNdx) * weightRangeMax / (numBlocks*numWeights-1));
2928
2929 generateNormalBlock(blockParams, blockWidth, blockHeight, iseInputs).assignToMemory(dst + blockNdx*BLOCK_SIZE_BYTES);
2930 }
2931 }
2932
isValidBlock(const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2933 bool isValidBlock (const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2934 {
2935 const tcu::IVec3 blockPixelSize = getBlockPixelSize(format);
2936 const bool isSRGB = isAstcSRGBFormat(format);
2937 const bool isLDR = isSRGB || mode == TexDecompressionParams::ASTCMODE_LDR;
2938
2939 // sRGB is not supported in HDR mode
2940 DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGB));
2941
2942 union
2943 {
2944 deUint8 sRGB[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2945 float linear[MAX_BLOCK_WIDTH*MAX_BLOCK_HEIGHT*4];
2946 } tmpBuffer;
2947 const Block128 blockData (data);
2948 const DecompressResult result = decompressBlock((isSRGB ? (void*)&tmpBuffer.sRGB[0] : (void*)&tmpBuffer.linear[0]),
2949 blockData, blockPixelSize.x(), blockPixelSize.y(), isSRGB, isLDR);
2950
2951 return result == DECOMPRESS_RESULT_VALID_BLOCK;
2952 }
2953
decompress(const PixelBufferAccess & dst,const deUint8 * data,CompressedTexFormat format,TexDecompressionParams::AstcMode mode)2954 void decompress (const PixelBufferAccess& dst, const deUint8* data, CompressedTexFormat format, TexDecompressionParams::AstcMode mode)
2955 {
2956 const bool isSRGBFormat = isAstcSRGBFormat(format);
2957
2958 #if defined(DE_DEBUG)
2959 const tcu::IVec3 blockPixelSize = getBlockPixelSize(format);
2960
2961 DE_ASSERT(dst.getWidth() == blockPixelSize.x() &&
2962 dst.getHeight() == blockPixelSize.y() &&
2963 dst.getDepth() == blockPixelSize.z());
2964 DE_ASSERT(mode == TexDecompressionParams::ASTCMODE_LDR || mode == TexDecompressionParams::ASTCMODE_HDR);
2965 #endif
2966
2967 // sRGB is not supported in HDR mode
2968 DE_ASSERT(!(mode == TexDecompressionParams::ASTCMODE_HDR && isSRGBFormat));
2969
2970 decompress(dst, data, isSRGBFormat, isSRGBFormat || mode == TexDecompressionParams::ASTCMODE_LDR);
2971 }
2972
getBlockTestTypeName(BlockTestType testType)2973 const char* getBlockTestTypeName (BlockTestType testType)
2974 {
2975 switch (testType)
2976 {
2977 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "void_extent_ldr";
2978 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "void_extent_hdr";
2979 case BLOCK_TEST_TYPE_WEIGHT_GRID: return "weight_grid";
2980 case BLOCK_TEST_TYPE_WEIGHT_ISE: return "weight_ise";
2981 case BLOCK_TEST_TYPE_CEMS: return "color_endpoint_modes";
2982 case BLOCK_TEST_TYPE_PARTITION_SEED: return "partition_pattern_index";
2983 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "endpoint_value_ldr";
2984 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "endpoint_value_hdr_cem_not_15";
2985 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "endpoint_value_hdr_cem_15";
2986 case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "endpoint_ise";
2987 case BLOCK_TEST_TYPE_CCS: return "color_component_selector";
2988 case BLOCK_TEST_TYPE_RANDOM: return "random";
2989 default:
2990 DE_ASSERT(false);
2991 return DE_NULL;
2992 }
2993 }
2994
getBlockTestTypeDescription(BlockTestType testType)2995 const char* getBlockTestTypeDescription (BlockTestType testType)
2996 {
2997 switch (testType)
2998 {
2999 case BLOCK_TEST_TYPE_VOID_EXTENT_LDR: return "Test void extent block, LDR mode";
3000 case BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return "Test void extent block, HDR mode";
3001 case BLOCK_TEST_TYPE_WEIGHT_GRID: return "Test combinations of plane count, weight integer sequence encoding parameters, and weight grid size";
3002 case BLOCK_TEST_TYPE_WEIGHT_ISE: return "Test different integer sequence encoding block values for weight grid";
3003 case BLOCK_TEST_TYPE_CEMS: return "Test different color endpoint mode combinations, combined with different plane and partition counts";
3004 case BLOCK_TEST_TYPE_PARTITION_SEED: return "Test different partition pattern indices";
3005 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_LDR: return "Test various combinations of each pair of color endpoint values, for each LDR color endpoint mode";
3006 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return "Test various combinations of each pair of color endpoint values, for each HDR color endpoint mode other than mode 15";
3007 case BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return "Test various combinations of each pair of color endpoint values, HDR color endpoint mode 15";
3008 case BLOCK_TEST_TYPE_ENDPOINT_ISE: return "Test different integer sequence encoding block values for color endpoints";
3009 case BLOCK_TEST_TYPE_CCS: return "Test color component selector, for different partition counts";
3010 case BLOCK_TEST_TYPE_RANDOM: return "Random block test";
3011 default:
3012 DE_ASSERT(false);
3013 return DE_NULL;
3014 }
3015 }
3016
isBlockTestTypeHDROnly(BlockTestType testType)3017 bool isBlockTestTypeHDROnly (BlockTestType testType)
3018 {
3019 return testType == BLOCK_TEST_TYPE_VOID_EXTENT_HDR ||
3020 testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15 ||
3021 testType == BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15;
3022 }
3023
getBlockTestTypeColorScale(BlockTestType testType)3024 Vec4 getBlockTestTypeColorScale (BlockTestType testType)
3025 {
3026 switch (testType)
3027 {
3028 case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f/65504.0f);
3029 case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_NO_15: return Vec4(1.0f/65504.0f, 1.0f/65504.0f, 1.0f/65504.0f, 1.0f);
3030 case tcu::astc::BLOCK_TEST_TYPE_ENDPOINT_VALUE_HDR_15: return Vec4(1.0f/65504.0f);
3031 default: return Vec4(1.0f);
3032 }
3033 }
3034
getBlockTestTypeColorBias(BlockTestType testType)3035 Vec4 getBlockTestTypeColorBias (BlockTestType testType)
3036 {
3037 switch (testType)
3038 {
3039 case tcu::astc::BLOCK_TEST_TYPE_VOID_EXTENT_HDR: return Vec4(0.5f);
3040 default: return Vec4(0.0f);
3041 }
3042 }
3043
3044 } // astc
3045 } // tcu
3046