1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 package android.view; 18 19 import static android.view.DisplayEventReceiver.VSYNC_SOURCE_APP; 20 import static android.view.DisplayEventReceiver.VSYNC_SOURCE_SURFACE_FLINGER; 21 22 import android.annotation.TestApi; 23 import android.annotation.UnsupportedAppUsage; 24 import android.graphics.FrameInfo; 25 import android.hardware.display.DisplayManagerGlobal; 26 import android.os.Build; 27 import android.os.Handler; 28 import android.os.Looper; 29 import android.os.Message; 30 import android.os.SystemClock; 31 import android.os.SystemProperties; 32 import android.os.Trace; 33 import android.util.Log; 34 import android.util.TimeUtils; 35 import android.view.animation.AnimationUtils; 36 37 import java.io.PrintWriter; 38 39 /** 40 * Coordinates the timing of animations, input and drawing. 41 * <p> 42 * The choreographer receives timing pulses (such as vertical synchronization) 43 * from the display subsystem then schedules work to occur as part of rendering 44 * the next display frame. 45 * </p><p> 46 * Applications typically interact with the choreographer indirectly using 47 * higher level abstractions in the animation framework or the view hierarchy. 48 * Here are some examples of things you can do using the higher-level APIs. 49 * </p> 50 * <ul> 51 * <li>To post an animation to be processed on a regular time basis synchronized with 52 * display frame rendering, use {@link android.animation.ValueAnimator#start}.</li> 53 * <li>To post a {@link Runnable} to be invoked once at the beginning of the next display 54 * frame, use {@link View#postOnAnimation}.</li> 55 * <li>To post a {@link Runnable} to be invoked once at the beginning of the next display 56 * frame after a delay, use {@link View#postOnAnimationDelayed}.</li> 57 * <li>To post a call to {@link View#invalidate()} to occur once at the beginning of the 58 * next display frame, use {@link View#postInvalidateOnAnimation()} or 59 * {@link View#postInvalidateOnAnimation(int, int, int, int)}.</li> 60 * <li>To ensure that the contents of a {@link View} scroll smoothly and are drawn in 61 * sync with display frame rendering, do nothing. This already happens automatically. 62 * {@link View#onDraw} will be called at the appropriate time.</li> 63 * </ul> 64 * <p> 65 * However, there are a few cases where you might want to use the functions of the 66 * choreographer directly in your application. Here are some examples. 67 * </p> 68 * <ul> 69 * <li>If your application does its rendering in a different thread, possibly using GL, 70 * or does not use the animation framework or view hierarchy at all 71 * and you want to ensure that it is appropriately synchronized with the display, then use 72 * {@link Choreographer#postFrameCallback}.</li> 73 * <li>... and that's about it.</li> 74 * </ul> 75 * <p> 76 * Each {@link Looper} thread has its own choreographer. Other threads can 77 * post callbacks to run on the choreographer but they will run on the {@link Looper} 78 * to which the choreographer belongs. 79 * </p> 80 */ 81 public final class Choreographer { 82 private static final String TAG = "Choreographer"; 83 84 // Prints debug messages about jank which was detected (low volume). 85 private static final boolean DEBUG_JANK = false; 86 87 // Prints debug messages about every frame and callback registered (high volume). 88 private static final boolean DEBUG_FRAMES = false; 89 90 // The default amount of time in ms between animation frames. 91 // When vsync is not enabled, we want to have some idea of how long we should 92 // wait before posting the next animation message. It is important that the 93 // default value be less than the true inter-frame delay on all devices to avoid 94 // situations where we might skip frames by waiting too long (we must compensate 95 // for jitter and hardware variations). Regardless of this value, the animation 96 // and display loop is ultimately rate-limited by how fast new graphics buffers can 97 // be dequeued. 98 private static final long DEFAULT_FRAME_DELAY = 10; 99 100 // The number of milliseconds between animation frames. 101 private static volatile long sFrameDelay = DEFAULT_FRAME_DELAY; 102 103 // Thread local storage for the choreographer. 104 private static final ThreadLocal<Choreographer> sThreadInstance = 105 new ThreadLocal<Choreographer>() { 106 @Override 107 protected Choreographer initialValue() { 108 Looper looper = Looper.myLooper(); 109 if (looper == null) { 110 throw new IllegalStateException("The current thread must have a looper!"); 111 } 112 Choreographer choreographer = new Choreographer(looper, VSYNC_SOURCE_APP); 113 if (looper == Looper.getMainLooper()) { 114 mMainInstance = choreographer; 115 } 116 return choreographer; 117 } 118 }; 119 120 private static volatile Choreographer mMainInstance; 121 122 // Thread local storage for the SF choreographer. 123 private static final ThreadLocal<Choreographer> sSfThreadInstance = 124 new ThreadLocal<Choreographer>() { 125 @Override 126 protected Choreographer initialValue() { 127 Looper looper = Looper.myLooper(); 128 if (looper == null) { 129 throw new IllegalStateException("The current thread must have a looper!"); 130 } 131 return new Choreographer(looper, VSYNC_SOURCE_SURFACE_FLINGER); 132 } 133 }; 134 135 // Enable/disable vsync for animations and drawing. 136 @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 123769497) 137 private static final boolean USE_VSYNC = SystemProperties.getBoolean( 138 "debug.choreographer.vsync", true); 139 140 // Enable/disable using the frame time instead of returning now. 141 private static final boolean USE_FRAME_TIME = SystemProperties.getBoolean( 142 "debug.choreographer.frametime", true); 143 144 // Set a limit to warn about skipped frames. 145 // Skipped frames imply jank. 146 private static final int SKIPPED_FRAME_WARNING_LIMIT = SystemProperties.getInt( 147 "debug.choreographer.skipwarning", 30); 148 149 private static final int MSG_DO_FRAME = 0; 150 private static final int MSG_DO_SCHEDULE_VSYNC = 1; 151 private static final int MSG_DO_SCHEDULE_CALLBACK = 2; 152 153 // All frame callbacks posted by applications have this token. 154 private static final Object FRAME_CALLBACK_TOKEN = new Object() { 155 public String toString() { return "FRAME_CALLBACK_TOKEN"; } 156 }; 157 158 @UnsupportedAppUsage(maxTargetSdk = Build.VERSION_CODES.P, trackingBug = 115609023) 159 private final Object mLock = new Object(); 160 161 private final Looper mLooper; 162 private final FrameHandler mHandler; 163 164 // The display event receiver can only be accessed by the looper thread to which 165 // it is attached. We take care to ensure that we post message to the looper 166 // if appropriate when interacting with the display event receiver. 167 @UnsupportedAppUsage 168 private final FrameDisplayEventReceiver mDisplayEventReceiver; 169 170 private CallbackRecord mCallbackPool; 171 172 @UnsupportedAppUsage 173 private final CallbackQueue[] mCallbackQueues; 174 175 private boolean mFrameScheduled; 176 private boolean mCallbacksRunning; 177 @UnsupportedAppUsage 178 private long mLastFrameTimeNanos; 179 @UnsupportedAppUsage 180 private long mFrameIntervalNanos; 181 private boolean mDebugPrintNextFrameTimeDelta; 182 private int mFPSDivisor = 1; 183 184 /** 185 * Contains information about the current frame for jank-tracking, 186 * mainly timings of key events along with a bit of metadata about 187 * view tree state 188 * 189 * TODO: Is there a better home for this? Currently Choreographer 190 * is the only one with CALLBACK_ANIMATION start time, hence why this 191 * resides here. 192 * 193 * @hide 194 */ 195 FrameInfo mFrameInfo = new FrameInfo(); 196 197 /** 198 * Must be kept in sync with CALLBACK_* ints below, used to index into this array. 199 * @hide 200 */ 201 private static final String[] CALLBACK_TRACE_TITLES = { 202 "input", "animation", "insets_animation", "traversal", "commit" 203 }; 204 205 /** 206 * Callback type: Input callback. Runs first. 207 * @hide 208 */ 209 public static final int CALLBACK_INPUT = 0; 210 211 /** 212 * Callback type: Animation callback. Runs before {@link #CALLBACK_INSETS_ANIMATION}. 213 * @hide 214 */ 215 @TestApi 216 public static final int CALLBACK_ANIMATION = 1; 217 218 /** 219 * Callback type: Animation callback to handle inset updates. This is separate from 220 * {@link #CALLBACK_ANIMATION} as we need to "gather" all inset animation updates via 221 * {@link WindowInsetsAnimationController#changeInsets} for multiple ongoing animations but then 222 * update the whole view system with a single callback to {@link View#dispatchWindowInsetsAnimationProgress} 223 * that contains all the combined updated insets. 224 * <p> 225 * Both input and animation may change insets, so we need to run this after these callbacks, but 226 * before traversals. 227 * <p> 228 * Runs before traversals. 229 * @hide 230 */ 231 public static final int CALLBACK_INSETS_ANIMATION = 2; 232 233 /** 234 * Callback type: Traversal callback. Handles layout and draw. Runs 235 * after all other asynchronous messages have been handled. 236 * @hide 237 */ 238 public static final int CALLBACK_TRAVERSAL = 3; 239 240 /** 241 * Callback type: Commit callback. Handles post-draw operations for the frame. 242 * Runs after traversal completes. The {@link #getFrameTime() frame time} reported 243 * during this callback may be updated to reflect delays that occurred while 244 * traversals were in progress in case heavy layout operations caused some frames 245 * to be skipped. The frame time reported during this callback provides a better 246 * estimate of the start time of the frame in which animations (and other updates 247 * to the view hierarchy state) actually took effect. 248 * @hide 249 */ 250 public static final int CALLBACK_COMMIT = 4; 251 252 private static final int CALLBACK_LAST = CALLBACK_COMMIT; 253 Choreographer(Looper looper, int vsyncSource)254 private Choreographer(Looper looper, int vsyncSource) { 255 mLooper = looper; 256 mHandler = new FrameHandler(looper); 257 mDisplayEventReceiver = USE_VSYNC 258 ? new FrameDisplayEventReceiver(looper, vsyncSource) 259 : null; 260 mLastFrameTimeNanos = Long.MIN_VALUE; 261 262 mFrameIntervalNanos = (long)(1000000000 / getRefreshRate()); 263 264 mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1]; 265 for (int i = 0; i <= CALLBACK_LAST; i++) { 266 mCallbackQueues[i] = new CallbackQueue(); 267 } 268 // b/68769804: For low FPS experiments. 269 setFPSDivisor(SystemProperties.getInt(ThreadedRenderer.DEBUG_FPS_DIVISOR, 1)); 270 } 271 getRefreshRate()272 private static float getRefreshRate() { 273 DisplayInfo di = DisplayManagerGlobal.getInstance().getDisplayInfo( 274 Display.DEFAULT_DISPLAY); 275 return di.getMode().getRefreshRate(); 276 } 277 278 /** 279 * Gets the choreographer for the calling thread. Must be called from 280 * a thread that already has a {@link android.os.Looper} associated with it. 281 * 282 * @return The choreographer for this thread. 283 * @throws IllegalStateException if the thread does not have a looper. 284 */ getInstance()285 public static Choreographer getInstance() { 286 return sThreadInstance.get(); 287 } 288 289 /** 290 * @hide 291 */ 292 @UnsupportedAppUsage getSfInstance()293 public static Choreographer getSfInstance() { 294 return sSfThreadInstance.get(); 295 } 296 297 /** 298 * @return The Choreographer of the main thread, if it exists, or {@code null} otherwise. 299 * @hide 300 */ getMainThreadInstance()301 public static Choreographer getMainThreadInstance() { 302 return mMainInstance; 303 } 304 305 /** Destroys the calling thread's choreographer 306 * @hide 307 */ releaseInstance()308 public static void releaseInstance() { 309 Choreographer old = sThreadInstance.get(); 310 sThreadInstance.remove(); 311 old.dispose(); 312 } 313 dispose()314 private void dispose() { 315 mDisplayEventReceiver.dispose(); 316 } 317 318 /** 319 * The amount of time, in milliseconds, between each frame of the animation. 320 * <p> 321 * This is a requested time that the animation will attempt to honor, but the actual delay 322 * between frames may be different, depending on system load and capabilities. This is a static 323 * function because the same delay will be applied to all animations, since they are all 324 * run off of a single timing loop. 325 * </p><p> 326 * The frame delay may be ignored when the animation system uses an external timing 327 * source, such as the display refresh rate (vsync), to govern animations. 328 * </p> 329 * 330 * @return the requested time between frames, in milliseconds 331 * @hide 332 */ 333 @TestApi getFrameDelay()334 public static long getFrameDelay() { 335 return sFrameDelay; 336 } 337 338 /** 339 * The amount of time, in milliseconds, between each frame of the animation. 340 * <p> 341 * This is a requested time that the animation will attempt to honor, but the actual delay 342 * between frames may be different, depending on system load and capabilities. This is a static 343 * function because the same delay will be applied to all animations, since they are all 344 * run off of a single timing loop. 345 * </p><p> 346 * The frame delay may be ignored when the animation system uses an external timing 347 * source, such as the display refresh rate (vsync), to govern animations. 348 * </p> 349 * 350 * @param frameDelay the requested time between frames, in milliseconds 351 * @hide 352 */ 353 @TestApi setFrameDelay(long frameDelay)354 public static void setFrameDelay(long frameDelay) { 355 sFrameDelay = frameDelay; 356 } 357 358 /** 359 * Subtracts typical frame delay time from a delay interval in milliseconds. 360 * <p> 361 * This method can be used to compensate for animation delay times that have baked 362 * in assumptions about the frame delay. For example, it's quite common for code to 363 * assume a 60Hz frame time and bake in a 16ms delay. When we call 364 * {@link #postAnimationCallbackDelayed} we want to know how long to wait before 365 * posting the animation callback but let the animation timer take care of the remaining 366 * frame delay time. 367 * </p><p> 368 * This method is somewhat conservative about how much of the frame delay it 369 * subtracts. It uses the same value returned by {@link #getFrameDelay} which by 370 * default is 10ms even though many parts of the system assume 16ms. Consequently, 371 * we might still wait 6ms before posting an animation callback that we want to run 372 * on the next frame, but this is much better than waiting a whole 16ms and likely 373 * missing the deadline. 374 * </p> 375 * 376 * @param delayMillis The original delay time including an assumed frame delay. 377 * @return The adjusted delay time with the assumed frame delay subtracted out. 378 * @hide 379 */ subtractFrameDelay(long delayMillis)380 public static long subtractFrameDelay(long delayMillis) { 381 final long frameDelay = sFrameDelay; 382 return delayMillis <= frameDelay ? 0 : delayMillis - frameDelay; 383 } 384 385 /** 386 * @return The refresh rate as the nanoseconds between frames 387 * @hide 388 */ getFrameIntervalNanos()389 public long getFrameIntervalNanos() { 390 return mFrameIntervalNanos; 391 } 392 dump(String prefix, PrintWriter writer)393 void dump(String prefix, PrintWriter writer) { 394 String innerPrefix = prefix + " "; 395 writer.print(prefix); writer.println("Choreographer:"); 396 writer.print(innerPrefix); writer.print("mFrameScheduled="); 397 writer.println(mFrameScheduled); 398 writer.print(innerPrefix); writer.print("mLastFrameTime="); 399 writer.println(TimeUtils.formatUptime(mLastFrameTimeNanos / 1000000)); 400 } 401 402 /** 403 * Posts a callback to run on the next frame. 404 * <p> 405 * The callback runs once then is automatically removed. 406 * </p> 407 * 408 * @param callbackType The callback type. 409 * @param action The callback action to run during the next frame. 410 * @param token The callback token, or null if none. 411 * 412 * @see #removeCallbacks 413 * @hide 414 */ 415 @TestApi postCallback(int callbackType, Runnable action, Object token)416 public void postCallback(int callbackType, Runnable action, Object token) { 417 postCallbackDelayed(callbackType, action, token, 0); 418 } 419 420 /** 421 * Posts a callback to run on the next frame after the specified delay. 422 * <p> 423 * The callback runs once then is automatically removed. 424 * </p> 425 * 426 * @param callbackType The callback type. 427 * @param action The callback action to run during the next frame after the specified delay. 428 * @param token The callback token, or null if none. 429 * @param delayMillis The delay time in milliseconds. 430 * 431 * @see #removeCallback 432 * @hide 433 */ 434 @TestApi postCallbackDelayed(int callbackType, Runnable action, Object token, long delayMillis)435 public void postCallbackDelayed(int callbackType, 436 Runnable action, Object token, long delayMillis) { 437 if (action == null) { 438 throw new IllegalArgumentException("action must not be null"); 439 } 440 if (callbackType < 0 || callbackType > CALLBACK_LAST) { 441 throw new IllegalArgumentException("callbackType is invalid"); 442 } 443 444 postCallbackDelayedInternal(callbackType, action, token, delayMillis); 445 } 446 postCallbackDelayedInternal(int callbackType, Object action, Object token, long delayMillis)447 private void postCallbackDelayedInternal(int callbackType, 448 Object action, Object token, long delayMillis) { 449 if (DEBUG_FRAMES) { 450 Log.d(TAG, "PostCallback: type=" + callbackType 451 + ", action=" + action + ", token=" + token 452 + ", delayMillis=" + delayMillis); 453 } 454 455 synchronized (mLock) { 456 final long now = SystemClock.uptimeMillis(); 457 final long dueTime = now + delayMillis; 458 mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token); 459 460 if (dueTime <= now) { 461 scheduleFrameLocked(now); 462 } else { 463 Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action); 464 msg.arg1 = callbackType; 465 msg.setAsynchronous(true); 466 mHandler.sendMessageAtTime(msg, dueTime); 467 } 468 } 469 } 470 471 /** 472 * Removes callbacks that have the specified action and token. 473 * 474 * @param callbackType The callback type. 475 * @param action The action property of the callbacks to remove, or null to remove 476 * callbacks with any action. 477 * @param token The token property of the callbacks to remove, or null to remove 478 * callbacks with any token. 479 * 480 * @see #postCallback 481 * @see #postCallbackDelayed 482 * @hide 483 */ 484 @TestApi removeCallbacks(int callbackType, Runnable action, Object token)485 public void removeCallbacks(int callbackType, Runnable action, Object token) { 486 if (callbackType < 0 || callbackType > CALLBACK_LAST) { 487 throw new IllegalArgumentException("callbackType is invalid"); 488 } 489 490 removeCallbacksInternal(callbackType, action, token); 491 } 492 removeCallbacksInternal(int callbackType, Object action, Object token)493 private void removeCallbacksInternal(int callbackType, Object action, Object token) { 494 if (DEBUG_FRAMES) { 495 Log.d(TAG, "RemoveCallbacks: type=" + callbackType 496 + ", action=" + action + ", token=" + token); 497 } 498 499 synchronized (mLock) { 500 mCallbackQueues[callbackType].removeCallbacksLocked(action, token); 501 if (action != null && token == null) { 502 mHandler.removeMessages(MSG_DO_SCHEDULE_CALLBACK, action); 503 } 504 } 505 } 506 507 /** 508 * Posts a frame callback to run on the next frame. 509 * <p> 510 * The callback runs once then is automatically removed. 511 * </p> 512 * 513 * @param callback The frame callback to run during the next frame. 514 * 515 * @see #postFrameCallbackDelayed 516 * @see #removeFrameCallback 517 */ postFrameCallback(FrameCallback callback)518 public void postFrameCallback(FrameCallback callback) { 519 postFrameCallbackDelayed(callback, 0); 520 } 521 522 /** 523 * Posts a frame callback to run on the next frame after the specified delay. 524 * <p> 525 * The callback runs once then is automatically removed. 526 * </p> 527 * 528 * @param callback The frame callback to run during the next frame. 529 * @param delayMillis The delay time in milliseconds. 530 * 531 * @see #postFrameCallback 532 * @see #removeFrameCallback 533 */ postFrameCallbackDelayed(FrameCallback callback, long delayMillis)534 public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) { 535 if (callback == null) { 536 throw new IllegalArgumentException("callback must not be null"); 537 } 538 539 postCallbackDelayedInternal(CALLBACK_ANIMATION, 540 callback, FRAME_CALLBACK_TOKEN, delayMillis); 541 } 542 543 /** 544 * Removes a previously posted frame callback. 545 * 546 * @param callback The frame callback to remove. 547 * 548 * @see #postFrameCallback 549 * @see #postFrameCallbackDelayed 550 */ removeFrameCallback(FrameCallback callback)551 public void removeFrameCallback(FrameCallback callback) { 552 if (callback == null) { 553 throw new IllegalArgumentException("callback must not be null"); 554 } 555 556 removeCallbacksInternal(CALLBACK_ANIMATION, callback, FRAME_CALLBACK_TOKEN); 557 } 558 559 /** 560 * Gets the time when the current frame started. 561 * <p> 562 * This method provides the time in milliseconds when the frame started being rendered. 563 * The frame time provides a stable time base for synchronizing animations 564 * and drawing. It should be used instead of {@link SystemClock#uptimeMillis()} 565 * or {@link System#nanoTime()} for animations and drawing in the UI. Using the frame 566 * time helps to reduce inter-frame jitter because the frame time is fixed at the time 567 * the frame was scheduled to start, regardless of when the animations or drawing 568 * callback actually runs. All callbacks that run as part of rendering a frame will 569 * observe the same frame time so using the frame time also helps to synchronize effects 570 * that are performed by different callbacks. 571 * </p><p> 572 * Please note that the framework already takes care to process animations and 573 * drawing using the frame time as a stable time base. Most applications should 574 * not need to use the frame time information directly. 575 * </p><p> 576 * This method should only be called from within a callback. 577 * </p> 578 * 579 * @return The frame start time, in the {@link SystemClock#uptimeMillis()} time base. 580 * 581 * @throws IllegalStateException if no frame is in progress. 582 * @hide 583 */ 584 @UnsupportedAppUsage getFrameTime()585 public long getFrameTime() { 586 return getFrameTimeNanos() / TimeUtils.NANOS_PER_MS; 587 } 588 589 /** 590 * Same as {@link #getFrameTime()} but with nanosecond precision. 591 * 592 * @return The frame start time, in the {@link System#nanoTime()} time base. 593 * 594 * @throws IllegalStateException if no frame is in progress. 595 * @hide 596 */ 597 @UnsupportedAppUsage getFrameTimeNanos()598 public long getFrameTimeNanos() { 599 synchronized (mLock) { 600 if (!mCallbacksRunning) { 601 throw new IllegalStateException("This method must only be called as " 602 + "part of a callback while a frame is in progress."); 603 } 604 return USE_FRAME_TIME ? mLastFrameTimeNanos : System.nanoTime(); 605 } 606 } 607 608 /** 609 * Like {@link #getLastFrameTimeNanos}, but always returns the last frame time, not matter 610 * whether callbacks are currently running. 611 * @return The frame start time of the last frame, in the {@link System#nanoTime()} time base. 612 * @hide 613 */ getLastFrameTimeNanos()614 public long getLastFrameTimeNanos() { 615 synchronized (mLock) { 616 return USE_FRAME_TIME ? mLastFrameTimeNanos : System.nanoTime(); 617 } 618 } 619 scheduleFrameLocked(long now)620 private void scheduleFrameLocked(long now) { 621 if (!mFrameScheduled) { 622 mFrameScheduled = true; 623 if (USE_VSYNC) { 624 if (DEBUG_FRAMES) { 625 Log.d(TAG, "Scheduling next frame on vsync."); 626 } 627 628 // If running on the Looper thread, then schedule the vsync immediately, 629 // otherwise post a message to schedule the vsync from the UI thread 630 // as soon as possible. 631 if (isRunningOnLooperThreadLocked()) { 632 scheduleVsyncLocked(); 633 } else { 634 Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC); 635 msg.setAsynchronous(true); 636 mHandler.sendMessageAtFrontOfQueue(msg); 637 } 638 } else { 639 final long nextFrameTime = Math.max( 640 mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now); 641 if (DEBUG_FRAMES) { 642 Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms."); 643 } 644 Message msg = mHandler.obtainMessage(MSG_DO_FRAME); 645 msg.setAsynchronous(true); 646 mHandler.sendMessageAtTime(msg, nextFrameTime); 647 } 648 } 649 } 650 setFPSDivisor(int divisor)651 void setFPSDivisor(int divisor) { 652 if (divisor <= 0) divisor = 1; 653 mFPSDivisor = divisor; 654 ThreadedRenderer.setFPSDivisor(divisor); 655 } 656 657 @UnsupportedAppUsage doFrame(long frameTimeNanos, int frame)658 void doFrame(long frameTimeNanos, int frame) { 659 final long startNanos; 660 synchronized (mLock) { 661 if (!mFrameScheduled) { 662 return; // no work to do 663 } 664 665 if (DEBUG_JANK && mDebugPrintNextFrameTimeDelta) { 666 mDebugPrintNextFrameTimeDelta = false; 667 Log.d(TAG, "Frame time delta: " 668 + ((frameTimeNanos - mLastFrameTimeNanos) * 0.000001f) + " ms"); 669 } 670 671 long intendedFrameTimeNanos = frameTimeNanos; 672 startNanos = System.nanoTime(); 673 final long jitterNanos = startNanos - frameTimeNanos; 674 if (jitterNanos >= mFrameIntervalNanos) { 675 final long skippedFrames = jitterNanos / mFrameIntervalNanos; 676 if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) { 677 Log.i(TAG, "Skipped " + skippedFrames + " frames! " 678 + "The application may be doing too much work on its main thread."); 679 } 680 final long lastFrameOffset = jitterNanos % mFrameIntervalNanos; 681 if (DEBUG_JANK) { 682 Log.d(TAG, "Missed vsync by " + (jitterNanos * 0.000001f) + " ms " 683 + "which is more than the frame interval of " 684 + (mFrameIntervalNanos * 0.000001f) + " ms! " 685 + "Skipping " + skippedFrames + " frames and setting frame " 686 + "time to " + (lastFrameOffset * 0.000001f) + " ms in the past."); 687 } 688 frameTimeNanos = startNanos - lastFrameOffset; 689 } 690 691 if (frameTimeNanos < mLastFrameTimeNanos) { 692 if (DEBUG_JANK) { 693 Log.d(TAG, "Frame time appears to be going backwards. May be due to a " 694 + "previously skipped frame. Waiting for next vsync."); 695 } 696 scheduleVsyncLocked(); 697 return; 698 } 699 700 if (mFPSDivisor > 1) { 701 long timeSinceVsync = frameTimeNanos - mLastFrameTimeNanos; 702 if (timeSinceVsync < (mFrameIntervalNanos * mFPSDivisor) && timeSinceVsync > 0) { 703 scheduleVsyncLocked(); 704 return; 705 } 706 } 707 708 mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos); 709 mFrameScheduled = false; 710 mLastFrameTimeNanos = frameTimeNanos; 711 } 712 713 try { 714 Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame"); 715 AnimationUtils.lockAnimationClock(frameTimeNanos / TimeUtils.NANOS_PER_MS); 716 717 mFrameInfo.markInputHandlingStart(); 718 doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos); 719 720 mFrameInfo.markAnimationsStart(); 721 doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos); 722 doCallbacks(Choreographer.CALLBACK_INSETS_ANIMATION, frameTimeNanos); 723 724 mFrameInfo.markPerformTraversalsStart(); 725 doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos); 726 727 doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos); 728 } finally { 729 AnimationUtils.unlockAnimationClock(); 730 Trace.traceEnd(Trace.TRACE_TAG_VIEW); 731 } 732 733 if (DEBUG_FRAMES) { 734 final long endNanos = System.nanoTime(); 735 Log.d(TAG, "Frame " + frame + ": Finished, took " 736 + (endNanos - startNanos) * 0.000001f + " ms, latency " 737 + (startNanos - frameTimeNanos) * 0.000001f + " ms."); 738 } 739 } 740 doCallbacks(int callbackType, long frameTimeNanos)741 void doCallbacks(int callbackType, long frameTimeNanos) { 742 CallbackRecord callbacks; 743 synchronized (mLock) { 744 // We use "now" to determine when callbacks become due because it's possible 745 // for earlier processing phases in a frame to post callbacks that should run 746 // in a following phase, such as an input event that causes an animation to start. 747 final long now = System.nanoTime(); 748 callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked( 749 now / TimeUtils.NANOS_PER_MS); 750 if (callbacks == null) { 751 return; 752 } 753 mCallbacksRunning = true; 754 755 // Update the frame time if necessary when committing the frame. 756 // We only update the frame time if we are more than 2 frames late reaching 757 // the commit phase. This ensures that the frame time which is observed by the 758 // callbacks will always increase from one frame to the next and never repeat. 759 // We never want the next frame's starting frame time to end up being less than 760 // or equal to the previous frame's commit frame time. Keep in mind that the 761 // next frame has most likely already been scheduled by now so we play it 762 // safe by ensuring the commit time is always at least one frame behind. 763 if (callbackType == Choreographer.CALLBACK_COMMIT) { 764 final long jitterNanos = now - frameTimeNanos; 765 Trace.traceCounter(Trace.TRACE_TAG_VIEW, "jitterNanos", (int) jitterNanos); 766 if (jitterNanos >= 2 * mFrameIntervalNanos) { 767 final long lastFrameOffset = jitterNanos % mFrameIntervalNanos 768 + mFrameIntervalNanos; 769 if (DEBUG_JANK) { 770 Log.d(TAG, "Commit callback delayed by " + (jitterNanos * 0.000001f) 771 + " ms which is more than twice the frame interval of " 772 + (mFrameIntervalNanos * 0.000001f) + " ms! " 773 + "Setting frame time to " + (lastFrameOffset * 0.000001f) 774 + " ms in the past."); 775 mDebugPrintNextFrameTimeDelta = true; 776 } 777 frameTimeNanos = now - lastFrameOffset; 778 mLastFrameTimeNanos = frameTimeNanos; 779 } 780 } 781 } 782 try { 783 Trace.traceBegin(Trace.TRACE_TAG_VIEW, CALLBACK_TRACE_TITLES[callbackType]); 784 for (CallbackRecord c = callbacks; c != null; c = c.next) { 785 if (DEBUG_FRAMES) { 786 Log.d(TAG, "RunCallback: type=" + callbackType 787 + ", action=" + c.action + ", token=" + c.token 788 + ", latencyMillis=" + (SystemClock.uptimeMillis() - c.dueTime)); 789 } 790 c.run(frameTimeNanos); 791 } 792 } finally { 793 synchronized (mLock) { 794 mCallbacksRunning = false; 795 do { 796 final CallbackRecord next = callbacks.next; 797 recycleCallbackLocked(callbacks); 798 callbacks = next; 799 } while (callbacks != null); 800 } 801 Trace.traceEnd(Trace.TRACE_TAG_VIEW); 802 } 803 } 804 doScheduleVsync()805 void doScheduleVsync() { 806 synchronized (mLock) { 807 if (mFrameScheduled) { 808 scheduleVsyncLocked(); 809 } 810 } 811 } 812 doScheduleCallback(int callbackType)813 void doScheduleCallback(int callbackType) { 814 synchronized (mLock) { 815 if (!mFrameScheduled) { 816 final long now = SystemClock.uptimeMillis(); 817 if (mCallbackQueues[callbackType].hasDueCallbacksLocked(now)) { 818 scheduleFrameLocked(now); 819 } 820 } 821 } 822 } 823 824 @UnsupportedAppUsage scheduleVsyncLocked()825 private void scheduleVsyncLocked() { 826 mDisplayEventReceiver.scheduleVsync(); 827 } 828 isRunningOnLooperThreadLocked()829 private boolean isRunningOnLooperThreadLocked() { 830 return Looper.myLooper() == mLooper; 831 } 832 obtainCallbackLocked(long dueTime, Object action, Object token)833 private CallbackRecord obtainCallbackLocked(long dueTime, Object action, Object token) { 834 CallbackRecord callback = mCallbackPool; 835 if (callback == null) { 836 callback = new CallbackRecord(); 837 } else { 838 mCallbackPool = callback.next; 839 callback.next = null; 840 } 841 callback.dueTime = dueTime; 842 callback.action = action; 843 callback.token = token; 844 return callback; 845 } 846 recycleCallbackLocked(CallbackRecord callback)847 private void recycleCallbackLocked(CallbackRecord callback) { 848 callback.action = null; 849 callback.token = null; 850 callback.next = mCallbackPool; 851 mCallbackPool = callback; 852 } 853 854 /** 855 * Implement this interface to receive a callback when a new display frame is 856 * being rendered. The callback is invoked on the {@link Looper} thread to 857 * which the {@link Choreographer} is attached. 858 */ 859 public interface FrameCallback { 860 /** 861 * Called when a new display frame is being rendered. 862 * <p> 863 * This method provides the time in nanoseconds when the frame started being rendered. 864 * The frame time provides a stable time base for synchronizing animations 865 * and drawing. It should be used instead of {@link SystemClock#uptimeMillis()} 866 * or {@link System#nanoTime()} for animations and drawing in the UI. Using the frame 867 * time helps to reduce inter-frame jitter because the frame time is fixed at the time 868 * the frame was scheduled to start, regardless of when the animations or drawing 869 * callback actually runs. All callbacks that run as part of rendering a frame will 870 * observe the same frame time so using the frame time also helps to synchronize effects 871 * that are performed by different callbacks. 872 * </p><p> 873 * Please note that the framework already takes care to process animations and 874 * drawing using the frame time as a stable time base. Most applications should 875 * not need to use the frame time information directly. 876 * </p> 877 * 878 * @param frameTimeNanos The time in nanoseconds when the frame started being rendered, 879 * in the {@link System#nanoTime()} timebase. Divide this value by {@code 1000000} 880 * to convert it to the {@link SystemClock#uptimeMillis()} time base. 881 */ doFrame(long frameTimeNanos)882 public void doFrame(long frameTimeNanos); 883 } 884 885 private final class FrameHandler extends Handler { FrameHandler(Looper looper)886 public FrameHandler(Looper looper) { 887 super(looper); 888 } 889 890 @Override handleMessage(Message msg)891 public void handleMessage(Message msg) { 892 switch (msg.what) { 893 case MSG_DO_FRAME: 894 doFrame(System.nanoTime(), 0); 895 break; 896 case MSG_DO_SCHEDULE_VSYNC: 897 doScheduleVsync(); 898 break; 899 case MSG_DO_SCHEDULE_CALLBACK: 900 doScheduleCallback(msg.arg1); 901 break; 902 } 903 } 904 } 905 906 private final class FrameDisplayEventReceiver extends DisplayEventReceiver 907 implements Runnable { 908 private boolean mHavePendingVsync; 909 private long mTimestampNanos; 910 private int mFrame; 911 FrameDisplayEventReceiver(Looper looper, int vsyncSource)912 public FrameDisplayEventReceiver(Looper looper, int vsyncSource) { 913 super(looper, vsyncSource); 914 } 915 916 // TODO(b/116025192): physicalDisplayId is ignored because SF only emits VSYNC events for 917 // the internal display and DisplayEventReceiver#scheduleVsync only allows requesting VSYNC 918 // for the internal display implicitly. 919 @Override onVsync(long timestampNanos, long physicalDisplayId, int frame)920 public void onVsync(long timestampNanos, long physicalDisplayId, int frame) { 921 // Post the vsync event to the Handler. 922 // The idea is to prevent incoming vsync events from completely starving 923 // the message queue. If there are no messages in the queue with timestamps 924 // earlier than the frame time, then the vsync event will be processed immediately. 925 // Otherwise, messages that predate the vsync event will be handled first. 926 long now = System.nanoTime(); 927 if (timestampNanos > now) { 928 Log.w(TAG, "Frame time is " + ((timestampNanos - now) * 0.000001f) 929 + " ms in the future! Check that graphics HAL is generating vsync " 930 + "timestamps using the correct timebase."); 931 timestampNanos = now; 932 } 933 934 if (mHavePendingVsync) { 935 Log.w(TAG, "Already have a pending vsync event. There should only be " 936 + "one at a time."); 937 } else { 938 mHavePendingVsync = true; 939 } 940 941 mTimestampNanos = timestampNanos; 942 mFrame = frame; 943 Message msg = Message.obtain(mHandler, this); 944 msg.setAsynchronous(true); 945 mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS); 946 } 947 948 @Override run()949 public void run() { 950 mHavePendingVsync = false; 951 doFrame(mTimestampNanos, mFrame); 952 } 953 } 954 955 private static final class CallbackRecord { 956 public CallbackRecord next; 957 public long dueTime; 958 public Object action; // Runnable or FrameCallback 959 public Object token; 960 961 @UnsupportedAppUsage run(long frameTimeNanos)962 public void run(long frameTimeNanos) { 963 if (token == FRAME_CALLBACK_TOKEN) { 964 ((FrameCallback)action).doFrame(frameTimeNanos); 965 } else { 966 ((Runnable)action).run(); 967 } 968 } 969 } 970 971 private final class CallbackQueue { 972 private CallbackRecord mHead; 973 hasDueCallbacksLocked(long now)974 public boolean hasDueCallbacksLocked(long now) { 975 return mHead != null && mHead.dueTime <= now; 976 } 977 extractDueCallbacksLocked(long now)978 public CallbackRecord extractDueCallbacksLocked(long now) { 979 CallbackRecord callbacks = mHead; 980 if (callbacks == null || callbacks.dueTime > now) { 981 return null; 982 } 983 984 CallbackRecord last = callbacks; 985 CallbackRecord next = last.next; 986 while (next != null) { 987 if (next.dueTime > now) { 988 last.next = null; 989 break; 990 } 991 last = next; 992 next = next.next; 993 } 994 mHead = next; 995 return callbacks; 996 } 997 998 @UnsupportedAppUsage addCallbackLocked(long dueTime, Object action, Object token)999 public void addCallbackLocked(long dueTime, Object action, Object token) { 1000 CallbackRecord callback = obtainCallbackLocked(dueTime, action, token); 1001 CallbackRecord entry = mHead; 1002 if (entry == null) { 1003 mHead = callback; 1004 return; 1005 } 1006 if (dueTime < entry.dueTime) { 1007 callback.next = entry; 1008 mHead = callback; 1009 return; 1010 } 1011 while (entry.next != null) { 1012 if (dueTime < entry.next.dueTime) { 1013 callback.next = entry.next; 1014 break; 1015 } 1016 entry = entry.next; 1017 } 1018 entry.next = callback; 1019 } 1020 removeCallbacksLocked(Object action, Object token)1021 public void removeCallbacksLocked(Object action, Object token) { 1022 CallbackRecord predecessor = null; 1023 for (CallbackRecord callback = mHead; callback != null;) { 1024 final CallbackRecord next = callback.next; 1025 if ((action == null || callback.action == action) 1026 && (token == null || callback.token == token)) { 1027 if (predecessor != null) { 1028 predecessor.next = next; 1029 } else { 1030 mHead = next; 1031 } 1032 recycleCallbackLocked(callback); 1033 } else { 1034 predecessor = callback; 1035 } 1036 callback = next; 1037 } 1038 } 1039 } 1040 } 1041