1 //===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines common loop utility functions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/LoopUtils.h"
15 #include "llvm/ADT/ScopeExit.h"
16 #include "llvm/Analysis/AliasAnalysis.h"
17 #include "llvm/Analysis/BasicAliasAnalysis.h"
18 #include "llvm/Analysis/GlobalsModRef.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/MustExecute.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
25 #include "llvm/Analysis/ScalarEvolutionExpander.h"
26 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ValueHandle.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/KnownBits.h"
37 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
38
39 using namespace llvm;
40 using namespace llvm::PatternMatch;
41
42 #define DEBUG_TYPE "loop-utils"
43
areAllUsesIn(Instruction * I,SmallPtrSetImpl<Instruction * > & Set)44 bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
45 SmallPtrSetImpl<Instruction *> &Set) {
46 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
47 if (!Set.count(dyn_cast<Instruction>(*Use)))
48 return false;
49 return true;
50 }
51
isIntegerRecurrenceKind(RecurrenceKind Kind)52 bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) {
53 switch (Kind) {
54 default:
55 break;
56 case RK_IntegerAdd:
57 case RK_IntegerMult:
58 case RK_IntegerOr:
59 case RK_IntegerAnd:
60 case RK_IntegerXor:
61 case RK_IntegerMinMax:
62 return true;
63 }
64 return false;
65 }
66
isFloatingPointRecurrenceKind(RecurrenceKind Kind)67 bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) {
68 return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind);
69 }
70
isArithmeticRecurrenceKind(RecurrenceKind Kind)71 bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) {
72 switch (Kind) {
73 default:
74 break;
75 case RK_IntegerAdd:
76 case RK_IntegerMult:
77 case RK_FloatAdd:
78 case RK_FloatMult:
79 return true;
80 }
81 return false;
82 }
83
84 /// Determines if Phi may have been type-promoted. If Phi has a single user
85 /// that ANDs the Phi with a type mask, return the user. RT is updated to
86 /// account for the narrower bit width represented by the mask, and the AND
87 /// instruction is added to CI.
lookThroughAnd(PHINode * Phi,Type * & RT,SmallPtrSetImpl<Instruction * > & Visited,SmallPtrSetImpl<Instruction * > & CI)88 static Instruction *lookThroughAnd(PHINode *Phi, Type *&RT,
89 SmallPtrSetImpl<Instruction *> &Visited,
90 SmallPtrSetImpl<Instruction *> &CI) {
91 if (!Phi->hasOneUse())
92 return Phi;
93
94 const APInt *M = nullptr;
95 Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser());
96
97 // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT
98 // with a new integer type of the corresponding bit width.
99 if (match(J, m_c_And(m_Instruction(I), m_APInt(M)))) {
100 int32_t Bits = (*M + 1).exactLogBase2();
101 if (Bits > 0) {
102 RT = IntegerType::get(Phi->getContext(), Bits);
103 Visited.insert(Phi);
104 CI.insert(J);
105 return J;
106 }
107 }
108 return Phi;
109 }
110
111 /// Compute the minimal bit width needed to represent a reduction whose exit
112 /// instruction is given by Exit.
computeRecurrenceType(Instruction * Exit,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)113 static std::pair<Type *, bool> computeRecurrenceType(Instruction *Exit,
114 DemandedBits *DB,
115 AssumptionCache *AC,
116 DominatorTree *DT) {
117 bool IsSigned = false;
118 const DataLayout &DL = Exit->getModule()->getDataLayout();
119 uint64_t MaxBitWidth = DL.getTypeSizeInBits(Exit->getType());
120
121 if (DB) {
122 // Use the demanded bits analysis to determine the bits that are live out
123 // of the exit instruction, rounding up to the nearest power of two. If the
124 // use of demanded bits results in a smaller bit width, we know the value
125 // must be positive (i.e., IsSigned = false), because if this were not the
126 // case, the sign bit would have been demanded.
127 auto Mask = DB->getDemandedBits(Exit);
128 MaxBitWidth = Mask.getBitWidth() - Mask.countLeadingZeros();
129 }
130
131 if (MaxBitWidth == DL.getTypeSizeInBits(Exit->getType()) && AC && DT) {
132 // If demanded bits wasn't able to limit the bit width, we can try to use
133 // value tracking instead. This can be the case, for example, if the value
134 // may be negative.
135 auto NumSignBits = ComputeNumSignBits(Exit, DL, 0, AC, nullptr, DT);
136 auto NumTypeBits = DL.getTypeSizeInBits(Exit->getType());
137 MaxBitWidth = NumTypeBits - NumSignBits;
138 KnownBits Bits = computeKnownBits(Exit, DL);
139 if (!Bits.isNonNegative()) {
140 // If the value is not known to be non-negative, we set IsSigned to true,
141 // meaning that we will use sext instructions instead of zext
142 // instructions to restore the original type.
143 IsSigned = true;
144 if (!Bits.isNegative())
145 // If the value is not known to be negative, we don't known what the
146 // upper bit is, and therefore, we don't know what kind of extend we
147 // will need. In this case, just increase the bit width by one bit and
148 // use sext.
149 ++MaxBitWidth;
150 }
151 }
152 if (!isPowerOf2_64(MaxBitWidth))
153 MaxBitWidth = NextPowerOf2(MaxBitWidth);
154
155 return std::make_pair(Type::getIntNTy(Exit->getContext(), MaxBitWidth),
156 IsSigned);
157 }
158
159 /// Collect cast instructions that can be ignored in the vectorizer's cost
160 /// model, given a reduction exit value and the minimal type in which the
161 /// reduction can be represented.
collectCastsToIgnore(Loop * TheLoop,Instruction * Exit,Type * RecurrenceType,SmallPtrSetImpl<Instruction * > & Casts)162 static void collectCastsToIgnore(Loop *TheLoop, Instruction *Exit,
163 Type *RecurrenceType,
164 SmallPtrSetImpl<Instruction *> &Casts) {
165
166 SmallVector<Instruction *, 8> Worklist;
167 SmallPtrSet<Instruction *, 8> Visited;
168 Worklist.push_back(Exit);
169
170 while (!Worklist.empty()) {
171 Instruction *Val = Worklist.pop_back_val();
172 Visited.insert(Val);
173 if (auto *Cast = dyn_cast<CastInst>(Val))
174 if (Cast->getSrcTy() == RecurrenceType) {
175 // If the source type of a cast instruction is equal to the recurrence
176 // type, it will be eliminated, and should be ignored in the vectorizer
177 // cost model.
178 Casts.insert(Cast);
179 continue;
180 }
181
182 // Add all operands to the work list if they are loop-varying values that
183 // we haven't yet visited.
184 for (Value *O : cast<User>(Val)->operands())
185 if (auto *I = dyn_cast<Instruction>(O))
186 if (TheLoop->contains(I) && !Visited.count(I))
187 Worklist.push_back(I);
188 }
189 }
190
AddReductionVar(PHINode * Phi,RecurrenceKind Kind,Loop * TheLoop,bool HasFunNoNaNAttr,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)191 bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
192 Loop *TheLoop, bool HasFunNoNaNAttr,
193 RecurrenceDescriptor &RedDes,
194 DemandedBits *DB,
195 AssumptionCache *AC,
196 DominatorTree *DT) {
197 if (Phi->getNumIncomingValues() != 2)
198 return false;
199
200 // Reduction variables are only found in the loop header block.
201 if (Phi->getParent() != TheLoop->getHeader())
202 return false;
203
204 // Obtain the reduction start value from the value that comes from the loop
205 // preheader.
206 Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());
207
208 // ExitInstruction is the single value which is used outside the loop.
209 // We only allow for a single reduction value to be used outside the loop.
210 // This includes users of the reduction, variables (which form a cycle
211 // which ends in the phi node).
212 Instruction *ExitInstruction = nullptr;
213 // Indicates that we found a reduction operation in our scan.
214 bool FoundReduxOp = false;
215
216 // We start with the PHI node and scan for all of the users of this
217 // instruction. All users must be instructions that can be used as reduction
218 // variables (such as ADD). We must have a single out-of-block user. The cycle
219 // must include the original PHI.
220 bool FoundStartPHI = false;
221
222 // To recognize min/max patterns formed by a icmp select sequence, we store
223 // the number of instruction we saw from the recognized min/max pattern,
224 // to make sure we only see exactly the two instructions.
225 unsigned NumCmpSelectPatternInst = 0;
226 InstDesc ReduxDesc(false, nullptr);
227
228 // Data used for determining if the recurrence has been type-promoted.
229 Type *RecurrenceType = Phi->getType();
230 SmallPtrSet<Instruction *, 4> CastInsts;
231 Instruction *Start = Phi;
232 bool IsSigned = false;
233
234 SmallPtrSet<Instruction *, 8> VisitedInsts;
235 SmallVector<Instruction *, 8> Worklist;
236
237 // Return early if the recurrence kind does not match the type of Phi. If the
238 // recurrence kind is arithmetic, we attempt to look through AND operations
239 // resulting from the type promotion performed by InstCombine. Vector
240 // operations are not limited to the legal integer widths, so we may be able
241 // to evaluate the reduction in the narrower width.
242 if (RecurrenceType->isFloatingPointTy()) {
243 if (!isFloatingPointRecurrenceKind(Kind))
244 return false;
245 } else {
246 if (!isIntegerRecurrenceKind(Kind))
247 return false;
248 if (isArithmeticRecurrenceKind(Kind))
249 Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts);
250 }
251
252 Worklist.push_back(Start);
253 VisitedInsts.insert(Start);
254
255 // A value in the reduction can be used:
256 // - By the reduction:
257 // - Reduction operation:
258 // - One use of reduction value (safe).
259 // - Multiple use of reduction value (not safe).
260 // - PHI:
261 // - All uses of the PHI must be the reduction (safe).
262 // - Otherwise, not safe.
263 // - By instructions outside of the loop (safe).
264 // * One value may have several outside users, but all outside
265 // uses must be of the same value.
266 // - By an instruction that is not part of the reduction (not safe).
267 // This is either:
268 // * An instruction type other than PHI or the reduction operation.
269 // * A PHI in the header other than the initial PHI.
270 while (!Worklist.empty()) {
271 Instruction *Cur = Worklist.back();
272 Worklist.pop_back();
273
274 // No Users.
275 // If the instruction has no users then this is a broken chain and can't be
276 // a reduction variable.
277 if (Cur->use_empty())
278 return false;
279
280 bool IsAPhi = isa<PHINode>(Cur);
281
282 // A header PHI use other than the original PHI.
283 if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
284 return false;
285
286 // Reductions of instructions such as Div, and Sub is only possible if the
287 // LHS is the reduction variable.
288 if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
289 !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
290 !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
291 return false;
292
293 // Any reduction instruction must be of one of the allowed kinds. We ignore
294 // the starting value (the Phi or an AND instruction if the Phi has been
295 // type-promoted).
296 if (Cur != Start) {
297 ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
298 if (!ReduxDesc.isRecurrence())
299 return false;
300 }
301
302 // A reduction operation must only have one use of the reduction value.
303 if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
304 hasMultipleUsesOf(Cur, VisitedInsts))
305 return false;
306
307 // All inputs to a PHI node must be a reduction value.
308 if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
309 return false;
310
311 if (Kind == RK_IntegerMinMax &&
312 (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
313 ++NumCmpSelectPatternInst;
314 if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
315 ++NumCmpSelectPatternInst;
316
317 // Check whether we found a reduction operator.
318 FoundReduxOp |= !IsAPhi && Cur != Start;
319
320 // Process users of current instruction. Push non-PHI nodes after PHI nodes
321 // onto the stack. This way we are going to have seen all inputs to PHI
322 // nodes once we get to them.
323 SmallVector<Instruction *, 8> NonPHIs;
324 SmallVector<Instruction *, 8> PHIs;
325 for (User *U : Cur->users()) {
326 Instruction *UI = cast<Instruction>(U);
327
328 // Check if we found the exit user.
329 BasicBlock *Parent = UI->getParent();
330 if (!TheLoop->contains(Parent)) {
331 // If we already know this instruction is used externally, move on to
332 // the next user.
333 if (ExitInstruction == Cur)
334 continue;
335
336 // Exit if you find multiple values used outside or if the header phi
337 // node is being used. In this case the user uses the value of the
338 // previous iteration, in which case we would loose "VF-1" iterations of
339 // the reduction operation if we vectorize.
340 if (ExitInstruction != nullptr || Cur == Phi)
341 return false;
342
343 // The instruction used by an outside user must be the last instruction
344 // before we feed back to the reduction phi. Otherwise, we loose VF-1
345 // operations on the value.
346 if (!is_contained(Phi->operands(), Cur))
347 return false;
348
349 ExitInstruction = Cur;
350 continue;
351 }
352
353 // Process instructions only once (termination). Each reduction cycle
354 // value must only be used once, except by phi nodes and min/max
355 // reductions which are represented as a cmp followed by a select.
356 InstDesc IgnoredVal(false, nullptr);
357 if (VisitedInsts.insert(UI).second) {
358 if (isa<PHINode>(UI))
359 PHIs.push_back(UI);
360 else
361 NonPHIs.push_back(UI);
362 } else if (!isa<PHINode>(UI) &&
363 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
364 !isa<SelectInst>(UI)) ||
365 !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
366 return false;
367
368 // Remember that we completed the cycle.
369 if (UI == Phi)
370 FoundStartPHI = true;
371 }
372 Worklist.append(PHIs.begin(), PHIs.end());
373 Worklist.append(NonPHIs.begin(), NonPHIs.end());
374 }
375
376 // This means we have seen one but not the other instruction of the
377 // pattern or more than just a select and cmp.
378 if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
379 NumCmpSelectPatternInst != 2)
380 return false;
381
382 if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
383 return false;
384
385 if (Start != Phi) {
386 // If the starting value is not the same as the phi node, we speculatively
387 // looked through an 'and' instruction when evaluating a potential
388 // arithmetic reduction to determine if it may have been type-promoted.
389 //
390 // We now compute the minimal bit width that is required to represent the
391 // reduction. If this is the same width that was indicated by the 'and', we
392 // can represent the reduction in the smaller type. The 'and' instruction
393 // will be eliminated since it will essentially be a cast instruction that
394 // can be ignore in the cost model. If we compute a different type than we
395 // did when evaluating the 'and', the 'and' will not be eliminated, and we
396 // will end up with different kinds of operations in the recurrence
397 // expression (e.g., RK_IntegerAND, RK_IntegerADD). We give up if this is
398 // the case.
399 //
400 // The vectorizer relies on InstCombine to perform the actual
401 // type-shrinking. It does this by inserting instructions to truncate the
402 // exit value of the reduction to the width indicated by RecurrenceType and
403 // then extend this value back to the original width. If IsSigned is false,
404 // a 'zext' instruction will be generated; otherwise, a 'sext' will be
405 // used.
406 //
407 // TODO: We should not rely on InstCombine to rewrite the reduction in the
408 // smaller type. We should just generate a correctly typed expression
409 // to begin with.
410 Type *ComputedType;
411 std::tie(ComputedType, IsSigned) =
412 computeRecurrenceType(ExitInstruction, DB, AC, DT);
413 if (ComputedType != RecurrenceType)
414 return false;
415
416 // The recurrence expression will be represented in a narrower type. If
417 // there are any cast instructions that will be unnecessary, collect them
418 // in CastInsts. Note that the 'and' instruction was already included in
419 // this list.
420 //
421 // TODO: A better way to represent this may be to tag in some way all the
422 // instructions that are a part of the reduction. The vectorizer cost
423 // model could then apply the recurrence type to these instructions,
424 // without needing a white list of instructions to ignore.
425 collectCastsToIgnore(TheLoop, ExitInstruction, RecurrenceType, CastInsts);
426 }
427
428 // We found a reduction var if we have reached the original phi node and we
429 // only have a single instruction with out-of-loop users.
430
431 // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
432 // is saved as part of the RecurrenceDescriptor.
433
434 // Save the description of this reduction variable.
435 RecurrenceDescriptor RD(
436 RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(),
437 ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts);
438 RedDes = RD;
439
440 return true;
441 }
442
443 /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
444 /// pattern corresponding to a min(X, Y) or max(X, Y).
445 RecurrenceDescriptor::InstDesc
isMinMaxSelectCmpPattern(Instruction * I,InstDesc & Prev)446 RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {
447
448 assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
449 "Expect a select instruction");
450 Instruction *Cmp = nullptr;
451 SelectInst *Select = nullptr;
452
453 // We must handle the select(cmp()) as a single instruction. Advance to the
454 // select.
455 if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
456 if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
457 return InstDesc(false, I);
458 return InstDesc(Select, Prev.getMinMaxKind());
459 }
460
461 // Only handle single use cases for now.
462 if (!(Select = dyn_cast<SelectInst>(I)))
463 return InstDesc(false, I);
464 if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
465 !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
466 return InstDesc(false, I);
467 if (!Cmp->hasOneUse())
468 return InstDesc(false, I);
469
470 Value *CmpLeft;
471 Value *CmpRight;
472
473 // Look for a min/max pattern.
474 if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
475 return InstDesc(Select, MRK_UIntMin);
476 else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
477 return InstDesc(Select, MRK_UIntMax);
478 else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
479 return InstDesc(Select, MRK_SIntMax);
480 else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
481 return InstDesc(Select, MRK_SIntMin);
482 else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
483 return InstDesc(Select, MRK_FloatMin);
484 else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
485 return InstDesc(Select, MRK_FloatMax);
486 else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
487 return InstDesc(Select, MRK_FloatMin);
488 else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
489 return InstDesc(Select, MRK_FloatMax);
490
491 return InstDesc(false, I);
492 }
493
494 RecurrenceDescriptor::InstDesc
isRecurrenceInstr(Instruction * I,RecurrenceKind Kind,InstDesc & Prev,bool HasFunNoNaNAttr)495 RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
496 InstDesc &Prev, bool HasFunNoNaNAttr) {
497 bool FP = I->getType()->isFloatingPointTy();
498 Instruction *UAI = Prev.getUnsafeAlgebraInst();
499 if (!UAI && FP && !I->isFast())
500 UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
501
502 switch (I->getOpcode()) {
503 default:
504 return InstDesc(false, I);
505 case Instruction::PHI:
506 return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst());
507 case Instruction::Sub:
508 case Instruction::Add:
509 return InstDesc(Kind == RK_IntegerAdd, I);
510 case Instruction::Mul:
511 return InstDesc(Kind == RK_IntegerMult, I);
512 case Instruction::And:
513 return InstDesc(Kind == RK_IntegerAnd, I);
514 case Instruction::Or:
515 return InstDesc(Kind == RK_IntegerOr, I);
516 case Instruction::Xor:
517 return InstDesc(Kind == RK_IntegerXor, I);
518 case Instruction::FMul:
519 return InstDesc(Kind == RK_FloatMult, I, UAI);
520 case Instruction::FSub:
521 case Instruction::FAdd:
522 return InstDesc(Kind == RK_FloatAdd, I, UAI);
523 case Instruction::FCmp:
524 case Instruction::ICmp:
525 case Instruction::Select:
526 if (Kind != RK_IntegerMinMax &&
527 (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
528 return InstDesc(false, I);
529 return isMinMaxSelectCmpPattern(I, Prev);
530 }
531 }
532
hasMultipleUsesOf(Instruction * I,SmallPtrSetImpl<Instruction * > & Insts)533 bool RecurrenceDescriptor::hasMultipleUsesOf(
534 Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
535 unsigned NumUses = 0;
536 for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
537 ++Use) {
538 if (Insts.count(dyn_cast<Instruction>(*Use)))
539 ++NumUses;
540 if (NumUses > 1)
541 return true;
542 }
543
544 return false;
545 }
isReductionPHI(PHINode * Phi,Loop * TheLoop,RecurrenceDescriptor & RedDes,DemandedBits * DB,AssumptionCache * AC,DominatorTree * DT)546 bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
547 RecurrenceDescriptor &RedDes,
548 DemandedBits *DB, AssumptionCache *AC,
549 DominatorTree *DT) {
550
551 BasicBlock *Header = TheLoop->getHeader();
552 Function &F = *Header->getParent();
553 bool HasFunNoNaNAttr =
554 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
555
556 if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
557 AC, DT)) {
558 LLVM_DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
559 return true;
560 }
561 if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
562 AC, DT)) {
563 LLVM_DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
564 return true;
565 }
566 if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes, DB,
567 AC, DT)) {
568 LLVM_DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
569 return true;
570 }
571 if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
572 AC, DT)) {
573 LLVM_DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
574 return true;
575 }
576 if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes, DB,
577 AC, DT)) {
578 LLVM_DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
579 return true;
580 }
581 if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes,
582 DB, AC, DT)) {
583 LLVM_DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
584 return true;
585 }
586 if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes, DB,
587 AC, DT)) {
588 LLVM_DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
589 return true;
590 }
591 if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes, DB,
592 AC, DT)) {
593 LLVM_DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
594 return true;
595 }
596 if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes, DB,
597 AC, DT)) {
598 LLVM_DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi
599 << "\n");
600 return true;
601 }
602 // Not a reduction of known type.
603 return false;
604 }
605
isFirstOrderRecurrence(PHINode * Phi,Loop * TheLoop,DenseMap<Instruction *,Instruction * > & SinkAfter,DominatorTree * DT)606 bool RecurrenceDescriptor::isFirstOrderRecurrence(
607 PHINode *Phi, Loop *TheLoop,
608 DenseMap<Instruction *, Instruction *> &SinkAfter, DominatorTree *DT) {
609
610 // Ensure the phi node is in the loop header and has two incoming values.
611 if (Phi->getParent() != TheLoop->getHeader() ||
612 Phi->getNumIncomingValues() != 2)
613 return false;
614
615 // Ensure the loop has a preheader and a single latch block. The loop
616 // vectorizer will need the latch to set up the next iteration of the loop.
617 auto *Preheader = TheLoop->getLoopPreheader();
618 auto *Latch = TheLoop->getLoopLatch();
619 if (!Preheader || !Latch)
620 return false;
621
622 // Ensure the phi node's incoming blocks are the loop preheader and latch.
623 if (Phi->getBasicBlockIndex(Preheader) < 0 ||
624 Phi->getBasicBlockIndex(Latch) < 0)
625 return false;
626
627 // Get the previous value. The previous value comes from the latch edge while
628 // the initial value comes form the preheader edge.
629 auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch));
630 if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous) ||
631 SinkAfter.count(Previous)) // Cannot rely on dominance due to motion.
632 return false;
633
634 // Ensure every user of the phi node is dominated by the previous value.
635 // The dominance requirement ensures the loop vectorizer will not need to
636 // vectorize the initial value prior to the first iteration of the loop.
637 // TODO: Consider extending this sinking to handle other kinds of instructions
638 // and expressions, beyond sinking a single cast past Previous.
639 if (Phi->hasOneUse()) {
640 auto *I = Phi->user_back();
641 if (I->isCast() && (I->getParent() == Phi->getParent()) && I->hasOneUse() &&
642 DT->dominates(Previous, I->user_back())) {
643 if (!DT->dominates(Previous, I)) // Otherwise we're good w/o sinking.
644 SinkAfter[I] = Previous;
645 return true;
646 }
647 }
648
649 for (User *U : Phi->users())
650 if (auto *I = dyn_cast<Instruction>(U)) {
651 if (!DT->dominates(Previous, I))
652 return false;
653 }
654
655 return true;
656 }
657
658 /// This function returns the identity element (or neutral element) for
659 /// the operation K.
getRecurrenceIdentity(RecurrenceKind K,Type * Tp)660 Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
661 Type *Tp) {
662 switch (K) {
663 case RK_IntegerXor:
664 case RK_IntegerAdd:
665 case RK_IntegerOr:
666 // Adding, Xoring, Oring zero to a number does not change it.
667 return ConstantInt::get(Tp, 0);
668 case RK_IntegerMult:
669 // Multiplying a number by 1 does not change it.
670 return ConstantInt::get(Tp, 1);
671 case RK_IntegerAnd:
672 // AND-ing a number with an all-1 value does not change it.
673 return ConstantInt::get(Tp, -1, true);
674 case RK_FloatMult:
675 // Multiplying a number by 1 does not change it.
676 return ConstantFP::get(Tp, 1.0L);
677 case RK_FloatAdd:
678 // Adding zero to a number does not change it.
679 return ConstantFP::get(Tp, 0.0L);
680 default:
681 llvm_unreachable("Unknown recurrence kind");
682 }
683 }
684
685 /// This function translates the recurrence kind to an LLVM binary operator.
getRecurrenceBinOp(RecurrenceKind Kind)686 unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
687 switch (Kind) {
688 case RK_IntegerAdd:
689 return Instruction::Add;
690 case RK_IntegerMult:
691 return Instruction::Mul;
692 case RK_IntegerOr:
693 return Instruction::Or;
694 case RK_IntegerAnd:
695 return Instruction::And;
696 case RK_IntegerXor:
697 return Instruction::Xor;
698 case RK_FloatMult:
699 return Instruction::FMul;
700 case RK_FloatAdd:
701 return Instruction::FAdd;
702 case RK_IntegerMinMax:
703 return Instruction::ICmp;
704 case RK_FloatMinMax:
705 return Instruction::FCmp;
706 default:
707 llvm_unreachable("Unknown recurrence operation");
708 }
709 }
710
createMinMaxOp(IRBuilder<> & Builder,MinMaxRecurrenceKind RK,Value * Left,Value * Right)711 Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
712 MinMaxRecurrenceKind RK,
713 Value *Left, Value *Right) {
714 CmpInst::Predicate P = CmpInst::ICMP_NE;
715 switch (RK) {
716 default:
717 llvm_unreachable("Unknown min/max recurrence kind");
718 case MRK_UIntMin:
719 P = CmpInst::ICMP_ULT;
720 break;
721 case MRK_UIntMax:
722 P = CmpInst::ICMP_UGT;
723 break;
724 case MRK_SIntMin:
725 P = CmpInst::ICMP_SLT;
726 break;
727 case MRK_SIntMax:
728 P = CmpInst::ICMP_SGT;
729 break;
730 case MRK_FloatMin:
731 P = CmpInst::FCMP_OLT;
732 break;
733 case MRK_FloatMax:
734 P = CmpInst::FCMP_OGT;
735 break;
736 }
737
738 // We only match FP sequences that are 'fast', so we can unconditionally
739 // set it on any generated instructions.
740 IRBuilder<>::FastMathFlagGuard FMFG(Builder);
741 FastMathFlags FMF;
742 FMF.setFast();
743 Builder.setFastMathFlags(FMF);
744
745 Value *Cmp;
746 if (RK == MRK_FloatMin || RK == MRK_FloatMax)
747 Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
748 else
749 Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
750
751 Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
752 return Select;
753 }
754
InductionDescriptor(Value * Start,InductionKind K,const SCEV * Step,BinaryOperator * BOp,SmallVectorImpl<Instruction * > * Casts)755 InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K,
756 const SCEV *Step, BinaryOperator *BOp,
757 SmallVectorImpl<Instruction *> *Casts)
758 : StartValue(Start), IK(K), Step(Step), InductionBinOp(BOp) {
759 assert(IK != IK_NoInduction && "Not an induction");
760
761 // Start value type should match the induction kind and the value
762 // itself should not be null.
763 assert(StartValue && "StartValue is null");
764 assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) &&
765 "StartValue is not a pointer for pointer induction");
766 assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) &&
767 "StartValue is not an integer for integer induction");
768
769 // Check the Step Value. It should be non-zero integer value.
770 assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) &&
771 "Step value is zero");
772
773 assert((IK != IK_PtrInduction || getConstIntStepValue()) &&
774 "Step value should be constant for pointer induction");
775 assert((IK == IK_FpInduction || Step->getType()->isIntegerTy()) &&
776 "StepValue is not an integer");
777
778 assert((IK != IK_FpInduction || Step->getType()->isFloatingPointTy()) &&
779 "StepValue is not FP for FpInduction");
780 assert((IK != IK_FpInduction || (InductionBinOp &&
781 (InductionBinOp->getOpcode() == Instruction::FAdd ||
782 InductionBinOp->getOpcode() == Instruction::FSub))) &&
783 "Binary opcode should be specified for FP induction");
784
785 if (Casts) {
786 for (auto &Inst : *Casts) {
787 RedundantCasts.push_back(Inst);
788 }
789 }
790 }
791
getConsecutiveDirection() const792 int InductionDescriptor::getConsecutiveDirection() const {
793 ConstantInt *ConstStep = getConstIntStepValue();
794 if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne()))
795 return ConstStep->getSExtValue();
796 return 0;
797 }
798
getConstIntStepValue() const799 ConstantInt *InductionDescriptor::getConstIntStepValue() const {
800 if (isa<SCEVConstant>(Step))
801 return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue());
802 return nullptr;
803 }
804
transform(IRBuilder<> & B,Value * Index,ScalarEvolution * SE,const DataLayout & DL) const805 Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index,
806 ScalarEvolution *SE,
807 const DataLayout& DL) const {
808
809 SCEVExpander Exp(*SE, DL, "induction");
810 assert(Index->getType() == Step->getType() &&
811 "Index type does not match StepValue type");
812 switch (IK) {
813 case IK_IntInduction: {
814 assert(Index->getType() == StartValue->getType() &&
815 "Index type does not match StartValue type");
816
817 // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution
818 // and calculate (Start + Index * Step) for all cases, without
819 // special handling for "isOne" and "isMinusOne".
820 // But in the real life the result code getting worse. We mix SCEV
821 // expressions and ADD/SUB operations and receive redundant
822 // intermediate values being calculated in different ways and
823 // Instcombine is unable to reduce them all.
824
825 if (getConstIntStepValue() &&
826 getConstIntStepValue()->isMinusOne())
827 return B.CreateSub(StartValue, Index);
828 if (getConstIntStepValue() &&
829 getConstIntStepValue()->isOne())
830 return B.CreateAdd(StartValue, Index);
831 const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue),
832 SE->getMulExpr(Step, SE->getSCEV(Index)));
833 return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint());
834 }
835 case IK_PtrInduction: {
836 assert(isa<SCEVConstant>(Step) &&
837 "Expected constant step for pointer induction");
838 const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step);
839 Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint());
840 return B.CreateGEP(nullptr, StartValue, Index);
841 }
842 case IK_FpInduction: {
843 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value");
844 assert(InductionBinOp &&
845 (InductionBinOp->getOpcode() == Instruction::FAdd ||
846 InductionBinOp->getOpcode() == Instruction::FSub) &&
847 "Original bin op should be defined for FP induction");
848
849 Value *StepValue = cast<SCEVUnknown>(Step)->getValue();
850
851 // Floating point operations had to be 'fast' to enable the induction.
852 FastMathFlags Flags;
853 Flags.setFast();
854
855 Value *MulExp = B.CreateFMul(StepValue, Index);
856 if (isa<Instruction>(MulExp))
857 // We have to check, the MulExp may be a constant.
858 cast<Instruction>(MulExp)->setFastMathFlags(Flags);
859
860 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode() , StartValue,
861 MulExp, "induction");
862 if (isa<Instruction>(BOp))
863 cast<Instruction>(BOp)->setFastMathFlags(Flags);
864
865 return BOp;
866 }
867 case IK_NoInduction:
868 return nullptr;
869 }
870 llvm_unreachable("invalid enum");
871 }
872
isFPInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D)873 bool InductionDescriptor::isFPInductionPHI(PHINode *Phi, const Loop *TheLoop,
874 ScalarEvolution *SE,
875 InductionDescriptor &D) {
876
877 // Here we only handle FP induction variables.
878 assert(Phi->getType()->isFloatingPointTy() && "Unexpected Phi type");
879
880 if (TheLoop->getHeader() != Phi->getParent())
881 return false;
882
883 // The loop may have multiple entrances or multiple exits; we can analyze
884 // this phi if it has a unique entry value and a unique backedge value.
885 if (Phi->getNumIncomingValues() != 2)
886 return false;
887 Value *BEValue = nullptr, *StartValue = nullptr;
888 if (TheLoop->contains(Phi->getIncomingBlock(0))) {
889 BEValue = Phi->getIncomingValue(0);
890 StartValue = Phi->getIncomingValue(1);
891 } else {
892 assert(TheLoop->contains(Phi->getIncomingBlock(1)) &&
893 "Unexpected Phi node in the loop");
894 BEValue = Phi->getIncomingValue(1);
895 StartValue = Phi->getIncomingValue(0);
896 }
897
898 BinaryOperator *BOp = dyn_cast<BinaryOperator>(BEValue);
899 if (!BOp)
900 return false;
901
902 Value *Addend = nullptr;
903 if (BOp->getOpcode() == Instruction::FAdd) {
904 if (BOp->getOperand(0) == Phi)
905 Addend = BOp->getOperand(1);
906 else if (BOp->getOperand(1) == Phi)
907 Addend = BOp->getOperand(0);
908 } else if (BOp->getOpcode() == Instruction::FSub)
909 if (BOp->getOperand(0) == Phi)
910 Addend = BOp->getOperand(1);
911
912 if (!Addend)
913 return false;
914
915 // The addend should be loop invariant
916 if (auto *I = dyn_cast<Instruction>(Addend))
917 if (TheLoop->contains(I))
918 return false;
919
920 // FP Step has unknown SCEV
921 const SCEV *Step = SE->getUnknown(Addend);
922 D = InductionDescriptor(StartValue, IK_FpInduction, Step, BOp);
923 return true;
924 }
925
926 /// This function is called when we suspect that the update-chain of a phi node
927 /// (whose symbolic SCEV expression sin \p PhiScev) contains redundant casts,
928 /// that can be ignored. (This can happen when the PSCEV rewriter adds a runtime
929 /// predicate P under which the SCEV expression for the phi can be the
930 /// AddRecurrence \p AR; See createAddRecFromPHIWithCast). We want to find the
931 /// cast instructions that are involved in the update-chain of this induction.
932 /// A caller that adds the required runtime predicate can be free to drop these
933 /// cast instructions, and compute the phi using \p AR (instead of some scev
934 /// expression with casts).
935 ///
936 /// For example, without a predicate the scev expression can take the following
937 /// form:
938 /// (Ext ix (Trunc iy ( Start + i*Step ) to ix) to iy)
939 ///
940 /// It corresponds to the following IR sequence:
941 /// %for.body:
942 /// %x = phi i64 [ 0, %ph ], [ %add, %for.body ]
943 /// %casted_phi = "ExtTrunc i64 %x"
944 /// %add = add i64 %casted_phi, %step
945 ///
946 /// where %x is given in \p PN,
947 /// PSE.getSCEV(%x) is equal to PSE.getSCEV(%casted_phi) under a predicate,
948 /// and the IR sequence that "ExtTrunc i64 %x" represents can take one of
949 /// several forms, for example, such as:
950 /// ExtTrunc1: %casted_phi = and %x, 2^n-1
951 /// or:
952 /// ExtTrunc2: %t = shl %x, m
953 /// %casted_phi = ashr %t, m
954 ///
955 /// If we are able to find such sequence, we return the instructions
956 /// we found, namely %casted_phi and the instructions on its use-def chain up
957 /// to the phi (not including the phi).
getCastsForInductionPHI(PredicatedScalarEvolution & PSE,const SCEVUnknown * PhiScev,const SCEVAddRecExpr * AR,SmallVectorImpl<Instruction * > & CastInsts)958 static bool getCastsForInductionPHI(PredicatedScalarEvolution &PSE,
959 const SCEVUnknown *PhiScev,
960 const SCEVAddRecExpr *AR,
961 SmallVectorImpl<Instruction *> &CastInsts) {
962
963 assert(CastInsts.empty() && "CastInsts is expected to be empty.");
964 auto *PN = cast<PHINode>(PhiScev->getValue());
965 assert(PSE.getSCEV(PN) == AR && "Unexpected phi node SCEV expression");
966 const Loop *L = AR->getLoop();
967
968 // Find any cast instructions that participate in the def-use chain of
969 // PhiScev in the loop.
970 // FORNOW/TODO: We currently expect the def-use chain to include only
971 // two-operand instructions, where one of the operands is an invariant.
972 // createAddRecFromPHIWithCasts() currently does not support anything more
973 // involved than that, so we keep the search simple. This can be
974 // extended/generalized as needed.
975
976 auto getDef = [&](const Value *Val) -> Value * {
977 const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Val);
978 if (!BinOp)
979 return nullptr;
980 Value *Op0 = BinOp->getOperand(0);
981 Value *Op1 = BinOp->getOperand(1);
982 Value *Def = nullptr;
983 if (L->isLoopInvariant(Op0))
984 Def = Op1;
985 else if (L->isLoopInvariant(Op1))
986 Def = Op0;
987 return Def;
988 };
989
990 // Look for the instruction that defines the induction via the
991 // loop backedge.
992 BasicBlock *Latch = L->getLoopLatch();
993 if (!Latch)
994 return false;
995 Value *Val = PN->getIncomingValueForBlock(Latch);
996 if (!Val)
997 return false;
998
999 // Follow the def-use chain until the induction phi is reached.
1000 // If on the way we encounter a Value that has the same SCEV Expr as the
1001 // phi node, we can consider the instructions we visit from that point
1002 // as part of the cast-sequence that can be ignored.
1003 bool InCastSequence = false;
1004 auto *Inst = dyn_cast<Instruction>(Val);
1005 while (Val != PN) {
1006 // If we encountered a phi node other than PN, or if we left the loop,
1007 // we bail out.
1008 if (!Inst || !L->contains(Inst)) {
1009 return false;
1010 }
1011 auto *AddRec = dyn_cast<SCEVAddRecExpr>(PSE.getSCEV(Val));
1012 if (AddRec && PSE.areAddRecsEqualWithPreds(AddRec, AR))
1013 InCastSequence = true;
1014 if (InCastSequence) {
1015 // Only the last instruction in the cast sequence is expected to have
1016 // uses outside the induction def-use chain.
1017 if (!CastInsts.empty())
1018 if (!Inst->hasOneUse())
1019 return false;
1020 CastInsts.push_back(Inst);
1021 }
1022 Val = getDef(Val);
1023 if (!Val)
1024 return false;
1025 Inst = dyn_cast<Instruction>(Val);
1026 }
1027
1028 return InCastSequence;
1029 }
1030
isInductionPHI(PHINode * Phi,const Loop * TheLoop,PredicatedScalarEvolution & PSE,InductionDescriptor & D,bool Assume)1031 bool InductionDescriptor::isInductionPHI(PHINode *Phi, const Loop *TheLoop,
1032 PredicatedScalarEvolution &PSE,
1033 InductionDescriptor &D,
1034 bool Assume) {
1035 Type *PhiTy = Phi->getType();
1036
1037 // Handle integer and pointer inductions variables.
1038 // Now we handle also FP induction but not trying to make a
1039 // recurrent expression from the PHI node in-place.
1040
1041 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy() &&
1042 !PhiTy->isFloatTy() && !PhiTy->isDoubleTy() && !PhiTy->isHalfTy())
1043 return false;
1044
1045 if (PhiTy->isFloatingPointTy())
1046 return isFPInductionPHI(Phi, TheLoop, PSE.getSE(), D);
1047
1048 const SCEV *PhiScev = PSE.getSCEV(Phi);
1049 const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1050
1051 // We need this expression to be an AddRecExpr.
1052 if (Assume && !AR)
1053 AR = PSE.getAsAddRec(Phi);
1054
1055 if (!AR) {
1056 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1057 return false;
1058 }
1059
1060 // Record any Cast instructions that participate in the induction update
1061 const auto *SymbolicPhi = dyn_cast<SCEVUnknown>(PhiScev);
1062 // If we started from an UnknownSCEV, and managed to build an addRecurrence
1063 // only after enabling Assume with PSCEV, this means we may have encountered
1064 // cast instructions that required adding a runtime check in order to
1065 // guarantee the correctness of the AddRecurence respresentation of the
1066 // induction.
1067 if (PhiScev != AR && SymbolicPhi) {
1068 SmallVector<Instruction *, 2> Casts;
1069 if (getCastsForInductionPHI(PSE, SymbolicPhi, AR, Casts))
1070 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR, &Casts);
1071 }
1072
1073 return isInductionPHI(Phi, TheLoop, PSE.getSE(), D, AR);
1074 }
1075
isInductionPHI(PHINode * Phi,const Loop * TheLoop,ScalarEvolution * SE,InductionDescriptor & D,const SCEV * Expr,SmallVectorImpl<Instruction * > * CastsToIgnore)1076 bool InductionDescriptor::isInductionPHI(
1077 PHINode *Phi, const Loop *TheLoop, ScalarEvolution *SE,
1078 InductionDescriptor &D, const SCEV *Expr,
1079 SmallVectorImpl<Instruction *> *CastsToIgnore) {
1080 Type *PhiTy = Phi->getType();
1081 // We only handle integer and pointer inductions variables.
1082 if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
1083 return false;
1084
1085 // Check that the PHI is consecutive.
1086 const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi);
1087 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
1088
1089 if (!AR) {
1090 LLVM_DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
1091 return false;
1092 }
1093
1094 if (AR->getLoop() != TheLoop) {
1095 // FIXME: We should treat this as a uniform. Unfortunately, we
1096 // don't currently know how to handled uniform PHIs.
1097 LLVM_DEBUG(
1098 dbgs() << "LV: PHI is a recurrence with respect to an outer loop.\n");
1099 return false;
1100 }
1101
1102 Value *StartValue =
1103 Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader());
1104 const SCEV *Step = AR->getStepRecurrence(*SE);
1105 // Calculate the pointer stride and check if it is consecutive.
1106 // The stride may be a constant or a loop invariant integer value.
1107 const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step);
1108 if (!ConstStep && !SE->isLoopInvariant(Step, TheLoop))
1109 return false;
1110
1111 if (PhiTy->isIntegerTy()) {
1112 D = InductionDescriptor(StartValue, IK_IntInduction, Step, /*BOp=*/ nullptr,
1113 CastsToIgnore);
1114 return true;
1115 }
1116
1117 assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
1118 // Pointer induction should be a constant.
1119 if (!ConstStep)
1120 return false;
1121
1122 ConstantInt *CV = ConstStep->getValue();
1123 Type *PointerElementType = PhiTy->getPointerElementType();
1124 // The pointer stride cannot be determined if the pointer element type is not
1125 // sized.
1126 if (!PointerElementType->isSized())
1127 return false;
1128
1129 const DataLayout &DL = Phi->getModule()->getDataLayout();
1130 int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
1131 if (!Size)
1132 return false;
1133
1134 int64_t CVSize = CV->getSExtValue();
1135 if (CVSize % Size)
1136 return false;
1137 auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size,
1138 true /* signed */);
1139 D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue);
1140 return true;
1141 }
1142
formDedicatedExitBlocks(Loop * L,DominatorTree * DT,LoopInfo * LI,bool PreserveLCSSA)1143 bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
1144 bool PreserveLCSSA) {
1145 bool Changed = false;
1146
1147 // We re-use a vector for the in-loop predecesosrs.
1148 SmallVector<BasicBlock *, 4> InLoopPredecessors;
1149
1150 auto RewriteExit = [&](BasicBlock *BB) {
1151 assert(InLoopPredecessors.empty() &&
1152 "Must start with an empty predecessors list!");
1153 auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
1154
1155 // See if there are any non-loop predecessors of this exit block and
1156 // keep track of the in-loop predecessors.
1157 bool IsDedicatedExit = true;
1158 for (auto *PredBB : predecessors(BB))
1159 if (L->contains(PredBB)) {
1160 if (isa<IndirectBrInst>(PredBB->getTerminator()))
1161 // We cannot rewrite exiting edges from an indirectbr.
1162 return false;
1163
1164 InLoopPredecessors.push_back(PredBB);
1165 } else {
1166 IsDedicatedExit = false;
1167 }
1168
1169 assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
1170
1171 // Nothing to do if this is already a dedicated exit.
1172 if (IsDedicatedExit)
1173 return false;
1174
1175 auto *NewExitBB = SplitBlockPredecessors(
1176 BB, InLoopPredecessors, ".loopexit", DT, LI, PreserveLCSSA);
1177
1178 if (!NewExitBB)
1179 LLVM_DEBUG(
1180 dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
1181 << *L << "\n");
1182 else
1183 LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
1184 << NewExitBB->getName() << "\n");
1185 return true;
1186 };
1187
1188 // Walk the exit blocks directly rather than building up a data structure for
1189 // them, but only visit each one once.
1190 SmallPtrSet<BasicBlock *, 4> Visited;
1191 for (auto *BB : L->blocks())
1192 for (auto *SuccBB : successors(BB)) {
1193 // We're looking for exit blocks so skip in-loop successors.
1194 if (L->contains(SuccBB))
1195 continue;
1196
1197 // Visit each exit block exactly once.
1198 if (!Visited.insert(SuccBB).second)
1199 continue;
1200
1201 Changed |= RewriteExit(SuccBB);
1202 }
1203
1204 return Changed;
1205 }
1206
1207 /// Returns the instructions that use values defined in the loop.
findDefsUsedOutsideOfLoop(Loop * L)1208 SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
1209 SmallVector<Instruction *, 8> UsedOutside;
1210
1211 for (auto *Block : L->getBlocks())
1212 // FIXME: I believe that this could use copy_if if the Inst reference could
1213 // be adapted into a pointer.
1214 for (auto &Inst : *Block) {
1215 auto Users = Inst.users();
1216 if (any_of(Users, [&](User *U) {
1217 auto *Use = cast<Instruction>(U);
1218 return !L->contains(Use->getParent());
1219 }))
1220 UsedOutside.push_back(&Inst);
1221 }
1222
1223 return UsedOutside;
1224 }
1225
getLoopAnalysisUsage(AnalysisUsage & AU)1226 void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
1227 // By definition, all loop passes need the LoopInfo analysis and the
1228 // Dominator tree it depends on. Because they all participate in the loop
1229 // pass manager, they must also preserve these.
1230 AU.addRequired<DominatorTreeWrapperPass>();
1231 AU.addPreserved<DominatorTreeWrapperPass>();
1232 AU.addRequired<LoopInfoWrapperPass>();
1233 AU.addPreserved<LoopInfoWrapperPass>();
1234
1235 // We must also preserve LoopSimplify and LCSSA. We locally access their IDs
1236 // here because users shouldn't directly get them from this header.
1237 extern char &LoopSimplifyID;
1238 extern char &LCSSAID;
1239 AU.addRequiredID(LoopSimplifyID);
1240 AU.addPreservedID(LoopSimplifyID);
1241 AU.addRequiredID(LCSSAID);
1242 AU.addPreservedID(LCSSAID);
1243 // This is used in the LPPassManager to perform LCSSA verification on passes
1244 // which preserve lcssa form
1245 AU.addRequired<LCSSAVerificationPass>();
1246 AU.addPreserved<LCSSAVerificationPass>();
1247
1248 // Loop passes are designed to run inside of a loop pass manager which means
1249 // that any function analyses they require must be required by the first loop
1250 // pass in the manager (so that it is computed before the loop pass manager
1251 // runs) and preserved by all loop pasess in the manager. To make this
1252 // reasonably robust, the set needed for most loop passes is maintained here.
1253 // If your loop pass requires an analysis not listed here, you will need to
1254 // carefully audit the loop pass manager nesting structure that results.
1255 AU.addRequired<AAResultsWrapperPass>();
1256 AU.addPreserved<AAResultsWrapperPass>();
1257 AU.addPreserved<BasicAAWrapperPass>();
1258 AU.addPreserved<GlobalsAAWrapperPass>();
1259 AU.addPreserved<SCEVAAWrapperPass>();
1260 AU.addRequired<ScalarEvolutionWrapperPass>();
1261 AU.addPreserved<ScalarEvolutionWrapperPass>();
1262 }
1263
1264 /// Manually defined generic "LoopPass" dependency initialization. This is used
1265 /// to initialize the exact set of passes from above in \c
1266 /// getLoopAnalysisUsage. It can be used within a loop pass's initialization
1267 /// with:
1268 ///
1269 /// INITIALIZE_PASS_DEPENDENCY(LoopPass)
1270 ///
1271 /// As-if "LoopPass" were a pass.
initializeLoopPassPass(PassRegistry & Registry)1272 void llvm::initializeLoopPassPass(PassRegistry &Registry) {
1273 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1274 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1275 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
1276 INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
1277 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1278 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
1279 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
1280 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
1281 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
1282 }
1283
1284 /// Find string metadata for loop
1285 ///
1286 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1287 /// operand or null otherwise. If the string metadata is not found return
1288 /// Optional's not-a-value.
findStringMetadataForLoop(Loop * TheLoop,StringRef Name)1289 Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop,
1290 StringRef Name) {
1291 MDNode *LoopID = TheLoop->getLoopID();
1292 // Return none if LoopID is false.
1293 if (!LoopID)
1294 return None;
1295
1296 // First operand should refer to the loop id itself.
1297 assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
1298 assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
1299
1300 // Iterate over LoopID operands and look for MDString Metadata
1301 for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
1302 MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
1303 if (!MD)
1304 continue;
1305 MDString *S = dyn_cast<MDString>(MD->getOperand(0));
1306 if (!S)
1307 continue;
1308 // Return true if MDString holds expected MetaData.
1309 if (Name.equals(S->getString()))
1310 switch (MD->getNumOperands()) {
1311 case 1:
1312 return nullptr;
1313 case 2:
1314 return &MD->getOperand(1);
1315 default:
1316 llvm_unreachable("loop metadata has 0 or 1 operand");
1317 }
1318 }
1319 return None;
1320 }
1321
1322 /// Does a BFS from a given node to all of its children inside a given loop.
1323 /// The returned vector of nodes includes the starting point.
1324 SmallVector<DomTreeNode *, 16>
collectChildrenInLoop(DomTreeNode * N,const Loop * CurLoop)1325 llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
1326 SmallVector<DomTreeNode *, 16> Worklist;
1327 auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
1328 // Only include subregions in the top level loop.
1329 BasicBlock *BB = DTN->getBlock();
1330 if (CurLoop->contains(BB))
1331 Worklist.push_back(DTN);
1332 };
1333
1334 AddRegionToWorklist(N);
1335
1336 for (size_t I = 0; I < Worklist.size(); I++)
1337 for (DomTreeNode *Child : Worklist[I]->getChildren())
1338 AddRegionToWorklist(Child);
1339
1340 return Worklist;
1341 }
1342
deleteDeadLoop(Loop * L,DominatorTree * DT=nullptr,ScalarEvolution * SE=nullptr,LoopInfo * LI=nullptr)1343 void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
1344 ScalarEvolution *SE = nullptr,
1345 LoopInfo *LI = nullptr) {
1346 assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
1347 auto *Preheader = L->getLoopPreheader();
1348 assert(Preheader && "Preheader should exist!");
1349
1350 // Now that we know the removal is safe, remove the loop by changing the
1351 // branch from the preheader to go to the single exit block.
1352 //
1353 // Because we're deleting a large chunk of code at once, the sequence in which
1354 // we remove things is very important to avoid invalidation issues.
1355
1356 // Tell ScalarEvolution that the loop is deleted. Do this before
1357 // deleting the loop so that ScalarEvolution can look at the loop
1358 // to determine what it needs to clean up.
1359 if (SE)
1360 SE->forgetLoop(L);
1361
1362 auto *ExitBlock = L->getUniqueExitBlock();
1363 assert(ExitBlock && "Should have a unique exit block!");
1364 assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
1365
1366 auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
1367 assert(OldBr && "Preheader must end with a branch");
1368 assert(OldBr->isUnconditional() && "Preheader must have a single successor");
1369 // Connect the preheader to the exit block. Keep the old edge to the header
1370 // around to perform the dominator tree update in two separate steps
1371 // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
1372 // preheader -> header.
1373 //
1374 //
1375 // 0. Preheader 1. Preheader 2. Preheader
1376 // | | | |
1377 // V | V |
1378 // Header <--\ | Header <--\ | Header <--\
1379 // | | | | | | | | | | |
1380 // | V | | | V | | | V |
1381 // | Body --/ | | Body --/ | | Body --/
1382 // V V V V V
1383 // Exit Exit Exit
1384 //
1385 // By doing this is two separate steps we can perform the dominator tree
1386 // update without using the batch update API.
1387 //
1388 // Even when the loop is never executed, we cannot remove the edge from the
1389 // source block to the exit block. Consider the case where the unexecuted loop
1390 // branches back to an outer loop. If we deleted the loop and removed the edge
1391 // coming to this inner loop, this will break the outer loop structure (by
1392 // deleting the backedge of the outer loop). If the outer loop is indeed a
1393 // non-loop, it will be deleted in a future iteration of loop deletion pass.
1394 IRBuilder<> Builder(OldBr);
1395 Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
1396 // Remove the old branch. The conditional branch becomes a new terminator.
1397 OldBr->eraseFromParent();
1398
1399 // Rewrite phis in the exit block to get their inputs from the Preheader
1400 // instead of the exiting block.
1401 for (PHINode &P : ExitBlock->phis()) {
1402 // Set the zero'th element of Phi to be from the preheader and remove all
1403 // other incoming values. Given the loop has dedicated exits, all other
1404 // incoming values must be from the exiting blocks.
1405 int PredIndex = 0;
1406 P.setIncomingBlock(PredIndex, Preheader);
1407 // Removes all incoming values from all other exiting blocks (including
1408 // duplicate values from an exiting block).
1409 // Nuke all entries except the zero'th entry which is the preheader entry.
1410 // NOTE! We need to remove Incoming Values in the reverse order as done
1411 // below, to keep the indices valid for deletion (removeIncomingValues
1412 // updates getNumIncomingValues and shifts all values down into the operand
1413 // being deleted).
1414 for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
1415 P.removeIncomingValue(e - i, false);
1416
1417 assert((P.getNumIncomingValues() == 1 &&
1418 P.getIncomingBlock(PredIndex) == Preheader) &&
1419 "Should have exactly one value and that's from the preheader!");
1420 }
1421
1422 // Disconnect the loop body by branching directly to its exit.
1423 Builder.SetInsertPoint(Preheader->getTerminator());
1424 Builder.CreateBr(ExitBlock);
1425 // Remove the old branch.
1426 Preheader->getTerminator()->eraseFromParent();
1427
1428 if (DT) {
1429 // Update the dominator tree by informing it about the new edge from the
1430 // preheader to the exit.
1431 DT->insertEdge(Preheader, ExitBlock);
1432 // Inform the dominator tree about the removed edge.
1433 DT->deleteEdge(Preheader, L->getHeader());
1434 }
1435
1436 // Given LCSSA form is satisfied, we should not have users of instructions
1437 // within the dead loop outside of the loop. However, LCSSA doesn't take
1438 // unreachable uses into account. We handle them here.
1439 // We could do it after drop all references (in this case all users in the
1440 // loop will be already eliminated and we have less work to do but according
1441 // to API doc of User::dropAllReferences only valid operation after dropping
1442 // references, is deletion. So let's substitute all usages of
1443 // instruction from the loop with undef value of corresponding type first.
1444 for (auto *Block : L->blocks())
1445 for (Instruction &I : *Block) {
1446 auto *Undef = UndefValue::get(I.getType());
1447 for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
1448 Use &U = *UI;
1449 ++UI;
1450 if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
1451 if (L->contains(Usr->getParent()))
1452 continue;
1453 // If we have a DT then we can check that uses outside a loop only in
1454 // unreachable block.
1455 if (DT)
1456 assert(!DT->isReachableFromEntry(U) &&
1457 "Unexpected user in reachable block");
1458 U.set(Undef);
1459 }
1460 }
1461
1462 // Remove the block from the reference counting scheme, so that we can
1463 // delete it freely later.
1464 for (auto *Block : L->blocks())
1465 Block->dropAllReferences();
1466
1467 if (LI) {
1468 // Erase the instructions and the blocks without having to worry
1469 // about ordering because we already dropped the references.
1470 // NOTE: This iteration is safe because erasing the block does not remove
1471 // its entry from the loop's block list. We do that in the next section.
1472 for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
1473 LpI != LpE; ++LpI)
1474 (*LpI)->eraseFromParent();
1475
1476 // Finally, the blocks from loopinfo. This has to happen late because
1477 // otherwise our loop iterators won't work.
1478
1479 SmallPtrSet<BasicBlock *, 8> blocks;
1480 blocks.insert(L->block_begin(), L->block_end());
1481 for (BasicBlock *BB : blocks)
1482 LI->removeBlock(BB);
1483
1484 // The last step is to update LoopInfo now that we've eliminated this loop.
1485 LI->erase(L);
1486 }
1487 }
1488
getLoopEstimatedTripCount(Loop * L)1489 Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
1490 // Only support loops with a unique exiting block, and a latch.
1491 if (!L->getExitingBlock())
1492 return None;
1493
1494 // Get the branch weights for the loop's backedge.
1495 BranchInst *LatchBR =
1496 dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
1497 if (!LatchBR || LatchBR->getNumSuccessors() != 2)
1498 return None;
1499
1500 assert((LatchBR->getSuccessor(0) == L->getHeader() ||
1501 LatchBR->getSuccessor(1) == L->getHeader()) &&
1502 "At least one edge out of the latch must go to the header");
1503
1504 // To estimate the number of times the loop body was executed, we want to
1505 // know the number of times the backedge was taken, vs. the number of times
1506 // we exited the loop.
1507 uint64_t TrueVal, FalseVal;
1508 if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
1509 return None;
1510
1511 if (!TrueVal || !FalseVal)
1512 return 0;
1513
1514 // Divide the count of the backedge by the count of the edge exiting the loop,
1515 // rounding to nearest.
1516 if (LatchBR->getSuccessor(0) == L->getHeader())
1517 return (TrueVal + (FalseVal / 2)) / FalseVal;
1518 else
1519 return (FalseVal + (TrueVal / 2)) / TrueVal;
1520 }
1521
1522 /// Adds a 'fast' flag to floating point operations.
addFastMathFlag(Value * V)1523 static Value *addFastMathFlag(Value *V) {
1524 if (isa<FPMathOperator>(V)) {
1525 FastMathFlags Flags;
1526 Flags.setFast();
1527 cast<Instruction>(V)->setFastMathFlags(Flags);
1528 }
1529 return V;
1530 }
1531
1532 // Helper to generate an ordered reduction.
1533 Value *
getOrderedReduction(IRBuilder<> & Builder,Value * Acc,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)1534 llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
1535 unsigned Op,
1536 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1537 ArrayRef<Value *> RedOps) {
1538 unsigned VF = Src->getType()->getVectorNumElements();
1539
1540 // Extract and apply reduction ops in ascending order:
1541 // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
1542 Value *Result = Acc;
1543 for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
1544 Value *Ext =
1545 Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
1546
1547 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1548 Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
1549 "bin.rdx");
1550 } else {
1551 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1552 "Invalid min/max");
1553 Result = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, Result,
1554 Ext);
1555 }
1556
1557 if (!RedOps.empty())
1558 propagateIRFlags(Result, RedOps);
1559 }
1560
1561 return Result;
1562 }
1563
1564 // Helper to generate a log2 shuffle reduction.
1565 Value *
getShuffleReduction(IRBuilder<> & Builder,Value * Src,unsigned Op,RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,ArrayRef<Value * > RedOps)1566 llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
1567 RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
1568 ArrayRef<Value *> RedOps) {
1569 unsigned VF = Src->getType()->getVectorNumElements();
1570 // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
1571 // and vector ops, reducing the set of values being computed by half each
1572 // round.
1573 assert(isPowerOf2_32(VF) &&
1574 "Reduction emission only supported for pow2 vectors!");
1575 Value *TmpVec = Src;
1576 SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
1577 for (unsigned i = VF; i != 1; i >>= 1) {
1578 // Move the upper half of the vector to the lower half.
1579 for (unsigned j = 0; j != i / 2; ++j)
1580 ShuffleMask[j] = Builder.getInt32(i / 2 + j);
1581
1582 // Fill the rest of the mask with undef.
1583 std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
1584 UndefValue::get(Builder.getInt32Ty()));
1585
1586 Value *Shuf = Builder.CreateShuffleVector(
1587 TmpVec, UndefValue::get(TmpVec->getType()),
1588 ConstantVector::get(ShuffleMask), "rdx.shuf");
1589
1590 if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
1591 // Floating point operations had to be 'fast' to enable the reduction.
1592 TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
1593 TmpVec, Shuf, "bin.rdx"));
1594 } else {
1595 assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
1596 "Invalid min/max");
1597 TmpVec = RecurrenceDescriptor::createMinMaxOp(Builder, MinMaxKind, TmpVec,
1598 Shuf);
1599 }
1600 if (!RedOps.empty())
1601 propagateIRFlags(TmpVec, RedOps);
1602 }
1603 // The result is in the first element of the vector.
1604 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
1605 }
1606
1607 /// Create a simple vector reduction specified by an opcode and some
1608 /// flags (if generating min/max reductions).
createSimpleTargetReduction(IRBuilder<> & Builder,const TargetTransformInfo * TTI,unsigned Opcode,Value * Src,TargetTransformInfo::ReductionFlags Flags,ArrayRef<Value * > RedOps)1609 Value *llvm::createSimpleTargetReduction(
1610 IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
1611 Value *Src, TargetTransformInfo::ReductionFlags Flags,
1612 ArrayRef<Value *> RedOps) {
1613 assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
1614
1615 Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
1616 std::function<Value*()> BuildFunc;
1617 using RD = RecurrenceDescriptor;
1618 RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
1619 // TODO: Support creating ordered reductions.
1620 FastMathFlags FMFFast;
1621 FMFFast.setFast();
1622
1623 switch (Opcode) {
1624 case Instruction::Add:
1625 BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
1626 break;
1627 case Instruction::Mul:
1628 BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
1629 break;
1630 case Instruction::And:
1631 BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
1632 break;
1633 case Instruction::Or:
1634 BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
1635 break;
1636 case Instruction::Xor:
1637 BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
1638 break;
1639 case Instruction::FAdd:
1640 BuildFunc = [&]() {
1641 auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
1642 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1643 return Rdx;
1644 };
1645 break;
1646 case Instruction::FMul:
1647 BuildFunc = [&]() {
1648 auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
1649 cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
1650 return Rdx;
1651 };
1652 break;
1653 case Instruction::ICmp:
1654 if (Flags.IsMaxOp) {
1655 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
1656 BuildFunc = [&]() {
1657 return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
1658 };
1659 } else {
1660 MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
1661 BuildFunc = [&]() {
1662 return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
1663 };
1664 }
1665 break;
1666 case Instruction::FCmp:
1667 if (Flags.IsMaxOp) {
1668 MinMaxKind = RD::MRK_FloatMax;
1669 BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
1670 } else {
1671 MinMaxKind = RD::MRK_FloatMin;
1672 BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
1673 }
1674 break;
1675 default:
1676 llvm_unreachable("Unhandled opcode");
1677 break;
1678 }
1679 if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
1680 return BuildFunc();
1681 return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps);
1682 }
1683
1684 /// Create a vector reduction using a given recurrence descriptor.
createTargetReduction(IRBuilder<> & B,const TargetTransformInfo * TTI,RecurrenceDescriptor & Desc,Value * Src,bool NoNaN)1685 Value *llvm::createTargetReduction(IRBuilder<> &B,
1686 const TargetTransformInfo *TTI,
1687 RecurrenceDescriptor &Desc, Value *Src,
1688 bool NoNaN) {
1689 // TODO: Support in-order reductions based on the recurrence descriptor.
1690 using RD = RecurrenceDescriptor;
1691 RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
1692 TargetTransformInfo::ReductionFlags Flags;
1693 Flags.NoNaN = NoNaN;
1694 switch (RecKind) {
1695 case RD::RK_FloatAdd:
1696 return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags);
1697 case RD::RK_FloatMult:
1698 return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags);
1699 case RD::RK_IntegerAdd:
1700 return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags);
1701 case RD::RK_IntegerMult:
1702 return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags);
1703 case RD::RK_IntegerAnd:
1704 return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags);
1705 case RD::RK_IntegerOr:
1706 return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags);
1707 case RD::RK_IntegerXor:
1708 return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags);
1709 case RD::RK_IntegerMinMax: {
1710 RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
1711 Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
1712 Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
1713 return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags);
1714 }
1715 case RD::RK_FloatMinMax: {
1716 Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
1717 return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags);
1718 }
1719 default:
1720 llvm_unreachable("Unhandled RecKind");
1721 }
1722 }
1723
propagateIRFlags(Value * I,ArrayRef<Value * > VL,Value * OpValue)1724 void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
1725 auto *VecOp = dyn_cast<Instruction>(I);
1726 if (!VecOp)
1727 return;
1728 auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
1729 : dyn_cast<Instruction>(OpValue);
1730 if (!Intersection)
1731 return;
1732 const unsigned Opcode = Intersection->getOpcode();
1733 VecOp->copyIRFlags(Intersection);
1734 for (auto *V : VL) {
1735 auto *Instr = dyn_cast<Instruction>(V);
1736 if (!Instr)
1737 continue;
1738 if (OpValue == nullptr || Opcode == Instr->getOpcode())
1739 VecOp->andIRFlags(V);
1740 }
1741 }
1742