1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This is the generic implementation of LoopInfo used for both Loops and
11 // MachineLoops.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
16 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
17
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/PostOrderIterator.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/Dominators.h"
24
25 namespace llvm {
26
27 //===----------------------------------------------------------------------===//
28 // APIs for simple analysis of the loop. See header notes.
29
30 /// getExitingBlocks - Return all blocks inside the loop that have successors
31 /// outside of the loop. These are the blocks _inside of the current loop_
32 /// which branch out. The returned list is always unique.
33 ///
34 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)35 void LoopBase<BlockT, LoopT>::getExitingBlocks(
36 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
37 assert(!isInvalid() && "Loop not in a valid state!");
38 for (const auto BB : blocks())
39 for (const auto &Succ : children<BlockT *>(BB))
40 if (!contains(Succ)) {
41 // Not in current loop? It must be an exit block.
42 ExitingBlocks.push_back(BB);
43 break;
44 }
45 }
46
47 /// getExitingBlock - If getExitingBlocks would return exactly one block,
48 /// return that block. Otherwise return null.
49 template <class BlockT, class LoopT>
getExitingBlock()50 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
51 assert(!isInvalid() && "Loop not in a valid state!");
52 SmallVector<BlockT *, 8> ExitingBlocks;
53 getExitingBlocks(ExitingBlocks);
54 if (ExitingBlocks.size() == 1)
55 return ExitingBlocks[0];
56 return nullptr;
57 }
58
59 /// getExitBlocks - Return all of the successor blocks of this loop. These
60 /// are the blocks _outside of the current loop_ which are branched to.
61 ///
62 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)63 void LoopBase<BlockT, LoopT>::getExitBlocks(
64 SmallVectorImpl<BlockT *> &ExitBlocks) const {
65 assert(!isInvalid() && "Loop not in a valid state!");
66 for (const auto BB : blocks())
67 for (const auto &Succ : children<BlockT *>(BB))
68 if (!contains(Succ))
69 // Not in current loop? It must be an exit block.
70 ExitBlocks.push_back(Succ);
71 }
72
73 /// getExitBlock - If getExitBlocks would return exactly one block,
74 /// return that block. Otherwise return null.
75 template <class BlockT, class LoopT>
getExitBlock()76 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
77 assert(!isInvalid() && "Loop not in a valid state!");
78 SmallVector<BlockT *, 8> ExitBlocks;
79 getExitBlocks(ExitBlocks);
80 if (ExitBlocks.size() == 1)
81 return ExitBlocks[0];
82 return nullptr;
83 }
84
85 template <class BlockT, class LoopT>
hasDedicatedExits()86 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
87 // Each predecessor of each exit block of a normal loop is contained
88 // within the loop.
89 SmallVector<BlockT *, 4> ExitBlocks;
90 getExitBlocks(ExitBlocks);
91 for (BlockT *EB : ExitBlocks)
92 for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
93 if (!contains(Predecessor))
94 return false;
95 // All the requirements are met.
96 return true;
97 }
98
99 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)100 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
101 SmallVectorImpl<BlockT *> &ExitBlocks) const {
102 typedef GraphTraits<BlockT *> BlockTraits;
103 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
104
105 assert(hasDedicatedExits() &&
106 "getUniqueExitBlocks assumes the loop has canonical form exits!");
107
108 SmallVector<BlockT *, 32> SwitchExitBlocks;
109 for (BlockT *Block : this->blocks()) {
110 SwitchExitBlocks.clear();
111 for (BlockT *Successor : children<BlockT *>(Block)) {
112 // If block is inside the loop then it is not an exit block.
113 if (contains(Successor))
114 continue;
115
116 BlockT *FirstPred = *InvBlockTraits::child_begin(Successor);
117
118 // If current basic block is this exit block's first predecessor then only
119 // insert exit block in to the output ExitBlocks vector. This ensures that
120 // same exit block is not inserted twice into ExitBlocks vector.
121 if (Block != FirstPred)
122 continue;
123
124 // If a terminator has more then two successors, for example SwitchInst,
125 // then it is possible that there are multiple edges from current block to
126 // one exit block.
127 if (std::distance(BlockTraits::child_begin(Block),
128 BlockTraits::child_end(Block)) <= 2) {
129 ExitBlocks.push_back(Successor);
130 continue;
131 }
132
133 // In case of multiple edges from current block to exit block, collect
134 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
135 // duplicate edges.
136 if (!is_contained(SwitchExitBlocks, Successor)) {
137 SwitchExitBlocks.push_back(Successor);
138 ExitBlocks.push_back(Successor);
139 }
140 }
141 }
142 }
143
144 template <class BlockT, class LoopT>
getUniqueExitBlock()145 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
146 SmallVector<BlockT *, 8> UniqueExitBlocks;
147 getUniqueExitBlocks(UniqueExitBlocks);
148 if (UniqueExitBlocks.size() == 1)
149 return UniqueExitBlocks[0];
150 return nullptr;
151 }
152
153 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
154 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)155 void LoopBase<BlockT, LoopT>::getExitEdges(
156 SmallVectorImpl<Edge> &ExitEdges) const {
157 assert(!isInvalid() && "Loop not in a valid state!");
158 for (const auto BB : blocks())
159 for (const auto &Succ : children<BlockT *>(BB))
160 if (!contains(Succ))
161 // Not in current loop? It must be an exit block.
162 ExitEdges.emplace_back(BB, Succ);
163 }
164
165 /// getLoopPreheader - If there is a preheader for this loop, return it. A
166 /// loop has a preheader if there is only one edge to the header of the loop
167 /// from outside of the loop and it is legal to hoist instructions into the
168 /// predecessor. If this is the case, the block branching to the header of the
169 /// loop is the preheader node.
170 ///
171 /// This method returns null if there is no preheader for the loop.
172 ///
173 template <class BlockT, class LoopT>
getLoopPreheader()174 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
175 assert(!isInvalid() && "Loop not in a valid state!");
176 // Keep track of nodes outside the loop branching to the header...
177 BlockT *Out = getLoopPredecessor();
178 if (!Out)
179 return nullptr;
180
181 // Make sure we are allowed to hoist instructions into the predecessor.
182 if (!Out->isLegalToHoistInto())
183 return nullptr;
184
185 // Make sure there is only one exit out of the preheader.
186 typedef GraphTraits<BlockT *> BlockTraits;
187 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
188 ++SI;
189 if (SI != BlockTraits::child_end(Out))
190 return nullptr; // Multiple exits from the block, must not be a preheader.
191
192 // The predecessor has exactly one successor, so it is a preheader.
193 return Out;
194 }
195
196 /// getLoopPredecessor - If the given loop's header has exactly one unique
197 /// predecessor outside the loop, return it. Otherwise return null.
198 /// This is less strict that the loop "preheader" concept, which requires
199 /// the predecessor to have exactly one successor.
200 ///
201 template <class BlockT, class LoopT>
getLoopPredecessor()202 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
203 assert(!isInvalid() && "Loop not in a valid state!");
204 // Keep track of nodes outside the loop branching to the header...
205 BlockT *Out = nullptr;
206
207 // Loop over the predecessors of the header node...
208 BlockT *Header = getHeader();
209 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
210 if (!contains(Pred)) { // If the block is not in the loop...
211 if (Out && Out != Pred)
212 return nullptr; // Multiple predecessors outside the loop
213 Out = Pred;
214 }
215 }
216
217 // Make sure there is only one exit out of the preheader.
218 assert(Out && "Header of loop has no predecessors from outside loop?");
219 return Out;
220 }
221
222 /// getLoopLatch - If there is a single latch block for this loop, return it.
223 /// A latch block is a block that contains a branch back to the header.
224 template <class BlockT, class LoopT>
getLoopLatch()225 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
226 assert(!isInvalid() && "Loop not in a valid state!");
227 BlockT *Header = getHeader();
228 BlockT *Latch = nullptr;
229 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
230 if (contains(Pred)) {
231 if (Latch)
232 return nullptr;
233 Latch = Pred;
234 }
235 }
236
237 return Latch;
238 }
239
240 //===----------------------------------------------------------------------===//
241 // APIs for updating loop information after changing the CFG
242 //
243
244 /// addBasicBlockToLoop - This method is used by other analyses to update loop
245 /// information. NewBB is set to be a new member of the current loop.
246 /// Because of this, it is added as a member of all parent loops, and is added
247 /// to the specified LoopInfo object as being in the current basic block. It
248 /// is not valid to replace the loop header with this method.
249 ///
250 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)251 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
252 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
253 assert(!isInvalid() && "Loop not in a valid state!");
254 #ifndef NDEBUG
255 if (!Blocks.empty()) {
256 auto SameHeader = LIB[getHeader()];
257 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
258 "Incorrect LI specified for this loop!");
259 }
260 #endif
261 assert(NewBB && "Cannot add a null basic block to the loop!");
262 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
263
264 LoopT *L = static_cast<LoopT *>(this);
265
266 // Add the loop mapping to the LoopInfo object...
267 LIB.BBMap[NewBB] = L;
268
269 // Add the basic block to this loop and all parent loops...
270 while (L) {
271 L->addBlockEntry(NewBB);
272 L = L->getParentLoop();
273 }
274 }
275
276 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
277 /// the OldChild entry in our children list with NewChild, and updates the
278 /// parent pointer of OldChild to be null and the NewChild to be this loop.
279 /// This updates the loop depth of the new child.
280 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)281 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
282 LoopT *NewChild) {
283 assert(!isInvalid() && "Loop not in a valid state!");
284 assert(OldChild->ParentLoop == this && "This loop is already broken!");
285 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
286 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
287 assert(I != SubLoops.end() && "OldChild not in loop!");
288 *I = NewChild;
289 OldChild->ParentLoop = nullptr;
290 NewChild->ParentLoop = static_cast<LoopT *>(this);
291 }
292
293 /// verifyLoop - Verify loop structure
294 template <class BlockT, class LoopT>
verifyLoop()295 void LoopBase<BlockT, LoopT>::verifyLoop() const {
296 assert(!isInvalid() && "Loop not in a valid state!");
297 #ifndef NDEBUG
298 assert(!Blocks.empty() && "Loop header is missing");
299
300 // Setup for using a depth-first iterator to visit every block in the loop.
301 SmallVector<BlockT *, 8> ExitBBs;
302 getExitBlocks(ExitBBs);
303 df_iterator_default_set<BlockT *> VisitSet;
304 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
305 df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
306 BI = df_ext_begin(getHeader(), VisitSet),
307 BE = df_ext_end(getHeader(), VisitSet);
308
309 // Keep track of the BBs visited.
310 SmallPtrSet<BlockT *, 8> VisitedBBs;
311
312 // Check the individual blocks.
313 for (; BI != BE; ++BI) {
314 BlockT *BB = *BI;
315
316 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
317 GraphTraits<BlockT *>::child_end(BB),
318 [&](BlockT *B) { return contains(B); }) &&
319 "Loop block has no in-loop successors!");
320
321 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
322 GraphTraits<Inverse<BlockT *>>::child_end(BB),
323 [&](BlockT *B) { return contains(B); }) &&
324 "Loop block has no in-loop predecessors!");
325
326 SmallVector<BlockT *, 2> OutsideLoopPreds;
327 std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
328 GraphTraits<Inverse<BlockT *>>::child_end(BB),
329 [&](BlockT *B) {
330 if (!contains(B))
331 OutsideLoopPreds.push_back(B);
332 });
333
334 if (BB == getHeader()) {
335 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
336 } else if (!OutsideLoopPreds.empty()) {
337 // A non-header loop shouldn't be reachable from outside the loop,
338 // though it is permitted if the predecessor is not itself actually
339 // reachable.
340 BlockT *EntryBB = &BB->getParent()->front();
341 for (BlockT *CB : depth_first(EntryBB))
342 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
343 assert(CB != OutsideLoopPreds[i] &&
344 "Loop has multiple entry points!");
345 }
346 assert(BB != &getHeader()->getParent()->front() &&
347 "Loop contains function entry block!");
348
349 VisitedBBs.insert(BB);
350 }
351
352 if (VisitedBBs.size() != getNumBlocks()) {
353 dbgs() << "The following blocks are unreachable in the loop: ";
354 for (auto BB : Blocks) {
355 if (!VisitedBBs.count(BB)) {
356 dbgs() << *BB << "\n";
357 }
358 }
359 assert(false && "Unreachable block in loop");
360 }
361
362 // Check the subloops.
363 for (iterator I = begin(), E = end(); I != E; ++I)
364 // Each block in each subloop should be contained within this loop.
365 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
366 BI != BE; ++BI) {
367 assert(contains(*BI) &&
368 "Loop does not contain all the blocks of a subloop!");
369 }
370
371 // Check the parent loop pointer.
372 if (ParentLoop) {
373 assert(is_contained(*ParentLoop, this) &&
374 "Loop is not a subloop of its parent!");
375 }
376 #endif
377 }
378
379 /// verifyLoop - Verify loop structure of this loop and all nested loops.
380 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)381 void LoopBase<BlockT, LoopT>::verifyLoopNest(
382 DenseSet<const LoopT *> *Loops) const {
383 assert(!isInvalid() && "Loop not in a valid state!");
384 Loops->insert(static_cast<const LoopT *>(this));
385 // Verify this loop.
386 verifyLoop();
387 // Verify the subloops.
388 for (iterator I = begin(), E = end(); I != E; ++I)
389 (*I)->verifyLoopNest(Loops);
390 }
391
392 template <class BlockT, class LoopT>
print(raw_ostream & OS,unsigned Depth,bool Verbose)393 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
394 bool Verbose) const {
395 OS.indent(Depth * 2) << "Loop at depth " << getLoopDepth() << " containing: ";
396
397 BlockT *H = getHeader();
398 for (unsigned i = 0; i < getBlocks().size(); ++i) {
399 BlockT *BB = getBlocks()[i];
400 if (!Verbose) {
401 if (i)
402 OS << ",";
403 BB->printAsOperand(OS, false);
404 } else
405 OS << "\n";
406
407 if (BB == H)
408 OS << "<header>";
409 if (isLoopLatch(BB))
410 OS << "<latch>";
411 if (isLoopExiting(BB))
412 OS << "<exiting>";
413 if (Verbose)
414 BB->print(OS);
415 }
416 OS << "\n";
417
418 for (iterator I = begin(), E = end(); I != E; ++I)
419 (*I)->print(OS, Depth + 2);
420 }
421
422 //===----------------------------------------------------------------------===//
423 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
424 /// result does / not depend on use list (block predecessor) order.
425 ///
426
427 /// Discover a subloop with the specified backedges such that: All blocks within
428 /// this loop are mapped to this loop or a subloop. And all subloops within this
429 /// loop have their parent loop set to this loop or a subloop.
430 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)431 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
432 LoopInfoBase<BlockT, LoopT> *LI,
433 const DomTreeBase<BlockT> &DomTree) {
434 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
435
436 unsigned NumBlocks = 0;
437 unsigned NumSubloops = 0;
438
439 // Perform a backward CFG traversal using a worklist.
440 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
441 while (!ReverseCFGWorklist.empty()) {
442 BlockT *PredBB = ReverseCFGWorklist.back();
443 ReverseCFGWorklist.pop_back();
444
445 LoopT *Subloop = LI->getLoopFor(PredBB);
446 if (!Subloop) {
447 if (!DomTree.isReachableFromEntry(PredBB))
448 continue;
449
450 // This is an undiscovered block. Map it to the current loop.
451 LI->changeLoopFor(PredBB, L);
452 ++NumBlocks;
453 if (PredBB == L->getHeader())
454 continue;
455 // Push all block predecessors on the worklist.
456 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
457 InvBlockTraits::child_begin(PredBB),
458 InvBlockTraits::child_end(PredBB));
459 } else {
460 // This is a discovered block. Find its outermost discovered loop.
461 while (LoopT *Parent = Subloop->getParentLoop())
462 Subloop = Parent;
463
464 // If it is already discovered to be a subloop of this loop, continue.
465 if (Subloop == L)
466 continue;
467
468 // Discover a subloop of this loop.
469 Subloop->setParentLoop(L);
470 ++NumSubloops;
471 NumBlocks += Subloop->getBlocksVector().capacity();
472 PredBB = Subloop->getHeader();
473 // Continue traversal along predecessors that are not loop-back edges from
474 // within this subloop tree itself. Note that a predecessor may directly
475 // reach another subloop that is not yet discovered to be a subloop of
476 // this loop, which we must traverse.
477 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
478 if (LI->getLoopFor(Pred) != Subloop)
479 ReverseCFGWorklist.push_back(Pred);
480 }
481 }
482 }
483 L->getSubLoopsVector().reserve(NumSubloops);
484 L->reserveBlocks(NumBlocks);
485 }
486
487 /// Populate all loop data in a stable order during a single forward DFS.
488 template <class BlockT, class LoopT> class PopulateLoopsDFS {
489 typedef GraphTraits<BlockT *> BlockTraits;
490 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
491
492 LoopInfoBase<BlockT, LoopT> *LI;
493
494 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)495 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
496
497 void traverse(BlockT *EntryBlock);
498
499 protected:
500 void insertIntoLoop(BlockT *Block);
501 };
502
503 /// Top-level driver for the forward DFS within the loop.
504 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)505 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
506 for (BlockT *BB : post_order(EntryBlock))
507 insertIntoLoop(BB);
508 }
509
510 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
511 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
512 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
513 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)514 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
515 LoopT *Subloop = LI->getLoopFor(Block);
516 if (Subloop && Block == Subloop->getHeader()) {
517 // We reach this point once per subloop after processing all the blocks in
518 // the subloop.
519 if (Subloop->getParentLoop())
520 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
521 else
522 LI->addTopLevelLoop(Subloop);
523
524 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
525 // the lists, except for the loop header, which is always at the beginning.
526 Subloop->reverseBlock(1);
527 std::reverse(Subloop->getSubLoopsVector().begin(),
528 Subloop->getSubLoopsVector().end());
529
530 Subloop = Subloop->getParentLoop();
531 }
532 for (; Subloop; Subloop = Subloop->getParentLoop())
533 Subloop->addBlockEntry(Block);
534 }
535
536 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
537 /// interleaved with backward CFG traversals within each subloop
538 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
539 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
540 /// Block vectors are then populated during a single forward CFG traversal
541 /// (PopulateLoopDFS).
542 ///
543 /// During the two CFG traversals each block is seen three times:
544 /// 1) Discovered and mapped by a reverse CFG traversal.
545 /// 2) Visited during a forward DFS CFG traversal.
546 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
547 ///
548 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
549 /// insertions per block.
550 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)551 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
552 // Postorder traversal of the dominator tree.
553 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
554 for (auto DomNode : post_order(DomRoot)) {
555
556 BlockT *Header = DomNode->getBlock();
557 SmallVector<BlockT *, 4> Backedges;
558
559 // Check each predecessor of the potential loop header.
560 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
561 // If Header dominates predBB, this is a new loop. Collect the backedges.
562 if (DomTree.dominates(Header, Backedge) &&
563 DomTree.isReachableFromEntry(Backedge)) {
564 Backedges.push_back(Backedge);
565 }
566 }
567 // Perform a backward CFG traversal to discover and map blocks in this loop.
568 if (!Backedges.empty()) {
569 LoopT *L = AllocateLoop(Header);
570 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
571 }
572 }
573 // Perform a single forward CFG traversal to populate block and subloop
574 // vectors for all loops.
575 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
576 DFS.traverse(DomRoot->getBlock());
577 }
578
579 template <class BlockT, class LoopT>
getLoopsInPreorder()580 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
581 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
582 // The outer-most loop actually goes into the result in the same relative
583 // order as we walk it. But LoopInfo stores the top level loops in reverse
584 // program order so for here we reverse it to get forward program order.
585 // FIXME: If we change the order of LoopInfo we will want to remove the
586 // reverse here.
587 for (LoopT *RootL : reverse(*this)) {
588 assert(PreOrderWorklist.empty() &&
589 "Must start with an empty preorder walk worklist.");
590 PreOrderWorklist.push_back(RootL);
591 do {
592 LoopT *L = PreOrderWorklist.pop_back_val();
593 // Sub-loops are stored in forward program order, but will process the
594 // worklist backwards so append them in reverse order.
595 PreOrderWorklist.append(L->rbegin(), L->rend());
596 PreOrderLoops.push_back(L);
597 } while (!PreOrderWorklist.empty());
598 }
599
600 return PreOrderLoops;
601 }
602
603 template <class BlockT, class LoopT>
604 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()605 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
606 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
607 // The outer-most loop actually goes into the result in the same relative
608 // order as we walk it. LoopInfo stores the top level loops in reverse
609 // program order so we walk in order here.
610 // FIXME: If we change the order of LoopInfo we will want to add a reverse
611 // here.
612 for (LoopT *RootL : *this) {
613 assert(PreOrderWorklist.empty() &&
614 "Must start with an empty preorder walk worklist.");
615 PreOrderWorklist.push_back(RootL);
616 do {
617 LoopT *L = PreOrderWorklist.pop_back_val();
618 // Sub-loops are stored in forward program order, but will process the
619 // worklist backwards so we can just append them in order.
620 PreOrderWorklist.append(L->begin(), L->end());
621 PreOrderLoops.push_back(L);
622 } while (!PreOrderWorklist.empty());
623 }
624
625 return PreOrderLoops;
626 }
627
628 // Debugging
629 template <class BlockT, class LoopT>
print(raw_ostream & OS)630 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
631 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
632 TopLevelLoops[i]->print(OS);
633 #if 0
634 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
635 E = BBMap.end(); I != E; ++I)
636 OS << "BB '" << I->first->getName() << "' level = "
637 << I->second->getLoopDepth() << "\n";
638 #endif
639 }
640
641 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)642 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
643 llvm::sort(BB1.begin(), BB1.end());
644 llvm::sort(BB2.begin(), BB2.end());
645 return BB1 == BB2;
646 }
647
648 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)649 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
650 const LoopInfoBase<BlockT, LoopT> &LI,
651 const LoopT &L) {
652 LoopHeaders[L.getHeader()] = &L;
653 for (LoopT *SL : L)
654 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
655 }
656
657 #ifndef NDEBUG
658 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)659 static void compareLoops(const LoopT *L, const LoopT *OtherL,
660 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
661 BlockT *H = L->getHeader();
662 BlockT *OtherH = OtherL->getHeader();
663 assert(H == OtherH &&
664 "Mismatched headers even though found in the same map entry!");
665
666 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
667 "Mismatched loop depth!");
668 const LoopT *ParentL = L, *OtherParentL = OtherL;
669 do {
670 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
671 "Mismatched parent loop headers!");
672 ParentL = ParentL->getParentLoop();
673 OtherParentL = OtherParentL->getParentLoop();
674 } while (ParentL);
675
676 for (const LoopT *SubL : *L) {
677 BlockT *SubH = SubL->getHeader();
678 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
679 assert(OtherSubL && "Inner loop is missing in computed loop info!");
680 OtherLoopHeaders.erase(SubH);
681 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
682 }
683
684 std::vector<BlockT *> BBs = L->getBlocks();
685 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
686 assert(compareVectors(BBs, OtherBBs) &&
687 "Mismatched basic blocks in the loops!");
688
689 const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
690 const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
691 assert(BlocksSet.size() == OtherBlocksSet.size() &&
692 std::all_of(BlocksSet.begin(), BlocksSet.end(),
693 [&OtherBlocksSet](const BlockT *BB) {
694 return OtherBlocksSet.count(BB);
695 }) &&
696 "Mismatched basic blocks in BlocksSets!");
697 }
698 #endif
699
700 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)701 void LoopInfoBase<BlockT, LoopT>::verify(
702 const DomTreeBase<BlockT> &DomTree) const {
703 DenseSet<const LoopT *> Loops;
704 for (iterator I = begin(), E = end(); I != E; ++I) {
705 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
706 (*I)->verifyLoopNest(&Loops);
707 }
708
709 // Verify that blocks are mapped to valid loops.
710 #ifndef NDEBUG
711 for (auto &Entry : BBMap) {
712 const BlockT *BB = Entry.first;
713 LoopT *L = Entry.second;
714 assert(Loops.count(L) && "orphaned loop");
715 assert(L->contains(BB) && "orphaned block");
716 for (LoopT *ChildLoop : *L)
717 assert(!ChildLoop->contains(BB) &&
718 "BBMap should point to the innermost loop containing BB");
719 }
720
721 // Recompute LoopInfo to verify loops structure.
722 LoopInfoBase<BlockT, LoopT> OtherLI;
723 OtherLI.analyze(DomTree);
724
725 // Build a map we can use to move from our LI to the computed one. This
726 // allows us to ignore the particular order in any layer of the loop forest
727 // while still comparing the structure.
728 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
729 for (LoopT *L : OtherLI)
730 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
731
732 // Walk the top level loops and ensure there is a corresponding top-level
733 // loop in the computed version and then recursively compare those loop
734 // nests.
735 for (LoopT *L : *this) {
736 BlockT *Header = L->getHeader();
737 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
738 assert(OtherL && "Top level loop is missing in computed loop info!");
739 // Now that we've matched this loop, erase its header from the map.
740 OtherLoopHeaders.erase(Header);
741 // And recursively compare these loops.
742 compareLoops(L, OtherL, OtherLoopHeaders);
743 }
744
745 // Any remaining entries in the map are loops which were found when computing
746 // a fresh LoopInfo but not present in the current one.
747 if (!OtherLoopHeaders.empty()) {
748 for (const auto &HeaderAndLoop : OtherLoopHeaders)
749 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
750 llvm_unreachable("Found new loops when recomputing LoopInfo!");
751 }
752 #endif
753 }
754
755 } // End llvm namespace
756
757 #endif
758