1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implement an interface to specify and query how an illegal operation on a
11 // given type should be expanded.
12 //
13 // Issues to be resolved:
14 // + Make it fast.
15 // + Support weird types like i3, <7 x i3>, ...
16 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
34
35 using namespace llvm;
36 using namespace LegalizeActions;
37
38 #define DEBUG_TYPE "legalizer-info"
39
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41 "disable-gisel-legality-check",
42 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43 cl::Hidden);
44
print(raw_ostream & OS) const45 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
46 OS << Opcode << ", Tys={";
47 for (const auto &Type : Types) {
48 OS << Type << ", ";
49 }
50 OS << "}, Opcode=";
51
52 OS << Opcode << ", MMOs={";
53 for (const auto &MMODescr : MMODescrs) {
54 OS << MMODescr.Size << ", ";
55 }
56 OS << "}";
57
58 return OS;
59 }
60
apply(const LegalityQuery & Query) const61 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
62 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
63 dbgs() << "\n");
64 if (Rules.empty()) {
65 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
66 return {LegalizeAction::UseLegacyRules, 0, LLT{}};
67 }
68 for (const auto &Rule : Rules) {
69 if (Rule.match(Query)) {
70 LLVM_DEBUG(dbgs() << ".. match\n");
71 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
72 LLVM_DEBUG(dbgs() << ".. .. " << (unsigned)Rule.getAction() << ", "
73 << Mutation.first << ", " << Mutation.second << "\n");
74 assert((Query.Types[Mutation.first] != Mutation.second ||
75 Rule.getAction() == Lower ||
76 Rule.getAction() == MoreElements ||
77 Rule.getAction() == FewerElements) &&
78 "Simple loop detected");
79 return {Rule.getAction(), Mutation.first, Mutation.second};
80 } else
81 LLVM_DEBUG(dbgs() << ".. no match\n");
82 }
83 LLVM_DEBUG(dbgs() << ".. unsupported\n");
84 return {LegalizeAction::Unsupported, 0, LLT{}};
85 }
86
verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const87 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
88 #ifndef NDEBUG
89 if (Rules.empty()) {
90 LLVM_DEBUG(
91 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
92 return true;
93 }
94 const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
95 if (FirstUncovered < 0) {
96 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
97 " user-defined predicate detected\n");
98 return true;
99 }
100 const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
101 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
102 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
103 return AllCovered;
104 #else
105 return true;
106 #endif
107 }
108
LegalizerInfo()109 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
110 // Set defaults.
111 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
112 // fundamental load/store Jakob proposed. Once loads & stores are supported.
113 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
114 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
115 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
116 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
117 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
118
119 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
120 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
121
122 setLegalizeScalarToDifferentSizeStrategy(
123 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
124 setLegalizeScalarToDifferentSizeStrategy(
125 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
126 setLegalizeScalarToDifferentSizeStrategy(
127 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
128 setLegalizeScalarToDifferentSizeStrategy(
129 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
130 setLegalizeScalarToDifferentSizeStrategy(
131 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
132
133 setLegalizeScalarToDifferentSizeStrategy(
134 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
135 setLegalizeScalarToDifferentSizeStrategy(
136 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
137 setLegalizeScalarToDifferentSizeStrategy(
138 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
139 setLegalizeScalarToDifferentSizeStrategy(
140 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
141 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
142 }
143
computeTables()144 void LegalizerInfo::computeTables() {
145 assert(TablesInitialized == false);
146
147 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
148 const unsigned Opcode = FirstOp + OpcodeIdx;
149 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
150 ++TypeIdx) {
151 // 0. Collect information specified through the setAction API, i.e.
152 // for specific bit sizes.
153 // For scalar types:
154 SizeAndActionsVec ScalarSpecifiedActions;
155 // For pointer types:
156 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
157 // For vector types:
158 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
159 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
160 const LLT Type = LLT2Action.first;
161 const LegalizeAction Action = LLT2Action.second;
162
163 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
164 if (Type.isPointer())
165 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
166 SizeAction);
167 else if (Type.isVector())
168 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
169 .push_back(SizeAction);
170 else
171 ScalarSpecifiedActions.push_back(SizeAction);
172 }
173
174 // 1. Handle scalar types
175 {
176 // Decide how to handle bit sizes for which no explicit specification
177 // was given.
178 SizeChangeStrategy S = &unsupportedForDifferentSizes;
179 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
180 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
181 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
182 llvm::sort(ScalarSpecifiedActions.begin(),
183 ScalarSpecifiedActions.end());
184 checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
185 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
186 }
187
188 // 2. Handle pointer types
189 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
190 llvm::sort(PointerSpecifiedActions.second.begin(),
191 PointerSpecifiedActions.second.end());
192 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
193 // For pointer types, we assume that there isn't a meaningfull way
194 // to change the number of bits used in the pointer.
195 setPointerAction(
196 Opcode, TypeIdx, PointerSpecifiedActions.first,
197 unsupportedForDifferentSizes(PointerSpecifiedActions.second));
198 }
199
200 // 3. Handle vector types
201 SizeAndActionsVec ElementSizesSeen;
202 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
203 llvm::sort(VectorSpecifiedActions.second.begin(),
204 VectorSpecifiedActions.second.end());
205 const uint16_t ElementSize = VectorSpecifiedActions.first;
206 ElementSizesSeen.push_back({ElementSize, Legal});
207 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
208 // For vector types, we assume that the best way to adapt the number
209 // of elements is to the next larger number of elements type for which
210 // the vector type is legal, unless there is no such type. In that case,
211 // legalize towards a vector type with a smaller number of elements.
212 SizeAndActionsVec NumElementsActions;
213 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
214 assert(BitsizeAndAction.first % ElementSize == 0);
215 const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
216 NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
217 }
218 setVectorNumElementAction(
219 Opcode, TypeIdx, ElementSize,
220 moreToWiderTypesAndLessToWidest(NumElementsActions));
221 }
222 llvm::sort(ElementSizesSeen.begin(), ElementSizesSeen.end());
223 SizeChangeStrategy VectorElementSizeChangeStrategy =
224 &unsupportedForDifferentSizes;
225 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
226 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
227 VectorElementSizeChangeStrategy =
228 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
229 setScalarInVectorAction(
230 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
231 }
232 }
233
234 TablesInitialized = true;
235 }
236
237 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
238 // probably going to need specialized lookup structures for various types before
239 // we have any hope of doing well with something like <13 x i3>. Even the common
240 // cases should do better than what we have now.
241 std::pair<LegalizeAction, LLT>
getAspectAction(const InstrAspect & Aspect) const242 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
243 assert(TablesInitialized && "backend forgot to call computeTables");
244 // These *have* to be implemented for now, they're the fundamental basis of
245 // how everything else is transformed.
246 if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
247 return findScalarLegalAction(Aspect);
248 assert(Aspect.Type.isVector());
249 return findVectorLegalAction(Aspect);
250 }
251
252 /// Helper function to get LLT for the given type index.
getTypeFromTypeIdx(const MachineInstr & MI,const MachineRegisterInfo & MRI,unsigned OpIdx,unsigned TypeIdx)253 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
254 const MachineRegisterInfo &MRI, unsigned OpIdx,
255 unsigned TypeIdx) {
256 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
257 // G_UNMERGE_VALUES has variable number of operands, but there is only
258 // one source type and one destination type as all destinations must be the
259 // same type. So, get the last operand if TypeIdx == 1.
260 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
261 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
262 return MRI.getType(MI.getOperand(OpIdx).getReg());
263 }
264
getOpcodeIdxForOpcode(unsigned Opcode) const265 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
266 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
267 return Opcode - FirstOp;
268 }
269
getActionDefinitionsIdx(unsigned Opcode) const270 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
271 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
272 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
273 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
274 << "\n");
275 OpcodeIdx = getOpcodeIdxForOpcode(Alias);
276 LLVM_DEBUG(dbgs() << ".. opcode " << Alias << " is aliased to "
277 << RulesForOpcode[OpcodeIdx].getAlias() << "\n");
278 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
279 }
280
281 return OpcodeIdx;
282 }
283
284 const LegalizeRuleSet &
getActionDefinitions(unsigned Opcode) const285 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
286 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
287 return RulesForOpcode[OpcodeIdx];
288 }
289
getActionDefinitionsBuilder(unsigned Opcode)290 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
291 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
292 auto &Result = RulesForOpcode[OpcodeIdx];
293 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
294 return Result;
295 }
296
getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes)297 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
298 std::initializer_list<unsigned> Opcodes) {
299 unsigned Representative = *Opcodes.begin();
300
301 assert(Opcodes.begin() != Opcodes.end() &&
302 Opcodes.begin() + 1 != Opcodes.end() &&
303 "Initializer list must have at least two opcodes");
304
305 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
306 aliasActionDefinitions(Representative, *I);
307
308 auto &Return = getActionDefinitionsBuilder(Representative);
309 Return.setIsAliasedByAnother();
310 return Return;
311 }
312
aliasActionDefinitions(unsigned OpcodeTo,unsigned OpcodeFrom)313 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
314 unsigned OpcodeFrom) {
315 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
316 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
317 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
318 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
319 }
320
321 LegalizeActionStep
getAction(const LegalityQuery & Query) const322 LegalizerInfo::getAction(const LegalityQuery &Query) const {
323 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
324 if (Step.Action != LegalizeAction::UseLegacyRules) {
325 return Step;
326 }
327
328 for (unsigned i = 0; i < Query.Types.size(); ++i) {
329 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
330 if (Action.first != Legal) {
331 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i
332 << " Action=" << (unsigned)Action.first << ", "
333 << Action.second << "\n");
334 return {Action.first, i, Action.second};
335 } else
336 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
337 }
338 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
339 return {Legal, 0, LLT{}};
340 }
341
342 LegalizeActionStep
getAction(const MachineInstr & MI,const MachineRegisterInfo & MRI) const343 LegalizerInfo::getAction(const MachineInstr &MI,
344 const MachineRegisterInfo &MRI) const {
345 SmallVector<LLT, 2> Types;
346 SmallBitVector SeenTypes(8);
347 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
348 // FIXME: probably we'll need to cache the results here somehow?
349 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
350 if (!OpInfo[i].isGenericType())
351 continue;
352
353 // We must only record actions once for each TypeIdx; otherwise we'd
354 // try to legalize operands multiple times down the line.
355 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
356 if (SeenTypes[TypeIdx])
357 continue;
358
359 SeenTypes.set(TypeIdx);
360
361 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
362 Types.push_back(Ty);
363 }
364
365 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
366 for (const auto &MMO : MI.memoperands())
367 MemDescrs.push_back(
368 {MMO->getSize() /* in bytes */ * 8, MMO->getOrdering()});
369
370 return getAction({MI.getOpcode(), Types, MemDescrs});
371 }
372
isLegal(const MachineInstr & MI,const MachineRegisterInfo & MRI) const373 bool LegalizerInfo::isLegal(const MachineInstr &MI,
374 const MachineRegisterInfo &MRI) const {
375 return getAction(MI, MRI).Action == Legal;
376 }
377
legalizeCustom(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder) const378 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
379 MachineIRBuilder &MIRBuilder) const {
380 return false;
381 }
382
383 LegalizerInfo::SizeAndActionsVec
increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec & v,LegalizeAction IncreaseAction,LegalizeAction DecreaseAction)384 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
385 const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
386 LegalizeAction DecreaseAction) {
387 SizeAndActionsVec result;
388 unsigned LargestSizeSoFar = 0;
389 if (v.size() >= 1 && v[0].first != 1)
390 result.push_back({1, IncreaseAction});
391 for (size_t i = 0; i < v.size(); ++i) {
392 result.push_back(v[i]);
393 LargestSizeSoFar = v[i].first;
394 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
395 result.push_back({LargestSizeSoFar + 1, IncreaseAction});
396 LargestSizeSoFar = v[i].first + 1;
397 }
398 }
399 result.push_back({LargestSizeSoFar + 1, DecreaseAction});
400 return result;
401 }
402
403 LegalizerInfo::SizeAndActionsVec
decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec & v,LegalizeAction DecreaseAction,LegalizeAction IncreaseAction)404 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
405 const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
406 LegalizeAction IncreaseAction) {
407 SizeAndActionsVec result;
408 if (v.size() == 0 || v[0].first != 1)
409 result.push_back({1, IncreaseAction});
410 for (size_t i = 0; i < v.size(); ++i) {
411 result.push_back(v[i]);
412 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
413 result.push_back({v[i].first + 1, DecreaseAction});
414 }
415 }
416 return result;
417 }
418
419 LegalizerInfo::SizeAndAction
findAction(const SizeAndActionsVec & Vec,const uint32_t Size)420 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
421 assert(Size >= 1);
422 // Find the last element in Vec that has a bitsize equal to or smaller than
423 // the requested bit size.
424 // That is the element just before the first element that is bigger than Size.
425 auto VecIt = std::upper_bound(
426 Vec.begin(), Vec.end(), Size,
427 [](const uint32_t Size, const SizeAndAction lhs) -> bool {
428 return Size < lhs.first;
429 });
430 assert(VecIt != Vec.begin() && "Does Vec not start with size 1?");
431 --VecIt;
432 int VecIdx = VecIt - Vec.begin();
433
434 LegalizeAction Action = Vec[VecIdx].second;
435 switch (Action) {
436 case Legal:
437 case Lower:
438 case Libcall:
439 case Custom:
440 return {Size, Action};
441 case FewerElements:
442 // FIXME: is this special case still needed and correct?
443 // Special case for scalarization:
444 if (Vec == SizeAndActionsVec({{1, FewerElements}}))
445 return {1, FewerElements};
446 LLVM_FALLTHROUGH;
447 case NarrowScalar: {
448 // The following needs to be a loop, as for now, we do allow needing to
449 // go over "Unsupported" bit sizes before finding a legalizable bit size.
450 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
451 // we need to iterate over s9, and then to s32 to return (s32, Legal).
452 // If we want to get rid of the below loop, we should have stronger asserts
453 // when building the SizeAndActionsVecs, probably not allowing
454 // "Unsupported" unless at the ends of the vector.
455 for (int i = VecIdx - 1; i >= 0; --i)
456 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
457 Vec[i].second != Unsupported)
458 return {Vec[i].first, Action};
459 llvm_unreachable("");
460 }
461 case WidenScalar:
462 case MoreElements: {
463 // See above, the following needs to be a loop, at least for now.
464 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
465 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
466 Vec[i].second != Unsupported)
467 return {Vec[i].first, Action};
468 llvm_unreachable("");
469 }
470 case Unsupported:
471 return {Size, Unsupported};
472 case NotFound:
473 case UseLegacyRules:
474 llvm_unreachable("NotFound");
475 }
476 llvm_unreachable("Action has an unknown enum value");
477 }
478
479 std::pair<LegalizeAction, LLT>
findScalarLegalAction(const InstrAspect & Aspect) const480 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
481 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
482 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
483 return {NotFound, LLT()};
484 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
485 if (Aspect.Type.isPointer() &&
486 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
487 AddrSpace2PointerActions[OpcodeIdx].end()) {
488 return {NotFound, LLT()};
489 }
490 const SmallVector<SizeAndActionsVec, 1> &Actions =
491 Aspect.Type.isPointer()
492 ? AddrSpace2PointerActions[OpcodeIdx]
493 .find(Aspect.Type.getAddressSpace())
494 ->second
495 : ScalarActions[OpcodeIdx];
496 if (Aspect.Idx >= Actions.size())
497 return {NotFound, LLT()};
498 const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
499 // FIXME: speed up this search, e.g. by using a results cache for repeated
500 // queries?
501 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
502 return {SizeAndAction.second,
503 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
504 : LLT::pointer(Aspect.Type.getAddressSpace(),
505 SizeAndAction.first)};
506 }
507
508 std::pair<LegalizeAction, LLT>
findVectorLegalAction(const InstrAspect & Aspect) const509 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
510 assert(Aspect.Type.isVector());
511 // First legalize the vector element size, then legalize the number of
512 // lanes in the vector.
513 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
514 return {NotFound, Aspect.Type};
515 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
516 const unsigned TypeIdx = Aspect.Idx;
517 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
518 return {NotFound, Aspect.Type};
519 const SizeAndActionsVec &ElemSizeVec =
520 ScalarInVectorActions[OpcodeIdx][TypeIdx];
521
522 LLT IntermediateType;
523 auto ElementSizeAndAction =
524 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
525 IntermediateType =
526 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
527 if (ElementSizeAndAction.second != Legal)
528 return {ElementSizeAndAction.second, IntermediateType};
529
530 auto i = NumElements2Actions[OpcodeIdx].find(
531 IntermediateType.getScalarSizeInBits());
532 if (i == NumElements2Actions[OpcodeIdx].end()) {
533 return {NotFound, IntermediateType};
534 }
535 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
536 auto NumElementsAndAction =
537 findAction(NumElementsVec, IntermediateType.getNumElements());
538 return {NumElementsAndAction.second,
539 LLT::vector(NumElementsAndAction.first,
540 IntermediateType.getScalarSizeInBits())};
541 }
542
543 /// \pre Type indices of every opcode form a dense set starting from 0.
verify(const MCInstrInfo & MII) const544 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
545 #ifndef NDEBUG
546 std::vector<unsigned> FailedOpcodes;
547 for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
548 const MCInstrDesc &MCID = MII.get(Opcode);
549 const unsigned NumTypeIdxs = std::accumulate(
550 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
551 [](unsigned Acc, const MCOperandInfo &OpInfo) {
552 return OpInfo.isGenericType()
553 ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
554 : Acc;
555 });
556 LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
557 << "): " << NumTypeIdxs << " type ind"
558 << (NumTypeIdxs == 1 ? "ex" : "ices") << "\n");
559 const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
560 if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
561 FailedOpcodes.push_back(Opcode);
562 }
563 if (!FailedOpcodes.empty()) {
564 errs() << "The following opcodes have ill-defined legalization rules:";
565 for (unsigned Opcode : FailedOpcodes)
566 errs() << " " << MII.getName(Opcode);
567 errs() << "\n";
568
569 report_fatal_error("ill-defined LegalizerInfo"
570 ", try -debug-only=legalizer-info for details");
571 }
572 #endif
573 }
574
575 #ifndef NDEBUG
576 // FIXME: This should be in the MachineVerifier, but it can't use the
577 // LegalizerInfo as it's currently in the separate GlobalISel library.
578 // Note that RegBankSelected property already checked in the verifier
579 // has the same layering problem, but we only use inline methods so
580 // end up not needing to link against the GlobalISel library.
machineFunctionIsIllegal(const MachineFunction & MF)581 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
582 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
583 const MachineRegisterInfo &MRI = MF.getRegInfo();
584 for (const MachineBasicBlock &MBB : MF)
585 for (const MachineInstr &MI : MBB)
586 if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegal(MI, MRI))
587 return &MI;
588 }
589 return nullptr;
590 }
591 #endif
592