1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 ///
11 /// This header defines various interfaces for pass management in LLVM. There
12 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
13 /// which supports a method to 'run' it over a unit of IR can be used as
14 /// a pass. A pass manager is generally a tool to collect a sequence of passes
15 /// which run over a particular IR construct, and run each of them in sequence
16 /// over each such construct in the containing IR construct. As there is no
17 /// containing IR construct for a Module, a manager for passes over modules
18 /// forms the base case which runs its managed passes in sequence over the
19 /// single module provided.
20 ///
21 /// The core IR library provides managers for running passes over
22 /// modules and functions.
23 ///
24 /// * FunctionPassManager can run over a Module, runs each pass over
25 /// a Function.
26 /// * ModulePassManager must be directly run, runs each pass over the Module.
27 ///
28 /// Note that the implementations of the pass managers use concept-based
29 /// polymorphism as outlined in the "Value Semantics and Concept-based
30 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
31 /// Class of Evil") by Sean Parent:
32 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
33 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
34 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
35 ///
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_IR_PASSMANAGER_H
39 #define LLVM_IR_PASSMANAGER_H
40
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/SmallPtrSet.h"
43 #include "llvm/ADT/StringRef.h"
44 #include "llvm/ADT/TinyPtrVector.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PassManagerInternal.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/TypeName.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstring>
54 #include <iterator>
55 #include <list>
56 #include <memory>
57 #include <tuple>
58 #include <type_traits>
59 #include <utility>
60 #include <vector>
61
62 namespace llvm {
63
64 /// A special type used by analysis passes to provide an address that
65 /// identifies that particular analysis pass type.
66 ///
67 /// Analysis passes should have a static data member of this type and derive
68 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
69 /// the analysis in the pass management infrastructure.
70 struct alignas(8) AnalysisKey {};
71
72 /// A special type used to provide an address that identifies a set of related
73 /// analyses. These sets are primarily used below to mark sets of analyses as
74 /// preserved.
75 ///
76 /// For example, a transformation can indicate that it preserves the CFG of a
77 /// function by preserving the appropriate AnalysisSetKey. An analysis that
78 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
79 /// if it is, the analysis knows that it itself is preserved.
80 struct alignas(8) AnalysisSetKey {};
81
82 /// This templated class represents "all analyses that operate over \<a
83 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
84 /// PreservedAnalysis.
85 ///
86 /// This lets a transformation say e.g. "I preserved all function analyses".
87 ///
88 /// Note that you must provide an explicit instantiation declaration and
89 /// definition for this template in order to get the correct behavior on
90 /// Windows. Otherwise, the address of SetKey will not be stable.
91 template <typename IRUnitT> class AllAnalysesOn {
92 public:
ID()93 static AnalysisSetKey *ID() { return &SetKey; }
94
95 private:
96 static AnalysisSetKey SetKey;
97 };
98
99 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
100
101 extern template class AllAnalysesOn<Module>;
102 extern template class AllAnalysesOn<Function>;
103
104 /// Represents analyses that only rely on functions' control flow.
105 ///
106 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
107 /// to query whether it has been preserved.
108 ///
109 /// The CFG of a function is defined as the set of basic blocks and the edges
110 /// between them. Changing the set of basic blocks in a function is enough to
111 /// mutate the CFG. Mutating the condition of a branch or argument of an
112 /// invoked function does not mutate the CFG, but changing the successor labels
113 /// of those instructions does.
114 class CFGAnalyses {
115 public:
ID()116 static AnalysisSetKey *ID() { return &SetKey; }
117
118 private:
119 static AnalysisSetKey SetKey;
120 };
121
122 /// A set of analyses that are preserved following a run of a transformation
123 /// pass.
124 ///
125 /// Transformation passes build and return these objects to communicate which
126 /// analyses are still valid after the transformation. For most passes this is
127 /// fairly simple: if they don't change anything all analyses are preserved,
128 /// otherwise only a short list of analyses that have been explicitly updated
129 /// are preserved.
130 ///
131 /// This class also lets transformation passes mark abstract *sets* of analyses
132 /// as preserved. A transformation that (say) does not alter the CFG can
133 /// indicate such by marking a particular AnalysisSetKey as preserved, and
134 /// then analyses can query whether that AnalysisSetKey is preserved.
135 ///
136 /// Finally, this class can represent an "abandoned" analysis, which is
137 /// not preserved even if it would be covered by some abstract set of analyses.
138 ///
139 /// Given a `PreservedAnalyses` object, an analysis will typically want to
140 /// figure out whether it is preserved. In the example below, MyAnalysisType is
141 /// preserved if it's not abandoned, and (a) it's explicitly marked as
142 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
143 /// AnalysisSetA and AnalysisSetB are preserved.
144 ///
145 /// ```
146 /// auto PAC = PA.getChecker<MyAnalysisType>();
147 /// if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
148 /// (PAC.preservedSet<AnalysisSetA>() &&
149 /// PAC.preservedSet<AnalysisSetB>())) {
150 /// // The analysis has been successfully preserved ...
151 /// }
152 /// ```
153 class PreservedAnalyses {
154 public:
155 /// Convenience factory function for the empty preserved set.
none()156 static PreservedAnalyses none() { return PreservedAnalyses(); }
157
158 /// Construct a special preserved set that preserves all passes.
all()159 static PreservedAnalyses all() {
160 PreservedAnalyses PA;
161 PA.PreservedIDs.insert(&AllAnalysesKey);
162 return PA;
163 }
164
165 /// Construct a preserved analyses object with a single preserved set.
166 template <typename AnalysisSetT>
allInSet()167 static PreservedAnalyses allInSet() {
168 PreservedAnalyses PA;
169 PA.preserveSet<AnalysisSetT>();
170 return PA;
171 }
172
173 /// Mark an analysis as preserved.
preserve()174 template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
175
176 /// Given an analysis's ID, mark the analysis as preserved, adding it
177 /// to the set.
preserve(AnalysisKey * ID)178 void preserve(AnalysisKey *ID) {
179 // Clear this ID from the explicit not-preserved set if present.
180 NotPreservedAnalysisIDs.erase(ID);
181
182 // If we're not already preserving all analyses (other than those in
183 // NotPreservedAnalysisIDs).
184 if (!areAllPreserved())
185 PreservedIDs.insert(ID);
186 }
187
188 /// Mark an analysis set as preserved.
preserveSet()189 template <typename AnalysisSetT> void preserveSet() {
190 preserveSet(AnalysisSetT::ID());
191 }
192
193 /// Mark an analysis set as preserved using its ID.
preserveSet(AnalysisSetKey * ID)194 void preserveSet(AnalysisSetKey *ID) {
195 // If we're not already in the saturated 'all' state, add this set.
196 if (!areAllPreserved())
197 PreservedIDs.insert(ID);
198 }
199
200 /// Mark an analysis as abandoned.
201 ///
202 /// An abandoned analysis is not preserved, even if it is nominally covered
203 /// by some other set or was previously explicitly marked as preserved.
204 ///
205 /// Note that you can only abandon a specific analysis, not a *set* of
206 /// analyses.
abandon()207 template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
208
209 /// Mark an analysis as abandoned using its ID.
210 ///
211 /// An abandoned analysis is not preserved, even if it is nominally covered
212 /// by some other set or was previously explicitly marked as preserved.
213 ///
214 /// Note that you can only abandon a specific analysis, not a *set* of
215 /// analyses.
abandon(AnalysisKey * ID)216 void abandon(AnalysisKey *ID) {
217 PreservedIDs.erase(ID);
218 NotPreservedAnalysisIDs.insert(ID);
219 }
220
221 /// Intersect this set with another in place.
222 ///
223 /// This is a mutating operation on this preserved set, removing all
224 /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)225 void intersect(const PreservedAnalyses &Arg) {
226 if (Arg.areAllPreserved())
227 return;
228 if (areAllPreserved()) {
229 *this = Arg;
230 return;
231 }
232 // The intersection requires the *union* of the explicitly not-preserved
233 // IDs and the *intersection* of the preserved IDs.
234 for (auto ID : Arg.NotPreservedAnalysisIDs) {
235 PreservedIDs.erase(ID);
236 NotPreservedAnalysisIDs.insert(ID);
237 }
238 for (auto ID : PreservedIDs)
239 if (!Arg.PreservedIDs.count(ID))
240 PreservedIDs.erase(ID);
241 }
242
243 /// Intersect this set with a temporary other set in place.
244 ///
245 /// This is a mutating operation on this preserved set, removing all
246 /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)247 void intersect(PreservedAnalyses &&Arg) {
248 if (Arg.areAllPreserved())
249 return;
250 if (areAllPreserved()) {
251 *this = std::move(Arg);
252 return;
253 }
254 // The intersection requires the *union* of the explicitly not-preserved
255 // IDs and the *intersection* of the preserved IDs.
256 for (auto ID : Arg.NotPreservedAnalysisIDs) {
257 PreservedIDs.erase(ID);
258 NotPreservedAnalysisIDs.insert(ID);
259 }
260 for (auto ID : PreservedIDs)
261 if (!Arg.PreservedIDs.count(ID))
262 PreservedIDs.erase(ID);
263 }
264
265 /// A checker object that makes it easy to query for whether an analysis or
266 /// some set covering it is preserved.
267 class PreservedAnalysisChecker {
268 friend class PreservedAnalyses;
269
270 const PreservedAnalyses &PA;
271 AnalysisKey *const ID;
272 const bool IsAbandoned;
273
274 /// A PreservedAnalysisChecker is tied to a particular Analysis because
275 /// `preserved()` and `preservedSet()` both return false if the Analysis
276 /// was abandoned.
PreservedAnalysisChecker(const PreservedAnalyses & PA,AnalysisKey * ID)277 PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
278 : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
279
280 public:
281 /// Returns true if the checker's analysis was not abandoned and either
282 /// - the analysis is explicitly preserved or
283 /// - all analyses are preserved.
preserved()284 bool preserved() {
285 return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
286 PA.PreservedIDs.count(ID));
287 }
288
289 /// Returns true if the checker's analysis was not abandoned and either
290 /// - \p AnalysisSetT is explicitly preserved or
291 /// - all analyses are preserved.
preservedSet()292 template <typename AnalysisSetT> bool preservedSet() {
293 AnalysisSetKey *SetID = AnalysisSetT::ID();
294 return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
295 PA.PreservedIDs.count(SetID));
296 }
297 };
298
299 /// Build a checker for this `PreservedAnalyses` and the specified analysis
300 /// type.
301 ///
302 /// You can use the returned object to query whether an analysis was
303 /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker()304 template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
305 return PreservedAnalysisChecker(*this, AnalysisT::ID());
306 }
307
308 /// Build a checker for this `PreservedAnalyses` and the specified analysis
309 /// ID.
310 ///
311 /// You can use the returned object to query whether an analysis was
312 /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker(AnalysisKey * ID)313 PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
314 return PreservedAnalysisChecker(*this, ID);
315 }
316
317 /// Test whether all analyses are preserved (and none are abandoned).
318 ///
319 /// This is used primarily to optimize for the common case of a transformation
320 /// which makes no changes to the IR.
areAllPreserved()321 bool areAllPreserved() const {
322 return NotPreservedAnalysisIDs.empty() &&
323 PreservedIDs.count(&AllAnalysesKey);
324 }
325
326 /// Directly test whether a set of analyses is preserved.
327 ///
328 /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved()329 template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
330 return allAnalysesInSetPreserved(AnalysisSetT::ID());
331 }
332
333 /// Directly test whether a set of analyses is preserved.
334 ///
335 /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved(AnalysisSetKey * SetID)336 bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
337 return NotPreservedAnalysisIDs.empty() &&
338 (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
339 }
340
341 private:
342 /// A special key used to indicate all analyses.
343 static AnalysisSetKey AllAnalysesKey;
344
345 /// The IDs of analyses and analysis sets that are preserved.
346 SmallPtrSet<void *, 2> PreservedIDs;
347
348 /// The IDs of explicitly not-preserved analyses.
349 ///
350 /// If an analysis in this set is covered by a set in `PreservedIDs`, we
351 /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
352 /// "wins" over analysis sets in `PreservedIDs`.
353 ///
354 /// Also, a given ID should never occur both here and in `PreservedIDs`.
355 SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
356 };
357
358 // Forward declare the analysis manager template.
359 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
360
361 /// A CRTP mix-in to automatically provide informational APIs needed for
362 /// passes.
363 ///
364 /// This provides some boilerplate for types that are passes.
365 template <typename DerivedT> struct PassInfoMixin {
366 /// Gets the name of the pass we are mixed into.
namePassInfoMixin367 static StringRef name() {
368 static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
369 "Must pass the derived type as the template argument!");
370 StringRef Name = getTypeName<DerivedT>();
371 if (Name.startswith("llvm::"))
372 Name = Name.drop_front(strlen("llvm::"));
373 return Name;
374 }
375 };
376
377 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
378 ///
379 /// This provides some boilerplate for types that are analysis passes. It
380 /// automatically mixes in \c PassInfoMixin.
381 template <typename DerivedT>
382 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
383 /// Returns an opaque, unique ID for this analysis type.
384 ///
385 /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
386 /// suitable for use in sets, maps, and other data structures that use the low
387 /// bits of pointers.
388 ///
389 /// Note that this requires the derived type provide a static \c AnalysisKey
390 /// member called \c Key.
391 ///
392 /// FIXME: The only reason the mixin type itself can't declare the Key value
393 /// is that some compilers cannot correctly unique a templated static variable
394 /// so it has the same addresses in each instantiation. The only currently
395 /// known platform with this limitation is Windows DLL builds, specifically
396 /// building each part of LLVM as a DLL. If we ever remove that build
397 /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin398 static AnalysisKey *ID() {
399 static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
400 "Must pass the derived type as the template argument!");
401 return &DerivedT::Key;
402 }
403 };
404
405 /// Manages a sequence of passes over a particular unit of IR.
406 ///
407 /// A pass manager contains a sequence of passes to run over a particular unit
408 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
409 /// IR, and when run over some given IR will run each of its contained passes in
410 /// sequence. Pass managers are the primary and most basic building block of a
411 /// pass pipeline.
412 ///
413 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
414 /// argument. The pass manager will propagate that analysis manager to each
415 /// pass it runs, and will call the analysis manager's invalidation routine with
416 /// the PreservedAnalyses of each pass it runs.
417 template <typename IRUnitT,
418 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
419 typename... ExtraArgTs>
420 class PassManager : public PassInfoMixin<
421 PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
422 public:
423 /// Construct a pass manager.
424 ///
425 /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)426 explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
427
428 // FIXME: These are equivalent to the default move constructor/move
429 // assignment. However, using = default triggers linker errors due to the
430 // explicit instantiations below. Find away to use the default and remove the
431 // duplicated code here.
PassManager(PassManager && Arg)432 PassManager(PassManager &&Arg)
433 : Passes(std::move(Arg.Passes)),
434 DebugLogging(std::move(Arg.DebugLogging)) {}
435
436 PassManager &operator=(PassManager &&RHS) {
437 Passes = std::move(RHS.Passes);
438 DebugLogging = std::move(RHS.DebugLogging);
439 return *this;
440 }
441
442 /// Run all of the passes in this manager over the given unit of IR.
443 /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)444 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
445 ExtraArgTs... ExtraArgs) {
446 PreservedAnalyses PA = PreservedAnalyses::all();
447
448 if (DebugLogging)
449 dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
450
451 for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
452 if (DebugLogging)
453 dbgs() << "Running pass: " << Passes[Idx]->name() << " on "
454 << IR.getName() << "\n";
455
456 PreservedAnalyses PassPA = Passes[Idx]->run(IR, AM, ExtraArgs...);
457
458 // Update the analysis manager as each pass runs and potentially
459 // invalidates analyses.
460 AM.invalidate(IR, PassPA);
461
462 // Finally, intersect the preserved analyses to compute the aggregate
463 // preserved set for this pass manager.
464 PA.intersect(std::move(PassPA));
465
466 // FIXME: Historically, the pass managers all called the LLVM context's
467 // yield function here. We don't have a generic way to acquire the
468 // context and it isn't yet clear what the right pattern is for yielding
469 // in the new pass manager so it is currently omitted.
470 //IR.getContext().yield();
471 }
472
473 // Invalidation was handled after each pass in the above loop for the
474 // current unit of IR. Therefore, the remaining analysis results in the
475 // AnalysisManager are preserved. We mark this with a set so that we don't
476 // need to inspect each one individually.
477 PA.preserveSet<AllAnalysesOn<IRUnitT>>();
478
479 if (DebugLogging)
480 dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
481
482 return PA;
483 }
484
addPass(PassT Pass)485 template <typename PassT> void addPass(PassT Pass) {
486 using PassModelT =
487 detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
488 ExtraArgTs...>;
489
490 Passes.emplace_back(new PassModelT(std::move(Pass)));
491 }
492
493 private:
494 using PassConceptT =
495 detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
496
497 std::vector<std::unique_ptr<PassConceptT>> Passes;
498
499 /// Flag indicating whether we should do debug logging.
500 bool DebugLogging;
501 };
502
503 extern template class PassManager<Module>;
504
505 /// Convenience typedef for a pass manager over modules.
506 using ModulePassManager = PassManager<Module>;
507
508 extern template class PassManager<Function>;
509
510 /// Convenience typedef for a pass manager over functions.
511 using FunctionPassManager = PassManager<Function>;
512
513 /// A container for analyses that lazily runs them and caches their
514 /// results.
515 ///
516 /// This class can manage analyses for any IR unit where the address of the IR
517 /// unit sufficies as its identity.
518 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
519 public:
520 class Invalidator;
521
522 private:
523 // Now that we've defined our invalidator, we can define the concept types.
524 using ResultConceptT =
525 detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
526 using PassConceptT =
527 detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
528 ExtraArgTs...>;
529
530 /// List of analysis pass IDs and associated concept pointers.
531 ///
532 /// Requires iterators to be valid across appending new entries and arbitrary
533 /// erases. Provides the analysis ID to enable finding iterators to a given
534 /// entry in maps below, and provides the storage for the actual result
535 /// concept.
536 using AnalysisResultListT =
537 std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
538
539 /// Map type from IRUnitT pointer to our custom list type.
540 using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
541
542 /// Map type from a pair of analysis ID and IRUnitT pointer to an
543 /// iterator into a particular result list (which is where the actual analysis
544 /// result is stored).
545 using AnalysisResultMapT =
546 DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
547 typename AnalysisResultListT::iterator>;
548
549 public:
550 /// API to communicate dependencies between analyses during invalidation.
551 ///
552 /// When an analysis result embeds handles to other analysis results, it
553 /// needs to be invalidated both when its own information isn't preserved and
554 /// when any of its embedded analysis results end up invalidated. We pass an
555 /// \c Invalidator object as an argument to \c invalidate() in order to let
556 /// the analysis results themselves define the dependency graph on the fly.
557 /// This lets us avoid building building an explicit representation of the
558 /// dependencies between analysis results.
559 class Invalidator {
560 public:
561 /// Trigger the invalidation of some other analysis pass if not already
562 /// handled and return whether it was in fact invalidated.
563 ///
564 /// This is expected to be called from within a given analysis result's \c
565 /// invalidate method to trigger a depth-first walk of all inter-analysis
566 /// dependencies. The same \p IR unit and \p PA passed to that result's \c
567 /// invalidate method should in turn be provided to this routine.
568 ///
569 /// The first time this is called for a given analysis pass, it will call
570 /// the corresponding result's \c invalidate method. Subsequent calls will
571 /// use a cache of the results of that initial call. It is an error to form
572 /// cyclic dependencies between analysis results.
573 ///
574 /// This returns true if the given analysis's result is invalid. Any
575 /// dependecies on it will become invalid as a result.
576 template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)577 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
578 using ResultModelT =
579 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
580 PreservedAnalyses, Invalidator>;
581
582 return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
583 }
584
585 /// A type-erased variant of the above invalidate method with the same core
586 /// API other than passing an analysis ID rather than an analysis type
587 /// parameter.
588 ///
589 /// This is sadly less efficient than the above routine, which leverages
590 /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)591 bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
592 return invalidateImpl<>(ID, IR, PA);
593 }
594
595 private:
596 friend class AnalysisManager;
597
598 template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)599 bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
600 const PreservedAnalyses &PA) {
601 // If we've already visited this pass, return true if it was invalidated
602 // and false otherwise.
603 auto IMapI = IsResultInvalidated.find(ID);
604 if (IMapI != IsResultInvalidated.end())
605 return IMapI->second;
606
607 // Otherwise look up the result object.
608 auto RI = Results.find({ID, &IR});
609 assert(RI != Results.end() &&
610 "Trying to invalidate a dependent result that isn't in the "
611 "manager's cache is always an error, likely due to a stale result "
612 "handle!");
613
614 auto &Result = static_cast<ResultT &>(*RI->second->second);
615
616 // Insert into the map whether the result should be invalidated and return
617 // that. Note that we cannot reuse IMapI and must do a fresh insert here,
618 // as calling invalidate could (recursively) insert things into the map,
619 // making any iterator or reference invalid.
620 bool Inserted;
621 std::tie(IMapI, Inserted) =
622 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
623 (void)Inserted;
624 assert(Inserted && "Should not have already inserted this ID, likely "
625 "indicates a dependency cycle!");
626 return IMapI->second;
627 }
628
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)629 Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
630 const AnalysisResultMapT &Results)
631 : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
632
633 SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
634 const AnalysisResultMapT &Results;
635 };
636
637 /// Construct an empty analysis manager.
638 ///
639 /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)640 AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
641 AnalysisManager(AnalysisManager &&) = default;
642 AnalysisManager &operator=(AnalysisManager &&) = default;
643
644 /// Returns true if the analysis manager has an empty results cache.
empty()645 bool empty() const {
646 assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
647 "The storage and index of analysis results disagree on how many "
648 "there are!");
649 return AnalysisResults.empty();
650 }
651
652 /// Clear any cached analysis results for a single unit of IR.
653 ///
654 /// This doesn't invalidate, but instead simply deletes, the relevant results.
655 /// It is useful when the IR is being removed and we want to clear out all the
656 /// memory pinned for it.
clear(IRUnitT & IR,llvm::StringRef Name)657 void clear(IRUnitT &IR, llvm::StringRef Name) {
658 if (DebugLogging)
659 dbgs() << "Clearing all analysis results for: " << Name << "\n";
660
661 auto ResultsListI = AnalysisResultLists.find(&IR);
662 if (ResultsListI == AnalysisResultLists.end())
663 return;
664 // Delete the map entries that point into the results list.
665 for (auto &IDAndResult : ResultsListI->second)
666 AnalysisResults.erase({IDAndResult.first, &IR});
667
668 // And actually destroy and erase the results associated with this IR.
669 AnalysisResultLists.erase(ResultsListI);
670 }
671
672 /// Clear all analysis results cached by this AnalysisManager.
673 ///
674 /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
675 /// deletes them. This lets you clean up the AnalysisManager when the set of
676 /// IR units itself has potentially changed, and thus we can't even look up a
677 /// a result and invalidate/clear it directly.
clear()678 void clear() {
679 AnalysisResults.clear();
680 AnalysisResultLists.clear();
681 }
682
683 /// Get the result of an analysis pass for a given IR unit.
684 ///
685 /// Runs the analysis if a cached result is not available.
686 template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)687 typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
688 assert(AnalysisPasses.count(PassT::ID()) &&
689 "This analysis pass was not registered prior to being queried");
690 ResultConceptT &ResultConcept =
691 getResultImpl(PassT::ID(), IR, ExtraArgs...);
692
693 using ResultModelT =
694 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
695 PreservedAnalyses, Invalidator>;
696
697 return static_cast<ResultModelT &>(ResultConcept).Result;
698 }
699
700 /// Get the cached result of an analysis pass for a given IR unit.
701 ///
702 /// This method never runs the analysis.
703 ///
704 /// \returns null if there is no cached result.
705 template <typename PassT>
getCachedResult(IRUnitT & IR)706 typename PassT::Result *getCachedResult(IRUnitT &IR) const {
707 assert(AnalysisPasses.count(PassT::ID()) &&
708 "This analysis pass was not registered prior to being queried");
709
710 ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
711 if (!ResultConcept)
712 return nullptr;
713
714 using ResultModelT =
715 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
716 PreservedAnalyses, Invalidator>;
717
718 return &static_cast<ResultModelT *>(ResultConcept)->Result;
719 }
720
721 /// Register an analysis pass with the manager.
722 ///
723 /// The parameter is a callable whose result is an analysis pass. This allows
724 /// passing in a lambda to construct the analysis.
725 ///
726 /// The analysis type to register is the type returned by calling the \c
727 /// PassBuilder argument. If that type has already been registered, then the
728 /// argument will not be called and this function will return false.
729 /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
730 /// and this function returns true.
731 ///
732 /// (Note: Although the return value of this function indicates whether or not
733 /// an analysis was previously registered, there intentionally isn't a way to
734 /// query this directly. Instead, you should just register all the analyses
735 /// you might want and let this class run them lazily. This idiom lets us
736 /// minimize the number of times we have to look up analyses in our
737 /// hashtable.)
738 template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)739 bool registerPass(PassBuilderT &&PassBuilder) {
740 using PassT = decltype(PassBuilder());
741 using PassModelT =
742 detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
743 Invalidator, ExtraArgTs...>;
744
745 auto &PassPtr = AnalysisPasses[PassT::ID()];
746 if (PassPtr)
747 // Already registered this pass type!
748 return false;
749
750 // Construct a new model around the instance returned by the builder.
751 PassPtr.reset(new PassModelT(PassBuilder()));
752 return true;
753 }
754
755 /// Invalidate a specific analysis pass for an IR module.
756 ///
757 /// Note that the analysis result can disregard invalidation, if it determines
758 /// it is in fact still valid.
invalidate(IRUnitT & IR)759 template <typename PassT> void invalidate(IRUnitT &IR) {
760 assert(AnalysisPasses.count(PassT::ID()) &&
761 "This analysis pass was not registered prior to being invalidated");
762 invalidateImpl(PassT::ID(), IR);
763 }
764
765 /// Invalidate cached analyses for an IR unit.
766 ///
767 /// Walk through all of the analyses pertaining to this unit of IR and
768 /// invalidate them, unless they are preserved by the PreservedAnalyses set.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)769 void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
770 // We're done if all analyses on this IR unit are preserved.
771 if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
772 return;
773
774 if (DebugLogging)
775 dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
776 << "\n";
777
778 // Track whether each analysis's result is invalidated in
779 // IsResultInvalidated.
780 SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
781 Invalidator Inv(IsResultInvalidated, AnalysisResults);
782 AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
783 for (auto &AnalysisResultPair : ResultsList) {
784 // This is basically the same thing as Invalidator::invalidate, but we
785 // can't call it here because we're operating on the type-erased result.
786 // Moreover if we instead called invalidate() directly, it would do an
787 // unnecessary look up in ResultsList.
788 AnalysisKey *ID = AnalysisResultPair.first;
789 auto &Result = *AnalysisResultPair.second;
790
791 auto IMapI = IsResultInvalidated.find(ID);
792 if (IMapI != IsResultInvalidated.end())
793 // This result was already handled via the Invalidator.
794 continue;
795
796 // Try to invalidate the result, giving it the Invalidator so it can
797 // recursively query for any dependencies it has and record the result.
798 // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
799 // Result.invalidate may insert things into the map, invalidating our
800 // iterator.
801 bool Inserted =
802 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
803 .second;
804 (void)Inserted;
805 assert(Inserted && "Should never have already inserted this ID, likely "
806 "indicates a cycle!");
807 }
808
809 // Now erase the results that were marked above as invalidated.
810 if (!IsResultInvalidated.empty()) {
811 for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
812 AnalysisKey *ID = I->first;
813 if (!IsResultInvalidated.lookup(ID)) {
814 ++I;
815 continue;
816 }
817
818 if (DebugLogging)
819 dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
820 << " on " << IR.getName() << "\n";
821
822 I = ResultsList.erase(I);
823 AnalysisResults.erase({ID, &IR});
824 }
825 }
826
827 if (ResultsList.empty())
828 AnalysisResultLists.erase(&IR);
829 }
830
831 private:
832 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)833 PassConceptT &lookUpPass(AnalysisKey *ID) {
834 typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
835 assert(PI != AnalysisPasses.end() &&
836 "Analysis passes must be registered prior to being queried!");
837 return *PI->second;
838 }
839
840 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)841 const PassConceptT &lookUpPass(AnalysisKey *ID) const {
842 typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
843 assert(PI != AnalysisPasses.end() &&
844 "Analysis passes must be registered prior to being queried!");
845 return *PI->second;
846 }
847
848 /// Get an analysis result, running the pass if necessary.
getResultImpl(AnalysisKey * ID,IRUnitT & IR,ExtraArgTs...ExtraArgs)849 ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
850 ExtraArgTs... ExtraArgs) {
851 typename AnalysisResultMapT::iterator RI;
852 bool Inserted;
853 std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
854 std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
855
856 // If we don't have a cached result for this function, look up the pass and
857 // run it to produce a result, which we then add to the cache.
858 if (Inserted) {
859 auto &P = this->lookUpPass(ID);
860 if (DebugLogging)
861 dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
862 << "\n";
863 AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
864 ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
865
866 // P.run may have inserted elements into AnalysisResults and invalidated
867 // RI.
868 RI = AnalysisResults.find({ID, &IR});
869 assert(RI != AnalysisResults.end() && "we just inserted it!");
870
871 RI->second = std::prev(ResultList.end());
872 }
873
874 return *RI->second->second;
875 }
876
877 /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)878 ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
879 typename AnalysisResultMapT::const_iterator RI =
880 AnalysisResults.find({ID, &IR});
881 return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
882 }
883
884 /// Invalidate a function pass result.
invalidateImpl(AnalysisKey * ID,IRUnitT & IR)885 void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
886 typename AnalysisResultMapT::iterator RI =
887 AnalysisResults.find({ID, &IR});
888 if (RI == AnalysisResults.end())
889 return;
890
891 if (DebugLogging)
892 dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
893 << " on " << IR.getName() << "\n";
894 AnalysisResultLists[&IR].erase(RI->second);
895 AnalysisResults.erase(RI);
896 }
897
898 /// Map type from module analysis pass ID to pass concept pointer.
899 using AnalysisPassMapT =
900 DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
901
902 /// Collection of module analysis passes, indexed by ID.
903 AnalysisPassMapT AnalysisPasses;
904
905 /// Map from function to a list of function analysis results.
906 ///
907 /// Provides linear time removal of all analysis results for a function and
908 /// the ultimate storage for a particular cached analysis result.
909 AnalysisResultListMapT AnalysisResultLists;
910
911 /// Map from an analysis ID and function to a particular cached
912 /// analysis result.
913 AnalysisResultMapT AnalysisResults;
914
915 /// Indicates whether we log to \c llvm::dbgs().
916 bool DebugLogging;
917 };
918
919 extern template class AnalysisManager<Module>;
920
921 /// Convenience typedef for the Module analysis manager.
922 using ModuleAnalysisManager = AnalysisManager<Module>;
923
924 extern template class AnalysisManager<Function>;
925
926 /// Convenience typedef for the Function analysis manager.
927 using FunctionAnalysisManager = AnalysisManager<Function>;
928
929 /// An analysis over an "outer" IR unit that provides access to an
930 /// analysis manager over an "inner" IR unit. The inner unit must be contained
931 /// in the outer unit.
932 ///
933 /// Fore example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
934 /// an analysis over Modules (the "outer" unit) that provides access to a
935 /// Function analysis manager. The FunctionAnalysisManager is the "inner"
936 /// manager being proxied, and Functions are the "inner" unit. The inner/outer
937 /// relationship is valid because each Function is contained in one Module.
938 ///
939 /// If you're (transitively) within a pass manager for an IR unit U that
940 /// contains IR unit V, you should never use an analysis manager over V, except
941 /// via one of these proxies.
942 ///
943 /// Note that the proxy's result is a move-only RAII object. The validity of
944 /// the analyses in the inner analysis manager is tied to its lifetime.
945 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
946 class InnerAnalysisManagerProxy
947 : public AnalysisInfoMixin<
948 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
949 public:
950 class Result {
951 public:
Result(AnalysisManagerT & InnerAM)952 explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
953
Result(Result && Arg)954 Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
955 // We have to null out the analysis manager in the moved-from state
956 // because we are taking ownership of the responsibilty to clear the
957 // analysis state.
958 Arg.InnerAM = nullptr;
959 }
960
~Result()961 ~Result() {
962 // InnerAM is cleared in a moved from state where there is nothing to do.
963 if (!InnerAM)
964 return;
965
966 // Clear out the analysis manager if we're being destroyed -- it means we
967 // didn't even see an invalidate call when we got invalidated.
968 InnerAM->clear();
969 }
970
971 Result &operator=(Result &&RHS) {
972 InnerAM = RHS.InnerAM;
973 // We have to null out the analysis manager in the moved-from state
974 // because we are taking ownership of the responsibilty to clear the
975 // analysis state.
976 RHS.InnerAM = nullptr;
977 return *this;
978 }
979
980 /// Accessor for the analysis manager.
getManager()981 AnalysisManagerT &getManager() { return *InnerAM; }
982
983 /// Handler for invalidation of the outer IR unit, \c IRUnitT.
984 ///
985 /// If the proxy analysis itself is not preserved, we assume that the set of
986 /// inner IR objects contained in IRUnit may have changed. In this case,
987 /// we have to call \c clear() on the inner analysis manager, as it may now
988 /// have stale pointers to its inner IR objects.
989 ///
990 /// Regardless of whether the proxy analysis is marked as preserved, all of
991 /// the analyses in the inner analysis manager are potentially invalidated
992 /// based on the set of preserved analyses.
993 bool invalidate(
994 IRUnitT &IR, const PreservedAnalyses &PA,
995 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
996
997 private:
998 AnalysisManagerT *InnerAM;
999 };
1000
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)1001 explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1002 : InnerAM(&InnerAM) {}
1003
1004 /// Run the analysis pass and create our proxy result object.
1005 ///
1006 /// This doesn't do any interesting work; it is primarily used to insert our
1007 /// proxy result object into the outer analysis cache so that we can proxy
1008 /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)1009 Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1010 ExtraArgTs...) {
1011 return Result(*InnerAM);
1012 }
1013
1014 private:
1015 friend AnalysisInfoMixin<
1016 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1017
1018 static AnalysisKey Key;
1019
1020 AnalysisManagerT *InnerAM;
1021 };
1022
1023 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1024 AnalysisKey
1025 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1026
1027 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1028 using FunctionAnalysisManagerModuleProxy =
1029 InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1030
1031 /// Specialization of the invalidate method for the \c
1032 /// FunctionAnalysisManagerModuleProxy's result.
1033 template <>
1034 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1035 Module &M, const PreservedAnalyses &PA,
1036 ModuleAnalysisManager::Invalidator &Inv);
1037
1038 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1039 // template.
1040 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1041 Module>;
1042
1043 /// An analysis over an "inner" IR unit that provides access to an
1044 /// analysis manager over a "outer" IR unit. The inner unit must be contained
1045 /// in the outer unit.
1046 ///
1047 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1048 /// analysis over Functions (the "inner" unit) which provides access to a Module
1049 /// analysis manager. The ModuleAnalysisManager is the "outer" manager being
1050 /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship
1051 /// is valid because each Function is contained in one Module.
1052 ///
1053 /// This proxy only exposes the const interface of the outer analysis manager,
1054 /// to indicate that you cannot cause an outer analysis to run from within an
1055 /// inner pass. Instead, you must rely on the \c getCachedResult API.
1056 ///
1057 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1058 /// recursive return path of each layer of the pass manager. A consequence of
1059 /// this is the outer analyses may be stale. We invalidate the outer analyses
1060 /// only when we're done running passes over the inner IR units.
1061 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1062 class OuterAnalysisManagerProxy
1063 : public AnalysisInfoMixin<
1064 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1065 public:
1066 /// Result proxy object for \c OuterAnalysisManagerProxy.
1067 class Result {
1068 public:
Result(const AnalysisManagerT & AM)1069 explicit Result(const AnalysisManagerT &AM) : AM(&AM) {}
1070
getManager()1071 const AnalysisManagerT &getManager() const { return *AM; }
1072
1073 /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)1074 bool invalidate(
1075 IRUnitT &IRUnit, const PreservedAnalyses &PA,
1076 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1077 // Loop over the set of registered outer invalidation mappings and if any
1078 // of them map to an analysis that is now invalid, clear it out.
1079 SmallVector<AnalysisKey *, 4> DeadKeys;
1080 for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1081 AnalysisKey *OuterID = KeyValuePair.first;
1082 auto &InnerIDs = KeyValuePair.second;
1083 InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
1084 return Inv.invalidate(InnerID, IRUnit, PA); }),
1085 InnerIDs.end());
1086 if (InnerIDs.empty())
1087 DeadKeys.push_back(OuterID);
1088 }
1089
1090 for (auto OuterID : DeadKeys)
1091 OuterAnalysisInvalidationMap.erase(OuterID);
1092
1093 // The proxy itself remains valid regardless of anything else.
1094 return false;
1095 }
1096
1097 /// Register a deferred invalidation event for when the outer analysis
1098 /// manager processes its invalidations.
1099 template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()1100 void registerOuterAnalysisInvalidation() {
1101 AnalysisKey *OuterID = OuterAnalysisT::ID();
1102 AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1103
1104 auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1105 // Note, this is a linear scan. If we end up with large numbers of
1106 // analyses that all trigger invalidation on the same outer analysis,
1107 // this entire system should be changed to some other deterministic
1108 // data structure such as a `SetVector` of a pair of pointers.
1109 auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
1110 InvalidatedIDList.end(), InvalidatedID);
1111 if (InvalidatedIt == InvalidatedIDList.end())
1112 InvalidatedIDList.push_back(InvalidatedID);
1113 }
1114
1115 /// Access the map from outer analyses to deferred invalidation requiring
1116 /// analyses.
1117 const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()1118 getOuterInvalidations() const {
1119 return OuterAnalysisInvalidationMap;
1120 }
1121
1122 private:
1123 const AnalysisManagerT *AM;
1124
1125 /// A map from an outer analysis ID to the set of this IR-unit's analyses
1126 /// which need to be invalidated.
1127 SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1128 OuterAnalysisInvalidationMap;
1129 };
1130
OuterAnalysisManagerProxy(const AnalysisManagerT & AM)1131 OuterAnalysisManagerProxy(const AnalysisManagerT &AM) : AM(&AM) {}
1132
1133 /// Run the analysis pass and create our proxy result object.
1134 /// Nothing to see here, it just forwards the \c AM reference into the
1135 /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)1136 Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1137 ExtraArgTs...) {
1138 return Result(*AM);
1139 }
1140
1141 private:
1142 friend AnalysisInfoMixin<
1143 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1144
1145 static AnalysisKey Key;
1146
1147 const AnalysisManagerT *AM;
1148 };
1149
1150 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1151 AnalysisKey
1152 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1153
1154 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1155 Function>;
1156 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1157 using ModuleAnalysisManagerFunctionProxy =
1158 OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1159
1160 /// Trivial adaptor that maps from a module to its functions.
1161 ///
1162 /// Designed to allow composition of a FunctionPass(Manager) and
1163 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1164 /// function in the module.
1165 ///
1166 /// Function passes run within this adaptor can rely on having exclusive access
1167 /// to the function they are run over. They should not read or modify any other
1168 /// functions! Other threads or systems may be manipulating other functions in
1169 /// the module, and so their state should never be relied on.
1170 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1171 /// violate this principle.
1172 ///
1173 /// Function passes can also read the module containing the function, but they
1174 /// should not modify that module outside of the use lists of various globals.
1175 /// For example, a function pass is not permitted to add functions to the
1176 /// module.
1177 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1178 /// violate this principle.
1179 ///
1180 /// Note that although function passes can access module analyses, module
1181 /// analyses are not invalidated while the function passes are running, so they
1182 /// may be stale. Function analyses will not be stale.
1183 template <typename FunctionPassT>
1184 class ModuleToFunctionPassAdaptor
1185 : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
1186 public:
ModuleToFunctionPassAdaptor(FunctionPassT Pass)1187 explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
1188 : Pass(std::move(Pass)) {}
1189
1190 /// Runs the function pass across every function in the module.
run(Module & M,ModuleAnalysisManager & AM)1191 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
1192 FunctionAnalysisManager &FAM =
1193 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1194
1195 PreservedAnalyses PA = PreservedAnalyses::all();
1196 for (Function &F : M) {
1197 if (F.isDeclaration())
1198 continue;
1199
1200 PreservedAnalyses PassPA = Pass.run(F, FAM);
1201
1202 // We know that the function pass couldn't have invalidated any other
1203 // function's analyses (that's the contract of a function pass), so
1204 // directly handle the function analysis manager's invalidation here.
1205 FAM.invalidate(F, PassPA);
1206
1207 // Then intersect the preserved set so that invalidation of module
1208 // analyses will eventually occur when the module pass completes.
1209 PA.intersect(std::move(PassPA));
1210 }
1211
1212 // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
1213 // the function passes we ran didn't add or remove any functions.
1214 //
1215 // We also preserve all analyses on Functions, because we did all the
1216 // invalidation we needed to do above.
1217 PA.preserveSet<AllAnalysesOn<Function>>();
1218 PA.preserve<FunctionAnalysisManagerModuleProxy>();
1219 return PA;
1220 }
1221
1222 private:
1223 FunctionPassT Pass;
1224 };
1225
1226 /// A function to deduce a function pass type and wrap it in the
1227 /// templated adaptor.
1228 template <typename FunctionPassT>
1229 ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass)1230 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1231 return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
1232 }
1233
1234 /// A utility pass template to force an analysis result to be available.
1235 ///
1236 /// If there are extra arguments at the pass's run level there may also be
1237 /// extra arguments to the analysis manager's \c getResult routine. We can't
1238 /// guess how to effectively map the arguments from one to the other, and so
1239 /// this specialization just ignores them.
1240 ///
1241 /// Specific patterns of run-method extra arguments and analysis manager extra
1242 /// arguments will have to be defined as appropriate specializations.
1243 template <typename AnalysisT, typename IRUnitT,
1244 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1245 typename... ExtraArgTs>
1246 struct RequireAnalysisPass
1247 : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1248 ExtraArgTs...>> {
1249 /// Run this pass over some unit of IR.
1250 ///
1251 /// This pass can be run over any unit of IR and use any analysis manager
1252 /// provided they satisfy the basic API requirements. When this pass is
1253 /// created, these methods can be instantiated to satisfy whatever the
1254 /// context requires.
runRequireAnalysisPass1255 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1256 ExtraArgTs &&... Args) {
1257 (void)AM.template getResult<AnalysisT>(Arg,
1258 std::forward<ExtraArgTs>(Args)...);
1259
1260 return PreservedAnalyses::all();
1261 }
1262 };
1263
1264 /// A no-op pass template which simply forces a specific analysis result
1265 /// to be invalidated.
1266 template <typename AnalysisT>
1267 struct InvalidateAnalysisPass
1268 : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1269 /// Run this pass over some unit of IR.
1270 ///
1271 /// This pass can be run over any unit of IR and use any analysis manager,
1272 /// provided they satisfy the basic API requirements. When this pass is
1273 /// created, these methods can be instantiated to satisfy whatever the
1274 /// context requires.
1275 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass1276 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1277 auto PA = PreservedAnalyses::all();
1278 PA.abandon<AnalysisT>();
1279 return PA;
1280 }
1281 };
1282
1283 /// A utility pass that does nothing, but preserves no analyses.
1284 ///
1285 /// Because this preserves no analyses, any analysis passes queried after this
1286 /// pass runs will recompute fresh results.
1287 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1288 /// Run this pass over some unit of IR.
1289 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass1290 PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1291 return PreservedAnalyses::none();
1292 }
1293 };
1294
1295 /// A utility pass template that simply runs another pass multiple times.
1296 ///
1297 /// This can be useful when debugging or testing passes. It also serves as an
1298 /// example of how to extend the pass manager in ways beyond composition.
1299 template <typename PassT>
1300 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1301 public:
RepeatedPass(int Count,PassT P)1302 RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1303
1304 template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & Arg,AnalysisManagerT & AM,Ts &&...Args)1305 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, Ts &&... Args) {
1306 auto PA = PreservedAnalyses::all();
1307 for (int i = 0; i < Count; ++i)
1308 PA.intersect(P.run(Arg, AM, std::forward<Ts>(Args)...));
1309 return PA;
1310 }
1311
1312 private:
1313 int Count;
1314 PassT P;
1315 };
1316
1317 template <typename PassT>
createRepeatedPass(int Count,PassT P)1318 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1319 return RepeatedPass<PassT>(Count, std::move(P));
1320 }
1321
1322 } // end namespace llvm
1323
1324 #endif // LLVM_IR_PASSMANAGER_H
1325