1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <cstring>
55 #include <string>
56
57 using namespace llvm;
58 using ProfileCount = Function::ProfileCount;
59
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits<BasicBlock>;
63
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
67
Argument(Type * Ty,const Twine & Name,Function * Par,unsigned ArgNo)68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
69 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
70 setName(Name);
71 }
72
setParent(Function * parent)73 void Argument::setParent(Function *parent) {
74 Parent = parent;
75 }
76
hasNonNullAttr() const77 bool Argument::hasNonNullAttr() const {
78 if (!getType()->isPointerTy()) return false;
79 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
80 return true;
81 else if (getDereferenceableBytes() > 0 &&
82 !NullPointerIsDefined(getParent(),
83 getType()->getPointerAddressSpace()))
84 return true;
85 return false;
86 }
87
hasByValAttr() const88 bool Argument::hasByValAttr() const {
89 if (!getType()->isPointerTy()) return false;
90 return hasAttribute(Attribute::ByVal);
91 }
92
hasSwiftSelfAttr() const93 bool Argument::hasSwiftSelfAttr() const {
94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 }
96
hasSwiftErrorAttr() const97 bool Argument::hasSwiftErrorAttr() const {
98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 }
100
hasInAllocaAttr() const101 bool Argument::hasInAllocaAttr() const {
102 if (!getType()->isPointerTy()) return false;
103 return hasAttribute(Attribute::InAlloca);
104 }
105
hasByValOrInAllocaAttr() const106 bool Argument::hasByValOrInAllocaAttr() const {
107 if (!getType()->isPointerTy()) return false;
108 AttributeList Attrs = getParent()->getAttributes();
109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 }
112
getParamAlignment() const113 unsigned Argument::getParamAlignment() const {
114 assert(getType()->isPointerTy() && "Only pointers have alignments");
115 return getParent()->getParamAlignment(getArgNo());
116 }
117
getDereferenceableBytes() const118 uint64_t Argument::getDereferenceableBytes() const {
119 assert(getType()->isPointerTy() &&
120 "Only pointers have dereferenceable bytes");
121 return getParent()->getParamDereferenceableBytes(getArgNo());
122 }
123
getDereferenceableOrNullBytes() const124 uint64_t Argument::getDereferenceableOrNullBytes() const {
125 assert(getType()->isPointerTy() &&
126 "Only pointers have dereferenceable bytes");
127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
128 }
129
hasNestAttr() const130 bool Argument::hasNestAttr() const {
131 if (!getType()->isPointerTy()) return false;
132 return hasAttribute(Attribute::Nest);
133 }
134
hasNoAliasAttr() const135 bool Argument::hasNoAliasAttr() const {
136 if (!getType()->isPointerTy()) return false;
137 return hasAttribute(Attribute::NoAlias);
138 }
139
hasNoCaptureAttr() const140 bool Argument::hasNoCaptureAttr() const {
141 if (!getType()->isPointerTy()) return false;
142 return hasAttribute(Attribute::NoCapture);
143 }
144
hasStructRetAttr() const145 bool Argument::hasStructRetAttr() const {
146 if (!getType()->isPointerTy()) return false;
147 return hasAttribute(Attribute::StructRet);
148 }
149
hasReturnedAttr() const150 bool Argument::hasReturnedAttr() const {
151 return hasAttribute(Attribute::Returned);
152 }
153
hasZExtAttr() const154 bool Argument::hasZExtAttr() const {
155 return hasAttribute(Attribute::ZExt);
156 }
157
hasSExtAttr() const158 bool Argument::hasSExtAttr() const {
159 return hasAttribute(Attribute::SExt);
160 }
161
onlyReadsMemory() const162 bool Argument::onlyReadsMemory() const {
163 AttributeList Attrs = getParent()->getAttributes();
164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
166 }
167
addAttrs(AttrBuilder & B)168 void Argument::addAttrs(AttrBuilder &B) {
169 AttributeList AL = getParent()->getAttributes();
170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
171 getParent()->setAttributes(AL);
172 }
173
addAttr(Attribute::AttrKind Kind)174 void Argument::addAttr(Attribute::AttrKind Kind) {
175 getParent()->addParamAttr(getArgNo(), Kind);
176 }
177
addAttr(Attribute Attr)178 void Argument::addAttr(Attribute Attr) {
179 getParent()->addParamAttr(getArgNo(), Attr);
180 }
181
removeAttr(Attribute::AttrKind Kind)182 void Argument::removeAttr(Attribute::AttrKind Kind) {
183 getParent()->removeParamAttr(getArgNo(), Kind);
184 }
185
hasAttribute(Attribute::AttrKind Kind) const186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
187 return getParent()->hasParamAttribute(getArgNo(), Kind);
188 }
189
190 //===----------------------------------------------------------------------===//
191 // Helper Methods in Function
192 //===----------------------------------------------------------------------===//
193
getContext() const194 LLVMContext &Function::getContext() const {
195 return getType()->getContext();
196 }
197
getInstructionCount()198 unsigned Function::getInstructionCount() {
199 unsigned NumInstrs = 0;
200 for (BasicBlock &BB : BasicBlocks)
201 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
202 BB.instructionsWithoutDebug().end());
203 return NumInstrs;
204 }
205
removeFromParent()206 void Function::removeFromParent() {
207 getParent()->getFunctionList().remove(getIterator());
208 }
209
eraseFromParent()210 void Function::eraseFromParent() {
211 getParent()->getFunctionList().erase(getIterator());
212 }
213
214 //===----------------------------------------------------------------------===//
215 // Function Implementation
216 //===----------------------------------------------------------------------===//
217
Function(FunctionType * Ty,LinkageTypes Linkage,const Twine & name,Module * ParentModule)218 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
219 Module *ParentModule)
220 : GlobalObject(Ty, Value::FunctionVal,
221 OperandTraits<Function>::op_begin(this), 0, Linkage, name),
222 NumArgs(Ty->getNumParams()) {
223 assert(FunctionType::isValidReturnType(getReturnType()) &&
224 "invalid return type");
225 setGlobalObjectSubClassData(0);
226
227 // We only need a symbol table for a function if the context keeps value names
228 if (!getContext().shouldDiscardValueNames())
229 SymTab = make_unique<ValueSymbolTable>();
230
231 // If the function has arguments, mark them as lazily built.
232 if (Ty->getNumParams())
233 setValueSubclassData(1); // Set the "has lazy arguments" bit.
234
235 if (ParentModule)
236 ParentModule->getFunctionList().push_back(this);
237
238 HasLLVMReservedName = getName().startswith("llvm.");
239 // Ensure intrinsics have the right parameter attributes.
240 // Note, the IntID field will have been set in Value::setName if this function
241 // name is a valid intrinsic ID.
242 if (IntID)
243 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
244 }
245
~Function()246 Function::~Function() {
247 dropAllReferences(); // After this it is safe to delete instructions.
248
249 // Delete all of the method arguments and unlink from symbol table...
250 if (Arguments)
251 clearArguments();
252
253 // Remove the function from the on-the-side GC table.
254 clearGC();
255 }
256
BuildLazyArguments() const257 void Function::BuildLazyArguments() const {
258 // Create the arguments vector, all arguments start out unnamed.
259 auto *FT = getFunctionType();
260 if (NumArgs > 0) {
261 Arguments = std::allocator<Argument>().allocate(NumArgs);
262 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
263 Type *ArgTy = FT->getParamType(i);
264 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
265 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
266 }
267 }
268
269 // Clear the lazy arguments bit.
270 unsigned SDC = getSubclassDataFromValue();
271 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
272 assert(!hasLazyArguments());
273 }
274
makeArgArray(Argument * Args,size_t Count)275 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
276 return MutableArrayRef<Argument>(Args, Count);
277 }
278
clearArguments()279 void Function::clearArguments() {
280 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
281 A.setName("");
282 A.~Argument();
283 }
284 std::allocator<Argument>().deallocate(Arguments, NumArgs);
285 Arguments = nullptr;
286 }
287
stealArgumentListFrom(Function & Src)288 void Function::stealArgumentListFrom(Function &Src) {
289 assert(isDeclaration() && "Expected no references to current arguments");
290
291 // Drop the current arguments, if any, and set the lazy argument bit.
292 if (!hasLazyArguments()) {
293 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
294 [](const Argument &A) { return A.use_empty(); }) &&
295 "Expected arguments to be unused in declaration");
296 clearArguments();
297 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
298 }
299
300 // Nothing to steal if Src has lazy arguments.
301 if (Src.hasLazyArguments())
302 return;
303
304 // Steal arguments from Src, and fix the lazy argument bits.
305 assert(arg_size() == Src.arg_size());
306 Arguments = Src.Arguments;
307 Src.Arguments = nullptr;
308 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
309 // FIXME: This does the work of transferNodesFromList inefficiently.
310 SmallString<128> Name;
311 if (A.hasName())
312 Name = A.getName();
313 if (!Name.empty())
314 A.setName("");
315 A.setParent(this);
316 if (!Name.empty())
317 A.setName(Name);
318 }
319
320 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
321 assert(!hasLazyArguments());
322 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
323 }
324
325 // dropAllReferences() - This function causes all the subinstructions to "let
326 // go" of all references that they are maintaining. This allows one to
327 // 'delete' a whole class at a time, even though there may be circular
328 // references... first all references are dropped, and all use counts go to
329 // zero. Then everything is deleted for real. Note that no operations are
330 // valid on an object that has "dropped all references", except operator
331 // delete.
332 //
dropAllReferences()333 void Function::dropAllReferences() {
334 setIsMaterializable(false);
335
336 for (BasicBlock &BB : *this)
337 BB.dropAllReferences();
338
339 // Delete all basic blocks. They are now unused, except possibly by
340 // blockaddresses, but BasicBlock's destructor takes care of those.
341 while (!BasicBlocks.empty())
342 BasicBlocks.begin()->eraseFromParent();
343
344 // Drop uses of any optional data (real or placeholder).
345 if (getNumOperands()) {
346 User::dropAllReferences();
347 setNumHungOffUseOperands(0);
348 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
349 }
350
351 // Metadata is stored in a side-table.
352 clearMetadata();
353 }
354
addAttribute(unsigned i,Attribute::AttrKind Kind)355 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
356 AttributeList PAL = getAttributes();
357 PAL = PAL.addAttribute(getContext(), i, Kind);
358 setAttributes(PAL);
359 }
360
addAttribute(unsigned i,Attribute Attr)361 void Function::addAttribute(unsigned i, Attribute Attr) {
362 AttributeList PAL = getAttributes();
363 PAL = PAL.addAttribute(getContext(), i, Attr);
364 setAttributes(PAL);
365 }
366
addAttributes(unsigned i,const AttrBuilder & Attrs)367 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
368 AttributeList PAL = getAttributes();
369 PAL = PAL.addAttributes(getContext(), i, Attrs);
370 setAttributes(PAL);
371 }
372
addParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)373 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
374 AttributeList PAL = getAttributes();
375 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
376 setAttributes(PAL);
377 }
378
addParamAttr(unsigned ArgNo,Attribute Attr)379 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
380 AttributeList PAL = getAttributes();
381 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
382 setAttributes(PAL);
383 }
384
addParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)385 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
386 AttributeList PAL = getAttributes();
387 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
388 setAttributes(PAL);
389 }
390
removeAttribute(unsigned i,Attribute::AttrKind Kind)391 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
392 AttributeList PAL = getAttributes();
393 PAL = PAL.removeAttribute(getContext(), i, Kind);
394 setAttributes(PAL);
395 }
396
removeAttribute(unsigned i,StringRef Kind)397 void Function::removeAttribute(unsigned i, StringRef Kind) {
398 AttributeList PAL = getAttributes();
399 PAL = PAL.removeAttribute(getContext(), i, Kind);
400 setAttributes(PAL);
401 }
402
removeAttributes(unsigned i,const AttrBuilder & Attrs)403 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
404 AttributeList PAL = getAttributes();
405 PAL = PAL.removeAttributes(getContext(), i, Attrs);
406 setAttributes(PAL);
407 }
408
removeParamAttr(unsigned ArgNo,Attribute::AttrKind Kind)409 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
410 AttributeList PAL = getAttributes();
411 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
412 setAttributes(PAL);
413 }
414
removeParamAttr(unsigned ArgNo,StringRef Kind)415 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
416 AttributeList PAL = getAttributes();
417 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
418 setAttributes(PAL);
419 }
420
removeParamAttrs(unsigned ArgNo,const AttrBuilder & Attrs)421 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
422 AttributeList PAL = getAttributes();
423 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
424 setAttributes(PAL);
425 }
426
addDereferenceableAttr(unsigned i,uint64_t Bytes)427 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
428 AttributeList PAL = getAttributes();
429 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
430 setAttributes(PAL);
431 }
432
addDereferenceableParamAttr(unsigned ArgNo,uint64_t Bytes)433 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
434 AttributeList PAL = getAttributes();
435 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
436 setAttributes(PAL);
437 }
438
addDereferenceableOrNullAttr(unsigned i,uint64_t Bytes)439 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
440 AttributeList PAL = getAttributes();
441 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
442 setAttributes(PAL);
443 }
444
addDereferenceableOrNullParamAttr(unsigned ArgNo,uint64_t Bytes)445 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
446 uint64_t Bytes) {
447 AttributeList PAL = getAttributes();
448 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
449 setAttributes(PAL);
450 }
451
getGC() const452 const std::string &Function::getGC() const {
453 assert(hasGC() && "Function has no collector");
454 return getContext().getGC(*this);
455 }
456
setGC(std::string Str)457 void Function::setGC(std::string Str) {
458 setValueSubclassDataBit(14, !Str.empty());
459 getContext().setGC(*this, std::move(Str));
460 }
461
clearGC()462 void Function::clearGC() {
463 if (!hasGC())
464 return;
465 getContext().deleteGC(*this);
466 setValueSubclassDataBit(14, false);
467 }
468
469 /// Copy all additional attributes (those not needed to create a Function) from
470 /// the Function Src to this one.
copyAttributesFrom(const Function * Src)471 void Function::copyAttributesFrom(const Function *Src) {
472 GlobalObject::copyAttributesFrom(Src);
473 setCallingConv(Src->getCallingConv());
474 setAttributes(Src->getAttributes());
475 if (Src->hasGC())
476 setGC(Src->getGC());
477 else
478 clearGC();
479 if (Src->hasPersonalityFn())
480 setPersonalityFn(Src->getPersonalityFn());
481 if (Src->hasPrefixData())
482 setPrefixData(Src->getPrefixData());
483 if (Src->hasPrologueData())
484 setPrologueData(Src->getPrologueData());
485 }
486
487 /// Table of string intrinsic names indexed by enum value.
488 static const char * const IntrinsicNameTable[] = {
489 "not_intrinsic",
490 #define GET_INTRINSIC_NAME_TABLE
491 #include "llvm/IR/IntrinsicImpl.inc"
492 #undef GET_INTRINSIC_NAME_TABLE
493 };
494
495 /// Table of per-target intrinsic name tables.
496 #define GET_INTRINSIC_TARGET_DATA
497 #include "llvm/IR/IntrinsicImpl.inc"
498 #undef GET_INTRINSIC_TARGET_DATA
499
500 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
501 /// target as \c Name, or the generic table if \c Name is not target specific.
502 ///
503 /// Returns the relevant slice of \c IntrinsicNameTable
findTargetSubtable(StringRef Name)504 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
505 assert(Name.startswith("llvm."));
506
507 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
508 // Drop "llvm." and take the first dotted component. That will be the target
509 // if this is target specific.
510 StringRef Target = Name.drop_front(5).split('.').first;
511 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
512 [](const IntrinsicTargetInfo &TI,
513 StringRef Target) { return TI.Name < Target; });
514 // We've either found the target or just fall back to the generic set, which
515 // is always first.
516 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
517 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
518 }
519
520 /// This does the actual lookup of an intrinsic ID which
521 /// matches the given function name.
lookupIntrinsicID(StringRef Name)522 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
523 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
524 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
525 if (Idx == -1)
526 return Intrinsic::not_intrinsic;
527
528 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
529 // an index into a sub-table.
530 int Adjust = NameTable.data() - IntrinsicNameTable;
531 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
532
533 // If the intrinsic is not overloaded, require an exact match. If it is
534 // overloaded, require either exact or prefix match.
535 const auto MatchSize = strlen(NameTable[Idx]);
536 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
537 bool IsExactMatch = Name.size() == MatchSize;
538 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
539 }
540
recalculateIntrinsicID()541 void Function::recalculateIntrinsicID() {
542 StringRef Name = getName();
543 if (!Name.startswith("llvm.")) {
544 HasLLVMReservedName = false;
545 IntID = Intrinsic::not_intrinsic;
546 return;
547 }
548 HasLLVMReservedName = true;
549 IntID = lookupIntrinsicID(Name);
550 }
551
552 /// Returns a stable mangling for the type specified for use in the name
553 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
554 /// of named types is simply their name. Manglings for unnamed types consist
555 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
556 /// combined with the mangling of their component types. A vararg function
557 /// type will have a suffix of 'vararg'. Since function types can contain
558 /// other function types, we close a function type mangling with suffix 'f'
559 /// which can't be confused with it's prefix. This ensures we don't have
560 /// collisions between two unrelated function types. Otherwise, you might
561 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
562 ///
getMangledTypeStr(Type * Ty)563 static std::string getMangledTypeStr(Type* Ty) {
564 std::string Result;
565 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
566 Result += "p" + utostr(PTyp->getAddressSpace()) +
567 getMangledTypeStr(PTyp->getElementType());
568 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
569 Result += "a" + utostr(ATyp->getNumElements()) +
570 getMangledTypeStr(ATyp->getElementType());
571 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
572 if (!STyp->isLiteral()) {
573 Result += "s_";
574 Result += STyp->getName();
575 } else {
576 Result += "sl_";
577 for (auto Elem : STyp->elements())
578 Result += getMangledTypeStr(Elem);
579 }
580 // Ensure nested structs are distinguishable.
581 Result += "s";
582 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
583 Result += "f_" + getMangledTypeStr(FT->getReturnType());
584 for (size_t i = 0; i < FT->getNumParams(); i++)
585 Result += getMangledTypeStr(FT->getParamType(i));
586 if (FT->isVarArg())
587 Result += "vararg";
588 // Ensure nested function types are distinguishable.
589 Result += "f";
590 } else if (isa<VectorType>(Ty)) {
591 Result += "v" + utostr(Ty->getVectorNumElements()) +
592 getMangledTypeStr(Ty->getVectorElementType());
593 } else if (Ty) {
594 switch (Ty->getTypeID()) {
595 default: llvm_unreachable("Unhandled type");
596 case Type::VoidTyID: Result += "isVoid"; break;
597 case Type::MetadataTyID: Result += "Metadata"; break;
598 case Type::HalfTyID: Result += "f16"; break;
599 case Type::FloatTyID: Result += "f32"; break;
600 case Type::DoubleTyID: Result += "f64"; break;
601 case Type::X86_FP80TyID: Result += "f80"; break;
602 case Type::FP128TyID: Result += "f128"; break;
603 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
604 case Type::X86_MMXTyID: Result += "x86mmx"; break;
605 case Type::IntegerTyID:
606 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
607 break;
608 }
609 }
610 return Result;
611 }
612
getName(ID id)613 StringRef Intrinsic::getName(ID id) {
614 assert(id < num_intrinsics && "Invalid intrinsic ID!");
615 assert(!isOverloaded(id) &&
616 "This version of getName does not support overloading");
617 return IntrinsicNameTable[id];
618 }
619
getName(ID id,ArrayRef<Type * > Tys)620 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
621 assert(id < num_intrinsics && "Invalid intrinsic ID!");
622 std::string Result(IntrinsicNameTable[id]);
623 for (Type *Ty : Tys) {
624 Result += "." + getMangledTypeStr(Ty);
625 }
626 return Result;
627 }
628
629 /// IIT_Info - These are enumerators that describe the entries returned by the
630 /// getIntrinsicInfoTableEntries function.
631 ///
632 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
633 enum IIT_Info {
634 // Common values should be encoded with 0-15.
635 IIT_Done = 0,
636 IIT_I1 = 1,
637 IIT_I8 = 2,
638 IIT_I16 = 3,
639 IIT_I32 = 4,
640 IIT_I64 = 5,
641 IIT_F16 = 6,
642 IIT_F32 = 7,
643 IIT_F64 = 8,
644 IIT_V2 = 9,
645 IIT_V4 = 10,
646 IIT_V8 = 11,
647 IIT_V16 = 12,
648 IIT_V32 = 13,
649 IIT_PTR = 14,
650 IIT_ARG = 15,
651
652 // Values from 16+ are only encodable with the inefficient encoding.
653 IIT_V64 = 16,
654 IIT_MMX = 17,
655 IIT_TOKEN = 18,
656 IIT_METADATA = 19,
657 IIT_EMPTYSTRUCT = 20,
658 IIT_STRUCT2 = 21,
659 IIT_STRUCT3 = 22,
660 IIT_STRUCT4 = 23,
661 IIT_STRUCT5 = 24,
662 IIT_EXTEND_ARG = 25,
663 IIT_TRUNC_ARG = 26,
664 IIT_ANYPTR = 27,
665 IIT_V1 = 28,
666 IIT_VARARG = 29,
667 IIT_HALF_VEC_ARG = 30,
668 IIT_SAME_VEC_WIDTH_ARG = 31,
669 IIT_PTR_TO_ARG = 32,
670 IIT_PTR_TO_ELT = 33,
671 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
672 IIT_I128 = 35,
673 IIT_V512 = 36,
674 IIT_V1024 = 37,
675 IIT_STRUCT6 = 38,
676 IIT_STRUCT7 = 39,
677 IIT_STRUCT8 = 40,
678 IIT_F128 = 41
679 };
680
DecodeIITType(unsigned & NextElt,ArrayRef<unsigned char> Infos,SmallVectorImpl<Intrinsic::IITDescriptor> & OutputTable)681 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
682 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
683 using namespace Intrinsic;
684
685 IIT_Info Info = IIT_Info(Infos[NextElt++]);
686 unsigned StructElts = 2;
687
688 switch (Info) {
689 case IIT_Done:
690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
691 return;
692 case IIT_VARARG:
693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
694 return;
695 case IIT_MMX:
696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
697 return;
698 case IIT_TOKEN:
699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
700 return;
701 case IIT_METADATA:
702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
703 return;
704 case IIT_F16:
705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
706 return;
707 case IIT_F32:
708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
709 return;
710 case IIT_F64:
711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
712 return;
713 case IIT_F128:
714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
715 return;
716 case IIT_I1:
717 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
718 return;
719 case IIT_I8:
720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
721 return;
722 case IIT_I16:
723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
724 return;
725 case IIT_I32:
726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
727 return;
728 case IIT_I64:
729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
730 return;
731 case IIT_I128:
732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
733 return;
734 case IIT_V1:
735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
736 DecodeIITType(NextElt, Infos, OutputTable);
737 return;
738 case IIT_V2:
739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
740 DecodeIITType(NextElt, Infos, OutputTable);
741 return;
742 case IIT_V4:
743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
744 DecodeIITType(NextElt, Infos, OutputTable);
745 return;
746 case IIT_V8:
747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
748 DecodeIITType(NextElt, Infos, OutputTable);
749 return;
750 case IIT_V16:
751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
752 DecodeIITType(NextElt, Infos, OutputTable);
753 return;
754 case IIT_V32:
755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
756 DecodeIITType(NextElt, Infos, OutputTable);
757 return;
758 case IIT_V64:
759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
760 DecodeIITType(NextElt, Infos, OutputTable);
761 return;
762 case IIT_V512:
763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
764 DecodeIITType(NextElt, Infos, OutputTable);
765 return;
766 case IIT_V1024:
767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
768 DecodeIITType(NextElt, Infos, OutputTable);
769 return;
770 case IIT_PTR:
771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
772 DecodeIITType(NextElt, Infos, OutputTable);
773 return;
774 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
776 Infos[NextElt++]));
777 DecodeIITType(NextElt, Infos, OutputTable);
778 return;
779 }
780 case IIT_ARG: {
781 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
782 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
783 return;
784 }
785 case IIT_EXTEND_ARG: {
786 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
788 ArgInfo));
789 return;
790 }
791 case IIT_TRUNC_ARG: {
792 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
794 ArgInfo));
795 return;
796 }
797 case IIT_HALF_VEC_ARG: {
798 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
800 ArgInfo));
801 return;
802 }
803 case IIT_SAME_VEC_WIDTH_ARG: {
804 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
805 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
806 ArgInfo));
807 return;
808 }
809 case IIT_PTR_TO_ARG: {
810 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
812 ArgInfo));
813 return;
814 }
815 case IIT_PTR_TO_ELT: {
816 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
817 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
818 return;
819 }
820 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
821 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
822 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
823 OutputTable.push_back(
824 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
825 return;
826 }
827 case IIT_EMPTYSTRUCT:
828 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
829 return;
830 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
831 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
832 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
833 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
834 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
835 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
836 case IIT_STRUCT2: {
837 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
838
839 for (unsigned i = 0; i != StructElts; ++i)
840 DecodeIITType(NextElt, Infos, OutputTable);
841 return;
842 }
843 }
844 llvm_unreachable("unhandled");
845 }
846
847 #define GET_INTRINSIC_GENERATOR_GLOBAL
848 #include "llvm/IR/IntrinsicImpl.inc"
849 #undef GET_INTRINSIC_GENERATOR_GLOBAL
850
getIntrinsicInfoTableEntries(ID id,SmallVectorImpl<IITDescriptor> & T)851 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
852 SmallVectorImpl<IITDescriptor> &T){
853 // Check to see if the intrinsic's type was expressible by the table.
854 unsigned TableVal = IIT_Table[id-1];
855
856 // Decode the TableVal into an array of IITValues.
857 SmallVector<unsigned char, 8> IITValues;
858 ArrayRef<unsigned char> IITEntries;
859 unsigned NextElt = 0;
860 if ((TableVal >> 31) != 0) {
861 // This is an offset into the IIT_LongEncodingTable.
862 IITEntries = IIT_LongEncodingTable;
863
864 // Strip sentinel bit.
865 NextElt = (TableVal << 1) >> 1;
866 } else {
867 // Decode the TableVal into an array of IITValues. If the entry was encoded
868 // into a single word in the table itself, decode it now.
869 do {
870 IITValues.push_back(TableVal & 0xF);
871 TableVal >>= 4;
872 } while (TableVal);
873
874 IITEntries = IITValues;
875 NextElt = 0;
876 }
877
878 // Okay, decode the table into the output vector of IITDescriptors.
879 DecodeIITType(NextElt, IITEntries, T);
880 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
881 DecodeIITType(NextElt, IITEntries, T);
882 }
883
DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> & Infos,ArrayRef<Type * > Tys,LLVMContext & Context)884 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
885 ArrayRef<Type*> Tys, LLVMContext &Context) {
886 using namespace Intrinsic;
887
888 IITDescriptor D = Infos.front();
889 Infos = Infos.slice(1);
890
891 switch (D.Kind) {
892 case IITDescriptor::Void: return Type::getVoidTy(Context);
893 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
894 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
895 case IITDescriptor::Token: return Type::getTokenTy(Context);
896 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
897 case IITDescriptor::Half: return Type::getHalfTy(Context);
898 case IITDescriptor::Float: return Type::getFloatTy(Context);
899 case IITDescriptor::Double: return Type::getDoubleTy(Context);
900 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
901
902 case IITDescriptor::Integer:
903 return IntegerType::get(Context, D.Integer_Width);
904 case IITDescriptor::Vector:
905 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
906 case IITDescriptor::Pointer:
907 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
908 D.Pointer_AddressSpace);
909 case IITDescriptor::Struct: {
910 SmallVector<Type *, 8> Elts;
911 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
912 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
913 return StructType::get(Context, Elts);
914 }
915 case IITDescriptor::Argument:
916 return Tys[D.getArgumentNumber()];
917 case IITDescriptor::ExtendArgument: {
918 Type *Ty = Tys[D.getArgumentNumber()];
919 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
920 return VectorType::getExtendedElementVectorType(VTy);
921
922 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
923 }
924 case IITDescriptor::TruncArgument: {
925 Type *Ty = Tys[D.getArgumentNumber()];
926 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
927 return VectorType::getTruncatedElementVectorType(VTy);
928
929 IntegerType *ITy = cast<IntegerType>(Ty);
930 assert(ITy->getBitWidth() % 2 == 0);
931 return IntegerType::get(Context, ITy->getBitWidth() / 2);
932 }
933 case IITDescriptor::HalfVecArgument:
934 return VectorType::getHalfElementsVectorType(cast<VectorType>(
935 Tys[D.getArgumentNumber()]));
936 case IITDescriptor::SameVecWidthArgument: {
937 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
938 Type *Ty = Tys[D.getArgumentNumber()];
939 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
940 return VectorType::get(EltTy, VTy->getNumElements());
941 }
942 llvm_unreachable("unhandled");
943 }
944 case IITDescriptor::PtrToArgument: {
945 Type *Ty = Tys[D.getArgumentNumber()];
946 return PointerType::getUnqual(Ty);
947 }
948 case IITDescriptor::PtrToElt: {
949 Type *Ty = Tys[D.getArgumentNumber()];
950 VectorType *VTy = dyn_cast<VectorType>(Ty);
951 if (!VTy)
952 llvm_unreachable("Expected an argument of Vector Type");
953 Type *EltTy = VTy->getVectorElementType();
954 return PointerType::getUnqual(EltTy);
955 }
956 case IITDescriptor::VecOfAnyPtrsToElt:
957 // Return the overloaded type (which determines the pointers address space)
958 return Tys[D.getOverloadArgNumber()];
959 }
960 llvm_unreachable("unhandled");
961 }
962
getType(LLVMContext & Context,ID id,ArrayRef<Type * > Tys)963 FunctionType *Intrinsic::getType(LLVMContext &Context,
964 ID id, ArrayRef<Type*> Tys) {
965 SmallVector<IITDescriptor, 8> Table;
966 getIntrinsicInfoTableEntries(id, Table);
967
968 ArrayRef<IITDescriptor> TableRef = Table;
969 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
970
971 SmallVector<Type*, 8> ArgTys;
972 while (!TableRef.empty())
973 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
974
975 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
976 // If we see void type as the type of the last argument, it is vararg intrinsic
977 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
978 ArgTys.pop_back();
979 return FunctionType::get(ResultTy, ArgTys, true);
980 }
981 return FunctionType::get(ResultTy, ArgTys, false);
982 }
983
isOverloaded(ID id)984 bool Intrinsic::isOverloaded(ID id) {
985 #define GET_INTRINSIC_OVERLOAD_TABLE
986 #include "llvm/IR/IntrinsicImpl.inc"
987 #undef GET_INTRINSIC_OVERLOAD_TABLE
988 }
989
isLeaf(ID id)990 bool Intrinsic::isLeaf(ID id) {
991 switch (id) {
992 default:
993 return true;
994
995 case Intrinsic::experimental_gc_statepoint:
996 case Intrinsic::experimental_patchpoint_void:
997 case Intrinsic::experimental_patchpoint_i64:
998 return false;
999 }
1000 }
1001
1002 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1003 #define GET_INTRINSIC_ATTRIBUTES
1004 #include "llvm/IR/IntrinsicImpl.inc"
1005 #undef GET_INTRINSIC_ATTRIBUTES
1006
getDeclaration(Module * M,ID id,ArrayRef<Type * > Tys)1007 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1008 // There can never be multiple globals with the same name of different types,
1009 // because intrinsics must be a specific type.
1010 return
1011 cast<Function>(M->getOrInsertFunction(getName(id, Tys),
1012 getType(M->getContext(), id, Tys)));
1013 }
1014
1015 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1016 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1017 #include "llvm/IR/IntrinsicImpl.inc"
1018 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1019
1020 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1021 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1022 #include "llvm/IR/IntrinsicImpl.inc"
1023 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1024
matchIntrinsicType(Type * Ty,ArrayRef<Intrinsic::IITDescriptor> & Infos,SmallVectorImpl<Type * > & ArgTys)1025 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1026 SmallVectorImpl<Type*> &ArgTys) {
1027 using namespace Intrinsic;
1028
1029 // If we ran out of descriptors, there are too many arguments.
1030 if (Infos.empty()) return true;
1031 IITDescriptor D = Infos.front();
1032 Infos = Infos.slice(1);
1033
1034 switch (D.Kind) {
1035 case IITDescriptor::Void: return !Ty->isVoidTy();
1036 case IITDescriptor::VarArg: return true;
1037 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1038 case IITDescriptor::Token: return !Ty->isTokenTy();
1039 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1040 case IITDescriptor::Half: return !Ty->isHalfTy();
1041 case IITDescriptor::Float: return !Ty->isFloatTy();
1042 case IITDescriptor::Double: return !Ty->isDoubleTy();
1043 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1044 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1045 case IITDescriptor::Vector: {
1046 VectorType *VT = dyn_cast<VectorType>(Ty);
1047 return !VT || VT->getNumElements() != D.Vector_Width ||
1048 matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1049 }
1050 case IITDescriptor::Pointer: {
1051 PointerType *PT = dyn_cast<PointerType>(Ty);
1052 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1053 matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1054 }
1055
1056 case IITDescriptor::Struct: {
1057 StructType *ST = dyn_cast<StructType>(Ty);
1058 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1059 return true;
1060
1061 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1062 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1063 return true;
1064 return false;
1065 }
1066
1067 case IITDescriptor::Argument:
1068 // Two cases here - If this is the second occurrence of an argument, verify
1069 // that the later instance matches the previous instance.
1070 if (D.getArgumentNumber() < ArgTys.size())
1071 return Ty != ArgTys[D.getArgumentNumber()];
1072
1073 // Otherwise, if this is the first instance of an argument, record it and
1074 // verify the "Any" kind.
1075 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1076 ArgTys.push_back(Ty);
1077
1078 switch (D.getArgumentKind()) {
1079 case IITDescriptor::AK_Any: return false; // Success
1080 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1081 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1082 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1083 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1084 }
1085 llvm_unreachable("all argument kinds not covered");
1086
1087 case IITDescriptor::ExtendArgument: {
1088 // This may only be used when referring to a previous vector argument.
1089 if (D.getArgumentNumber() >= ArgTys.size())
1090 return true;
1091
1092 Type *NewTy = ArgTys[D.getArgumentNumber()];
1093 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1094 NewTy = VectorType::getExtendedElementVectorType(VTy);
1095 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1096 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1097 else
1098 return true;
1099
1100 return Ty != NewTy;
1101 }
1102 case IITDescriptor::TruncArgument: {
1103 // This may only be used when referring to a previous vector argument.
1104 if (D.getArgumentNumber() >= ArgTys.size())
1105 return true;
1106
1107 Type *NewTy = ArgTys[D.getArgumentNumber()];
1108 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1109 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1110 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1111 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1112 else
1113 return true;
1114
1115 return Ty != NewTy;
1116 }
1117 case IITDescriptor::HalfVecArgument:
1118 // This may only be used when referring to a previous vector argument.
1119 return D.getArgumentNumber() >= ArgTys.size() ||
1120 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1121 VectorType::getHalfElementsVectorType(
1122 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1123 case IITDescriptor::SameVecWidthArgument: {
1124 if (D.getArgumentNumber() >= ArgTys.size())
1125 return true;
1126 VectorType * ReferenceType =
1127 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1128 VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1129 if (!ThisArgType || !ReferenceType ||
1130 (ReferenceType->getVectorNumElements() !=
1131 ThisArgType->getVectorNumElements()))
1132 return true;
1133 return matchIntrinsicType(ThisArgType->getVectorElementType(),
1134 Infos, ArgTys);
1135 }
1136 case IITDescriptor::PtrToArgument: {
1137 if (D.getArgumentNumber() >= ArgTys.size())
1138 return true;
1139 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1140 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1141 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1142 }
1143 case IITDescriptor::PtrToElt: {
1144 if (D.getArgumentNumber() >= ArgTys.size())
1145 return true;
1146 VectorType * ReferenceType =
1147 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1148 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1149
1150 return (!ThisArgType || !ReferenceType ||
1151 ThisArgType->getElementType() != ReferenceType->getElementType());
1152 }
1153 case IITDescriptor::VecOfAnyPtrsToElt: {
1154 unsigned RefArgNumber = D.getRefArgNumber();
1155
1156 // This may only be used when referring to a previous argument.
1157 if (RefArgNumber >= ArgTys.size())
1158 return true;
1159
1160 // Record the overloaded type
1161 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1162 "Table consistency error");
1163 ArgTys.push_back(Ty);
1164
1165 // Verify the overloaded type "matches" the Ref type.
1166 // i.e. Ty is a vector with the same width as Ref.
1167 // Composed of pointers to the same element type as Ref.
1168 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1169 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1170 if (!ThisArgVecTy || !ReferenceType ||
1171 (ReferenceType->getVectorNumElements() !=
1172 ThisArgVecTy->getVectorNumElements()))
1173 return true;
1174 PointerType *ThisArgEltTy =
1175 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1176 if (!ThisArgEltTy)
1177 return true;
1178 return ThisArgEltTy->getElementType() !=
1179 ReferenceType->getVectorElementType();
1180 }
1181 }
1182 llvm_unreachable("unhandled");
1183 }
1184
1185 bool
matchIntrinsicVarArg(bool isVarArg,ArrayRef<Intrinsic::IITDescriptor> & Infos)1186 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1187 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1188 // If there are no descriptors left, then it can't be a vararg.
1189 if (Infos.empty())
1190 return isVarArg;
1191
1192 // There should be only one descriptor remaining at this point.
1193 if (Infos.size() != 1)
1194 return true;
1195
1196 // Check and verify the descriptor.
1197 IITDescriptor D = Infos.front();
1198 Infos = Infos.slice(1);
1199 if (D.Kind == IITDescriptor::VarArg)
1200 return !isVarArg;
1201
1202 return true;
1203 }
1204
remangleIntrinsicFunction(Function * F)1205 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1206 Intrinsic::ID ID = F->getIntrinsicID();
1207 if (!ID)
1208 return None;
1209
1210 FunctionType *FTy = F->getFunctionType();
1211 // Accumulate an array of overloaded types for the given intrinsic
1212 SmallVector<Type *, 4> ArgTys;
1213 {
1214 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1215 getIntrinsicInfoTableEntries(ID, Table);
1216 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1217
1218 // If we encounter any problems matching the signature with the descriptor
1219 // just give up remangling. It's up to verifier to report the discrepancy.
1220 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1221 return None;
1222 for (auto Ty : FTy->params())
1223 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1224 return None;
1225 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1226 return None;
1227 }
1228
1229 StringRef Name = F->getName();
1230 if (Name == Intrinsic::getName(ID, ArgTys))
1231 return None;
1232
1233 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1234 NewDecl->setCallingConv(F->getCallingConv());
1235 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1236 return NewDecl;
1237 }
1238
1239 /// hasAddressTaken - returns true if there are any uses of this function
1240 /// other than direct calls or invokes to it.
hasAddressTaken(const User ** PutOffender) const1241 bool Function::hasAddressTaken(const User* *PutOffender) const {
1242 for (const Use &U : uses()) {
1243 const User *FU = U.getUser();
1244 if (isa<BlockAddress>(FU))
1245 continue;
1246 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1247 if (PutOffender)
1248 *PutOffender = FU;
1249 return true;
1250 }
1251 ImmutableCallSite CS(cast<Instruction>(FU));
1252 if (!CS.isCallee(&U)) {
1253 if (PutOffender)
1254 *PutOffender = FU;
1255 return true;
1256 }
1257 }
1258 return false;
1259 }
1260
isDefTriviallyDead() const1261 bool Function::isDefTriviallyDead() const {
1262 // Check the linkage
1263 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1264 !hasAvailableExternallyLinkage())
1265 return false;
1266
1267 // Check if the function is used by anything other than a blockaddress.
1268 for (const User *U : users())
1269 if (!isa<BlockAddress>(U))
1270 return false;
1271
1272 return true;
1273 }
1274
1275 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1276 /// setjmp or other function that gcc recognizes as "returning twice".
callsFunctionThatReturnsTwice() const1277 bool Function::callsFunctionThatReturnsTwice() const {
1278 for (const_inst_iterator
1279 I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1280 ImmutableCallSite CS(&*I);
1281 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1282 return true;
1283 }
1284
1285 return false;
1286 }
1287
getPersonalityFn() const1288 Constant *Function::getPersonalityFn() const {
1289 assert(hasPersonalityFn() && getNumOperands());
1290 return cast<Constant>(Op<0>());
1291 }
1292
setPersonalityFn(Constant * Fn)1293 void Function::setPersonalityFn(Constant *Fn) {
1294 setHungoffOperand<0>(Fn);
1295 setValueSubclassDataBit(3, Fn != nullptr);
1296 }
1297
getPrefixData() const1298 Constant *Function::getPrefixData() const {
1299 assert(hasPrefixData() && getNumOperands());
1300 return cast<Constant>(Op<1>());
1301 }
1302
setPrefixData(Constant * PrefixData)1303 void Function::setPrefixData(Constant *PrefixData) {
1304 setHungoffOperand<1>(PrefixData);
1305 setValueSubclassDataBit(1, PrefixData != nullptr);
1306 }
1307
getPrologueData() const1308 Constant *Function::getPrologueData() const {
1309 assert(hasPrologueData() && getNumOperands());
1310 return cast<Constant>(Op<2>());
1311 }
1312
setPrologueData(Constant * PrologueData)1313 void Function::setPrologueData(Constant *PrologueData) {
1314 setHungoffOperand<2>(PrologueData);
1315 setValueSubclassDataBit(2, PrologueData != nullptr);
1316 }
1317
allocHungoffUselist()1318 void Function::allocHungoffUselist() {
1319 // If we've already allocated a uselist, stop here.
1320 if (getNumOperands())
1321 return;
1322
1323 allocHungoffUses(3, /*IsPhi=*/ false);
1324 setNumHungOffUseOperands(3);
1325
1326 // Initialize the uselist with placeholder operands to allow traversal.
1327 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1328 Op<0>().set(CPN);
1329 Op<1>().set(CPN);
1330 Op<2>().set(CPN);
1331 }
1332
1333 template <int Idx>
setHungoffOperand(Constant * C)1334 void Function::setHungoffOperand(Constant *C) {
1335 if (C) {
1336 allocHungoffUselist();
1337 Op<Idx>().set(C);
1338 } else if (getNumOperands()) {
1339 Op<Idx>().set(
1340 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1341 }
1342 }
1343
setValueSubclassDataBit(unsigned Bit,bool On)1344 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1345 assert(Bit < 16 && "SubclassData contains only 16 bits");
1346 if (On)
1347 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1348 else
1349 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1350 }
1351
setEntryCount(ProfileCount Count,const DenseSet<GlobalValue::GUID> * S)1352 void Function::setEntryCount(ProfileCount Count,
1353 const DenseSet<GlobalValue::GUID> *S) {
1354 assert(Count.hasValue());
1355 #if !defined(NDEBUG)
1356 auto PrevCount = getEntryCount();
1357 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1358 #endif
1359 MDBuilder MDB(getContext());
1360 setMetadata(
1361 LLVMContext::MD_prof,
1362 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1363 }
1364
setEntryCount(uint64_t Count,Function::ProfileCountType Type,const DenseSet<GlobalValue::GUID> * Imports)1365 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1366 const DenseSet<GlobalValue::GUID> *Imports) {
1367 setEntryCount(ProfileCount(Count, Type), Imports);
1368 }
1369
getEntryCount() const1370 ProfileCount Function::getEntryCount() const {
1371 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1372 if (MD && MD->getOperand(0))
1373 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1374 if (MDS->getString().equals("function_entry_count")) {
1375 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1376 uint64_t Count = CI->getValue().getZExtValue();
1377 // A value of -1 is used for SamplePGO when there were no samples.
1378 // Treat this the same as unknown.
1379 if (Count == (uint64_t)-1)
1380 return ProfileCount::getInvalid();
1381 return ProfileCount(Count, PCT_Real);
1382 } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1383 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1384 uint64_t Count = CI->getValue().getZExtValue();
1385 return ProfileCount(Count, PCT_Synthetic);
1386 }
1387 }
1388 return ProfileCount::getInvalid();
1389 }
1390
getImportGUIDs() const1391 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1392 DenseSet<GlobalValue::GUID> R;
1393 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1394 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1395 if (MDS->getString().equals("function_entry_count"))
1396 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1397 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1398 ->getValue()
1399 .getZExtValue());
1400 return R;
1401 }
1402
setSectionPrefix(StringRef Prefix)1403 void Function::setSectionPrefix(StringRef Prefix) {
1404 MDBuilder MDB(getContext());
1405 setMetadata(LLVMContext::MD_section_prefix,
1406 MDB.createFunctionSectionPrefix(Prefix));
1407 }
1408
getSectionPrefix() const1409 Optional<StringRef> Function::getSectionPrefix() const {
1410 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1411 assert(cast<MDString>(MD->getOperand(0))
1412 ->getString()
1413 .equals("function_section_prefix") &&
1414 "Metadata not match");
1415 return cast<MDString>(MD->getOperand(1))->getString();
1416 }
1417 return None;
1418 }
1419
nullPointerIsDefined() const1420 bool Function::nullPointerIsDefined() const {
1421 return getFnAttribute("null-pointer-is-valid")
1422 .getValueAsString()
1423 .equals("true");
1424 }
1425
NullPointerIsDefined(const Function * F,unsigned AS)1426 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1427 if (F && F->nullPointerIsDefined())
1428 return true;
1429
1430 if (AS != 0)
1431 return true;
1432
1433 return false;
1434 }
1435