• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// This file implements a class to represent arbitrary precision
12 /// integral constant values and operations on them.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #ifndef LLVM_ADT_APINT_H
17 #define LLVM_ADT_APINT_H
18 
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <climits>
23 #include <cstring>
24 #include <string>
25 
26 namespace llvm {
27 class FoldingSetNodeID;
28 class StringRef;
29 class hash_code;
30 class raw_ostream;
31 
32 template <typename T> class SmallVectorImpl;
33 template <typename T> class ArrayRef;
34 
35 class APInt;
36 
37 inline APInt operator-(APInt);
38 
39 //===----------------------------------------------------------------------===//
40 //                              APInt Class
41 //===----------------------------------------------------------------------===//
42 
43 /// Class for arbitrary precision integers.
44 ///
45 /// APInt is a functional replacement for common case unsigned integer type like
46 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48 /// than 64-bits of precision. APInt provides a variety of arithmetic operators
49 /// and methods to manipulate integer values of any bit-width. It supports both
50 /// the typical integer arithmetic and comparison operations as well as bitwise
51 /// manipulation.
52 ///
53 /// The class has several invariants worth noting:
54 ///   * All bit, byte, and word positions are zero-based.
55 ///   * Once the bit width is set, it doesn't change except by the Truncate,
56 ///     SignExtend, or ZeroExtend operations.
57 ///   * All binary operators must be on APInt instances of the same bit width.
58 ///     Attempting to use these operators on instances with different bit
59 ///     widths will yield an assertion.
60 ///   * The value is stored canonically as an unsigned value. For operations
61 ///     where it makes a difference, there are both signed and unsigned variants
62 ///     of the operation. For example, sdiv and udiv. However, because the bit
63 ///     widths must be the same, operations such as Mul and Add produce the same
64 ///     results regardless of whether the values are interpreted as signed or
65 ///     not.
66 ///   * In general, the class tries to follow the style of computation that LLVM
67 ///     uses in its IR. This simplifies its use for LLVM.
68 ///
69 class LLVM_NODISCARD APInt {
70 public:
71   typedef uint64_t WordType;
72 
73   /// This enum is used to hold the constants we needed for APInt.
74   enum : unsigned {
75     /// Byte size of a word.
76     APINT_WORD_SIZE = sizeof(WordType),
77     /// Bits in a word.
78     APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT
79   };
80 
81   enum class Rounding {
82     DOWN,
83     TOWARD_ZERO,
84     UP,
85   };
86 
87   static const WordType WORD_MAX = ~WordType(0);
88 
89 private:
90   /// This union is used to store the integer value. When the
91   /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
92   union {
93     uint64_t VAL;   ///< Used to store the <= 64 bits integer value.
94     uint64_t *pVal; ///< Used to store the >64 bits integer value.
95   } U;
96 
97   unsigned BitWidth; ///< The number of bits in this APInt.
98 
99   friend struct DenseMapAPIntKeyInfo;
100 
101   friend class APSInt;
102 
103   /// Fast internal constructor
104   ///
105   /// This constructor is used only internally for speed of construction of
106   /// temporaries. It is unsafe for general use so it is not public.
APInt(uint64_t * val,unsigned bits)107   APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
108     U.pVal = val;
109   }
110 
111   /// Determine if this APInt just has one word to store value.
112   ///
113   /// \returns true if the number of bits <= 64, false otherwise.
isSingleWord()114   bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
115 
116   /// Determine which word a bit is in.
117   ///
118   /// \returns the word position for the specified bit position.
whichWord(unsigned bitPosition)119   static unsigned whichWord(unsigned bitPosition) {
120     return bitPosition / APINT_BITS_PER_WORD;
121   }
122 
123   /// Determine which bit in a word a bit is in.
124   ///
125   /// \returns the bit position in a word for the specified bit position
126   /// in the APInt.
whichBit(unsigned bitPosition)127   static unsigned whichBit(unsigned bitPosition) {
128     return bitPosition % APINT_BITS_PER_WORD;
129   }
130 
131   /// Get a single bit mask.
132   ///
133   /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
134   /// This method generates and returns a uint64_t (word) mask for a single
135   /// bit at a specific bit position. This is used to mask the bit in the
136   /// corresponding word.
maskBit(unsigned bitPosition)137   static uint64_t maskBit(unsigned bitPosition) {
138     return 1ULL << whichBit(bitPosition);
139   }
140 
141   /// Clear unused high order bits
142   ///
143   /// This method is used internally to clear the top "N" bits in the high order
144   /// word that are not used by the APInt. This is needed after the most
145   /// significant word is assigned a value to ensure that those bits are
146   /// zero'd out.
clearUnusedBits()147   APInt &clearUnusedBits() {
148     // Compute how many bits are used in the final word
149     unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
150 
151     // Mask out the high bits.
152     uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
153     if (isSingleWord())
154       U.VAL &= mask;
155     else
156       U.pVal[getNumWords() - 1] &= mask;
157     return *this;
158   }
159 
160   /// Get the word corresponding to a bit position
161   /// \returns the corresponding word for the specified bit position.
getWord(unsigned bitPosition)162   uint64_t getWord(unsigned bitPosition) const {
163     return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
164   }
165 
166   /// Utility method to change the bit width of this APInt to new bit width,
167   /// allocating and/or deallocating as necessary. There is no guarantee on the
168   /// value of any bits upon return. Caller should populate the bits after.
169   void reallocate(unsigned NewBitWidth);
170 
171   /// Convert a char array into an APInt
172   ///
173   /// \param radix 2, 8, 10, 16, or 36
174   /// Converts a string into a number.  The string must be non-empty
175   /// and well-formed as a number of the given base. The bit-width
176   /// must be sufficient to hold the result.
177   ///
178   /// This is used by the constructors that take string arguments.
179   ///
180   /// StringRef::getAsInteger is superficially similar but (1) does
181   /// not assume that the string is well-formed and (2) grows the
182   /// result to hold the input.
183   void fromString(unsigned numBits, StringRef str, uint8_t radix);
184 
185   /// An internal division function for dividing APInts.
186   ///
187   /// This is used by the toString method to divide by the radix. It simply
188   /// provides a more convenient form of divide for internal use since KnuthDiv
189   /// has specific constraints on its inputs. If those constraints are not met
190   /// then it provides a simpler form of divide.
191   static void divide(const WordType *LHS, unsigned lhsWords,
192                      const WordType *RHS, unsigned rhsWords, WordType *Quotient,
193                      WordType *Remainder);
194 
195   /// out-of-line slow case for inline constructor
196   void initSlowCase(uint64_t val, bool isSigned);
197 
198   /// shared code between two array constructors
199   void initFromArray(ArrayRef<uint64_t> array);
200 
201   /// out-of-line slow case for inline copy constructor
202   void initSlowCase(const APInt &that);
203 
204   /// out-of-line slow case for shl
205   void shlSlowCase(unsigned ShiftAmt);
206 
207   /// out-of-line slow case for lshr.
208   void lshrSlowCase(unsigned ShiftAmt);
209 
210   /// out-of-line slow case for ashr.
211   void ashrSlowCase(unsigned ShiftAmt);
212 
213   /// out-of-line slow case for operator=
214   void AssignSlowCase(const APInt &RHS);
215 
216   /// out-of-line slow case for operator==
217   bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY;
218 
219   /// out-of-line slow case for countLeadingZeros
220   unsigned countLeadingZerosSlowCase() const LLVM_READONLY;
221 
222   /// out-of-line slow case for countLeadingOnes.
223   unsigned countLeadingOnesSlowCase() const LLVM_READONLY;
224 
225   /// out-of-line slow case for countTrailingZeros.
226   unsigned countTrailingZerosSlowCase() const LLVM_READONLY;
227 
228   /// out-of-line slow case for countTrailingOnes
229   unsigned countTrailingOnesSlowCase() const LLVM_READONLY;
230 
231   /// out-of-line slow case for countPopulation
232   unsigned countPopulationSlowCase() const LLVM_READONLY;
233 
234   /// out-of-line slow case for intersects.
235   bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY;
236 
237   /// out-of-line slow case for isSubsetOf.
238   bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY;
239 
240   /// out-of-line slow case for setBits.
241   void setBitsSlowCase(unsigned loBit, unsigned hiBit);
242 
243   /// out-of-line slow case for flipAllBits.
244   void flipAllBitsSlowCase();
245 
246   /// out-of-line slow case for operator&=.
247   void AndAssignSlowCase(const APInt& RHS);
248 
249   /// out-of-line slow case for operator|=.
250   void OrAssignSlowCase(const APInt& RHS);
251 
252   /// out-of-line slow case for operator^=.
253   void XorAssignSlowCase(const APInt& RHS);
254 
255   /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
256   /// to, or greater than RHS.
257   int compare(const APInt &RHS) const LLVM_READONLY;
258 
259   /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
260   /// to, or greater than RHS.
261   int compareSigned(const APInt &RHS) const LLVM_READONLY;
262 
263 public:
264   /// \name Constructors
265   /// @{
266 
267   /// Create a new APInt of numBits width, initialized as val.
268   ///
269   /// If isSigned is true then val is treated as if it were a signed value
270   /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
271   /// will be done. Otherwise, no sign extension occurs (high order bits beyond
272   /// the range of val are zero filled).
273   ///
274   /// \param numBits the bit width of the constructed APInt
275   /// \param val the initial value of the APInt
276   /// \param isSigned how to treat signedness of val
277   APInt(unsigned numBits, uint64_t val, bool isSigned = false)
BitWidth(numBits)278       : BitWidth(numBits) {
279     assert(BitWidth && "bitwidth too small");
280     if (isSingleWord()) {
281       U.VAL = val;
282       clearUnusedBits();
283     } else {
284       initSlowCase(val, isSigned);
285     }
286   }
287 
288   /// Construct an APInt of numBits width, initialized as bigVal[].
289   ///
290   /// Note that bigVal.size() can be smaller or larger than the corresponding
291   /// bit width but any extraneous bits will be dropped.
292   ///
293   /// \param numBits the bit width of the constructed APInt
294   /// \param bigVal a sequence of words to form the initial value of the APInt
295   APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
296 
297   /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
298   /// deprecated because this constructor is prone to ambiguity with the
299   /// APInt(unsigned, uint64_t, bool) constructor.
300   ///
301   /// If this overload is ever deleted, care should be taken to prevent calls
302   /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
303   /// constructor.
304   APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
305 
306   /// Construct an APInt from a string representation.
307   ///
308   /// This constructor interprets the string \p str in the given radix. The
309   /// interpretation stops when the first character that is not suitable for the
310   /// radix is encountered, or the end of the string. Acceptable radix values
311   /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
312   /// string to require more bits than numBits.
313   ///
314   /// \param numBits the bit width of the constructed APInt
315   /// \param str the string to be interpreted
316   /// \param radix the radix to use for the conversion
317   APInt(unsigned numBits, StringRef str, uint8_t radix);
318 
319   /// Simply makes *this a copy of that.
320   /// Copy Constructor.
APInt(const APInt & that)321   APInt(const APInt &that) : BitWidth(that.BitWidth) {
322     if (isSingleWord())
323       U.VAL = that.U.VAL;
324     else
325       initSlowCase(that);
326   }
327 
328   /// Move Constructor.
APInt(APInt && that)329   APInt(APInt &&that) : BitWidth(that.BitWidth) {
330     memcpy(&U, &that.U, sizeof(U));
331     that.BitWidth = 0;
332   }
333 
334   /// Destructor.
~APInt()335   ~APInt() {
336     if (needsCleanup())
337       delete[] U.pVal;
338   }
339 
340   /// Default constructor that creates an uninteresting APInt
341   /// representing a 1-bit zero value.
342   ///
343   /// This is useful for object deserialization (pair this with the static
344   ///  method Read).
APInt()345   explicit APInt() : BitWidth(1) { U.VAL = 0; }
346 
347   /// Returns whether this instance allocated memory.
needsCleanup()348   bool needsCleanup() const { return !isSingleWord(); }
349 
350   /// Used to insert APInt objects, or objects that contain APInt objects, into
351   ///  FoldingSets.
352   void Profile(FoldingSetNodeID &id) const;
353 
354   /// @}
355   /// \name Value Tests
356   /// @{
357 
358   /// Determine sign of this APInt.
359   ///
360   /// This tests the high bit of this APInt to determine if it is set.
361   ///
362   /// \returns true if this APInt is negative, false otherwise
isNegative()363   bool isNegative() const { return (*this)[BitWidth - 1]; }
364 
365   /// Determine if this APInt Value is non-negative (>= 0)
366   ///
367   /// This tests the high bit of the APInt to determine if it is unset.
isNonNegative()368   bool isNonNegative() const { return !isNegative(); }
369 
370   /// Determine if sign bit of this APInt is set.
371   ///
372   /// This tests the high bit of this APInt to determine if it is set.
373   ///
374   /// \returns true if this APInt has its sign bit set, false otherwise.
isSignBitSet()375   bool isSignBitSet() const { return (*this)[BitWidth-1]; }
376 
377   /// Determine if sign bit of this APInt is clear.
378   ///
379   /// This tests the high bit of this APInt to determine if it is clear.
380   ///
381   /// \returns true if this APInt has its sign bit clear, false otherwise.
isSignBitClear()382   bool isSignBitClear() const { return !isSignBitSet(); }
383 
384   /// Determine if this APInt Value is positive.
385   ///
386   /// This tests if the value of this APInt is positive (> 0). Note
387   /// that 0 is not a positive value.
388   ///
389   /// \returns true if this APInt is positive.
isStrictlyPositive()390   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
391 
392   /// Determine if all bits are set
393   ///
394   /// This checks to see if the value has all bits of the APInt are set or not.
isAllOnesValue()395   bool isAllOnesValue() const {
396     if (isSingleWord())
397       return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
398     return countTrailingOnesSlowCase() == BitWidth;
399   }
400 
401   /// Determine if all bits are clear
402   ///
403   /// This checks to see if the value has all bits of the APInt are clear or
404   /// not.
isNullValue()405   bool isNullValue() const { return !*this; }
406 
407   /// Determine if this is a value of 1.
408   ///
409   /// This checks to see if the value of this APInt is one.
isOneValue()410   bool isOneValue() const {
411     if (isSingleWord())
412       return U.VAL == 1;
413     return countLeadingZerosSlowCase() == BitWidth - 1;
414   }
415 
416   /// Determine if this is the largest unsigned value.
417   ///
418   /// This checks to see if the value of this APInt is the maximum unsigned
419   /// value for the APInt's bit width.
isMaxValue()420   bool isMaxValue() const { return isAllOnesValue(); }
421 
422   /// Determine if this is the largest signed value.
423   ///
424   /// This checks to see if the value of this APInt is the maximum signed
425   /// value for the APInt's bit width.
isMaxSignedValue()426   bool isMaxSignedValue() const {
427     if (isSingleWord())
428       return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
429     return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
430   }
431 
432   /// Determine if this is the smallest unsigned value.
433   ///
434   /// This checks to see if the value of this APInt is the minimum unsigned
435   /// value for the APInt's bit width.
isMinValue()436   bool isMinValue() const { return isNullValue(); }
437 
438   /// Determine if this is the smallest signed value.
439   ///
440   /// This checks to see if the value of this APInt is the minimum signed
441   /// value for the APInt's bit width.
isMinSignedValue()442   bool isMinSignedValue() const {
443     if (isSingleWord())
444       return U.VAL == (WordType(1) << (BitWidth - 1));
445     return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
446   }
447 
448   /// Check if this APInt has an N-bits unsigned integer value.
isIntN(unsigned N)449   bool isIntN(unsigned N) const {
450     assert(N && "N == 0 ???");
451     return getActiveBits() <= N;
452   }
453 
454   /// Check if this APInt has an N-bits signed integer value.
isSignedIntN(unsigned N)455   bool isSignedIntN(unsigned N) const {
456     assert(N && "N == 0 ???");
457     return getMinSignedBits() <= N;
458   }
459 
460   /// Check if this APInt's value is a power of two greater than zero.
461   ///
462   /// \returns true if the argument APInt value is a power of two > 0.
isPowerOf2()463   bool isPowerOf2() const {
464     if (isSingleWord())
465       return isPowerOf2_64(U.VAL);
466     return countPopulationSlowCase() == 1;
467   }
468 
469   /// Check if the APInt's value is returned by getSignMask.
470   ///
471   /// \returns true if this is the value returned by getSignMask.
isSignMask()472   bool isSignMask() const { return isMinSignedValue(); }
473 
474   /// Convert APInt to a boolean value.
475   ///
476   /// This converts the APInt to a boolean value as a test against zero.
getBoolValue()477   bool getBoolValue() const { return !!*this; }
478 
479   /// If this value is smaller than the specified limit, return it, otherwise
480   /// return the limit value.  This causes the value to saturate to the limit.
481   uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const {
482     return ugt(Limit) ? Limit : getZExtValue();
483   }
484 
485   /// Check if the APInt consists of a repeated bit pattern.
486   ///
487   /// e.g. 0x01010101 satisfies isSplat(8).
488   /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
489   /// width without remainder.
490   bool isSplat(unsigned SplatSizeInBits) const;
491 
492   /// \returns true if this APInt value is a sequence of \param numBits ones
493   /// starting at the least significant bit with the remainder zero.
isMask(unsigned numBits)494   bool isMask(unsigned numBits) const {
495     assert(numBits != 0 && "numBits must be non-zero");
496     assert(numBits <= BitWidth && "numBits out of range");
497     if (isSingleWord())
498       return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
499     unsigned Ones = countTrailingOnesSlowCase();
500     return (numBits == Ones) &&
501            ((Ones + countLeadingZerosSlowCase()) == BitWidth);
502   }
503 
504   /// \returns true if this APInt is a non-empty sequence of ones starting at
505   /// the least significant bit with the remainder zero.
506   /// Ex. isMask(0x0000FFFFU) == true.
isMask()507   bool isMask() const {
508     if (isSingleWord())
509       return isMask_64(U.VAL);
510     unsigned Ones = countTrailingOnesSlowCase();
511     return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
512   }
513 
514   /// Return true if this APInt value contains a sequence of ones with
515   /// the remainder zero.
isShiftedMask()516   bool isShiftedMask() const {
517     if (isSingleWord())
518       return isShiftedMask_64(U.VAL);
519     unsigned Ones = countPopulationSlowCase();
520     unsigned LeadZ = countLeadingZerosSlowCase();
521     return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
522   }
523 
524   /// @}
525   /// \name Value Generators
526   /// @{
527 
528   /// Gets maximum unsigned value of APInt for specific bit width.
getMaxValue(unsigned numBits)529   static APInt getMaxValue(unsigned numBits) {
530     return getAllOnesValue(numBits);
531   }
532 
533   /// Gets maximum signed value of APInt for a specific bit width.
getSignedMaxValue(unsigned numBits)534   static APInt getSignedMaxValue(unsigned numBits) {
535     APInt API = getAllOnesValue(numBits);
536     API.clearBit(numBits - 1);
537     return API;
538   }
539 
540   /// Gets minimum unsigned value of APInt for a specific bit width.
getMinValue(unsigned numBits)541   static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
542 
543   /// Gets minimum signed value of APInt for a specific bit width.
getSignedMinValue(unsigned numBits)544   static APInt getSignedMinValue(unsigned numBits) {
545     APInt API(numBits, 0);
546     API.setBit(numBits - 1);
547     return API;
548   }
549 
550   /// Get the SignMask for a specific bit width.
551   ///
552   /// This is just a wrapper function of getSignedMinValue(), and it helps code
553   /// readability when we want to get a SignMask.
getSignMask(unsigned BitWidth)554   static APInt getSignMask(unsigned BitWidth) {
555     return getSignedMinValue(BitWidth);
556   }
557 
558   /// Get the all-ones value.
559   ///
560   /// \returns the all-ones value for an APInt of the specified bit-width.
getAllOnesValue(unsigned numBits)561   static APInt getAllOnesValue(unsigned numBits) {
562     return APInt(numBits, WORD_MAX, true);
563   }
564 
565   /// Get the '0' value.
566   ///
567   /// \returns the '0' value for an APInt of the specified bit-width.
getNullValue(unsigned numBits)568   static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
569 
570   /// Compute an APInt containing numBits highbits from this APInt.
571   ///
572   /// Get an APInt with the same BitWidth as this APInt, just zero mask
573   /// the low bits and right shift to the least significant bit.
574   ///
575   /// \returns the high "numBits" bits of this APInt.
576   APInt getHiBits(unsigned numBits) const;
577 
578   /// Compute an APInt containing numBits lowbits from this APInt.
579   ///
580   /// Get an APInt with the same BitWidth as this APInt, just zero mask
581   /// the high bits.
582   ///
583   /// \returns the low "numBits" bits of this APInt.
584   APInt getLoBits(unsigned numBits) const;
585 
586   /// Return an APInt with exactly one bit set in the result.
getOneBitSet(unsigned numBits,unsigned BitNo)587   static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
588     APInt Res(numBits, 0);
589     Res.setBit(BitNo);
590     return Res;
591   }
592 
593   /// Get a value with a block of bits set.
594   ///
595   /// Constructs an APInt value that has a contiguous range of bits set. The
596   /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
597   /// bits will be zero. For example, with parameters(32, 0, 16) you would get
598   /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
599   /// example, with parameters (32, 28, 4), you would get 0xF000000F.
600   ///
601   /// \param numBits the intended bit width of the result
602   /// \param loBit the index of the lowest bit set.
603   /// \param hiBit the index of the highest bit set.
604   ///
605   /// \returns An APInt value with the requested bits set.
getBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit)606   static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
607     APInt Res(numBits, 0);
608     Res.setBits(loBit, hiBit);
609     return Res;
610   }
611 
612   /// Get a value with upper bits starting at loBit set.
613   ///
614   /// Constructs an APInt value that has a contiguous range of bits set. The
615   /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
616   /// bits will be zero. For example, with parameters(32, 12) you would get
617   /// 0xFFFFF000.
618   ///
619   /// \param numBits the intended bit width of the result
620   /// \param loBit the index of the lowest bit to set.
621   ///
622   /// \returns An APInt value with the requested bits set.
getBitsSetFrom(unsigned numBits,unsigned loBit)623   static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
624     APInt Res(numBits, 0);
625     Res.setBitsFrom(loBit);
626     return Res;
627   }
628 
629   /// Get a value with high bits set
630   ///
631   /// Constructs an APInt value that has the top hiBitsSet bits set.
632   ///
633   /// \param numBits the bitwidth of the result
634   /// \param hiBitsSet the number of high-order bits set in the result.
getHighBitsSet(unsigned numBits,unsigned hiBitsSet)635   static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
636     APInt Res(numBits, 0);
637     Res.setHighBits(hiBitsSet);
638     return Res;
639   }
640 
641   /// Get a value with low bits set
642   ///
643   /// Constructs an APInt value that has the bottom loBitsSet bits set.
644   ///
645   /// \param numBits the bitwidth of the result
646   /// \param loBitsSet the number of low-order bits set in the result.
getLowBitsSet(unsigned numBits,unsigned loBitsSet)647   static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
648     APInt Res(numBits, 0);
649     Res.setLowBits(loBitsSet);
650     return Res;
651   }
652 
653   /// Return a value containing V broadcasted over NewLen bits.
654   static APInt getSplat(unsigned NewLen, const APInt &V);
655 
656   /// Determine if two APInts have the same value, after zero-extending
657   /// one of them (if needed!) to ensure that the bit-widths match.
isSameValue(const APInt & I1,const APInt & I2)658   static bool isSameValue(const APInt &I1, const APInt &I2) {
659     if (I1.getBitWidth() == I2.getBitWidth())
660       return I1 == I2;
661 
662     if (I1.getBitWidth() > I2.getBitWidth())
663       return I1 == I2.zext(I1.getBitWidth());
664 
665     return I1.zext(I2.getBitWidth()) == I2;
666   }
667 
668   /// Overload to compute a hash_code for an APInt value.
669   friend hash_code hash_value(const APInt &Arg);
670 
671   /// This function returns a pointer to the internal storage of the APInt.
672   /// This is useful for writing out the APInt in binary form without any
673   /// conversions.
getRawData()674   const uint64_t *getRawData() const {
675     if (isSingleWord())
676       return &U.VAL;
677     return &U.pVal[0];
678   }
679 
680   /// @}
681   /// \name Unary Operators
682   /// @{
683 
684   /// Postfix increment operator.
685   ///
686   /// Increments *this by 1.
687   ///
688   /// \returns a new APInt value representing the original value of *this.
689   const APInt operator++(int) {
690     APInt API(*this);
691     ++(*this);
692     return API;
693   }
694 
695   /// Prefix increment operator.
696   ///
697   /// \returns *this incremented by one
698   APInt &operator++();
699 
700   /// Postfix decrement operator.
701   ///
702   /// Decrements *this by 1.
703   ///
704   /// \returns a new APInt value representing the original value of *this.
705   const APInt operator--(int) {
706     APInt API(*this);
707     --(*this);
708     return API;
709   }
710 
711   /// Prefix decrement operator.
712   ///
713   /// \returns *this decremented by one.
714   APInt &operator--();
715 
716   /// Logical negation operator.
717   ///
718   /// Performs logical negation operation on this APInt.
719   ///
720   /// \returns true if *this is zero, false otherwise.
721   bool operator!() const {
722     if (isSingleWord())
723       return U.VAL == 0;
724     return countLeadingZerosSlowCase() == BitWidth;
725   }
726 
727   /// @}
728   /// \name Assignment Operators
729   /// @{
730 
731   /// Copy assignment operator.
732   ///
733   /// \returns *this after assignment of RHS.
734   APInt &operator=(const APInt &RHS) {
735     // If the bitwidths are the same, we can avoid mucking with memory
736     if (isSingleWord() && RHS.isSingleWord()) {
737       U.VAL = RHS.U.VAL;
738       BitWidth = RHS.BitWidth;
739       return clearUnusedBits();
740     }
741 
742     AssignSlowCase(RHS);
743     return *this;
744   }
745 
746   /// Move assignment operator.
747   APInt &operator=(APInt &&that) {
748 #ifdef _MSC_VER
749     // The MSVC std::shuffle implementation still does self-assignment.
750     if (this == &that)
751       return *this;
752 #endif
753     assert(this != &that && "Self-move not supported");
754     if (!isSingleWord())
755       delete[] U.pVal;
756 
757     // Use memcpy so that type based alias analysis sees both VAL and pVal
758     // as modified.
759     memcpy(&U, &that.U, sizeof(U));
760 
761     BitWidth = that.BitWidth;
762     that.BitWidth = 0;
763 
764     return *this;
765   }
766 
767   /// Assignment operator.
768   ///
769   /// The RHS value is assigned to *this. If the significant bits in RHS exceed
770   /// the bit width, the excess bits are truncated. If the bit width is larger
771   /// than 64, the value is zero filled in the unspecified high order bits.
772   ///
773   /// \returns *this after assignment of RHS value.
774   APInt &operator=(uint64_t RHS) {
775     if (isSingleWord()) {
776       U.VAL = RHS;
777       clearUnusedBits();
778     } else {
779       U.pVal[0] = RHS;
780       memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
781     }
782     return *this;
783   }
784 
785   /// Bitwise AND assignment operator.
786   ///
787   /// Performs a bitwise AND operation on this APInt and RHS. The result is
788   /// assigned to *this.
789   ///
790   /// \returns *this after ANDing with RHS.
791   APInt &operator&=(const APInt &RHS) {
792     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
793     if (isSingleWord())
794       U.VAL &= RHS.U.VAL;
795     else
796       AndAssignSlowCase(RHS);
797     return *this;
798   }
799 
800   /// Bitwise AND assignment operator.
801   ///
802   /// Performs a bitwise AND operation on this APInt and RHS. RHS is
803   /// logically zero-extended or truncated to match the bit-width of
804   /// the LHS.
805   APInt &operator&=(uint64_t RHS) {
806     if (isSingleWord()) {
807       U.VAL &= RHS;
808       return *this;
809     }
810     U.pVal[0] &= RHS;
811     memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
812     return *this;
813   }
814 
815   /// Bitwise OR assignment operator.
816   ///
817   /// Performs a bitwise OR operation on this APInt and RHS. The result is
818   /// assigned *this;
819   ///
820   /// \returns *this after ORing with RHS.
821   APInt &operator|=(const APInt &RHS) {
822     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
823     if (isSingleWord())
824       U.VAL |= RHS.U.VAL;
825     else
826       OrAssignSlowCase(RHS);
827     return *this;
828   }
829 
830   /// Bitwise OR assignment operator.
831   ///
832   /// Performs a bitwise OR operation on this APInt and RHS. RHS is
833   /// logically zero-extended or truncated to match the bit-width of
834   /// the LHS.
835   APInt &operator|=(uint64_t RHS) {
836     if (isSingleWord()) {
837       U.VAL |= RHS;
838       clearUnusedBits();
839     } else {
840       U.pVal[0] |= RHS;
841     }
842     return *this;
843   }
844 
845   /// Bitwise XOR assignment operator.
846   ///
847   /// Performs a bitwise XOR operation on this APInt and RHS. The result is
848   /// assigned to *this.
849   ///
850   /// \returns *this after XORing with RHS.
851   APInt &operator^=(const APInt &RHS) {
852     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
853     if (isSingleWord())
854       U.VAL ^= RHS.U.VAL;
855     else
856       XorAssignSlowCase(RHS);
857     return *this;
858   }
859 
860   /// Bitwise XOR assignment operator.
861   ///
862   /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
863   /// logically zero-extended or truncated to match the bit-width of
864   /// the LHS.
865   APInt &operator^=(uint64_t RHS) {
866     if (isSingleWord()) {
867       U.VAL ^= RHS;
868       clearUnusedBits();
869     } else {
870       U.pVal[0] ^= RHS;
871     }
872     return *this;
873   }
874 
875   /// Multiplication assignment operator.
876   ///
877   /// Multiplies this APInt by RHS and assigns the result to *this.
878   ///
879   /// \returns *this
880   APInt &operator*=(const APInt &RHS);
881   APInt &operator*=(uint64_t RHS);
882 
883   /// Addition assignment operator.
884   ///
885   /// Adds RHS to *this and assigns the result to *this.
886   ///
887   /// \returns *this
888   APInt &operator+=(const APInt &RHS);
889   APInt &operator+=(uint64_t RHS);
890 
891   /// Subtraction assignment operator.
892   ///
893   /// Subtracts RHS from *this and assigns the result to *this.
894   ///
895   /// \returns *this
896   APInt &operator-=(const APInt &RHS);
897   APInt &operator-=(uint64_t RHS);
898 
899   /// Left-shift assignment function.
900   ///
901   /// Shifts *this left by shiftAmt and assigns the result to *this.
902   ///
903   /// \returns *this after shifting left by ShiftAmt
904   APInt &operator<<=(unsigned ShiftAmt) {
905     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
906     if (isSingleWord()) {
907       if (ShiftAmt == BitWidth)
908         U.VAL = 0;
909       else
910         U.VAL <<= ShiftAmt;
911       return clearUnusedBits();
912     }
913     shlSlowCase(ShiftAmt);
914     return *this;
915   }
916 
917   /// Left-shift assignment function.
918   ///
919   /// Shifts *this left by shiftAmt and assigns the result to *this.
920   ///
921   /// \returns *this after shifting left by ShiftAmt
922   APInt &operator<<=(const APInt &ShiftAmt);
923 
924   /// @}
925   /// \name Binary Operators
926   /// @{
927 
928   /// Multiplication operator.
929   ///
930   /// Multiplies this APInt by RHS and returns the result.
931   APInt operator*(const APInt &RHS) const;
932 
933   /// Left logical shift operator.
934   ///
935   /// Shifts this APInt left by \p Bits and returns the result.
936   APInt operator<<(unsigned Bits) const { return shl(Bits); }
937 
938   /// Left logical shift operator.
939   ///
940   /// Shifts this APInt left by \p Bits and returns the result.
941   APInt operator<<(const APInt &Bits) const { return shl(Bits); }
942 
943   /// Arithmetic right-shift function.
944   ///
945   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(unsigned ShiftAmt)946   APInt ashr(unsigned ShiftAmt) const {
947     APInt R(*this);
948     R.ashrInPlace(ShiftAmt);
949     return R;
950   }
951 
952   /// Arithmetic right-shift this APInt by ShiftAmt in place.
ashrInPlace(unsigned ShiftAmt)953   void ashrInPlace(unsigned ShiftAmt) {
954     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
955     if (isSingleWord()) {
956       int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
957       if (ShiftAmt == BitWidth)
958         U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
959       else
960         U.VAL = SExtVAL >> ShiftAmt;
961       clearUnusedBits();
962       return;
963     }
964     ashrSlowCase(ShiftAmt);
965   }
966 
967   /// Logical right-shift function.
968   ///
969   /// Logical right-shift this APInt by shiftAmt.
lshr(unsigned shiftAmt)970   APInt lshr(unsigned shiftAmt) const {
971     APInt R(*this);
972     R.lshrInPlace(shiftAmt);
973     return R;
974   }
975 
976   /// Logical right-shift this APInt by ShiftAmt in place.
lshrInPlace(unsigned ShiftAmt)977   void lshrInPlace(unsigned ShiftAmt) {
978     assert(ShiftAmt <= BitWidth && "Invalid shift amount");
979     if (isSingleWord()) {
980       if (ShiftAmt == BitWidth)
981         U.VAL = 0;
982       else
983         U.VAL >>= ShiftAmt;
984       return;
985     }
986     lshrSlowCase(ShiftAmt);
987   }
988 
989   /// Left-shift function.
990   ///
991   /// Left-shift this APInt by shiftAmt.
shl(unsigned shiftAmt)992   APInt shl(unsigned shiftAmt) const {
993     APInt R(*this);
994     R <<= shiftAmt;
995     return R;
996   }
997 
998   /// Rotate left by rotateAmt.
999   APInt rotl(unsigned rotateAmt) const;
1000 
1001   /// Rotate right by rotateAmt.
1002   APInt rotr(unsigned rotateAmt) const;
1003 
1004   /// Arithmetic right-shift function.
1005   ///
1006   /// Arithmetic right-shift this APInt by shiftAmt.
ashr(const APInt & ShiftAmt)1007   APInt ashr(const APInt &ShiftAmt) const {
1008     APInt R(*this);
1009     R.ashrInPlace(ShiftAmt);
1010     return R;
1011   }
1012 
1013   /// Arithmetic right-shift this APInt by shiftAmt in place.
1014   void ashrInPlace(const APInt &shiftAmt);
1015 
1016   /// Logical right-shift function.
1017   ///
1018   /// Logical right-shift this APInt by shiftAmt.
lshr(const APInt & ShiftAmt)1019   APInt lshr(const APInt &ShiftAmt) const {
1020     APInt R(*this);
1021     R.lshrInPlace(ShiftAmt);
1022     return R;
1023   }
1024 
1025   /// Logical right-shift this APInt by ShiftAmt in place.
1026   void lshrInPlace(const APInt &ShiftAmt);
1027 
1028   /// Left-shift function.
1029   ///
1030   /// Left-shift this APInt by shiftAmt.
shl(const APInt & ShiftAmt)1031   APInt shl(const APInt &ShiftAmt) const {
1032     APInt R(*this);
1033     R <<= ShiftAmt;
1034     return R;
1035   }
1036 
1037   /// Rotate left by rotateAmt.
1038   APInt rotl(const APInt &rotateAmt) const;
1039 
1040   /// Rotate right by rotateAmt.
1041   APInt rotr(const APInt &rotateAmt) const;
1042 
1043   /// Unsigned division operation.
1044   ///
1045   /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1046   /// RHS are treated as unsigned quantities for purposes of this division.
1047   ///
1048   /// \returns a new APInt value containing the division result, rounded towards
1049   /// zero.
1050   APInt udiv(const APInt &RHS) const;
1051   APInt udiv(uint64_t RHS) const;
1052 
1053   /// Signed division function for APInt.
1054   ///
1055   /// Signed divide this APInt by APInt RHS.
1056   ///
1057   /// The result is rounded towards zero.
1058   APInt sdiv(const APInt &RHS) const;
1059   APInt sdiv(int64_t RHS) const;
1060 
1061   /// Unsigned remainder operation.
1062   ///
1063   /// Perform an unsigned remainder operation on this APInt with RHS being the
1064   /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1065   /// of this operation. Note that this is a true remainder operation and not a
1066   /// modulo operation because the sign follows the sign of the dividend which
1067   /// is *this.
1068   ///
1069   /// \returns a new APInt value containing the remainder result
1070   APInt urem(const APInt &RHS) const;
1071   uint64_t urem(uint64_t RHS) const;
1072 
1073   /// Function for signed remainder operation.
1074   ///
1075   /// Signed remainder operation on APInt.
1076   APInt srem(const APInt &RHS) const;
1077   int64_t srem(int64_t RHS) const;
1078 
1079   /// Dual division/remainder interface.
1080   ///
1081   /// Sometimes it is convenient to divide two APInt values and obtain both the
1082   /// quotient and remainder. This function does both operations in the same
1083   /// computation making it a little more efficient. The pair of input arguments
1084   /// may overlap with the pair of output arguments. It is safe to call
1085   /// udivrem(X, Y, X, Y), for example.
1086   static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1087                       APInt &Remainder);
1088   static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1089                       uint64_t &Remainder);
1090 
1091   static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1092                       APInt &Remainder);
1093   static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1094                       int64_t &Remainder);
1095 
1096   // Operations that return overflow indicators.
1097   APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1098   APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1099   APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1100   APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1101   APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1102   APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1103   APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1104   APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1105   APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1106 
1107   /// Array-indexing support.
1108   ///
1109   /// \returns the bit value at bitPosition
1110   bool operator[](unsigned bitPosition) const {
1111     assert(bitPosition < getBitWidth() && "Bit position out of bounds!");
1112     return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1113   }
1114 
1115   /// @}
1116   /// \name Comparison Operators
1117   /// @{
1118 
1119   /// Equality operator.
1120   ///
1121   /// Compares this APInt with RHS for the validity of the equality
1122   /// relationship.
1123   bool operator==(const APInt &RHS) const {
1124     assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths");
1125     if (isSingleWord())
1126       return U.VAL == RHS.U.VAL;
1127     return EqualSlowCase(RHS);
1128   }
1129 
1130   /// Equality operator.
1131   ///
1132   /// Compares this APInt with a uint64_t for the validity of the equality
1133   /// relationship.
1134   ///
1135   /// \returns true if *this == Val
1136   bool operator==(uint64_t Val) const {
1137     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1138   }
1139 
1140   /// Equality comparison.
1141   ///
1142   /// Compares this APInt with RHS for the validity of the equality
1143   /// relationship.
1144   ///
1145   /// \returns true if *this == Val
eq(const APInt & RHS)1146   bool eq(const APInt &RHS) const { return (*this) == RHS; }
1147 
1148   /// Inequality operator.
1149   ///
1150   /// Compares this APInt with RHS for the validity of the inequality
1151   /// relationship.
1152   ///
1153   /// \returns true if *this != Val
1154   bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1155 
1156   /// Inequality operator.
1157   ///
1158   /// Compares this APInt with a uint64_t for the validity of the inequality
1159   /// relationship.
1160   ///
1161   /// \returns true if *this != Val
1162   bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1163 
1164   /// Inequality comparison
1165   ///
1166   /// Compares this APInt with RHS for the validity of the inequality
1167   /// relationship.
1168   ///
1169   /// \returns true if *this != Val
ne(const APInt & RHS)1170   bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1171 
1172   /// Unsigned less than comparison
1173   ///
1174   /// Regards both *this and RHS as unsigned quantities and compares them for
1175   /// the validity of the less-than relationship.
1176   ///
1177   /// \returns true if *this < RHS when both are considered unsigned.
ult(const APInt & RHS)1178   bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1179 
1180   /// Unsigned less than comparison
1181   ///
1182   /// Regards both *this as an unsigned quantity and compares it with RHS for
1183   /// the validity of the less-than relationship.
1184   ///
1185   /// \returns true if *this < RHS when considered unsigned.
ult(uint64_t RHS)1186   bool ult(uint64_t RHS) const {
1187     // Only need to check active bits if not a single word.
1188     return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1189   }
1190 
1191   /// Signed less than comparison
1192   ///
1193   /// Regards both *this and RHS as signed quantities and compares them for
1194   /// validity of the less-than relationship.
1195   ///
1196   /// \returns true if *this < RHS when both are considered signed.
slt(const APInt & RHS)1197   bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1198 
1199   /// Signed less than comparison
1200   ///
1201   /// Regards both *this as a signed quantity and compares it with RHS for
1202   /// the validity of the less-than relationship.
1203   ///
1204   /// \returns true if *this < RHS when considered signed.
slt(int64_t RHS)1205   bool slt(int64_t RHS) const {
1206     return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1207                                                         : getSExtValue() < RHS;
1208   }
1209 
1210   /// Unsigned less or equal comparison
1211   ///
1212   /// Regards both *this and RHS as unsigned quantities and compares them for
1213   /// validity of the less-or-equal relationship.
1214   ///
1215   /// \returns true if *this <= RHS when both are considered unsigned.
ule(const APInt & RHS)1216   bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1217 
1218   /// Unsigned less or equal comparison
1219   ///
1220   /// Regards both *this as an unsigned quantity and compares it with RHS for
1221   /// the validity of the less-or-equal relationship.
1222   ///
1223   /// \returns true if *this <= RHS when considered unsigned.
ule(uint64_t RHS)1224   bool ule(uint64_t RHS) const { return !ugt(RHS); }
1225 
1226   /// Signed less or equal comparison
1227   ///
1228   /// Regards both *this and RHS as signed quantities and compares them for
1229   /// validity of the less-or-equal relationship.
1230   ///
1231   /// \returns true if *this <= RHS when both are considered signed.
sle(const APInt & RHS)1232   bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1233 
1234   /// Signed less or equal comparison
1235   ///
1236   /// Regards both *this as a signed quantity and compares it with RHS for the
1237   /// validity of the less-or-equal relationship.
1238   ///
1239   /// \returns true if *this <= RHS when considered signed.
sle(uint64_t RHS)1240   bool sle(uint64_t RHS) const { return !sgt(RHS); }
1241 
1242   /// Unsigned greather than comparison
1243   ///
1244   /// Regards both *this and RHS as unsigned quantities and compares them for
1245   /// the validity of the greater-than relationship.
1246   ///
1247   /// \returns true if *this > RHS when both are considered unsigned.
ugt(const APInt & RHS)1248   bool ugt(const APInt &RHS) const { return !ule(RHS); }
1249 
1250   /// Unsigned greater than comparison
1251   ///
1252   /// Regards both *this as an unsigned quantity and compares it with RHS for
1253   /// the validity of the greater-than relationship.
1254   ///
1255   /// \returns true if *this > RHS when considered unsigned.
ugt(uint64_t RHS)1256   bool ugt(uint64_t RHS) const {
1257     // Only need to check active bits if not a single word.
1258     return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1259   }
1260 
1261   /// Signed greather than comparison
1262   ///
1263   /// Regards both *this and RHS as signed quantities and compares them for the
1264   /// validity of the greater-than relationship.
1265   ///
1266   /// \returns true if *this > RHS when both are considered signed.
sgt(const APInt & RHS)1267   bool sgt(const APInt &RHS) const { return !sle(RHS); }
1268 
1269   /// Signed greater than comparison
1270   ///
1271   /// Regards both *this as a signed quantity and compares it with RHS for
1272   /// the validity of the greater-than relationship.
1273   ///
1274   /// \returns true if *this > RHS when considered signed.
sgt(int64_t RHS)1275   bool sgt(int64_t RHS) const {
1276     return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1277                                                         : getSExtValue() > RHS;
1278   }
1279 
1280   /// Unsigned greater or equal comparison
1281   ///
1282   /// Regards both *this and RHS as unsigned quantities and compares them for
1283   /// validity of the greater-or-equal relationship.
1284   ///
1285   /// \returns true if *this >= RHS when both are considered unsigned.
uge(const APInt & RHS)1286   bool uge(const APInt &RHS) const { return !ult(RHS); }
1287 
1288   /// Unsigned greater or equal comparison
1289   ///
1290   /// Regards both *this as an unsigned quantity and compares it with RHS for
1291   /// the validity of the greater-or-equal relationship.
1292   ///
1293   /// \returns true if *this >= RHS when considered unsigned.
uge(uint64_t RHS)1294   bool uge(uint64_t RHS) const { return !ult(RHS); }
1295 
1296   /// Signed greater or equal comparison
1297   ///
1298   /// Regards both *this and RHS as signed quantities and compares them for
1299   /// validity of the greater-or-equal relationship.
1300   ///
1301   /// \returns true if *this >= RHS when both are considered signed.
sge(const APInt & RHS)1302   bool sge(const APInt &RHS) const { return !slt(RHS); }
1303 
1304   /// Signed greater or equal comparison
1305   ///
1306   /// Regards both *this as a signed quantity and compares it with RHS for
1307   /// the validity of the greater-or-equal relationship.
1308   ///
1309   /// \returns true if *this >= RHS when considered signed.
sge(int64_t RHS)1310   bool sge(int64_t RHS) const { return !slt(RHS); }
1311 
1312   /// This operation tests if there are any pairs of corresponding bits
1313   /// between this APInt and RHS that are both set.
intersects(const APInt & RHS)1314   bool intersects(const APInt &RHS) const {
1315     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1316     if (isSingleWord())
1317       return (U.VAL & RHS.U.VAL) != 0;
1318     return intersectsSlowCase(RHS);
1319   }
1320 
1321   /// This operation checks that all bits set in this APInt are also set in RHS.
isSubsetOf(const APInt & RHS)1322   bool isSubsetOf(const APInt &RHS) const {
1323     assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1324     if (isSingleWord())
1325       return (U.VAL & ~RHS.U.VAL) == 0;
1326     return isSubsetOfSlowCase(RHS);
1327   }
1328 
1329   /// @}
1330   /// \name Resizing Operators
1331   /// @{
1332 
1333   /// Truncate to new width.
1334   ///
1335   /// Truncate the APInt to a specified width. It is an error to specify a width
1336   /// that is greater than or equal to the current width.
1337   APInt trunc(unsigned width) const;
1338 
1339   /// Sign extend to a new width.
1340   ///
1341   /// This operation sign extends the APInt to a new width. If the high order
1342   /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1343   /// It is an error to specify a width that is less than or equal to the
1344   /// current width.
1345   APInt sext(unsigned width) const;
1346 
1347   /// Zero extend to a new width.
1348   ///
1349   /// This operation zero extends the APInt to a new width. The high order bits
1350   /// are filled with 0 bits.  It is an error to specify a width that is less
1351   /// than or equal to the current width.
1352   APInt zext(unsigned width) const;
1353 
1354   /// Sign extend or truncate to width
1355   ///
1356   /// Make this APInt have the bit width given by \p width. The value is sign
1357   /// extended, truncated, or left alone to make it that width.
1358   APInt sextOrTrunc(unsigned width) const;
1359 
1360   /// Zero extend or truncate to width
1361   ///
1362   /// Make this APInt have the bit width given by \p width. The value is zero
1363   /// extended, truncated, or left alone to make it that width.
1364   APInt zextOrTrunc(unsigned width) const;
1365 
1366   /// Sign extend or truncate to width
1367   ///
1368   /// Make this APInt have the bit width given by \p width. The value is sign
1369   /// extended, or left alone to make it that width.
1370   APInt sextOrSelf(unsigned width) const;
1371 
1372   /// Zero extend or truncate to width
1373   ///
1374   /// Make this APInt have the bit width given by \p width. The value is zero
1375   /// extended, or left alone to make it that width.
1376   APInt zextOrSelf(unsigned width) const;
1377 
1378   /// @}
1379   /// \name Bit Manipulation Operators
1380   /// @{
1381 
1382   /// Set every bit to 1.
setAllBits()1383   void setAllBits() {
1384     if (isSingleWord())
1385       U.VAL = WORD_MAX;
1386     else
1387       // Set all the bits in all the words.
1388       memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1389     // Clear the unused ones
1390     clearUnusedBits();
1391   }
1392 
1393   /// Set a given bit to 1.
1394   ///
1395   /// Set the given bit to 1 whose position is given as "bitPosition".
setBit(unsigned BitPosition)1396   void setBit(unsigned BitPosition) {
1397     assert(BitPosition <= BitWidth && "BitPosition out of range");
1398     WordType Mask = maskBit(BitPosition);
1399     if (isSingleWord())
1400       U.VAL |= Mask;
1401     else
1402       U.pVal[whichWord(BitPosition)] |= Mask;
1403   }
1404 
1405   /// Set the sign bit to 1.
setSignBit()1406   void setSignBit() {
1407     setBit(BitWidth - 1);
1408   }
1409 
1410   /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
setBits(unsigned loBit,unsigned hiBit)1411   void setBits(unsigned loBit, unsigned hiBit) {
1412     assert(hiBit <= BitWidth && "hiBit out of range");
1413     assert(loBit <= BitWidth && "loBit out of range");
1414     assert(loBit <= hiBit && "loBit greater than hiBit");
1415     if (loBit == hiBit)
1416       return;
1417     if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1418       uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1419       mask <<= loBit;
1420       if (isSingleWord())
1421         U.VAL |= mask;
1422       else
1423         U.pVal[0] |= mask;
1424     } else {
1425       setBitsSlowCase(loBit, hiBit);
1426     }
1427   }
1428 
1429   /// Set the top bits starting from loBit.
setBitsFrom(unsigned loBit)1430   void setBitsFrom(unsigned loBit) {
1431     return setBits(loBit, BitWidth);
1432   }
1433 
1434   /// Set the bottom loBits bits.
setLowBits(unsigned loBits)1435   void setLowBits(unsigned loBits) {
1436     return setBits(0, loBits);
1437   }
1438 
1439   /// Set the top hiBits bits.
setHighBits(unsigned hiBits)1440   void setHighBits(unsigned hiBits) {
1441     return setBits(BitWidth - hiBits, BitWidth);
1442   }
1443 
1444   /// Set every bit to 0.
clearAllBits()1445   void clearAllBits() {
1446     if (isSingleWord())
1447       U.VAL = 0;
1448     else
1449       memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1450   }
1451 
1452   /// Set a given bit to 0.
1453   ///
1454   /// Set the given bit to 0 whose position is given as "bitPosition".
clearBit(unsigned BitPosition)1455   void clearBit(unsigned BitPosition) {
1456     assert(BitPosition <= BitWidth && "BitPosition out of range");
1457     WordType Mask = ~maskBit(BitPosition);
1458     if (isSingleWord())
1459       U.VAL &= Mask;
1460     else
1461       U.pVal[whichWord(BitPosition)] &= Mask;
1462   }
1463 
1464   /// Set the sign bit to 0.
clearSignBit()1465   void clearSignBit() {
1466     clearBit(BitWidth - 1);
1467   }
1468 
1469   /// Toggle every bit to its opposite value.
flipAllBits()1470   void flipAllBits() {
1471     if (isSingleWord()) {
1472       U.VAL ^= WORD_MAX;
1473       clearUnusedBits();
1474     } else {
1475       flipAllBitsSlowCase();
1476     }
1477   }
1478 
1479   /// Toggles a given bit to its opposite value.
1480   ///
1481   /// Toggle a given bit to its opposite value whose position is given
1482   /// as "bitPosition".
1483   void flipBit(unsigned bitPosition);
1484 
1485   /// Negate this APInt in place.
negate()1486   void negate() {
1487     flipAllBits();
1488     ++(*this);
1489   }
1490 
1491   /// Insert the bits from a smaller APInt starting at bitPosition.
1492   void insertBits(const APInt &SubBits, unsigned bitPosition);
1493 
1494   /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1495   APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1496 
1497   /// @}
1498   /// \name Value Characterization Functions
1499   /// @{
1500 
1501   /// Return the number of bits in the APInt.
getBitWidth()1502   unsigned getBitWidth() const { return BitWidth; }
1503 
1504   /// Get the number of words.
1505   ///
1506   /// Here one word's bitwidth equals to that of uint64_t.
1507   ///
1508   /// \returns the number of words to hold the integer value of this APInt.
getNumWords()1509   unsigned getNumWords() const { return getNumWords(BitWidth); }
1510 
1511   /// Get the number of words.
1512   ///
1513   /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1514   ///
1515   /// \returns the number of words to hold the integer value with a given bit
1516   /// width.
getNumWords(unsigned BitWidth)1517   static unsigned getNumWords(unsigned BitWidth) {
1518     return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1519   }
1520 
1521   /// Compute the number of active bits in the value
1522   ///
1523   /// This function returns the number of active bits which is defined as the
1524   /// bit width minus the number of leading zeros. This is used in several
1525   /// computations to see how "wide" the value is.
getActiveBits()1526   unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1527 
1528   /// Compute the number of active words in the value of this APInt.
1529   ///
1530   /// This is used in conjunction with getActiveData to extract the raw value of
1531   /// the APInt.
getActiveWords()1532   unsigned getActiveWords() const {
1533     unsigned numActiveBits = getActiveBits();
1534     return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1535   }
1536 
1537   /// Get the minimum bit size for this signed APInt
1538   ///
1539   /// Computes the minimum bit width for this APInt while considering it to be a
1540   /// signed (and probably negative) value. If the value is not negative, this
1541   /// function returns the same value as getActiveBits()+1. Otherwise, it
1542   /// returns the smallest bit width that will retain the negative value. For
1543   /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1544   /// for -1, this function will always return 1.
getMinSignedBits()1545   unsigned getMinSignedBits() const {
1546     if (isNegative())
1547       return BitWidth - countLeadingOnes() + 1;
1548     return getActiveBits() + 1;
1549   }
1550 
1551   /// Get zero extended value
1552   ///
1553   /// This method attempts to return the value of this APInt as a zero extended
1554   /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1555   /// uint64_t. Otherwise an assertion will result.
getZExtValue()1556   uint64_t getZExtValue() const {
1557     if (isSingleWord())
1558       return U.VAL;
1559     assert(getActiveBits() <= 64 && "Too many bits for uint64_t");
1560     return U.pVal[0];
1561   }
1562 
1563   /// Get sign extended value
1564   ///
1565   /// This method attempts to return the value of this APInt as a sign extended
1566   /// int64_t. The bit width must be <= 64 or the value must fit within an
1567   /// int64_t. Otherwise an assertion will result.
getSExtValue()1568   int64_t getSExtValue() const {
1569     if (isSingleWord())
1570       return SignExtend64(U.VAL, BitWidth);
1571     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
1572     return int64_t(U.pVal[0]);
1573   }
1574 
1575   /// Get bits required for string value.
1576   ///
1577   /// This method determines how many bits are required to hold the APInt
1578   /// equivalent of the string given by \p str.
1579   static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1580 
1581   /// The APInt version of the countLeadingZeros functions in
1582   ///   MathExtras.h.
1583   ///
1584   /// It counts the number of zeros from the most significant bit to the first
1585   /// one bit.
1586   ///
1587   /// \returns BitWidth if the value is zero, otherwise returns the number of
1588   ///   zeros from the most significant bit to the first one bits.
countLeadingZeros()1589   unsigned countLeadingZeros() const {
1590     if (isSingleWord()) {
1591       unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1592       return llvm::countLeadingZeros(U.VAL) - unusedBits;
1593     }
1594     return countLeadingZerosSlowCase();
1595   }
1596 
1597   /// Count the number of leading one bits.
1598   ///
1599   /// This function is an APInt version of the countLeadingOnes
1600   /// functions in MathExtras.h. It counts the number of ones from the most
1601   /// significant bit to the first zero bit.
1602   ///
1603   /// \returns 0 if the high order bit is not set, otherwise returns the number
1604   /// of 1 bits from the most significant to the least
countLeadingOnes()1605   unsigned countLeadingOnes() const {
1606     if (isSingleWord())
1607       return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1608     return countLeadingOnesSlowCase();
1609   }
1610 
1611   /// Computes the number of leading bits of this APInt that are equal to its
1612   /// sign bit.
getNumSignBits()1613   unsigned getNumSignBits() const {
1614     return isNegative() ? countLeadingOnes() : countLeadingZeros();
1615   }
1616 
1617   /// Count the number of trailing zero bits.
1618   ///
1619   /// This function is an APInt version of the countTrailingZeros
1620   /// functions in MathExtras.h. It counts the number of zeros from the least
1621   /// significant bit to the first set bit.
1622   ///
1623   /// \returns BitWidth if the value is zero, otherwise returns the number of
1624   /// zeros from the least significant bit to the first one bit.
countTrailingZeros()1625   unsigned countTrailingZeros() const {
1626     if (isSingleWord())
1627       return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1628     return countTrailingZerosSlowCase();
1629   }
1630 
1631   /// Count the number of trailing one bits.
1632   ///
1633   /// This function is an APInt version of the countTrailingOnes
1634   /// functions in MathExtras.h. It counts the number of ones from the least
1635   /// significant bit to the first zero bit.
1636   ///
1637   /// \returns BitWidth if the value is all ones, otherwise returns the number
1638   /// of ones from the least significant bit to the first zero bit.
countTrailingOnes()1639   unsigned countTrailingOnes() const {
1640     if (isSingleWord())
1641       return llvm::countTrailingOnes(U.VAL);
1642     return countTrailingOnesSlowCase();
1643   }
1644 
1645   /// Count the number of bits set.
1646   ///
1647   /// This function is an APInt version of the countPopulation functions
1648   /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1649   ///
1650   /// \returns 0 if the value is zero, otherwise returns the number of set bits.
countPopulation()1651   unsigned countPopulation() const {
1652     if (isSingleWord())
1653       return llvm::countPopulation(U.VAL);
1654     return countPopulationSlowCase();
1655   }
1656 
1657   /// @}
1658   /// \name Conversion Functions
1659   /// @{
1660   void print(raw_ostream &OS, bool isSigned) const;
1661 
1662   /// Converts an APInt to a string and append it to Str.  Str is commonly a
1663   /// SmallString.
1664   void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1665                 bool formatAsCLiteral = false) const;
1666 
1667   /// Considers the APInt to be unsigned and converts it into a string in the
1668   /// radix given. The radix can be 2, 8, 10 16, or 36.
1669   void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1670     toString(Str, Radix, false, false);
1671   }
1672 
1673   /// Considers the APInt to be signed and converts it into a string in the
1674   /// radix given. The radix can be 2, 8, 10, 16, or 36.
1675   void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1676     toString(Str, Radix, true, false);
1677   }
1678 
1679   /// Return the APInt as a std::string.
1680   ///
1681   /// Note that this is an inefficient method.  It is better to pass in a
1682   /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1683   /// for the string.
1684   std::string toString(unsigned Radix, bool Signed) const;
1685 
1686   /// \returns a byte-swapped representation of this APInt Value.
1687   APInt byteSwap() const;
1688 
1689   /// \returns the value with the bit representation reversed of this APInt
1690   /// Value.
1691   APInt reverseBits() const;
1692 
1693   /// Converts this APInt to a double value.
1694   double roundToDouble(bool isSigned) const;
1695 
1696   /// Converts this unsigned APInt to a double value.
roundToDouble()1697   double roundToDouble() const { return roundToDouble(false); }
1698 
1699   /// Converts this signed APInt to a double value.
signedRoundToDouble()1700   double signedRoundToDouble() const { return roundToDouble(true); }
1701 
1702   /// Converts APInt bits to a double
1703   ///
1704   /// The conversion does not do a translation from integer to double, it just
1705   /// re-interprets the bits as a double. Note that it is valid to do this on
1706   /// any bit width. Exactly 64 bits will be translated.
bitsToDouble()1707   double bitsToDouble() const {
1708     return BitsToDouble(getWord(0));
1709   }
1710 
1711   /// Converts APInt bits to a double
1712   ///
1713   /// The conversion does not do a translation from integer to float, it just
1714   /// re-interprets the bits as a float. Note that it is valid to do this on
1715   /// any bit width. Exactly 32 bits will be translated.
bitsToFloat()1716   float bitsToFloat() const {
1717     return BitsToFloat(getWord(0));
1718   }
1719 
1720   /// Converts a double to APInt bits.
1721   ///
1722   /// The conversion does not do a translation from double to integer, it just
1723   /// re-interprets the bits of the double.
doubleToBits(double V)1724   static APInt doubleToBits(double V) {
1725     return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V));
1726   }
1727 
1728   /// Converts a float to APInt bits.
1729   ///
1730   /// The conversion does not do a translation from float to integer, it just
1731   /// re-interprets the bits of the float.
floatToBits(float V)1732   static APInt floatToBits(float V) {
1733     return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V));
1734   }
1735 
1736   /// @}
1737   /// \name Mathematics Operations
1738   /// @{
1739 
1740   /// \returns the floor log base 2 of this APInt.
logBase2()1741   unsigned logBase2() const { return getActiveBits() -  1; }
1742 
1743   /// \returns the ceil log base 2 of this APInt.
ceilLogBase2()1744   unsigned ceilLogBase2() const {
1745     APInt temp(*this);
1746     --temp;
1747     return temp.getActiveBits();
1748   }
1749 
1750   /// \returns the nearest log base 2 of this APInt. Ties round up.
1751   ///
1752   /// NOTE: When we have a BitWidth of 1, we define:
1753   ///
1754   ///   log2(0) = UINT32_MAX
1755   ///   log2(1) = 0
1756   ///
1757   /// to get around any mathematical concerns resulting from
1758   /// referencing 2 in a space where 2 does no exist.
nearestLogBase2()1759   unsigned nearestLogBase2() const {
1760     // Special case when we have a bitwidth of 1. If VAL is 1, then we
1761     // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1762     // UINT32_MAX.
1763     if (BitWidth == 1)
1764       return U.VAL - 1;
1765 
1766     // Handle the zero case.
1767     if (isNullValue())
1768       return UINT32_MAX;
1769 
1770     // The non-zero case is handled by computing:
1771     //
1772     //   nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1773     //
1774     // where x[i] is referring to the value of the ith bit of x.
1775     unsigned lg = logBase2();
1776     return lg + unsigned((*this)[lg - 1]);
1777   }
1778 
1779   /// \returns the log base 2 of this APInt if its an exact power of two, -1
1780   /// otherwise
exactLogBase2()1781   int32_t exactLogBase2() const {
1782     if (!isPowerOf2())
1783       return -1;
1784     return logBase2();
1785   }
1786 
1787   /// Compute the square root
1788   APInt sqrt() const;
1789 
1790   /// Get the absolute value;
1791   ///
1792   /// If *this is < 0 then return -(*this), otherwise *this;
abs()1793   APInt abs() const {
1794     if (isNegative())
1795       return -(*this);
1796     return *this;
1797   }
1798 
1799   /// \returns the multiplicative inverse for a given modulo.
1800   APInt multiplicativeInverse(const APInt &modulo) const;
1801 
1802   /// @}
1803   /// \name Support for division by constant
1804   /// @{
1805 
1806   /// Calculate the magic number for signed division by a constant.
1807   struct ms;
1808   ms magic() const;
1809 
1810   /// Calculate the magic number for unsigned division by a constant.
1811   struct mu;
1812   mu magicu(unsigned LeadingZeros = 0) const;
1813 
1814   /// @}
1815   /// \name Building-block Operations for APInt and APFloat
1816   /// @{
1817 
1818   // These building block operations operate on a representation of arbitrary
1819   // precision, two's-complement, bignum integer values. They should be
1820   // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1821   // generally a pointer to the base of an array of integer parts, representing
1822   // an unsigned bignum, and a count of how many parts there are.
1823 
1824   /// Sets the least significant part of a bignum to the input value, and zeroes
1825   /// out higher parts.
1826   static void tcSet(WordType *, WordType, unsigned);
1827 
1828   /// Assign one bignum to another.
1829   static void tcAssign(WordType *, const WordType *, unsigned);
1830 
1831   /// Returns true if a bignum is zero, false otherwise.
1832   static bool tcIsZero(const WordType *, unsigned);
1833 
1834   /// Extract the given bit of a bignum; returns 0 or 1.  Zero-based.
1835   static int tcExtractBit(const WordType *, unsigned bit);
1836 
1837   /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1838   /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1839   /// significant bit of DST.  All high bits above srcBITS in DST are
1840   /// zero-filled.
1841   static void tcExtract(WordType *, unsigned dstCount,
1842                         const WordType *, unsigned srcBits,
1843                         unsigned srcLSB);
1844 
1845   /// Set the given bit of a bignum.  Zero-based.
1846   static void tcSetBit(WordType *, unsigned bit);
1847 
1848   /// Clear the given bit of a bignum.  Zero-based.
1849   static void tcClearBit(WordType *, unsigned bit);
1850 
1851   /// Returns the bit number of the least or most significant set bit of a
1852   /// number.  If the input number has no bits set -1U is returned.
1853   static unsigned tcLSB(const WordType *, unsigned n);
1854   static unsigned tcMSB(const WordType *parts, unsigned n);
1855 
1856   /// Negate a bignum in-place.
1857   static void tcNegate(WordType *, unsigned);
1858 
1859   /// DST += RHS + CARRY where CARRY is zero or one.  Returns the carry flag.
1860   static WordType tcAdd(WordType *, const WordType *,
1861                         WordType carry, unsigned);
1862   /// DST += RHS.  Returns the carry flag.
1863   static WordType tcAddPart(WordType *, WordType, unsigned);
1864 
1865   /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1866   static WordType tcSubtract(WordType *, const WordType *,
1867                              WordType carry, unsigned);
1868   /// DST -= RHS.  Returns the carry flag.
1869   static WordType tcSubtractPart(WordType *, WordType, unsigned);
1870 
1871   /// DST += SRC * MULTIPLIER + PART   if add is true
1872   /// DST  = SRC * MULTIPLIER + PART   if add is false
1873   ///
1874   /// Requires 0 <= DSTPARTS <= SRCPARTS + 1.  If DST overlaps SRC they must
1875   /// start at the same point, i.e. DST == SRC.
1876   ///
1877   /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1878   /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1879   /// result, and if all of the omitted higher parts were zero return zero,
1880   /// otherwise overflow occurred and return one.
1881   static int tcMultiplyPart(WordType *dst, const WordType *src,
1882                             WordType multiplier, WordType carry,
1883                             unsigned srcParts, unsigned dstParts,
1884                             bool add);
1885 
1886   /// DST = LHS * RHS, where DST has the same width as the operands and is
1887   /// filled with the least significant parts of the result.  Returns one if
1888   /// overflow occurred, otherwise zero.  DST must be disjoint from both
1889   /// operands.
1890   static int tcMultiply(WordType *, const WordType *, const WordType *,
1891                         unsigned);
1892 
1893   /// DST = LHS * RHS, where DST has width the sum of the widths of the
1894   /// operands. No overflow occurs. DST must be disjoint from both operands.
1895   static void tcFullMultiply(WordType *, const WordType *,
1896                              const WordType *, unsigned, unsigned);
1897 
1898   /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1899   /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1900   /// REMAINDER to the remainder, return zero.  i.e.
1901   ///
1902   ///  OLD_LHS = RHS * LHS + REMAINDER
1903   ///
1904   /// SCRATCH is a bignum of the same size as the operands and result for use by
1905   /// the routine; its contents need not be initialized and are destroyed.  LHS,
1906   /// REMAINDER and SCRATCH must be distinct.
1907   static int tcDivide(WordType *lhs, const WordType *rhs,
1908                       WordType *remainder, WordType *scratch,
1909                       unsigned parts);
1910 
1911   /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1912   /// restrictions on Count.
1913   static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1914 
1915   /// Shift a bignum right Count bits.  Shifted in bits are zero.  There are no
1916   /// restrictions on Count.
1917   static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1918 
1919   /// The obvious AND, OR and XOR and complement operations.
1920   static void tcAnd(WordType *, const WordType *, unsigned);
1921   static void tcOr(WordType *, const WordType *, unsigned);
1922   static void tcXor(WordType *, const WordType *, unsigned);
1923   static void tcComplement(WordType *, unsigned);
1924 
1925   /// Comparison (unsigned) of two bignums.
1926   static int tcCompare(const WordType *, const WordType *, unsigned);
1927 
1928   /// Increment a bignum in-place.  Return the carry flag.
tcIncrement(WordType * dst,unsigned parts)1929   static WordType tcIncrement(WordType *dst, unsigned parts) {
1930     return tcAddPart(dst, 1, parts);
1931   }
1932 
1933   /// Decrement a bignum in-place.  Return the borrow flag.
tcDecrement(WordType * dst,unsigned parts)1934   static WordType tcDecrement(WordType *dst, unsigned parts) {
1935     return tcSubtractPart(dst, 1, parts);
1936   }
1937 
1938   /// Set the least significant BITS and clear the rest.
1939   static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1940 
1941   /// debug method
1942   void dump() const;
1943 
1944   /// @}
1945 };
1946 
1947 /// Magic data for optimising signed division by a constant.
1948 struct APInt::ms {
1949   APInt m;    ///< magic number
1950   unsigned s; ///< shift amount
1951 };
1952 
1953 /// Magic data for optimising unsigned division by a constant.
1954 struct APInt::mu {
1955   APInt m;    ///< magic number
1956   bool a;     ///< add indicator
1957   unsigned s; ///< shift amount
1958 };
1959 
1960 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1961 
1962 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1963 
1964 /// Unary bitwise complement operator.
1965 ///
1966 /// \returns an APInt that is the bitwise complement of \p v.
1967 inline APInt operator~(APInt v) {
1968   v.flipAllBits();
1969   return v;
1970 }
1971 
1972 inline APInt operator&(APInt a, const APInt &b) {
1973   a &= b;
1974   return a;
1975 }
1976 
1977 inline APInt operator&(const APInt &a, APInt &&b) {
1978   b &= a;
1979   return std::move(b);
1980 }
1981 
1982 inline APInt operator&(APInt a, uint64_t RHS) {
1983   a &= RHS;
1984   return a;
1985 }
1986 
1987 inline APInt operator&(uint64_t LHS, APInt b) {
1988   b &= LHS;
1989   return b;
1990 }
1991 
1992 inline APInt operator|(APInt a, const APInt &b) {
1993   a |= b;
1994   return a;
1995 }
1996 
1997 inline APInt operator|(const APInt &a, APInt &&b) {
1998   b |= a;
1999   return std::move(b);
2000 }
2001 
2002 inline APInt operator|(APInt a, uint64_t RHS) {
2003   a |= RHS;
2004   return a;
2005 }
2006 
2007 inline APInt operator|(uint64_t LHS, APInt b) {
2008   b |= LHS;
2009   return b;
2010 }
2011 
2012 inline APInt operator^(APInt a, const APInt &b) {
2013   a ^= b;
2014   return a;
2015 }
2016 
2017 inline APInt operator^(const APInt &a, APInt &&b) {
2018   b ^= a;
2019   return std::move(b);
2020 }
2021 
2022 inline APInt operator^(APInt a, uint64_t RHS) {
2023   a ^= RHS;
2024   return a;
2025 }
2026 
2027 inline APInt operator^(uint64_t LHS, APInt b) {
2028   b ^= LHS;
2029   return b;
2030 }
2031 
2032 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2033   I.print(OS, true);
2034   return OS;
2035 }
2036 
2037 inline APInt operator-(APInt v) {
2038   v.negate();
2039   return v;
2040 }
2041 
2042 inline APInt operator+(APInt a, const APInt &b) {
2043   a += b;
2044   return a;
2045 }
2046 
2047 inline APInt operator+(const APInt &a, APInt &&b) {
2048   b += a;
2049   return std::move(b);
2050 }
2051 
2052 inline APInt operator+(APInt a, uint64_t RHS) {
2053   a += RHS;
2054   return a;
2055 }
2056 
2057 inline APInt operator+(uint64_t LHS, APInt b) {
2058   b += LHS;
2059   return b;
2060 }
2061 
2062 inline APInt operator-(APInt a, const APInt &b) {
2063   a -= b;
2064   return a;
2065 }
2066 
2067 inline APInt operator-(const APInt &a, APInt &&b) {
2068   b.negate();
2069   b += a;
2070   return std::move(b);
2071 }
2072 
2073 inline APInt operator-(APInt a, uint64_t RHS) {
2074   a -= RHS;
2075   return a;
2076 }
2077 
2078 inline APInt operator-(uint64_t LHS, APInt b) {
2079   b.negate();
2080   b += LHS;
2081   return b;
2082 }
2083 
2084 inline APInt operator*(APInt a, uint64_t RHS) {
2085   a *= RHS;
2086   return a;
2087 }
2088 
2089 inline APInt operator*(uint64_t LHS, APInt b) {
2090   b *= LHS;
2091   return b;
2092 }
2093 
2094 
2095 namespace APIntOps {
2096 
2097 /// Determine the smaller of two APInts considered to be signed.
smin(const APInt & A,const APInt & B)2098 inline const APInt &smin(const APInt &A, const APInt &B) {
2099   return A.slt(B) ? A : B;
2100 }
2101 
2102 /// Determine the larger of two APInts considered to be signed.
smax(const APInt & A,const APInt & B)2103 inline const APInt &smax(const APInt &A, const APInt &B) {
2104   return A.sgt(B) ? A : B;
2105 }
2106 
2107 /// Determine the smaller of two APInts considered to be signed.
umin(const APInt & A,const APInt & B)2108 inline const APInt &umin(const APInt &A, const APInt &B) {
2109   return A.ult(B) ? A : B;
2110 }
2111 
2112 /// Determine the larger of two APInts considered to be unsigned.
umax(const APInt & A,const APInt & B)2113 inline const APInt &umax(const APInt &A, const APInt &B) {
2114   return A.ugt(B) ? A : B;
2115 }
2116 
2117 /// Compute GCD of two unsigned APInt values.
2118 ///
2119 /// This function returns the greatest common divisor of the two APInt values
2120 /// using Stein's algorithm.
2121 ///
2122 /// \returns the greatest common divisor of A and B.
2123 APInt GreatestCommonDivisor(APInt A, APInt B);
2124 
2125 /// Converts the given APInt to a double value.
2126 ///
2127 /// Treats the APInt as an unsigned value for conversion purposes.
RoundAPIntToDouble(const APInt & APIVal)2128 inline double RoundAPIntToDouble(const APInt &APIVal) {
2129   return APIVal.roundToDouble();
2130 }
2131 
2132 /// Converts the given APInt to a double value.
2133 ///
2134 /// Treats the APInt as a signed value for conversion purposes.
RoundSignedAPIntToDouble(const APInt & APIVal)2135 inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2136   return APIVal.signedRoundToDouble();
2137 }
2138 
2139 /// Converts the given APInt to a float vlalue.
RoundAPIntToFloat(const APInt & APIVal)2140 inline float RoundAPIntToFloat(const APInt &APIVal) {
2141   return float(RoundAPIntToDouble(APIVal));
2142 }
2143 
2144 /// Converts the given APInt to a float value.
2145 ///
2146 /// Treast the APInt as a signed value for conversion purposes.
RoundSignedAPIntToFloat(const APInt & APIVal)2147 inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2148   return float(APIVal.signedRoundToDouble());
2149 }
2150 
2151 /// Converts the given double value into a APInt.
2152 ///
2153 /// This function convert a double value to an APInt value.
2154 APInt RoundDoubleToAPInt(double Double, unsigned width);
2155 
2156 /// Converts a float value into a APInt.
2157 ///
2158 /// Converts a float value into an APInt value.
RoundFloatToAPInt(float Float,unsigned width)2159 inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2160   return RoundDoubleToAPInt(double(Float), width);
2161 }
2162 
2163 /// Return A unsign-divided by B, rounded by the given rounding mode.
2164 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2165 
2166 /// Return A sign-divided by B, rounded by the given rounding mode.
2167 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2168 
2169 } // End of APIntOps namespace
2170 
2171 // See friend declaration above. This additional declaration is required in
2172 // order to compile LLVM with IBM xlC compiler.
2173 hash_code hash_value(const APInt &Arg);
2174 } // End of llvm namespace
2175 
2176 #endif
2177