1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // The file defines the MachineFrameInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H 15 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H 16 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Support/DataTypes.h" 19 #include <cassert> 20 #include <vector> 21 22 namespace llvm { 23 class raw_ostream; 24 class MachineFunction; 25 class MachineBasicBlock; 26 class BitVector; 27 class AllocaInst; 28 29 /// The CalleeSavedInfo class tracks the information need to locate where a 30 /// callee saved register is in the current frame. 31 class CalleeSavedInfo { 32 unsigned Reg; 33 int FrameIdx; 34 /// Flag indicating whether the register is actually restored in the epilog. 35 /// In most cases, if a register is saved, it is also restored. There are 36 /// some situations, though, when this is not the case. For example, the 37 /// LR register on ARM is usually saved, but on exit from the function its 38 /// saved value may be loaded directly into PC. Since liveness tracking of 39 /// physical registers treats callee-saved registers are live outside of 40 /// the function, LR would be treated as live-on-exit, even though in these 41 /// scenarios it is not. This flag is added to indicate that the saved 42 /// register described by this object is not restored in the epilog. 43 /// The long-term solution is to model the liveness of callee-saved registers 44 /// by implicit uses on the return instructions, however, the required 45 /// changes in the ARM backend would be quite extensive. 46 bool Restored; 47 48 public: 49 explicit CalleeSavedInfo(unsigned R, int FI = 0) Reg(R)50 : Reg(R), FrameIdx(FI), Restored(true) {} 51 52 // Accessors. getReg()53 unsigned getReg() const { return Reg; } getFrameIdx()54 int getFrameIdx() const { return FrameIdx; } setFrameIdx(int FI)55 void setFrameIdx(int FI) { FrameIdx = FI; } isRestored()56 bool isRestored() const { return Restored; } setRestored(bool R)57 void setRestored(bool R) { Restored = R; } 58 }; 59 60 /// The MachineFrameInfo class represents an abstract stack frame until 61 /// prolog/epilog code is inserted. This class is key to allowing stack frame 62 /// representation optimizations, such as frame pointer elimination. It also 63 /// allows more mundane (but still important) optimizations, such as reordering 64 /// of abstract objects on the stack frame. 65 /// 66 /// To support this, the class assigns unique integer identifiers to stack 67 /// objects requested clients. These identifiers are negative integers for 68 /// fixed stack objects (such as arguments passed on the stack) or nonnegative 69 /// for objects that may be reordered. Instructions which refer to stack 70 /// objects use a special MO_FrameIndex operand to represent these frame 71 /// indexes. 72 /// 73 /// Because this class keeps track of all references to the stack frame, it 74 /// knows when a variable sized object is allocated on the stack. This is the 75 /// sole condition which prevents frame pointer elimination, which is an 76 /// important optimization on register-poor architectures. Because original 77 /// variable sized alloca's in the source program are the only source of 78 /// variable sized stack objects, it is safe to decide whether there will be 79 /// any variable sized objects before all stack objects are known (for 80 /// example, register allocator spill code never needs variable sized 81 /// objects). 82 /// 83 /// When prolog/epilog code emission is performed, the final stack frame is 84 /// built and the machine instructions are modified to refer to the actual 85 /// stack offsets of the object, eliminating all MO_FrameIndex operands from 86 /// the program. 87 /// 88 /// Abstract Stack Frame Information 89 class MachineFrameInfo { 90 public: 91 /// Stack Smashing Protection (SSP) rules require that vulnerable stack 92 /// allocations are located close the stack protector. 93 enum SSPLayoutKind { 94 SSPLK_None, ///< Did not trigger a stack protector. No effect on data 95 ///< layout. 96 SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest 97 ///< to the stack protector. 98 SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest 99 ///< to the stack protector. 100 SSPLK_AddrOf ///< The address of this allocation is exposed and 101 ///< triggered protection. 3rd closest to the protector. 102 }; 103 104 private: 105 // Represent a single object allocated on the stack. 106 struct StackObject { 107 // The offset of this object from the stack pointer on entry to 108 // the function. This field has no meaning for a variable sized element. 109 int64_t SPOffset; 110 111 // The size of this object on the stack. 0 means a variable sized object, 112 // ~0ULL means a dead object. 113 uint64_t Size; 114 115 // The required alignment of this stack slot. 116 unsigned Alignment; 117 118 // If true, the value of the stack object is set before 119 // entering the function and is not modified inside the function. By 120 // default, fixed objects are immutable unless marked otherwise. 121 bool isImmutable; 122 123 // If true the stack object is used as spill slot. It 124 // cannot alias any other memory objects. 125 bool isSpillSlot; 126 127 /// If true, this stack slot is used to spill a value (could be deopt 128 /// and/or GC related) over a statepoint. We know that the address of the 129 /// slot can't alias any LLVM IR value. This is very similar to a Spill 130 /// Slot, but is created by statepoint lowering is SelectionDAG, not the 131 /// register allocator. 132 bool isStatepointSpillSlot = false; 133 134 /// Identifier for stack memory type analagous to address space. If this is 135 /// non-0, the meaning is target defined. Offsets cannot be directly 136 /// compared between objects with different stack IDs. The object may not 137 /// necessarily reside in the same contiguous memory block as other stack 138 /// objects. Objects with differing stack IDs should not be merged or 139 /// replaced substituted for each other. 140 // 141 /// It is assumed a target uses consecutive, increasing stack IDs starting 142 /// from 1. 143 uint8_t StackID; 144 145 /// If this stack object is originated from an Alloca instruction 146 /// this value saves the original IR allocation. Can be NULL. 147 const AllocaInst *Alloca; 148 149 // If true, the object was mapped into the local frame 150 // block and doesn't need additional handling for allocation beyond that. 151 bool PreAllocated = false; 152 153 // If true, an LLVM IR value might point to this object. 154 // Normally, spill slots and fixed-offset objects don't alias IR-accessible 155 // objects, but there are exceptions (on PowerPC, for example, some byval 156 // arguments have ABI-prescribed offsets). 157 bool isAliased; 158 159 /// If true, the object has been zero-extended. 160 bool isZExt = false; 161 162 /// If true, the object has been zero-extended. 163 bool isSExt = false; 164 165 uint8_t SSPLayout; 166 167 StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset, 168 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca, 169 bool IsAliased, uint8_t StackID = 0) SPOffsetStackObject170 : SPOffset(SPOffset), Size(Size), Alignment(Alignment), 171 isImmutable(IsImmutable), isSpillSlot(IsSpillSlot), 172 StackID(StackID), Alloca(Alloca), isAliased(IsAliased), 173 SSPLayout(SSPLK_None) {} 174 }; 175 176 /// The alignment of the stack. 177 unsigned StackAlignment; 178 179 /// Can the stack be realigned. This can be false if the target does not 180 /// support stack realignment, or if the user asks us not to realign the 181 /// stack. In this situation, overaligned allocas are all treated as dynamic 182 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC 183 /// lowering. All non-alloca stack objects have their alignment clamped to the 184 /// base ABI stack alignment. 185 /// FIXME: There is room for improvement in this case, in terms of 186 /// grouping overaligned allocas into a "secondary stack frame" and 187 /// then only use a single alloca to allocate this frame and only a 188 /// single virtual register to access it. Currently, without such an 189 /// optimization, each such alloca gets its own dynamic realignment. 190 bool StackRealignable; 191 192 /// Whether the function has the \c alignstack attribute. 193 bool ForcedRealign; 194 195 /// The list of stack objects allocated. 196 std::vector<StackObject> Objects; 197 198 /// This contains the number of fixed objects contained on 199 /// the stack. Because fixed objects are stored at a negative index in the 200 /// Objects list, this is also the index to the 0th object in the list. 201 unsigned NumFixedObjects = 0; 202 203 /// This boolean keeps track of whether any variable 204 /// sized objects have been allocated yet. 205 bool HasVarSizedObjects = false; 206 207 /// This boolean keeps track of whether there is a call 208 /// to builtin \@llvm.frameaddress. 209 bool FrameAddressTaken = false; 210 211 /// This boolean keeps track of whether there is a call 212 /// to builtin \@llvm.returnaddress. 213 bool ReturnAddressTaken = false; 214 215 /// This boolean keeps track of whether there is a call 216 /// to builtin \@llvm.experimental.stackmap. 217 bool HasStackMap = false; 218 219 /// This boolean keeps track of whether there is a call 220 /// to builtin \@llvm.experimental.patchpoint. 221 bool HasPatchPoint = false; 222 223 /// The prolog/epilog code inserter calculates the final stack 224 /// offsets for all of the fixed size objects, updating the Objects list 225 /// above. It then updates StackSize to contain the number of bytes that need 226 /// to be allocated on entry to the function. 227 uint64_t StackSize = 0; 228 229 /// The amount that a frame offset needs to be adjusted to 230 /// have the actual offset from the stack/frame pointer. The exact usage of 231 /// this is target-dependent, but it is typically used to adjust between 232 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via 233 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set 234 /// to the distance between the initial SP and the value in FP. For many 235 /// targets, this value is only used when generating debug info (via 236 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the 237 /// corresponding adjustments are performed directly. 238 int OffsetAdjustment = 0; 239 240 /// The prolog/epilog code inserter may process objects that require greater 241 /// alignment than the default alignment the target provides. 242 /// To handle this, MaxAlignment is set to the maximum alignment 243 /// needed by the objects on the current frame. If this is greater than the 244 /// native alignment maintained by the compiler, dynamic alignment code will 245 /// be needed. 246 /// 247 unsigned MaxAlignment = 0; 248 249 /// Set to true if this function adjusts the stack -- e.g., 250 /// when calling another function. This is only valid during and after 251 /// prolog/epilog code insertion. 252 bool AdjustsStack = false; 253 254 /// Set to true if this function has any function calls. 255 bool HasCalls = false; 256 257 /// The frame index for the stack protector. 258 int StackProtectorIdx = -1; 259 260 /// The frame index for the function context. Used for SjLj exceptions. 261 int FunctionContextIdx = -1; 262 263 /// This contains the size of the largest call frame if the target uses frame 264 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo 265 /// class). This information is important for frame pointer elimination. 266 /// It is only valid during and after prolog/epilog code insertion. 267 unsigned MaxCallFrameSize = ~0u; 268 269 /// The prolog/epilog code inserter fills in this vector with each 270 /// callee saved register saved in the frame. Beyond its use by the prolog/ 271 /// epilog code inserter, this data used for debug info and exception 272 /// handling. 273 std::vector<CalleeSavedInfo> CSInfo; 274 275 /// Has CSInfo been set yet? 276 bool CSIValid = false; 277 278 /// References to frame indices which are mapped 279 /// into the local frame allocation block. <FrameIdx, LocalOffset> 280 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects; 281 282 /// Size of the pre-allocated local frame block. 283 int64_t LocalFrameSize = 0; 284 285 /// Required alignment of the local object blob, which is the strictest 286 /// alignment of any object in it. 287 unsigned LocalFrameMaxAlign = 0; 288 289 /// Whether the local object blob needs to be allocated together. If not, 290 /// PEI should ignore the isPreAllocated flags on the stack objects and 291 /// just allocate them normally. 292 bool UseLocalStackAllocationBlock = false; 293 294 /// True if the function dynamically adjusts the stack pointer through some 295 /// opaque mechanism like inline assembly or Win32 EH. 296 bool HasOpaqueSPAdjustment = false; 297 298 /// True if the function contains operations which will lower down to 299 /// instructions which manipulate the stack pointer. 300 bool HasCopyImplyingStackAdjustment = false; 301 302 /// True if the function contains a call to the llvm.vastart intrinsic. 303 bool HasVAStart = false; 304 305 /// True if this is a varargs function that contains a musttail call. 306 bool HasMustTailInVarArgFunc = false; 307 308 /// True if this function contains a tail call. If so immutable objects like 309 /// function arguments are no longer so. A tail call *can* override fixed 310 /// stack objects like arguments so we can't treat them as immutable. 311 bool HasTailCall = false; 312 313 /// Not null, if shrink-wrapping found a better place for the prologue. 314 MachineBasicBlock *Save = nullptr; 315 /// Not null, if shrink-wrapping found a better place for the epilogue. 316 MachineBasicBlock *Restore = nullptr; 317 318 public: MachineFrameInfo(unsigned StackAlignment,bool StackRealignable,bool ForcedRealign)319 explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable, 320 bool ForcedRealign) 321 : StackAlignment(StackAlignment), StackRealignable(StackRealignable), 322 ForcedRealign(ForcedRealign) {} 323 324 /// Return true if there are any stack objects in this function. hasStackObjects()325 bool hasStackObjects() const { return !Objects.empty(); } 326 327 /// This method may be called any time after instruction 328 /// selection is complete to determine if the stack frame for this function 329 /// contains any variable sized objects. hasVarSizedObjects()330 bool hasVarSizedObjects() const { return HasVarSizedObjects; } 331 332 /// Return the index for the stack protector object. getStackProtectorIndex()333 int getStackProtectorIndex() const { return StackProtectorIdx; } setStackProtectorIndex(int I)334 void setStackProtectorIndex(int I) { StackProtectorIdx = I; } hasStackProtectorIndex()335 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; } 336 337 /// Return the index for the function context object. 338 /// This object is used for SjLj exceptions. getFunctionContextIndex()339 int getFunctionContextIndex() const { return FunctionContextIdx; } setFunctionContextIndex(int I)340 void setFunctionContextIndex(int I) { FunctionContextIdx = I; } 341 342 /// This method may be called any time after instruction 343 /// selection is complete to determine if there is a call to 344 /// \@llvm.frameaddress in this function. isFrameAddressTaken()345 bool isFrameAddressTaken() const { return FrameAddressTaken; } setFrameAddressIsTaken(bool T)346 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; } 347 348 /// This method may be called any time after 349 /// instruction selection is complete to determine if there is a call to 350 /// \@llvm.returnaddress in this function. isReturnAddressTaken()351 bool isReturnAddressTaken() const { return ReturnAddressTaken; } setReturnAddressIsTaken(bool s)352 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; } 353 354 /// This method may be called any time after instruction 355 /// selection is complete to determine if there is a call to builtin 356 /// \@llvm.experimental.stackmap. hasStackMap()357 bool hasStackMap() const { return HasStackMap; } 358 void setHasStackMap(bool s = true) { HasStackMap = s; } 359 360 /// This method may be called any time after instruction 361 /// selection is complete to determine if there is a call to builtin 362 /// \@llvm.experimental.patchpoint. hasPatchPoint()363 bool hasPatchPoint() const { return HasPatchPoint; } 364 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; } 365 366 /// Return the minimum frame object index. getObjectIndexBegin()367 int getObjectIndexBegin() const { return -NumFixedObjects; } 368 369 /// Return one past the maximum frame object index. getObjectIndexEnd()370 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; } 371 372 /// Return the number of fixed objects. getNumFixedObjects()373 unsigned getNumFixedObjects() const { return NumFixedObjects; } 374 375 /// Return the number of objects. getNumObjects()376 unsigned getNumObjects() const { return Objects.size(); } 377 378 /// Map a frame index into the local object block mapLocalFrameObject(int ObjectIndex,int64_t Offset)379 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) { 380 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset)); 381 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true; 382 } 383 384 /// Get the local offset mapping for a for an object. getLocalFrameObjectMap(int i)385 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const { 386 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() && 387 "Invalid local object reference!"); 388 return LocalFrameObjects[i]; 389 } 390 391 /// Return the number of objects allocated into the local object block. getLocalFrameObjectCount()392 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); } 393 394 /// Set the size of the local object blob. setLocalFrameSize(int64_t sz)395 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; } 396 397 /// Get the size of the local object blob. getLocalFrameSize()398 int64_t getLocalFrameSize() const { return LocalFrameSize; } 399 400 /// Required alignment of the local object blob, 401 /// which is the strictest alignment of any object in it. setLocalFrameMaxAlign(unsigned Align)402 void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; } 403 404 /// Return the required alignment of the local object blob. getLocalFrameMaxAlign()405 unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; } 406 407 /// Get whether the local allocation blob should be allocated together or 408 /// let PEI allocate the locals in it directly. getUseLocalStackAllocationBlock()409 bool getUseLocalStackAllocationBlock() const { 410 return UseLocalStackAllocationBlock; 411 } 412 413 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob 414 /// should be allocated together or let PEI allocate the locals in it 415 /// directly. setUseLocalStackAllocationBlock(bool v)416 void setUseLocalStackAllocationBlock(bool v) { 417 UseLocalStackAllocationBlock = v; 418 } 419 420 /// Return true if the object was pre-allocated into the local block. isObjectPreAllocated(int ObjectIdx)421 bool isObjectPreAllocated(int ObjectIdx) const { 422 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 423 "Invalid Object Idx!"); 424 return Objects[ObjectIdx+NumFixedObjects].PreAllocated; 425 } 426 427 /// Return the size of the specified object. getObjectSize(int ObjectIdx)428 int64_t getObjectSize(int ObjectIdx) const { 429 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 430 "Invalid Object Idx!"); 431 return Objects[ObjectIdx+NumFixedObjects].Size; 432 } 433 434 /// Change the size of the specified stack object. setObjectSize(int ObjectIdx,int64_t Size)435 void setObjectSize(int ObjectIdx, int64_t Size) { 436 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 437 "Invalid Object Idx!"); 438 Objects[ObjectIdx+NumFixedObjects].Size = Size; 439 } 440 441 /// Return the alignment of the specified stack object. getObjectAlignment(int ObjectIdx)442 unsigned getObjectAlignment(int ObjectIdx) const { 443 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 444 "Invalid Object Idx!"); 445 return Objects[ObjectIdx+NumFixedObjects].Alignment; 446 } 447 448 /// setObjectAlignment - Change the alignment of the specified stack object. setObjectAlignment(int ObjectIdx,unsigned Align)449 void setObjectAlignment(int ObjectIdx, unsigned Align) { 450 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 451 "Invalid Object Idx!"); 452 Objects[ObjectIdx+NumFixedObjects].Alignment = Align; 453 ensureMaxAlignment(Align); 454 } 455 456 /// Return the underlying Alloca of the specified 457 /// stack object if it exists. Returns 0 if none exists. getObjectAllocation(int ObjectIdx)458 const AllocaInst* getObjectAllocation(int ObjectIdx) const { 459 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 460 "Invalid Object Idx!"); 461 return Objects[ObjectIdx+NumFixedObjects].Alloca; 462 } 463 464 /// Return the assigned stack offset of the specified object 465 /// from the incoming stack pointer. getObjectOffset(int ObjectIdx)466 int64_t getObjectOffset(int ObjectIdx) const { 467 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 468 "Invalid Object Idx!"); 469 assert(!isDeadObjectIndex(ObjectIdx) && 470 "Getting frame offset for a dead object?"); 471 return Objects[ObjectIdx+NumFixedObjects].SPOffset; 472 } 473 isObjectZExt(int ObjectIdx)474 bool isObjectZExt(int ObjectIdx) const { 475 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 476 "Invalid Object Idx!"); 477 return Objects[ObjectIdx+NumFixedObjects].isZExt; 478 } 479 setObjectZExt(int ObjectIdx,bool IsZExt)480 void setObjectZExt(int ObjectIdx, bool IsZExt) { 481 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 482 "Invalid Object Idx!"); 483 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt; 484 } 485 isObjectSExt(int ObjectIdx)486 bool isObjectSExt(int ObjectIdx) const { 487 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 488 "Invalid Object Idx!"); 489 return Objects[ObjectIdx+NumFixedObjects].isSExt; 490 } 491 setObjectSExt(int ObjectIdx,bool IsSExt)492 void setObjectSExt(int ObjectIdx, bool IsSExt) { 493 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 494 "Invalid Object Idx!"); 495 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt; 496 } 497 498 /// Set the stack frame offset of the specified object. The 499 /// offset is relative to the stack pointer on entry to the function. setObjectOffset(int ObjectIdx,int64_t SPOffset)500 void setObjectOffset(int ObjectIdx, int64_t SPOffset) { 501 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 502 "Invalid Object Idx!"); 503 assert(!isDeadObjectIndex(ObjectIdx) && 504 "Setting frame offset for a dead object?"); 505 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset; 506 } 507 getObjectSSPLayout(int ObjectIdx)508 SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const { 509 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 510 "Invalid Object Idx!"); 511 return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout; 512 } 513 setObjectSSPLayout(int ObjectIdx,SSPLayoutKind Kind)514 void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) { 515 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 516 "Invalid Object Idx!"); 517 assert(!isDeadObjectIndex(ObjectIdx) && 518 "Setting SSP layout for a dead object?"); 519 Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind; 520 } 521 522 /// Return the number of bytes that must be allocated to hold 523 /// all of the fixed size frame objects. This is only valid after 524 /// Prolog/Epilog code insertion has finalized the stack frame layout. getStackSize()525 uint64_t getStackSize() const { return StackSize; } 526 527 /// Set the size of the stack. setStackSize(uint64_t Size)528 void setStackSize(uint64_t Size) { StackSize = Size; } 529 530 /// Estimate and return the size of the stack frame. 531 unsigned estimateStackSize(const MachineFunction &MF) const; 532 533 /// Return the correction for frame offsets. getOffsetAdjustment()534 int getOffsetAdjustment() const { return OffsetAdjustment; } 535 536 /// Set the correction for frame offsets. setOffsetAdjustment(int Adj)537 void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; } 538 539 /// Return the alignment in bytes that this function must be aligned to, 540 /// which is greater than the default stack alignment provided by the target. getMaxAlignment()541 unsigned getMaxAlignment() const { return MaxAlignment; } 542 543 /// Make sure the function is at least Align bytes aligned. 544 void ensureMaxAlignment(unsigned Align); 545 546 /// Return true if this function adjusts the stack -- e.g., 547 /// when calling another function. This is only valid during and after 548 /// prolog/epilog code insertion. adjustsStack()549 bool adjustsStack() const { return AdjustsStack; } setAdjustsStack(bool V)550 void setAdjustsStack(bool V) { AdjustsStack = V; } 551 552 /// Return true if the current function has any function calls. hasCalls()553 bool hasCalls() const { return HasCalls; } setHasCalls(bool V)554 void setHasCalls(bool V) { HasCalls = V; } 555 556 /// Returns true if the function contains opaque dynamic stack adjustments. hasOpaqueSPAdjustment()557 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; } setHasOpaqueSPAdjustment(bool B)558 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; } 559 560 /// Returns true if the function contains operations which will lower down to 561 /// instructions which manipulate the stack pointer. hasCopyImplyingStackAdjustment()562 bool hasCopyImplyingStackAdjustment() const { 563 return HasCopyImplyingStackAdjustment; 564 } setHasCopyImplyingStackAdjustment(bool B)565 void setHasCopyImplyingStackAdjustment(bool B) { 566 HasCopyImplyingStackAdjustment = B; 567 } 568 569 /// Returns true if the function calls the llvm.va_start intrinsic. hasVAStart()570 bool hasVAStart() const { return HasVAStart; } setHasVAStart(bool B)571 void setHasVAStart(bool B) { HasVAStart = B; } 572 573 /// Returns true if the function is variadic and contains a musttail call. hasMustTailInVarArgFunc()574 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; } setHasMustTailInVarArgFunc(bool B)575 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; } 576 577 /// Returns true if the function contains a tail call. hasTailCall()578 bool hasTailCall() const { return HasTailCall; } setHasTailCall()579 void setHasTailCall() { HasTailCall = true; } 580 581 /// Computes the maximum size of a callframe and the AdjustsStack property. 582 /// This only works for targets defining 583 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(), 584 /// and getFrameSize(). 585 /// This is usually computed by the prologue epilogue inserter but some 586 /// targets may call this to compute it earlier. 587 void computeMaxCallFrameSize(const MachineFunction &MF); 588 589 /// Return the maximum size of a call frame that must be 590 /// allocated for an outgoing function call. This is only available if 591 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and 592 /// then only during or after prolog/epilog code insertion. 593 /// getMaxCallFrameSize()594 unsigned getMaxCallFrameSize() const { 595 // TODO: Enable this assert when targets are fixed. 596 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet"); 597 if (!isMaxCallFrameSizeComputed()) 598 return 0; 599 return MaxCallFrameSize; 600 } isMaxCallFrameSizeComputed()601 bool isMaxCallFrameSizeComputed() const { 602 return MaxCallFrameSize != ~0u; 603 } setMaxCallFrameSize(unsigned S)604 void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; } 605 606 /// Create a new object at a fixed location on the stack. 607 /// All fixed objects should be created before other objects are created for 608 /// efficiency. By default, fixed objects are not pointed to by LLVM IR 609 /// values. This returns an index with a negative value. 610 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable, 611 bool isAliased = false); 612 613 /// Create a spill slot at a fixed location on the stack. 614 /// Returns an index with a negative value. 615 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset, 616 bool IsImmutable = false); 617 618 /// Returns true if the specified index corresponds to a fixed stack object. isFixedObjectIndex(int ObjectIdx)619 bool isFixedObjectIndex(int ObjectIdx) const { 620 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects); 621 } 622 623 /// Returns true if the specified index corresponds 624 /// to an object that might be pointed to by an LLVM IR value. isAliasedObjectIndex(int ObjectIdx)625 bool isAliasedObjectIndex(int ObjectIdx) const { 626 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 627 "Invalid Object Idx!"); 628 return Objects[ObjectIdx+NumFixedObjects].isAliased; 629 } 630 631 /// Returns true if the specified index corresponds to an immutable object. isImmutableObjectIndex(int ObjectIdx)632 bool isImmutableObjectIndex(int ObjectIdx) const { 633 // Tail calling functions can clobber their function arguments. 634 if (HasTailCall) 635 return false; 636 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 637 "Invalid Object Idx!"); 638 return Objects[ObjectIdx+NumFixedObjects].isImmutable; 639 } 640 641 /// Marks the immutability of an object. setIsImmutableObjectIndex(int ObjectIdx,bool IsImmutable)642 void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) { 643 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 644 "Invalid Object Idx!"); 645 Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable; 646 } 647 648 /// Returns true if the specified index corresponds to a spill slot. isSpillSlotObjectIndex(int ObjectIdx)649 bool isSpillSlotObjectIndex(int ObjectIdx) const { 650 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 651 "Invalid Object Idx!"); 652 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot; 653 } 654 isStatepointSpillSlotObjectIndex(int ObjectIdx)655 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const { 656 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 657 "Invalid Object Idx!"); 658 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot; 659 } 660 661 /// \see StackID getStackID(int ObjectIdx)662 uint8_t getStackID(int ObjectIdx) const { 663 return Objects[ObjectIdx+NumFixedObjects].StackID; 664 } 665 666 /// \see StackID setStackID(int ObjectIdx,uint8_t ID)667 void setStackID(int ObjectIdx, uint8_t ID) { 668 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 669 "Invalid Object Idx!"); 670 Objects[ObjectIdx+NumFixedObjects].StackID = ID; 671 } 672 673 /// Returns true if the specified index corresponds to a dead object. isDeadObjectIndex(int ObjectIdx)674 bool isDeadObjectIndex(int ObjectIdx) const { 675 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 676 "Invalid Object Idx!"); 677 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL; 678 } 679 680 /// Returns true if the specified index corresponds to a variable sized 681 /// object. isVariableSizedObjectIndex(int ObjectIdx)682 bool isVariableSizedObjectIndex(int ObjectIdx) const { 683 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() && 684 "Invalid Object Idx!"); 685 return Objects[ObjectIdx + NumFixedObjects].Size == 0; 686 } 687 markAsStatepointSpillSlotObjectIndex(int ObjectIdx)688 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) { 689 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() && 690 "Invalid Object Idx!"); 691 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true; 692 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent"); 693 } 694 695 /// Create a new statically sized stack object, returning 696 /// a nonnegative identifier to represent it. 697 int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot, 698 const AllocaInst *Alloca = nullptr, uint8_t ID = 0); 699 700 /// Create a new statically sized stack object that represents a spill slot, 701 /// returning a nonnegative identifier to represent it. 702 int CreateSpillStackObject(uint64_t Size, unsigned Alignment); 703 704 /// Remove or mark dead a statically sized stack object. RemoveStackObject(int ObjectIdx)705 void RemoveStackObject(int ObjectIdx) { 706 // Mark it dead. 707 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL; 708 } 709 710 /// Notify the MachineFrameInfo object that a variable sized object has been 711 /// created. This must be created whenever a variable sized object is 712 /// created, whether or not the index returned is actually used. 713 int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca); 714 715 /// Returns a reference to call saved info vector for the current function. getCalleeSavedInfo()716 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const { 717 return CSInfo; 718 } 719 /// \copydoc getCalleeSavedInfo() getCalleeSavedInfo()720 std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; } 721 722 /// Used by prolog/epilog inserter to set the function's callee saved 723 /// information. setCalleeSavedInfo(const std::vector<CalleeSavedInfo> & CSI)724 void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) { 725 CSInfo = CSI; 726 } 727 728 /// Has the callee saved info been calculated yet? isCalleeSavedInfoValid()729 bool isCalleeSavedInfoValid() const { return CSIValid; } 730 setCalleeSavedInfoValid(bool v)731 void setCalleeSavedInfoValid(bool v) { CSIValid = v; } 732 getSavePoint()733 MachineBasicBlock *getSavePoint() const { return Save; } setSavePoint(MachineBasicBlock * NewSave)734 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; } getRestorePoint()735 MachineBasicBlock *getRestorePoint() const { return Restore; } setRestorePoint(MachineBasicBlock * NewRestore)736 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; } 737 738 /// Return a set of physical registers that are pristine. 739 /// 740 /// Pristine registers hold a value that is useless to the current function, 741 /// but that must be preserved - they are callee saved registers that are not 742 /// saved. 743 /// 744 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this 745 /// method always returns an empty set. 746 BitVector getPristineRegs(const MachineFunction &MF) const; 747 748 /// Used by the MachineFunction printer to print information about 749 /// stack objects. Implemented in MachineFunction.cpp. 750 void print(const MachineFunction &MF, raw_ostream &OS) const; 751 752 /// dump - Print the function to stderr. 753 void dump(const MachineFunction &MF) const; 754 }; 755 756 } // End llvm namespace 757 758 #endif 759