1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Constants.h"
15 #include "LLVMContextImpl.h"
16 #include "ConstantFold.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/GlobalValue.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/ADT/FoldingSet.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/StringMap.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ManagedStatic.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 // Constant Class
41 //===----------------------------------------------------------------------===//
42
isNegativeZeroValue() const43 bool Constant::isNegativeZeroValue() const {
44 // Floating point values have an explicit -0.0 value.
45 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
46 return CFP->isZero() && CFP->isNegative();
47
48 // Otherwise, just use +0.0.
49 return isNullValue();
50 }
51
isNullValue() const52 bool Constant::isNullValue() const {
53 // 0 is null.
54 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
55 return CI->isZero();
56
57 // +0.0 is null.
58 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
59 return CFP->isZero() && !CFP->isNegative();
60
61 // constant zero is zero for aggregates and cpnull is null for pointers.
62 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
63 }
64
isAllOnesValue() const65 bool Constant::isAllOnesValue() const {
66 // Check for -1 integers
67 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
68 return CI->isMinusOne();
69
70 // Check for FP which are bitcasted from -1 integers
71 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
72 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
73
74 // Check for constant vectors
75 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
76 return CV->isAllOnesValue();
77
78 return false;
79 }
80 // Constructor to create a '0' constant of arbitrary type...
getNullValue(Type * Ty)81 Constant *Constant::getNullValue(Type *Ty) {
82 switch (Ty->getTypeID()) {
83 case Type::IntegerTyID:
84 return ConstantInt::get(Ty, 0);
85 case Type::FloatTyID:
86 return ConstantFP::get(Ty->getContext(),
87 APFloat::getZero(APFloat::IEEEsingle));
88 case Type::DoubleTyID:
89 return ConstantFP::get(Ty->getContext(),
90 APFloat::getZero(APFloat::IEEEdouble));
91 case Type::X86_FP80TyID:
92 return ConstantFP::get(Ty->getContext(),
93 APFloat::getZero(APFloat::x87DoubleExtended));
94 case Type::FP128TyID:
95 return ConstantFP::get(Ty->getContext(),
96 APFloat::getZero(APFloat::IEEEquad));
97 case Type::PPC_FP128TyID:
98 return ConstantFP::get(Ty->getContext(),
99 APFloat(APInt::getNullValue(128)));
100 case Type::PointerTyID:
101 return ConstantPointerNull::get(cast<PointerType>(Ty));
102 case Type::StructTyID:
103 case Type::ArrayTyID:
104 case Type::VectorTyID:
105 return ConstantAggregateZero::get(Ty);
106 default:
107 // Function, Label, or Opaque type?
108 assert(0 && "Cannot create a null constant of that type!");
109 return 0;
110 }
111 }
112
getIntegerValue(Type * Ty,const APInt & V)113 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
114 Type *ScalarTy = Ty->getScalarType();
115
116 // Create the base integer constant.
117 Constant *C = ConstantInt::get(Ty->getContext(), V);
118
119 // Convert an integer to a pointer, if necessary.
120 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
121 C = ConstantExpr::getIntToPtr(C, PTy);
122
123 // Broadcast a scalar to a vector, if necessary.
124 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
125 C = ConstantVector::get(std::vector<Constant *>(VTy->getNumElements(), C));
126
127 return C;
128 }
129
getAllOnesValue(Type * Ty)130 Constant *Constant::getAllOnesValue(Type *Ty) {
131 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
132 return ConstantInt::get(Ty->getContext(),
133 APInt::getAllOnesValue(ITy->getBitWidth()));
134
135 if (Ty->isFloatingPointTy()) {
136 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
137 !Ty->isPPC_FP128Ty());
138 return ConstantFP::get(Ty->getContext(), FL);
139 }
140
141 SmallVector<Constant*, 16> Elts;
142 VectorType *VTy = cast<VectorType>(Ty);
143 Elts.resize(VTy->getNumElements(), getAllOnesValue(VTy->getElementType()));
144 assert(Elts[0] && "Invalid AllOnes value!");
145 return cast<ConstantVector>(ConstantVector::get(Elts));
146 }
147
destroyConstantImpl()148 void Constant::destroyConstantImpl() {
149 // When a Constant is destroyed, there may be lingering
150 // references to the constant by other constants in the constant pool. These
151 // constants are implicitly dependent on the module that is being deleted,
152 // but they don't know that. Because we only find out when the CPV is
153 // deleted, we must now notify all of our users (that should only be
154 // Constants) that they are, in fact, invalid now and should be deleted.
155 //
156 while (!use_empty()) {
157 Value *V = use_back();
158 #ifndef NDEBUG // Only in -g mode...
159 if (!isa<Constant>(V)) {
160 dbgs() << "While deleting: " << *this
161 << "\n\nUse still stuck around after Def is destroyed: "
162 << *V << "\n\n";
163 }
164 #endif
165 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
166 Constant *CV = cast<Constant>(V);
167 CV->destroyConstant();
168
169 // The constant should remove itself from our use list...
170 assert((use_empty() || use_back() != V) && "Constant not removed!");
171 }
172
173 // Value has no outstanding references it is safe to delete it now...
174 delete this;
175 }
176
177 /// canTrap - Return true if evaluation of this constant could trap. This is
178 /// true for things like constant expressions that could divide by zero.
canTrap() const179 bool Constant::canTrap() const {
180 assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
181 // The only thing that could possibly trap are constant exprs.
182 const ConstantExpr *CE = dyn_cast<ConstantExpr>(this);
183 if (!CE) return false;
184
185 // ConstantExpr traps if any operands can trap.
186 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
187 if (CE->getOperand(i)->canTrap())
188 return true;
189
190 // Otherwise, only specific operations can trap.
191 switch (CE->getOpcode()) {
192 default:
193 return false;
194 case Instruction::UDiv:
195 case Instruction::SDiv:
196 case Instruction::FDiv:
197 case Instruction::URem:
198 case Instruction::SRem:
199 case Instruction::FRem:
200 // Div and rem can trap if the RHS is not known to be non-zero.
201 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
202 return true;
203 return false;
204 }
205 }
206
207 /// isConstantUsed - Return true if the constant has users other than constant
208 /// exprs and other dangling things.
isConstantUsed() const209 bool Constant::isConstantUsed() const {
210 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
211 const Constant *UC = dyn_cast<Constant>(*UI);
212 if (UC == 0 || isa<GlobalValue>(UC))
213 return true;
214
215 if (UC->isConstantUsed())
216 return true;
217 }
218 return false;
219 }
220
221
222
223 /// getRelocationInfo - This method classifies the entry according to
224 /// whether or not it may generate a relocation entry. This must be
225 /// conservative, so if it might codegen to a relocatable entry, it should say
226 /// so. The return values are:
227 ///
228 /// NoRelocation: This constant pool entry is guaranteed to never have a
229 /// relocation applied to it (because it holds a simple constant like
230 /// '4').
231 /// LocalRelocation: This entry has relocations, but the entries are
232 /// guaranteed to be resolvable by the static linker, so the dynamic
233 /// linker will never see them.
234 /// GlobalRelocations: This entry may have arbitrary relocations.
235 ///
236 /// FIXME: This really should not be in VMCore.
getRelocationInfo() const237 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
238 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
239 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
240 return LocalRelocation; // Local to this file/library.
241 return GlobalRelocations; // Global reference.
242 }
243
244 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
245 return BA->getFunction()->getRelocationInfo();
246
247 // While raw uses of blockaddress need to be relocated, differences between
248 // two of them don't when they are for labels in the same function. This is a
249 // common idiom when creating a table for the indirect goto extension, so we
250 // handle it efficiently here.
251 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
252 if (CE->getOpcode() == Instruction::Sub) {
253 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
254 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
255 if (LHS && RHS &&
256 LHS->getOpcode() == Instruction::PtrToInt &&
257 RHS->getOpcode() == Instruction::PtrToInt &&
258 isa<BlockAddress>(LHS->getOperand(0)) &&
259 isa<BlockAddress>(RHS->getOperand(0)) &&
260 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
261 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
262 return NoRelocation;
263 }
264
265 PossibleRelocationsTy Result = NoRelocation;
266 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
267 Result = std::max(Result,
268 cast<Constant>(getOperand(i))->getRelocationInfo());
269
270 return Result;
271 }
272
273
274 /// getVectorElements - This method, which is only valid on constant of vector
275 /// type, returns the elements of the vector in the specified smallvector.
276 /// This handles breaking down a vector undef into undef elements, etc. For
277 /// constant exprs and other cases we can't handle, we return an empty vector.
getVectorElements(SmallVectorImpl<Constant * > & Elts) const278 void Constant::getVectorElements(SmallVectorImpl<Constant*> &Elts) const {
279 assert(getType()->isVectorTy() && "Not a vector constant!");
280
281 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) {
282 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i)
283 Elts.push_back(CV->getOperand(i));
284 return;
285 }
286
287 VectorType *VT = cast<VectorType>(getType());
288 if (isa<ConstantAggregateZero>(this)) {
289 Elts.assign(VT->getNumElements(),
290 Constant::getNullValue(VT->getElementType()));
291 return;
292 }
293
294 if (isa<UndefValue>(this)) {
295 Elts.assign(VT->getNumElements(), UndefValue::get(VT->getElementType()));
296 return;
297 }
298
299 // Unknown type, must be constant expr etc.
300 }
301
302
303 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
304 /// it. This involves recursively eliminating any dead users of the
305 /// constantexpr.
removeDeadUsersOfConstant(const Constant * C)306 static bool removeDeadUsersOfConstant(const Constant *C) {
307 if (isa<GlobalValue>(C)) return false; // Cannot remove this
308
309 while (!C->use_empty()) {
310 const Constant *User = dyn_cast<Constant>(C->use_back());
311 if (!User) return false; // Non-constant usage;
312 if (!removeDeadUsersOfConstant(User))
313 return false; // Constant wasn't dead
314 }
315
316 const_cast<Constant*>(C)->destroyConstant();
317 return true;
318 }
319
320
321 /// removeDeadConstantUsers - If there are any dead constant users dangling
322 /// off of this constant, remove them. This method is useful for clients
323 /// that want to check to see if a global is unused, but don't want to deal
324 /// with potentially dead constants hanging off of the globals.
removeDeadConstantUsers() const325 void Constant::removeDeadConstantUsers() const {
326 Value::const_use_iterator I = use_begin(), E = use_end();
327 Value::const_use_iterator LastNonDeadUser = E;
328 while (I != E) {
329 const Constant *User = dyn_cast<Constant>(*I);
330 if (User == 0) {
331 LastNonDeadUser = I;
332 ++I;
333 continue;
334 }
335
336 if (!removeDeadUsersOfConstant(User)) {
337 // If the constant wasn't dead, remember that this was the last live use
338 // and move on to the next constant.
339 LastNonDeadUser = I;
340 ++I;
341 continue;
342 }
343
344 // If the constant was dead, then the iterator is invalidated.
345 if (LastNonDeadUser == E) {
346 I = use_begin();
347 if (I == E) break;
348 } else {
349 I = LastNonDeadUser;
350 ++I;
351 }
352 }
353 }
354
355
356
357 //===----------------------------------------------------------------------===//
358 // ConstantInt
359 //===----------------------------------------------------------------------===//
360
ConstantInt(IntegerType * Ty,const APInt & V)361 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
362 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
363 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
364 }
365
getTrue(LLVMContext & Context)366 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
367 LLVMContextImpl *pImpl = Context.pImpl;
368 if (!pImpl->TheTrueVal)
369 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
370 return pImpl->TheTrueVal;
371 }
372
getFalse(LLVMContext & Context)373 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
374 LLVMContextImpl *pImpl = Context.pImpl;
375 if (!pImpl->TheFalseVal)
376 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
377 return pImpl->TheFalseVal;
378 }
379
getTrue(Type * Ty)380 Constant *ConstantInt::getTrue(Type *Ty) {
381 VectorType *VTy = dyn_cast<VectorType>(Ty);
382 if (!VTy) {
383 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
384 return ConstantInt::getTrue(Ty->getContext());
385 }
386 assert(VTy->getElementType()->isIntegerTy(1) &&
387 "True must be vector of i1 or i1.");
388 SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
389 ConstantInt::getTrue(Ty->getContext()));
390 return ConstantVector::get(Splat);
391 }
392
getFalse(Type * Ty)393 Constant *ConstantInt::getFalse(Type *Ty) {
394 VectorType *VTy = dyn_cast<VectorType>(Ty);
395 if (!VTy) {
396 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
397 return ConstantInt::getFalse(Ty->getContext());
398 }
399 assert(VTy->getElementType()->isIntegerTy(1) &&
400 "False must be vector of i1 or i1.");
401 SmallVector<Constant*, 16> Splat(VTy->getNumElements(),
402 ConstantInt::getFalse(Ty->getContext()));
403 return ConstantVector::get(Splat);
404 }
405
406
407 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
408 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
409 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
410 // compare APInt's of different widths, which would violate an APInt class
411 // invariant which generates an assertion.
get(LLVMContext & Context,const APInt & V)412 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
413 // Get the corresponding integer type for the bit width of the value.
414 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
415 // get an existing value or the insertion position
416 DenseMapAPIntKeyInfo::KeyTy Key(V, ITy);
417 ConstantInt *&Slot = Context.pImpl->IntConstants[Key];
418 if (!Slot) Slot = new ConstantInt(ITy, V);
419 return Slot;
420 }
421
get(Type * Ty,uint64_t V,bool isSigned)422 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
423 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
424
425 // For vectors, broadcast the value.
426 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
427 return ConstantVector::get(SmallVector<Constant*,
428 16>(VTy->getNumElements(), C));
429
430 return C;
431 }
432
get(IntegerType * Ty,uint64_t V,bool isSigned)433 ConstantInt* ConstantInt::get(IntegerType* Ty, uint64_t V,
434 bool isSigned) {
435 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
436 }
437
getSigned(IntegerType * Ty,int64_t V)438 ConstantInt* ConstantInt::getSigned(IntegerType* Ty, int64_t V) {
439 return get(Ty, V, true);
440 }
441
getSigned(Type * Ty,int64_t V)442 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
443 return get(Ty, V, true);
444 }
445
get(Type * Ty,const APInt & V)446 Constant *ConstantInt::get(Type* Ty, const APInt& V) {
447 ConstantInt *C = get(Ty->getContext(), V);
448 assert(C->getType() == Ty->getScalarType() &&
449 "ConstantInt type doesn't match the type implied by its value!");
450
451 // For vectors, broadcast the value.
452 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
453 return ConstantVector::get(
454 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
455
456 return C;
457 }
458
get(IntegerType * Ty,StringRef Str,uint8_t radix)459 ConstantInt* ConstantInt::get(IntegerType* Ty, StringRef Str,
460 uint8_t radix) {
461 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
462 }
463
464 //===----------------------------------------------------------------------===//
465 // ConstantFP
466 //===----------------------------------------------------------------------===//
467
TypeToFloatSemantics(Type * Ty)468 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
469 if (Ty->isFloatTy())
470 return &APFloat::IEEEsingle;
471 if (Ty->isDoubleTy())
472 return &APFloat::IEEEdouble;
473 if (Ty->isX86_FP80Ty())
474 return &APFloat::x87DoubleExtended;
475 else if (Ty->isFP128Ty())
476 return &APFloat::IEEEquad;
477
478 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
479 return &APFloat::PPCDoubleDouble;
480 }
481
482 /// get() - This returns a constant fp for the specified value in the
483 /// specified type. This should only be used for simple constant values like
484 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
get(Type * Ty,double V)485 Constant *ConstantFP::get(Type* Ty, double V) {
486 LLVMContext &Context = Ty->getContext();
487
488 APFloat FV(V);
489 bool ignored;
490 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
491 APFloat::rmNearestTiesToEven, &ignored);
492 Constant *C = get(Context, FV);
493
494 // For vectors, broadcast the value.
495 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
496 return ConstantVector::get(
497 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
498
499 return C;
500 }
501
502
get(Type * Ty,StringRef Str)503 Constant *ConstantFP::get(Type* Ty, StringRef Str) {
504 LLVMContext &Context = Ty->getContext();
505
506 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
507 Constant *C = get(Context, FV);
508
509 // For vectors, broadcast the value.
510 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
511 return ConstantVector::get(
512 SmallVector<Constant *, 16>(VTy->getNumElements(), C));
513
514 return C;
515 }
516
517
getNegativeZero(Type * Ty)518 ConstantFP* ConstantFP::getNegativeZero(Type* Ty) {
519 LLVMContext &Context = Ty->getContext();
520 APFloat apf = cast <ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
521 apf.changeSign();
522 return get(Context, apf);
523 }
524
525
getZeroValueForNegation(Type * Ty)526 Constant *ConstantFP::getZeroValueForNegation(Type* Ty) {
527 if (VectorType *PTy = dyn_cast<VectorType>(Ty))
528 if (PTy->getElementType()->isFloatingPointTy()) {
529 SmallVector<Constant*, 16> zeros(PTy->getNumElements(),
530 getNegativeZero(PTy->getElementType()));
531 return ConstantVector::get(zeros);
532 }
533
534 if (Ty->isFloatingPointTy())
535 return getNegativeZero(Ty);
536
537 return Constant::getNullValue(Ty);
538 }
539
540
541 // ConstantFP accessors.
get(LLVMContext & Context,const APFloat & V)542 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
543 DenseMapAPFloatKeyInfo::KeyTy Key(V);
544
545 LLVMContextImpl* pImpl = Context.pImpl;
546
547 ConstantFP *&Slot = pImpl->FPConstants[Key];
548
549 if (!Slot) {
550 Type *Ty;
551 if (&V.getSemantics() == &APFloat::IEEEsingle)
552 Ty = Type::getFloatTy(Context);
553 else if (&V.getSemantics() == &APFloat::IEEEdouble)
554 Ty = Type::getDoubleTy(Context);
555 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
556 Ty = Type::getX86_FP80Ty(Context);
557 else if (&V.getSemantics() == &APFloat::IEEEquad)
558 Ty = Type::getFP128Ty(Context);
559 else {
560 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
561 "Unknown FP format");
562 Ty = Type::getPPC_FP128Ty(Context);
563 }
564 Slot = new ConstantFP(Ty, V);
565 }
566
567 return Slot;
568 }
569
getInfinity(Type * Ty,bool Negative)570 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
571 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
572 return ConstantFP::get(Ty->getContext(),
573 APFloat::getInf(Semantics, Negative));
574 }
575
ConstantFP(Type * Ty,const APFloat & V)576 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
577 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
578 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
579 "FP type Mismatch");
580 }
581
isExactlyValue(const APFloat & V) const582 bool ConstantFP::isExactlyValue(const APFloat &V) const {
583 return Val.bitwiseIsEqual(V);
584 }
585
586 //===----------------------------------------------------------------------===//
587 // ConstantXXX Classes
588 //===----------------------------------------------------------------------===//
589
590
ConstantArray(ArrayType * T,ArrayRef<Constant * > V)591 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
592 : Constant(T, ConstantArrayVal,
593 OperandTraits<ConstantArray>::op_end(this) - V.size(),
594 V.size()) {
595 assert(V.size() == T->getNumElements() &&
596 "Invalid initializer vector for constant array");
597 for (unsigned i = 0, e = V.size(); i != e; ++i)
598 assert(V[i]->getType() == T->getElementType() &&
599 "Initializer for array element doesn't match array element type!");
600 std::copy(V.begin(), V.end(), op_begin());
601 }
602
get(ArrayType * Ty,ArrayRef<Constant * > V)603 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
604 for (unsigned i = 0, e = V.size(); i != e; ++i) {
605 assert(V[i]->getType() == Ty->getElementType() &&
606 "Wrong type in array element initializer");
607 }
608 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
609 // If this is an all-zero array, return a ConstantAggregateZero object
610 if (!V.empty()) {
611 Constant *C = V[0];
612 if (!C->isNullValue())
613 return pImpl->ArrayConstants.getOrCreate(Ty, V);
614
615 for (unsigned i = 1, e = V.size(); i != e; ++i)
616 if (V[i] != C)
617 return pImpl->ArrayConstants.getOrCreate(Ty, V);
618 }
619
620 return ConstantAggregateZero::get(Ty);
621 }
622
623 /// ConstantArray::get(const string&) - Return an array that is initialized to
624 /// contain the specified string. If length is zero then a null terminator is
625 /// added to the specified string so that it may be used in a natural way.
626 /// Otherwise, the length parameter specifies how much of the string to use
627 /// and it won't be null terminated.
628 ///
get(LLVMContext & Context,StringRef Str,bool AddNull)629 Constant *ConstantArray::get(LLVMContext &Context, StringRef Str,
630 bool AddNull) {
631 std::vector<Constant*> ElementVals;
632 ElementVals.reserve(Str.size() + size_t(AddNull));
633 for (unsigned i = 0; i < Str.size(); ++i)
634 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), Str[i]));
635
636 // Add a null terminator to the string...
637 if (AddNull) {
638 ElementVals.push_back(ConstantInt::get(Type::getInt8Ty(Context), 0));
639 }
640
641 ArrayType *ATy = ArrayType::get(Type::getInt8Ty(Context), ElementVals.size());
642 return get(ATy, ElementVals);
643 }
644
645 /// getTypeForElements - Return an anonymous struct type to use for a constant
646 /// with the specified set of elements. The list must not be empty.
getTypeForElements(LLVMContext & Context,ArrayRef<Constant * > V,bool Packed)647 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
648 ArrayRef<Constant*> V,
649 bool Packed) {
650 SmallVector<Type*, 16> EltTypes;
651 for (unsigned i = 0, e = V.size(); i != e; ++i)
652 EltTypes.push_back(V[i]->getType());
653
654 return StructType::get(Context, EltTypes, Packed);
655 }
656
657
getTypeForElements(ArrayRef<Constant * > V,bool Packed)658 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
659 bool Packed) {
660 assert(!V.empty() &&
661 "ConstantStruct::getTypeForElements cannot be called on empty list");
662 return getTypeForElements(V[0]->getContext(), V, Packed);
663 }
664
665
ConstantStruct(StructType * T,ArrayRef<Constant * > V)666 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
667 : Constant(T, ConstantStructVal,
668 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
669 V.size()) {
670 assert(V.size() == T->getNumElements() &&
671 "Invalid initializer vector for constant structure");
672 for (unsigned i = 0, e = V.size(); i != e; ++i)
673 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
674 "Initializer for struct element doesn't match struct element type!");
675 std::copy(V.begin(), V.end(), op_begin());
676 }
677
678 // ConstantStruct accessors.
get(StructType * ST,ArrayRef<Constant * > V)679 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
680 // Create a ConstantAggregateZero value if all elements are zeros.
681 for (unsigned i = 0, e = V.size(); i != e; ++i)
682 if (!V[i]->isNullValue())
683 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
684
685 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
686 "Incorrect # elements specified to ConstantStruct::get");
687 return ConstantAggregateZero::get(ST);
688 }
689
get(StructType * T,...)690 Constant *ConstantStruct::get(StructType *T, ...) {
691 va_list ap;
692 SmallVector<Constant*, 8> Values;
693 va_start(ap, T);
694 while (Constant *Val = va_arg(ap, llvm::Constant*))
695 Values.push_back(Val);
696 va_end(ap);
697 return get(T, Values);
698 }
699
ConstantVector(VectorType * T,ArrayRef<Constant * > V)700 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
701 : Constant(T, ConstantVectorVal,
702 OperandTraits<ConstantVector>::op_end(this) - V.size(),
703 V.size()) {
704 for (size_t i = 0, e = V.size(); i != e; i++)
705 assert(V[i]->getType() == T->getElementType() &&
706 "Initializer for vector element doesn't match vector element type!");
707 std::copy(V.begin(), V.end(), op_begin());
708 }
709
710 // ConstantVector accessors.
get(ArrayRef<Constant * > V)711 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
712 assert(!V.empty() && "Vectors can't be empty");
713 VectorType *T = VectorType::get(V.front()->getType(), V.size());
714 LLVMContextImpl *pImpl = T->getContext().pImpl;
715
716 // If this is an all-undef or all-zero vector, return a
717 // ConstantAggregateZero or UndefValue.
718 Constant *C = V[0];
719 bool isZero = C->isNullValue();
720 bool isUndef = isa<UndefValue>(C);
721
722 if (isZero || isUndef) {
723 for (unsigned i = 1, e = V.size(); i != e; ++i)
724 if (V[i] != C) {
725 isZero = isUndef = false;
726 break;
727 }
728 }
729
730 if (isZero)
731 return ConstantAggregateZero::get(T);
732 if (isUndef)
733 return UndefValue::get(T);
734
735 return pImpl->VectorConstants.getOrCreate(T, V);
736 }
737
738 // Utility function for determining if a ConstantExpr is a CastOp or not. This
739 // can't be inline because we don't want to #include Instruction.h into
740 // Constant.h
isCast() const741 bool ConstantExpr::isCast() const {
742 return Instruction::isCast(getOpcode());
743 }
744
isCompare() const745 bool ConstantExpr::isCompare() const {
746 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
747 }
748
isGEPWithNoNotionalOverIndexing() const749 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
750 if (getOpcode() != Instruction::GetElementPtr) return false;
751
752 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
753 User::const_op_iterator OI = llvm::next(this->op_begin());
754
755 // Skip the first index, as it has no static limit.
756 ++GEPI;
757 ++OI;
758
759 // The remaining indices must be compile-time known integers within the
760 // bounds of the corresponding notional static array types.
761 for (; GEPI != E; ++GEPI, ++OI) {
762 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
763 if (!CI) return false;
764 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
765 if (CI->getValue().getActiveBits() > 64 ||
766 CI->getZExtValue() >= ATy->getNumElements())
767 return false;
768 }
769
770 // All the indices checked out.
771 return true;
772 }
773
hasIndices() const774 bool ConstantExpr::hasIndices() const {
775 return getOpcode() == Instruction::ExtractValue ||
776 getOpcode() == Instruction::InsertValue;
777 }
778
getIndices() const779 ArrayRef<unsigned> ConstantExpr::getIndices() const {
780 if (const ExtractValueConstantExpr *EVCE =
781 dyn_cast<ExtractValueConstantExpr>(this))
782 return EVCE->Indices;
783
784 return cast<InsertValueConstantExpr>(this)->Indices;
785 }
786
getPredicate() const787 unsigned ConstantExpr::getPredicate() const {
788 assert(isCompare());
789 return ((const CompareConstantExpr*)this)->predicate;
790 }
791
792 /// getWithOperandReplaced - Return a constant expression identical to this
793 /// one, but with the specified operand set to the specified value.
794 Constant *
getWithOperandReplaced(unsigned OpNo,Constant * Op) const795 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
796 assert(OpNo < getNumOperands() && "Operand num is out of range!");
797 assert(Op->getType() == getOperand(OpNo)->getType() &&
798 "Replacing operand with value of different type!");
799 if (getOperand(OpNo) == Op)
800 return const_cast<ConstantExpr*>(this);
801
802 Constant *Op0, *Op1, *Op2;
803 switch (getOpcode()) {
804 case Instruction::Trunc:
805 case Instruction::ZExt:
806 case Instruction::SExt:
807 case Instruction::FPTrunc:
808 case Instruction::FPExt:
809 case Instruction::UIToFP:
810 case Instruction::SIToFP:
811 case Instruction::FPToUI:
812 case Instruction::FPToSI:
813 case Instruction::PtrToInt:
814 case Instruction::IntToPtr:
815 case Instruction::BitCast:
816 return ConstantExpr::getCast(getOpcode(), Op, getType());
817 case Instruction::Select:
818 Op0 = (OpNo == 0) ? Op : getOperand(0);
819 Op1 = (OpNo == 1) ? Op : getOperand(1);
820 Op2 = (OpNo == 2) ? Op : getOperand(2);
821 return ConstantExpr::getSelect(Op0, Op1, Op2);
822 case Instruction::InsertElement:
823 Op0 = (OpNo == 0) ? Op : getOperand(0);
824 Op1 = (OpNo == 1) ? Op : getOperand(1);
825 Op2 = (OpNo == 2) ? Op : getOperand(2);
826 return ConstantExpr::getInsertElement(Op0, Op1, Op2);
827 case Instruction::ExtractElement:
828 Op0 = (OpNo == 0) ? Op : getOperand(0);
829 Op1 = (OpNo == 1) ? Op : getOperand(1);
830 return ConstantExpr::getExtractElement(Op0, Op1);
831 case Instruction::ShuffleVector:
832 Op0 = (OpNo == 0) ? Op : getOperand(0);
833 Op1 = (OpNo == 1) ? Op : getOperand(1);
834 Op2 = (OpNo == 2) ? Op : getOperand(2);
835 return ConstantExpr::getShuffleVector(Op0, Op1, Op2);
836 case Instruction::GetElementPtr: {
837 SmallVector<Constant*, 8> Ops;
838 Ops.resize(getNumOperands()-1);
839 for (unsigned i = 1, e = getNumOperands(); i != e; ++i)
840 Ops[i-1] = getOperand(i);
841 if (OpNo == 0)
842 return
843 ConstantExpr::getGetElementPtr(Op, Ops,
844 cast<GEPOperator>(this)->isInBounds());
845 Ops[OpNo-1] = Op;
846 return
847 ConstantExpr::getGetElementPtr(getOperand(0), Ops,
848 cast<GEPOperator>(this)->isInBounds());
849 }
850 default:
851 assert(getNumOperands() == 2 && "Must be binary operator?");
852 Op0 = (OpNo == 0) ? Op : getOperand(0);
853 Op1 = (OpNo == 1) ? Op : getOperand(1);
854 return ConstantExpr::get(getOpcode(), Op0, Op1, SubclassOptionalData);
855 }
856 }
857
858 /// getWithOperands - This returns the current constant expression with the
859 /// operands replaced with the specified values. The specified array must
860 /// have the same number of operands as our current one.
861 Constant *ConstantExpr::
getWithOperands(ArrayRef<Constant * > Ops,Type * Ty) const862 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
863 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
864 bool AnyChange = Ty != getType();
865 for (unsigned i = 0; i != Ops.size(); ++i)
866 AnyChange |= Ops[i] != getOperand(i);
867
868 if (!AnyChange) // No operands changed, return self.
869 return const_cast<ConstantExpr*>(this);
870
871 switch (getOpcode()) {
872 case Instruction::Trunc:
873 case Instruction::ZExt:
874 case Instruction::SExt:
875 case Instruction::FPTrunc:
876 case Instruction::FPExt:
877 case Instruction::UIToFP:
878 case Instruction::SIToFP:
879 case Instruction::FPToUI:
880 case Instruction::FPToSI:
881 case Instruction::PtrToInt:
882 case Instruction::IntToPtr:
883 case Instruction::BitCast:
884 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
885 case Instruction::Select:
886 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
887 case Instruction::InsertElement:
888 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
889 case Instruction::ExtractElement:
890 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
891 case Instruction::ShuffleVector:
892 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
893 case Instruction::GetElementPtr:
894 return
895 ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
896 cast<GEPOperator>(this)->isInBounds());
897 case Instruction::ICmp:
898 case Instruction::FCmp:
899 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
900 default:
901 assert(getNumOperands() == 2 && "Must be binary operator?");
902 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
903 }
904 }
905
906
907 //===----------------------------------------------------------------------===//
908 // isValueValidForType implementations
909
isValueValidForType(Type * Ty,uint64_t Val)910 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
911 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
912 if (Ty == Type::getInt1Ty(Ty->getContext()))
913 return Val == 0 || Val == 1;
914 if (NumBits >= 64)
915 return true; // always true, has to fit in largest type
916 uint64_t Max = (1ll << NumBits) - 1;
917 return Val <= Max;
918 }
919
isValueValidForType(Type * Ty,int64_t Val)920 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
921 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth(); // assert okay
922 if (Ty == Type::getInt1Ty(Ty->getContext()))
923 return Val == 0 || Val == 1 || Val == -1;
924 if (NumBits >= 64)
925 return true; // always true, has to fit in largest type
926 int64_t Min = -(1ll << (NumBits-1));
927 int64_t Max = (1ll << (NumBits-1)) - 1;
928 return (Val >= Min && Val <= Max);
929 }
930
isValueValidForType(Type * Ty,const APFloat & Val)931 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
932 // convert modifies in place, so make a copy.
933 APFloat Val2 = APFloat(Val);
934 bool losesInfo;
935 switch (Ty->getTypeID()) {
936 default:
937 return false; // These can't be represented as floating point!
938
939 // FIXME rounding mode needs to be more flexible
940 case Type::FloatTyID: {
941 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
942 return true;
943 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
944 return !losesInfo;
945 }
946 case Type::DoubleTyID: {
947 if (&Val2.getSemantics() == &APFloat::IEEEsingle ||
948 &Val2.getSemantics() == &APFloat::IEEEdouble)
949 return true;
950 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
951 return !losesInfo;
952 }
953 case Type::X86_FP80TyID:
954 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
955 &Val2.getSemantics() == &APFloat::IEEEdouble ||
956 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
957 case Type::FP128TyID:
958 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
959 &Val2.getSemantics() == &APFloat::IEEEdouble ||
960 &Val2.getSemantics() == &APFloat::IEEEquad;
961 case Type::PPC_FP128TyID:
962 return &Val2.getSemantics() == &APFloat::IEEEsingle ||
963 &Val2.getSemantics() == &APFloat::IEEEdouble ||
964 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
965 }
966 }
967
968 //===----------------------------------------------------------------------===//
969 // Factory Function Implementation
970
get(Type * Ty)971 ConstantAggregateZero* ConstantAggregateZero::get(Type* Ty) {
972 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
973 "Cannot create an aggregate zero of non-aggregate type!");
974
975 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
976 return pImpl->AggZeroConstants.getOrCreate(Ty, 0);
977 }
978
979 /// destroyConstant - Remove the constant from the constant table...
980 ///
destroyConstant()981 void ConstantAggregateZero::destroyConstant() {
982 getType()->getContext().pImpl->AggZeroConstants.remove(this);
983 destroyConstantImpl();
984 }
985
986 /// destroyConstant - Remove the constant from the constant table...
987 ///
destroyConstant()988 void ConstantArray::destroyConstant() {
989 getType()->getContext().pImpl->ArrayConstants.remove(this);
990 destroyConstantImpl();
991 }
992
993 /// isString - This method returns true if the array is an array of i8, and
994 /// if the elements of the array are all ConstantInt's.
isString() const995 bool ConstantArray::isString() const {
996 // Check the element type for i8...
997 if (!getType()->getElementType()->isIntegerTy(8))
998 return false;
999 // Check the elements to make sure they are all integers, not constant
1000 // expressions.
1001 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1002 if (!isa<ConstantInt>(getOperand(i)))
1003 return false;
1004 return true;
1005 }
1006
1007 /// isCString - This method returns true if the array is a string (see
1008 /// isString) and it ends in a null byte \\0 and does not contains any other
1009 /// null bytes except its terminator.
isCString() const1010 bool ConstantArray::isCString() const {
1011 // Check the element type for i8...
1012 if (!getType()->getElementType()->isIntegerTy(8))
1013 return false;
1014
1015 // Last element must be a null.
1016 if (!getOperand(getNumOperands()-1)->isNullValue())
1017 return false;
1018 // Other elements must be non-null integers.
1019 for (unsigned i = 0, e = getNumOperands()-1; i != e; ++i) {
1020 if (!isa<ConstantInt>(getOperand(i)))
1021 return false;
1022 if (getOperand(i)->isNullValue())
1023 return false;
1024 }
1025 return true;
1026 }
1027
1028
1029 /// convertToString - Helper function for getAsString() and getAsCString().
convertToString(const User * U,unsigned len)1030 static std::string convertToString(const User *U, unsigned len) {
1031 std::string Result;
1032 Result.reserve(len);
1033 for (unsigned i = 0; i != len; ++i)
1034 Result.push_back((char)cast<ConstantInt>(U->getOperand(i))->getZExtValue());
1035 return Result;
1036 }
1037
1038 /// getAsString - If this array is isString(), then this method converts the
1039 /// array to an std::string and returns it. Otherwise, it asserts out.
1040 ///
getAsString() const1041 std::string ConstantArray::getAsString() const {
1042 assert(isString() && "Not a string!");
1043 return convertToString(this, getNumOperands());
1044 }
1045
1046
1047 /// getAsCString - If this array is isCString(), then this method converts the
1048 /// array (without the trailing null byte) to an std::string and returns it.
1049 /// Otherwise, it asserts out.
1050 ///
getAsCString() const1051 std::string ConstantArray::getAsCString() const {
1052 assert(isCString() && "Not a string!");
1053 return convertToString(this, getNumOperands() - 1);
1054 }
1055
1056
1057 //---- ConstantStruct::get() implementation...
1058 //
1059
1060 // destroyConstant - Remove the constant from the constant table...
1061 //
destroyConstant()1062 void ConstantStruct::destroyConstant() {
1063 getType()->getContext().pImpl->StructConstants.remove(this);
1064 destroyConstantImpl();
1065 }
1066
1067 // destroyConstant - Remove the constant from the constant table...
1068 //
destroyConstant()1069 void ConstantVector::destroyConstant() {
1070 getType()->getContext().pImpl->VectorConstants.remove(this);
1071 destroyConstantImpl();
1072 }
1073
1074 /// This function will return true iff every element in this vector constant
1075 /// is set to all ones.
1076 /// @returns true iff this constant's elements are all set to all ones.
1077 /// @brief Determine if the value is all ones.
isAllOnesValue() const1078 bool ConstantVector::isAllOnesValue() const {
1079 // Check out first element.
1080 const Constant *Elt = getOperand(0);
1081 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1082 const ConstantFP *CF = dyn_cast<ConstantFP>(Elt);
1083
1084 // Then make sure all remaining elements point to the same value.
1085 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1086 if (getOperand(I) != Elt)
1087 return false;
1088
1089 // First value is all-ones.
1090 return (CI && CI->isAllOnesValue()) ||
1091 (CF && CF->isAllOnesValue());
1092 }
1093
1094 /// getSplatValue - If this is a splat constant, where all of the
1095 /// elements have the same value, return that value. Otherwise return null.
getSplatValue() const1096 Constant *ConstantVector::getSplatValue() const {
1097 // Check out first element.
1098 Constant *Elt = getOperand(0);
1099 // Then make sure all remaining elements point to the same value.
1100 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1101 if (getOperand(I) != Elt)
1102 return 0;
1103 return Elt;
1104 }
1105
1106 //---- ConstantPointerNull::get() implementation.
1107 //
1108
get(PointerType * Ty)1109 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1110 return Ty->getContext().pImpl->NullPtrConstants.getOrCreate(Ty, 0);
1111 }
1112
1113 // destroyConstant - Remove the constant from the constant table...
1114 //
destroyConstant()1115 void ConstantPointerNull::destroyConstant() {
1116 getType()->getContext().pImpl->NullPtrConstants.remove(this);
1117 destroyConstantImpl();
1118 }
1119
1120
1121 //---- UndefValue::get() implementation.
1122 //
1123
get(Type * Ty)1124 UndefValue *UndefValue::get(Type *Ty) {
1125 return Ty->getContext().pImpl->UndefValueConstants.getOrCreate(Ty, 0);
1126 }
1127
1128 // destroyConstant - Remove the constant from the constant table.
1129 //
destroyConstant()1130 void UndefValue::destroyConstant() {
1131 getType()->getContext().pImpl->UndefValueConstants.remove(this);
1132 destroyConstantImpl();
1133 }
1134
1135 //---- BlockAddress::get() implementation.
1136 //
1137
get(BasicBlock * BB)1138 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1139 assert(BB->getParent() != 0 && "Block must have a parent");
1140 return get(BB->getParent(), BB);
1141 }
1142
get(Function * F,BasicBlock * BB)1143 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1144 BlockAddress *&BA =
1145 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1146 if (BA == 0)
1147 BA = new BlockAddress(F, BB);
1148
1149 assert(BA->getFunction() == F && "Basic block moved between functions");
1150 return BA;
1151 }
1152
BlockAddress(Function * F,BasicBlock * BB)1153 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1154 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1155 &Op<0>(), 2) {
1156 setOperand(0, F);
1157 setOperand(1, BB);
1158 BB->AdjustBlockAddressRefCount(1);
1159 }
1160
1161
1162 // destroyConstant - Remove the constant from the constant table.
1163 //
destroyConstant()1164 void BlockAddress::destroyConstant() {
1165 getFunction()->getType()->getContext().pImpl
1166 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1167 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1168 destroyConstantImpl();
1169 }
1170
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1171 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1172 // This could be replacing either the Basic Block or the Function. In either
1173 // case, we have to remove the map entry.
1174 Function *NewF = getFunction();
1175 BasicBlock *NewBB = getBasicBlock();
1176
1177 if (U == &Op<0>())
1178 NewF = cast<Function>(To);
1179 else
1180 NewBB = cast<BasicBlock>(To);
1181
1182 // See if the 'new' entry already exists, if not, just update this in place
1183 // and return early.
1184 BlockAddress *&NewBA =
1185 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1186 if (NewBA == 0) {
1187 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1188
1189 // Remove the old entry, this can't cause the map to rehash (just a
1190 // tombstone will get added).
1191 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1192 getBasicBlock()));
1193 NewBA = this;
1194 setOperand(0, NewF);
1195 setOperand(1, NewBB);
1196 getBasicBlock()->AdjustBlockAddressRefCount(1);
1197 return;
1198 }
1199
1200 // Otherwise, I do need to replace this with an existing value.
1201 assert(NewBA != this && "I didn't contain From!");
1202
1203 // Everyone using this now uses the replacement.
1204 replaceAllUsesWith(NewBA);
1205
1206 destroyConstant();
1207 }
1208
1209 //---- ConstantExpr::get() implementations.
1210 //
1211
1212 /// This is a utility function to handle folding of casts and lookup of the
1213 /// cast in the ExprConstants map. It is used by the various get* methods below.
getFoldedCast(Instruction::CastOps opc,Constant * C,Type * Ty)1214 static inline Constant *getFoldedCast(
1215 Instruction::CastOps opc, Constant *C, Type *Ty) {
1216 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1217 // Fold a few common cases
1218 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1219 return FC;
1220
1221 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1222
1223 // Look up the constant in the table first to ensure uniqueness
1224 std::vector<Constant*> argVec(1, C);
1225 ExprMapKeyType Key(opc, argVec);
1226
1227 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1228 }
1229
getCast(unsigned oc,Constant * C,Type * Ty)1230 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1231 Instruction::CastOps opc = Instruction::CastOps(oc);
1232 assert(Instruction::isCast(opc) && "opcode out of range");
1233 assert(C && Ty && "Null arguments to getCast");
1234 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1235
1236 switch (opc) {
1237 default:
1238 llvm_unreachable("Invalid cast opcode");
1239 break;
1240 case Instruction::Trunc: return getTrunc(C, Ty);
1241 case Instruction::ZExt: return getZExt(C, Ty);
1242 case Instruction::SExt: return getSExt(C, Ty);
1243 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1244 case Instruction::FPExt: return getFPExtend(C, Ty);
1245 case Instruction::UIToFP: return getUIToFP(C, Ty);
1246 case Instruction::SIToFP: return getSIToFP(C, Ty);
1247 case Instruction::FPToUI: return getFPToUI(C, Ty);
1248 case Instruction::FPToSI: return getFPToSI(C, Ty);
1249 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1250 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1251 case Instruction::BitCast: return getBitCast(C, Ty);
1252 }
1253 return 0;
1254 }
1255
getZExtOrBitCast(Constant * C,Type * Ty)1256 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1257 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1258 return getBitCast(C, Ty);
1259 return getZExt(C, Ty);
1260 }
1261
getSExtOrBitCast(Constant * C,Type * Ty)1262 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1263 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1264 return getBitCast(C, Ty);
1265 return getSExt(C, Ty);
1266 }
1267
getTruncOrBitCast(Constant * C,Type * Ty)1268 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1269 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1270 return getBitCast(C, Ty);
1271 return getTrunc(C, Ty);
1272 }
1273
getPointerCast(Constant * S,Type * Ty)1274 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1275 assert(S->getType()->isPointerTy() && "Invalid cast");
1276 assert((Ty->isIntegerTy() || Ty->isPointerTy()) && "Invalid cast");
1277
1278 if (Ty->isIntegerTy())
1279 return getPtrToInt(S, Ty);
1280 return getBitCast(S, Ty);
1281 }
1282
getIntegerCast(Constant * C,Type * Ty,bool isSigned)1283 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1284 bool isSigned) {
1285 assert(C->getType()->isIntOrIntVectorTy() &&
1286 Ty->isIntOrIntVectorTy() && "Invalid cast");
1287 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1288 unsigned DstBits = Ty->getScalarSizeInBits();
1289 Instruction::CastOps opcode =
1290 (SrcBits == DstBits ? Instruction::BitCast :
1291 (SrcBits > DstBits ? Instruction::Trunc :
1292 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1293 return getCast(opcode, C, Ty);
1294 }
1295
getFPCast(Constant * C,Type * Ty)1296 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1297 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1298 "Invalid cast");
1299 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1300 unsigned DstBits = Ty->getScalarSizeInBits();
1301 if (SrcBits == DstBits)
1302 return C; // Avoid a useless cast
1303 Instruction::CastOps opcode =
1304 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1305 return getCast(opcode, C, Ty);
1306 }
1307
getTrunc(Constant * C,Type * Ty)1308 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1309 #ifndef NDEBUG
1310 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1311 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1312 #endif
1313 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1314 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1315 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1316 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1317 "SrcTy must be larger than DestTy for Trunc!");
1318
1319 return getFoldedCast(Instruction::Trunc, C, Ty);
1320 }
1321
getSExt(Constant * C,Type * Ty)1322 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1323 #ifndef NDEBUG
1324 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1325 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1326 #endif
1327 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1328 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1329 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1330 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1331 "SrcTy must be smaller than DestTy for SExt!");
1332
1333 return getFoldedCast(Instruction::SExt, C, Ty);
1334 }
1335
getZExt(Constant * C,Type * Ty)1336 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1337 #ifndef NDEBUG
1338 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1339 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1340 #endif
1341 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1342 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1343 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1344 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1345 "SrcTy must be smaller than DestTy for ZExt!");
1346
1347 return getFoldedCast(Instruction::ZExt, C, Ty);
1348 }
1349
getFPTrunc(Constant * C,Type * Ty)1350 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1351 #ifndef NDEBUG
1352 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1353 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1354 #endif
1355 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1356 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1357 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1358 "This is an illegal floating point truncation!");
1359 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1360 }
1361
getFPExtend(Constant * C,Type * Ty)1362 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1363 #ifndef NDEBUG
1364 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1365 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1366 #endif
1367 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1368 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1369 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1370 "This is an illegal floating point extension!");
1371 return getFoldedCast(Instruction::FPExt, C, Ty);
1372 }
1373
getUIToFP(Constant * C,Type * Ty)1374 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1375 #ifndef NDEBUG
1376 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1377 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1378 #endif
1379 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1380 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1381 "This is an illegal uint to floating point cast!");
1382 return getFoldedCast(Instruction::UIToFP, C, Ty);
1383 }
1384
getSIToFP(Constant * C,Type * Ty)1385 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1386 #ifndef NDEBUG
1387 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1388 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1389 #endif
1390 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1391 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1392 "This is an illegal sint to floating point cast!");
1393 return getFoldedCast(Instruction::SIToFP, C, Ty);
1394 }
1395
getFPToUI(Constant * C,Type * Ty)1396 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1397 #ifndef NDEBUG
1398 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1399 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1400 #endif
1401 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1402 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1403 "This is an illegal floating point to uint cast!");
1404 return getFoldedCast(Instruction::FPToUI, C, Ty);
1405 }
1406
getFPToSI(Constant * C,Type * Ty)1407 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1408 #ifndef NDEBUG
1409 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1410 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1411 #endif
1412 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1413 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1414 "This is an illegal floating point to sint cast!");
1415 return getFoldedCast(Instruction::FPToSI, C, Ty);
1416 }
1417
getPtrToInt(Constant * C,Type * DstTy)1418 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1419 assert(C->getType()->isPointerTy() && "PtrToInt source must be pointer");
1420 assert(DstTy->isIntegerTy() && "PtrToInt destination must be integral");
1421 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1422 }
1423
getIntToPtr(Constant * C,Type * DstTy)1424 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1425 assert(C->getType()->isIntegerTy() && "IntToPtr source must be integral");
1426 assert(DstTy->isPointerTy() && "IntToPtr destination must be a pointer");
1427 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1428 }
1429
getBitCast(Constant * C,Type * DstTy)1430 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1431 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1432 "Invalid constantexpr bitcast!");
1433
1434 // It is common to ask for a bitcast of a value to its own type, handle this
1435 // speedily.
1436 if (C->getType() == DstTy) return C;
1437
1438 return getFoldedCast(Instruction::BitCast, C, DstTy);
1439 }
1440
get(unsigned Opcode,Constant * C1,Constant * C2,unsigned Flags)1441 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1442 unsigned Flags) {
1443 // Check the operands for consistency first.
1444 assert(Opcode >= Instruction::BinaryOpsBegin &&
1445 Opcode < Instruction::BinaryOpsEnd &&
1446 "Invalid opcode in binary constant expression");
1447 assert(C1->getType() == C2->getType() &&
1448 "Operand types in binary constant expression should match");
1449
1450 #ifndef NDEBUG
1451 switch (Opcode) {
1452 case Instruction::Add:
1453 case Instruction::Sub:
1454 case Instruction::Mul:
1455 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1456 assert(C1->getType()->isIntOrIntVectorTy() &&
1457 "Tried to create an integer operation on a non-integer type!");
1458 break;
1459 case Instruction::FAdd:
1460 case Instruction::FSub:
1461 case Instruction::FMul:
1462 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1463 assert(C1->getType()->isFPOrFPVectorTy() &&
1464 "Tried to create a floating-point operation on a "
1465 "non-floating-point type!");
1466 break;
1467 case Instruction::UDiv:
1468 case Instruction::SDiv:
1469 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1470 assert(C1->getType()->isIntOrIntVectorTy() &&
1471 "Tried to create an arithmetic operation on a non-arithmetic type!");
1472 break;
1473 case Instruction::FDiv:
1474 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1475 assert(C1->getType()->isFPOrFPVectorTy() &&
1476 "Tried to create an arithmetic operation on a non-arithmetic type!");
1477 break;
1478 case Instruction::URem:
1479 case Instruction::SRem:
1480 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1481 assert(C1->getType()->isIntOrIntVectorTy() &&
1482 "Tried to create an arithmetic operation on a non-arithmetic type!");
1483 break;
1484 case Instruction::FRem:
1485 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1486 assert(C1->getType()->isFPOrFPVectorTy() &&
1487 "Tried to create an arithmetic operation on a non-arithmetic type!");
1488 break;
1489 case Instruction::And:
1490 case Instruction::Or:
1491 case Instruction::Xor:
1492 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1493 assert(C1->getType()->isIntOrIntVectorTy() &&
1494 "Tried to create a logical operation on a non-integral type!");
1495 break;
1496 case Instruction::Shl:
1497 case Instruction::LShr:
1498 case Instruction::AShr:
1499 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1500 assert(C1->getType()->isIntOrIntVectorTy() &&
1501 "Tried to create a shift operation on a non-integer type!");
1502 break;
1503 default:
1504 break;
1505 }
1506 #endif
1507
1508 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1509 return FC; // Fold a few common cases.
1510
1511 std::vector<Constant*> argVec(1, C1);
1512 argVec.push_back(C2);
1513 ExprMapKeyType Key(Opcode, argVec, 0, Flags);
1514
1515 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1516 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1517 }
1518
getSizeOf(Type * Ty)1519 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1520 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1521 // Note that a non-inbounds gep is used, as null isn't within any object.
1522 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1523 Constant *GEP = getGetElementPtr(
1524 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1525 return getPtrToInt(GEP,
1526 Type::getInt64Ty(Ty->getContext()));
1527 }
1528
getAlignOf(Type * Ty)1529 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1530 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1531 // Note that a non-inbounds gep is used, as null isn't within any object.
1532 Type *AligningTy =
1533 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1534 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1535 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1536 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1537 Constant *Indices[2] = { Zero, One };
1538 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1539 return getPtrToInt(GEP,
1540 Type::getInt64Ty(Ty->getContext()));
1541 }
1542
getOffsetOf(StructType * STy,unsigned FieldNo)1543 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1544 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1545 FieldNo));
1546 }
1547
getOffsetOf(Type * Ty,Constant * FieldNo)1548 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1549 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1550 // Note that a non-inbounds gep is used, as null isn't within any object.
1551 Constant *GEPIdx[] = {
1552 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1553 FieldNo
1554 };
1555 Constant *GEP = getGetElementPtr(
1556 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1557 return getPtrToInt(GEP,
1558 Type::getInt64Ty(Ty->getContext()));
1559 }
1560
getCompare(unsigned short Predicate,Constant * C1,Constant * C2)1561 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1562 Constant *C1, Constant *C2) {
1563 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1564
1565 switch (Predicate) {
1566 default: llvm_unreachable("Invalid CmpInst predicate");
1567 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1568 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1569 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1570 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1571 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1572 case CmpInst::FCMP_TRUE:
1573 return getFCmp(Predicate, C1, C2);
1574
1575 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1576 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1577 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1578 case CmpInst::ICMP_SLE:
1579 return getICmp(Predicate, C1, C2);
1580 }
1581 }
1582
getSelect(Constant * C,Constant * V1,Constant * V2)1583 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1584 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1585
1586 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1587 return SC; // Fold common cases
1588
1589 std::vector<Constant*> argVec(3, C);
1590 argVec[1] = V1;
1591 argVec[2] = V2;
1592 ExprMapKeyType Key(Instruction::Select, argVec);
1593
1594 LLVMContextImpl *pImpl = C->getContext().pImpl;
1595 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1596 }
1597
getGetElementPtr(Constant * C,ArrayRef<Value * > Idxs,bool InBounds)1598 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1599 bool InBounds) {
1600 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1601 return FC; // Fold a few common cases.
1602
1603 // Get the result type of the getelementptr!
1604 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1605 assert(Ty && "GEP indices invalid!");
1606 unsigned AS = cast<PointerType>(C->getType())->getAddressSpace();
1607 Type *ReqTy = Ty->getPointerTo(AS);
1608
1609 assert(C->getType()->isPointerTy() &&
1610 "Non-pointer type for constant GetElementPtr expression");
1611 // Look up the constant in the table first to ensure uniqueness
1612 std::vector<Constant*> ArgVec;
1613 ArgVec.reserve(1 + Idxs.size());
1614 ArgVec.push_back(C);
1615 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
1616 ArgVec.push_back(cast<Constant>(Idxs[i]));
1617 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1618 InBounds ? GEPOperator::IsInBounds : 0);
1619
1620 LLVMContextImpl *pImpl = C->getContext().pImpl;
1621 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1622 }
1623
1624 Constant *
getICmp(unsigned short pred,Constant * LHS,Constant * RHS)1625 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1626 assert(LHS->getType() == RHS->getType());
1627 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1628 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1629
1630 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1631 return FC; // Fold a few common cases...
1632
1633 // Look up the constant in the table first to ensure uniqueness
1634 std::vector<Constant*> ArgVec;
1635 ArgVec.push_back(LHS);
1636 ArgVec.push_back(RHS);
1637 // Get the key type with both the opcode and predicate
1638 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1639
1640 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1641 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1642 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1643
1644 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1645 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1646 }
1647
1648 Constant *
getFCmp(unsigned short pred,Constant * LHS,Constant * RHS)1649 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1650 assert(LHS->getType() == RHS->getType());
1651 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1652
1653 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1654 return FC; // Fold a few common cases...
1655
1656 // Look up the constant in the table first to ensure uniqueness
1657 std::vector<Constant*> ArgVec;
1658 ArgVec.push_back(LHS);
1659 ArgVec.push_back(RHS);
1660 // Get the key type with both the opcode and predicate
1661 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1662
1663 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1664 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1665 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1666
1667 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1668 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1669 }
1670
getExtractElement(Constant * Val,Constant * Idx)1671 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1672 assert(Val->getType()->isVectorTy() &&
1673 "Tried to create extractelement operation on non-vector type!");
1674 assert(Idx->getType()->isIntegerTy(32) &&
1675 "Extractelement index must be i32 type!");
1676
1677 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1678 return FC; // Fold a few common cases.
1679
1680 // Look up the constant in the table first to ensure uniqueness
1681 std::vector<Constant*> ArgVec(1, Val);
1682 ArgVec.push_back(Idx);
1683 const ExprMapKeyType Key(Instruction::ExtractElement,ArgVec);
1684
1685 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1686 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
1687 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1688 }
1689
getInsertElement(Constant * Val,Constant * Elt,Constant * Idx)1690 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1691 Constant *Idx) {
1692 assert(Val->getType()->isVectorTy() &&
1693 "Tried to create insertelement operation on non-vector type!");
1694 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType()
1695 && "Insertelement types must match!");
1696 assert(Idx->getType()->isIntegerTy(32) &&
1697 "Insertelement index must be i32 type!");
1698
1699 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1700 return FC; // Fold a few common cases.
1701 // Look up the constant in the table first to ensure uniqueness
1702 std::vector<Constant*> ArgVec(1, Val);
1703 ArgVec.push_back(Elt);
1704 ArgVec.push_back(Idx);
1705 const ExprMapKeyType Key(Instruction::InsertElement,ArgVec);
1706
1707 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1708 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1709 }
1710
getShuffleVector(Constant * V1,Constant * V2,Constant * Mask)1711 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1712 Constant *Mask) {
1713 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1714 "Invalid shuffle vector constant expr operands!");
1715
1716 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1717 return FC; // Fold a few common cases.
1718
1719 unsigned NElts = cast<VectorType>(Mask->getType())->getNumElements();
1720 Type *EltTy = cast<VectorType>(V1->getType())->getElementType();
1721 Type *ShufTy = VectorType::get(EltTy, NElts);
1722
1723 // Look up the constant in the table first to ensure uniqueness
1724 std::vector<Constant*> ArgVec(1, V1);
1725 ArgVec.push_back(V2);
1726 ArgVec.push_back(Mask);
1727 const ExprMapKeyType Key(Instruction::ShuffleVector,ArgVec);
1728
1729 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1730 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1731 }
1732
getInsertValue(Constant * Agg,Constant * Val,ArrayRef<unsigned> Idxs)1733 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1734 ArrayRef<unsigned> Idxs) {
1735 assert(ExtractValueInst::getIndexedType(Agg->getType(),
1736 Idxs) == Val->getType() &&
1737 "insertvalue indices invalid!");
1738 assert(Agg->getType()->isFirstClassType() &&
1739 "Non-first-class type for constant insertvalue expression");
1740 Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs);
1741 assert(FC && "insertvalue constant expr couldn't be folded!");
1742 return FC;
1743 }
1744
getExtractValue(Constant * Agg,ArrayRef<unsigned> Idxs)1745 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1746 ArrayRef<unsigned> Idxs) {
1747 assert(Agg->getType()->isFirstClassType() &&
1748 "Tried to create extractelement operation on non-first-class type!");
1749
1750 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1751 (void)ReqTy;
1752 assert(ReqTy && "extractvalue indices invalid!");
1753
1754 assert(Agg->getType()->isFirstClassType() &&
1755 "Non-first-class type for constant extractvalue expression");
1756 Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs);
1757 assert(FC && "ExtractValue constant expr couldn't be folded!");
1758 return FC;
1759 }
1760
getNeg(Constant * C,bool HasNUW,bool HasNSW)1761 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
1762 assert(C->getType()->isIntOrIntVectorTy() &&
1763 "Cannot NEG a nonintegral value!");
1764 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
1765 C, HasNUW, HasNSW);
1766 }
1767
getFNeg(Constant * C)1768 Constant *ConstantExpr::getFNeg(Constant *C) {
1769 assert(C->getType()->isFPOrFPVectorTy() &&
1770 "Cannot FNEG a non-floating-point value!");
1771 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
1772 }
1773
getNot(Constant * C)1774 Constant *ConstantExpr::getNot(Constant *C) {
1775 assert(C->getType()->isIntOrIntVectorTy() &&
1776 "Cannot NOT a nonintegral value!");
1777 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
1778 }
1779
getAdd(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)1780 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
1781 bool HasNUW, bool HasNSW) {
1782 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1783 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1784 return get(Instruction::Add, C1, C2, Flags);
1785 }
1786
getFAdd(Constant * C1,Constant * C2)1787 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
1788 return get(Instruction::FAdd, C1, C2);
1789 }
1790
getSub(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)1791 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
1792 bool HasNUW, bool HasNSW) {
1793 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1794 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1795 return get(Instruction::Sub, C1, C2, Flags);
1796 }
1797
getFSub(Constant * C1,Constant * C2)1798 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
1799 return get(Instruction::FSub, C1, C2);
1800 }
1801
getMul(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)1802 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
1803 bool HasNUW, bool HasNSW) {
1804 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1805 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1806 return get(Instruction::Mul, C1, C2, Flags);
1807 }
1808
getFMul(Constant * C1,Constant * C2)1809 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
1810 return get(Instruction::FMul, C1, C2);
1811 }
1812
getUDiv(Constant * C1,Constant * C2,bool isExact)1813 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
1814 return get(Instruction::UDiv, C1, C2,
1815 isExact ? PossiblyExactOperator::IsExact : 0);
1816 }
1817
getSDiv(Constant * C1,Constant * C2,bool isExact)1818 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
1819 return get(Instruction::SDiv, C1, C2,
1820 isExact ? PossiblyExactOperator::IsExact : 0);
1821 }
1822
getFDiv(Constant * C1,Constant * C2)1823 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
1824 return get(Instruction::FDiv, C1, C2);
1825 }
1826
getURem(Constant * C1,Constant * C2)1827 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
1828 return get(Instruction::URem, C1, C2);
1829 }
1830
getSRem(Constant * C1,Constant * C2)1831 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
1832 return get(Instruction::SRem, C1, C2);
1833 }
1834
getFRem(Constant * C1,Constant * C2)1835 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
1836 return get(Instruction::FRem, C1, C2);
1837 }
1838
getAnd(Constant * C1,Constant * C2)1839 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
1840 return get(Instruction::And, C1, C2);
1841 }
1842
getOr(Constant * C1,Constant * C2)1843 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
1844 return get(Instruction::Or, C1, C2);
1845 }
1846
getXor(Constant * C1,Constant * C2)1847 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
1848 return get(Instruction::Xor, C1, C2);
1849 }
1850
getShl(Constant * C1,Constant * C2,bool HasNUW,bool HasNSW)1851 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
1852 bool HasNUW, bool HasNSW) {
1853 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
1854 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
1855 return get(Instruction::Shl, C1, C2, Flags);
1856 }
1857
getLShr(Constant * C1,Constant * C2,bool isExact)1858 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
1859 return get(Instruction::LShr, C1, C2,
1860 isExact ? PossiblyExactOperator::IsExact : 0);
1861 }
1862
getAShr(Constant * C1,Constant * C2,bool isExact)1863 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
1864 return get(Instruction::AShr, C1, C2,
1865 isExact ? PossiblyExactOperator::IsExact : 0);
1866 }
1867
1868 // destroyConstant - Remove the constant from the constant table...
1869 //
destroyConstant()1870 void ConstantExpr::destroyConstant() {
1871 getType()->getContext().pImpl->ExprConstants.remove(this);
1872 destroyConstantImpl();
1873 }
1874
getOpcodeName() const1875 const char *ConstantExpr::getOpcodeName() const {
1876 return Instruction::getOpcodeName(getOpcode());
1877 }
1878
1879
1880
1881 GetElementPtrConstantExpr::
GetElementPtrConstantExpr(Constant * C,const std::vector<Constant * > & IdxList,Type * DestTy)1882 GetElementPtrConstantExpr(Constant *C, const std::vector<Constant*> &IdxList,
1883 Type *DestTy)
1884 : ConstantExpr(DestTy, Instruction::GetElementPtr,
1885 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
1886 - (IdxList.size()+1), IdxList.size()+1) {
1887 OperandList[0] = C;
1888 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
1889 OperandList[i+1] = IdxList[i];
1890 }
1891
1892
1893 //===----------------------------------------------------------------------===//
1894 // replaceUsesOfWithOnConstant implementations
1895
1896 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
1897 /// 'From' to be uses of 'To'. This must update the uniquing data structures
1898 /// etc.
1899 ///
1900 /// Note that we intentionally replace all uses of From with To here. Consider
1901 /// a large array that uses 'From' 1000 times. By handling this case all here,
1902 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
1903 /// single invocation handles all 1000 uses. Handling them one at a time would
1904 /// work, but would be really slow because it would have to unique each updated
1905 /// array instance.
1906 ///
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1907 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
1908 Use *U) {
1909 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1910 Constant *ToC = cast<Constant>(To);
1911
1912 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
1913
1914 std::pair<LLVMContextImpl::ArrayConstantsTy::MapKey, ConstantArray*> Lookup;
1915 Lookup.first.first = cast<ArrayType>(getType());
1916 Lookup.second = this;
1917
1918 std::vector<Constant*> &Values = Lookup.first.second;
1919 Values.reserve(getNumOperands()); // Build replacement array.
1920
1921 // Fill values with the modified operands of the constant array. Also,
1922 // compute whether this turns into an all-zeros array.
1923 bool isAllZeros = false;
1924 unsigned NumUpdated = 0;
1925 if (!ToC->isNullValue()) {
1926 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
1927 Constant *Val = cast<Constant>(O->get());
1928 if (Val == From) {
1929 Val = ToC;
1930 ++NumUpdated;
1931 }
1932 Values.push_back(Val);
1933 }
1934 } else {
1935 isAllZeros = true;
1936 for (Use *O = OperandList, *E = OperandList+getNumOperands();O != E; ++O) {
1937 Constant *Val = cast<Constant>(O->get());
1938 if (Val == From) {
1939 Val = ToC;
1940 ++NumUpdated;
1941 }
1942 Values.push_back(Val);
1943 if (isAllZeros) isAllZeros = Val->isNullValue();
1944 }
1945 }
1946
1947 Constant *Replacement = 0;
1948 if (isAllZeros) {
1949 Replacement = ConstantAggregateZero::get(getType());
1950 } else {
1951 // Check to see if we have this array type already.
1952 bool Exists;
1953 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
1954 pImpl->ArrayConstants.InsertOrGetItem(Lookup, Exists);
1955
1956 if (Exists) {
1957 Replacement = I->second;
1958 } else {
1959 // Okay, the new shape doesn't exist in the system yet. Instead of
1960 // creating a new constant array, inserting it, replaceallusesof'ing the
1961 // old with the new, then deleting the old... just update the current one
1962 // in place!
1963 pImpl->ArrayConstants.MoveConstantToNewSlot(this, I);
1964
1965 // Update to the new value. Optimize for the case when we have a single
1966 // operand that we're changing, but handle bulk updates efficiently.
1967 if (NumUpdated == 1) {
1968 unsigned OperandToUpdate = U - OperandList;
1969 assert(getOperand(OperandToUpdate) == From &&
1970 "ReplaceAllUsesWith broken!");
1971 setOperand(OperandToUpdate, ToC);
1972 } else {
1973 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1974 if (getOperand(i) == From)
1975 setOperand(i, ToC);
1976 }
1977 return;
1978 }
1979 }
1980
1981 // Otherwise, I do need to replace this with an existing value.
1982 assert(Replacement != this && "I didn't contain From!");
1983
1984 // Everyone using this now uses the replacement.
1985 replaceAllUsesWith(Replacement);
1986
1987 // Delete the old constant!
1988 destroyConstant();
1989 }
1990
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)1991 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
1992 Use *U) {
1993 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
1994 Constant *ToC = cast<Constant>(To);
1995
1996 unsigned OperandToUpdate = U-OperandList;
1997 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
1998
1999 std::pair<LLVMContextImpl::StructConstantsTy::MapKey, ConstantStruct*> Lookup;
2000 Lookup.first.first = cast<StructType>(getType());
2001 Lookup.second = this;
2002 std::vector<Constant*> &Values = Lookup.first.second;
2003 Values.reserve(getNumOperands()); // Build replacement struct.
2004
2005
2006 // Fill values with the modified operands of the constant struct. Also,
2007 // compute whether this turns into an all-zeros struct.
2008 bool isAllZeros = false;
2009 if (!ToC->isNullValue()) {
2010 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2011 Values.push_back(cast<Constant>(O->get()));
2012 } else {
2013 isAllZeros = true;
2014 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2015 Constant *Val = cast<Constant>(O->get());
2016 Values.push_back(Val);
2017 if (isAllZeros) isAllZeros = Val->isNullValue();
2018 }
2019 }
2020 Values[OperandToUpdate] = ToC;
2021
2022 LLVMContextImpl *pImpl = getContext().pImpl;
2023
2024 Constant *Replacement = 0;
2025 if (isAllZeros) {
2026 Replacement = ConstantAggregateZero::get(getType());
2027 } else {
2028 // Check to see if we have this struct type already.
2029 bool Exists;
2030 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2031 pImpl->StructConstants.InsertOrGetItem(Lookup, Exists);
2032
2033 if (Exists) {
2034 Replacement = I->second;
2035 } else {
2036 // Okay, the new shape doesn't exist in the system yet. Instead of
2037 // creating a new constant struct, inserting it, replaceallusesof'ing the
2038 // old with the new, then deleting the old... just update the current one
2039 // in place!
2040 pImpl->StructConstants.MoveConstantToNewSlot(this, I);
2041
2042 // Update to the new value.
2043 setOperand(OperandToUpdate, ToC);
2044 return;
2045 }
2046 }
2047
2048 assert(Replacement != this && "I didn't contain From!");
2049
2050 // Everyone using this now uses the replacement.
2051 replaceAllUsesWith(Replacement);
2052
2053 // Delete the old constant!
2054 destroyConstant();
2055 }
2056
replaceUsesOfWithOnConstant(Value * From,Value * To,Use * U)2057 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2058 Use *U) {
2059 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2060
2061 std::vector<Constant*> Values;
2062 Values.reserve(getNumOperands()); // Build replacement array...
2063 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2064 Constant *Val = getOperand(i);
2065 if (Val == From) Val = cast<Constant>(To);
2066 Values.push_back(Val);
2067 }
2068
2069 Constant *Replacement = get(Values);
2070 assert(Replacement != this && "I didn't contain From!");
2071
2072 // Everyone using this now uses the replacement.
2073 replaceAllUsesWith(Replacement);
2074
2075 // Delete the old constant!
2076 destroyConstant();
2077 }
2078
replaceUsesOfWithOnConstant(Value * From,Value * ToV,Use * U)2079 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2080 Use *U) {
2081 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2082 Constant *To = cast<Constant>(ToV);
2083
2084 Constant *Replacement = 0;
2085 if (getOpcode() == Instruction::GetElementPtr) {
2086 SmallVector<Constant*, 8> Indices;
2087 Constant *Pointer = getOperand(0);
2088 Indices.reserve(getNumOperands()-1);
2089 if (Pointer == From) Pointer = To;
2090
2091 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
2092 Constant *Val = getOperand(i);
2093 if (Val == From) Val = To;
2094 Indices.push_back(Val);
2095 }
2096 Replacement = ConstantExpr::getGetElementPtr(Pointer, Indices,
2097 cast<GEPOperator>(this)->isInBounds());
2098 } else if (getOpcode() == Instruction::ExtractValue) {
2099 Constant *Agg = getOperand(0);
2100 if (Agg == From) Agg = To;
2101
2102 ArrayRef<unsigned> Indices = getIndices();
2103 Replacement = ConstantExpr::getExtractValue(Agg, Indices);
2104 } else if (getOpcode() == Instruction::InsertValue) {
2105 Constant *Agg = getOperand(0);
2106 Constant *Val = getOperand(1);
2107 if (Agg == From) Agg = To;
2108 if (Val == From) Val = To;
2109
2110 ArrayRef<unsigned> Indices = getIndices();
2111 Replacement = ConstantExpr::getInsertValue(Agg, Val, Indices);
2112 } else if (isCast()) {
2113 assert(getOperand(0) == From && "Cast only has one use!");
2114 Replacement = ConstantExpr::getCast(getOpcode(), To, getType());
2115 } else if (getOpcode() == Instruction::Select) {
2116 Constant *C1 = getOperand(0);
2117 Constant *C2 = getOperand(1);
2118 Constant *C3 = getOperand(2);
2119 if (C1 == From) C1 = To;
2120 if (C2 == From) C2 = To;
2121 if (C3 == From) C3 = To;
2122 Replacement = ConstantExpr::getSelect(C1, C2, C3);
2123 } else if (getOpcode() == Instruction::ExtractElement) {
2124 Constant *C1 = getOperand(0);
2125 Constant *C2 = getOperand(1);
2126 if (C1 == From) C1 = To;
2127 if (C2 == From) C2 = To;
2128 Replacement = ConstantExpr::getExtractElement(C1, C2);
2129 } else if (getOpcode() == Instruction::InsertElement) {
2130 Constant *C1 = getOperand(0);
2131 Constant *C2 = getOperand(1);
2132 Constant *C3 = getOperand(1);
2133 if (C1 == From) C1 = To;
2134 if (C2 == From) C2 = To;
2135 if (C3 == From) C3 = To;
2136 Replacement = ConstantExpr::getInsertElement(C1, C2, C3);
2137 } else if (getOpcode() == Instruction::ShuffleVector) {
2138 Constant *C1 = getOperand(0);
2139 Constant *C2 = getOperand(1);
2140 Constant *C3 = getOperand(2);
2141 if (C1 == From) C1 = To;
2142 if (C2 == From) C2 = To;
2143 if (C3 == From) C3 = To;
2144 Replacement = ConstantExpr::getShuffleVector(C1, C2, C3);
2145 } else if (isCompare()) {
2146 Constant *C1 = getOperand(0);
2147 Constant *C2 = getOperand(1);
2148 if (C1 == From) C1 = To;
2149 if (C2 == From) C2 = To;
2150 if (getOpcode() == Instruction::ICmp)
2151 Replacement = ConstantExpr::getICmp(getPredicate(), C1, C2);
2152 else {
2153 assert(getOpcode() == Instruction::FCmp);
2154 Replacement = ConstantExpr::getFCmp(getPredicate(), C1, C2);
2155 }
2156 } else if (getNumOperands() == 2) {
2157 Constant *C1 = getOperand(0);
2158 Constant *C2 = getOperand(1);
2159 if (C1 == From) C1 = To;
2160 if (C2 == From) C2 = To;
2161 Replacement = ConstantExpr::get(getOpcode(), C1, C2, SubclassOptionalData);
2162 } else {
2163 llvm_unreachable("Unknown ConstantExpr type!");
2164 return;
2165 }
2166
2167 assert(Replacement != this && "I didn't contain From!");
2168
2169 // Everyone using this now uses the replacement.
2170 replaceAllUsesWith(Replacement);
2171
2172 // Delete the old constant!
2173 destroyConstant();
2174 }
2175