• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright 2007,2009-2014 Freescale Semiconductor, Inc.
4  */
5 
6 #include <common.h>
7 #include <command.h>
8 #include <pci.h>
9 #include <asm/processor.h>
10 #include <asm/mmu.h>
11 #include <asm/fsl_pci.h>
12 #include <asm/io.h>
13 #include <linux/libfdt.h>
14 #include <fdt_support.h>
15 #include <netdev.h>
16 #include <fdtdec.h>
17 #include <errno.h>
18 #include <malloc.h>
19 
20 DECLARE_GLOBAL_DATA_PTR;
21 
get_fdt_virt(void)22 static void *get_fdt_virt(void)
23 {
24 	return (void *)CONFIG_SYS_TMPVIRT;
25 }
26 
get_fdt_phys(void)27 static uint64_t get_fdt_phys(void)
28 {
29 	return (uint64_t)(uintptr_t)gd->fdt_blob;
30 }
31 
map_fdt_as(int esel)32 static void map_fdt_as(int esel)
33 {
34 	u32 mas0, mas1, mas2, mas3, mas7;
35 	uint64_t fdt_phys = get_fdt_phys();
36 	unsigned long fdt_phys_tlb = fdt_phys & ~0xffffful;
37 	unsigned long fdt_virt_tlb = (ulong)get_fdt_virt() & ~0xffffful;
38 
39 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(esel);
40 	mas1 = MAS1_VALID | MAS1_TID(0) | MAS1_TS | MAS1_TSIZE(BOOKE_PAGESZ_1M);
41 	mas2 = FSL_BOOKE_MAS2(fdt_virt_tlb, 0);
42 	mas3 = FSL_BOOKE_MAS3(fdt_phys_tlb, 0, MAS3_SW|MAS3_SR);
43 	mas7 = FSL_BOOKE_MAS7(fdt_phys_tlb);
44 
45 	write_tlb(mas0, mas1, mas2, mas3, mas7);
46 }
47 
get_phys_ccsrbar_addr_early(void)48 uint64_t get_phys_ccsrbar_addr_early(void)
49 {
50 	void *fdt = get_fdt_virt();
51 	uint64_t r;
52 	int size, node;
53 	u32 naddr;
54 	const fdt32_t *prop;
55 
56 	/*
57 	 * To be able to read the FDT we need to create a temporary TLB
58 	 * map for it.
59 	 */
60 	map_fdt_as(10);
61 	node = fdt_path_offset(fdt, "/soc");
62 	naddr = fdt_address_cells(fdt, node);
63 	prop = fdt_getprop(fdt, node, "ranges", &size);
64 	r = fdt_translate_address(fdt, node, prop + naddr);
65 	disable_tlb(10);
66 
67 	return r;
68 }
69 
board_early_init_f(void)70 int board_early_init_f(void)
71 {
72 	return 0;
73 }
74 
checkboard(void)75 int checkboard(void)
76 {
77 	return 0;
78 }
79 
pci_map_region(void * fdt,int pci_node,int range_id,phys_size_t * ppaddr,pci_addr_t * pvaddr,pci_size_t * psize,ulong * pmap_addr)80 static int pci_map_region(void *fdt, int pci_node, int range_id,
81 			  phys_size_t *ppaddr, pci_addr_t *pvaddr,
82 			  pci_size_t *psize, ulong *pmap_addr)
83 {
84 	uint64_t addr;
85 	uint64_t size;
86 	ulong map_addr;
87 	int r;
88 
89 	r = fdt_read_range(fdt, pci_node, range_id, NULL, &addr, &size);
90 	if (r)
91 		return r;
92 
93 	if (ppaddr)
94 		*ppaddr = addr;
95 	if (psize)
96 		*psize = size;
97 
98 	if (!pmap_addr)
99 		return 0;
100 
101 	map_addr = *pmap_addr;
102 
103 	/* Align map_addr */
104 	map_addr += size - 1;
105 	map_addr &= ~(size - 1);
106 
107 	if (map_addr + size >= CONFIG_SYS_PCI_MAP_END)
108 		return -1;
109 
110 	/* Map virtual memory for range */
111 	assert(!tlb_map_range(map_addr, addr, size, TLB_MAP_IO));
112 	*pmap_addr = map_addr + size;
113 
114 	if (pvaddr)
115 		*pvaddr = map_addr;
116 
117 	return 0;
118 }
119 
pci_init_board(void)120 void pci_init_board(void)
121 {
122 	struct pci_controller *pci_hoses;
123 	void *fdt = get_fdt_virt();
124 	int pci_node = -1;
125 	int pci_num = 0;
126 	int pci_count = 0;
127 	ulong map_addr;
128 
129 	puts("\n");
130 
131 	/* Start MMIO and PIO range maps above RAM */
132 	map_addr = CONFIG_SYS_PCI_MAP_START;
133 
134 	/* Count and allocate PCI buses */
135 	pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
136 			"device_type", "pci", 4);
137 	while (pci_node != -FDT_ERR_NOTFOUND) {
138 		pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
139 				"device_type", "pci", 4);
140 		pci_count++;
141 	}
142 
143 	if (pci_count) {
144 		pci_hoses = malloc(sizeof(struct pci_controller) * pci_count);
145 	} else {
146 		printf("PCI: disabled\n\n");
147 		return;
148 	}
149 
150 	/* Spawn PCI buses based on device tree */
151 	pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
152 			"device_type", "pci", 4);
153 	while (pci_node != -FDT_ERR_NOTFOUND) {
154 		struct fsl_pci_info pci_info = { };
155 		const fdt32_t *reg;
156 		int r;
157 
158 		reg = fdt_getprop(fdt, pci_node, "reg", NULL);
159 		pci_info.regs = fdt_translate_address(fdt, pci_node, reg);
160 
161 		/* Map MMIO range */
162 		r = pci_map_region(fdt, pci_node, 0, &pci_info.mem_phys, NULL,
163 				   &pci_info.mem_size, &map_addr);
164 		if (r)
165 			break;
166 
167 		/* Map PIO range */
168 		r = pci_map_region(fdt, pci_node, 1, &pci_info.io_phys, NULL,
169 				   &pci_info.io_size, &map_addr);
170 		if (r)
171 			break;
172 
173 		/*
174 		 * The PCI framework finds virtual addresses for the buses
175 		 * through our address map, so tell it the physical addresses.
176 		 */
177 		pci_info.mem_bus = pci_info.mem_phys;
178 		pci_info.io_bus = pci_info.io_phys;
179 
180 		/* Instantiate */
181 		pci_info.pci_num = pci_num + 1;
182 
183 		fsl_setup_hose(&pci_hoses[pci_num], pci_info.regs);
184 		printf("PCI: base address %lx\n", pci_info.regs);
185 
186 		fsl_pci_init_port(&pci_info, &pci_hoses[pci_num], pci_num);
187 
188 		/* Jump to next PCI node */
189 		pci_node = fdt_node_offset_by_prop_value(fdt, pci_node,
190 				"device_type", "pci", 4);
191 		pci_num++;
192 	}
193 
194 	puts("\n");
195 }
196 
last_stage_init(void)197 int last_stage_init(void)
198 {
199 	void *fdt = get_fdt_virt();
200 	int len = 0;
201 	const uint64_t *prop;
202 	int chosen;
203 
204 	chosen = fdt_path_offset(fdt, "/chosen");
205 	if (chosen < 0) {
206 		printf("Couldn't find /chosen node in fdt\n");
207 		return -EIO;
208 	}
209 
210 	/* -kernel boot */
211 	prop = fdt_getprop(fdt, chosen, "qemu,boot-kernel", &len);
212 	if (prop && (len >= 8))
213 		env_set_hex("qemu_kernel_addr", *prop);
214 
215 	/* Give the user a variable for the host fdt */
216 	env_set_hex("fdt_addr_r", (ulong)fdt);
217 
218 	return 0;
219 }
220 
get_linear_ram_size(void)221 static uint64_t get_linear_ram_size(void)
222 {
223 	void *fdt = get_fdt_virt();
224 	const void *prop;
225 	int memory;
226 	int len;
227 
228 	memory = fdt_path_offset(fdt, "/memory");
229 	prop = fdt_getprop(fdt, memory, "reg", &len);
230 
231 	if (prop && len >= 16)
232 		return *(uint64_t *)(prop+8);
233 
234 	panic("Couldn't determine RAM size");
235 }
236 
board_eth_init(bd_t * bis)237 int board_eth_init(bd_t *bis)
238 {
239 	return pci_eth_init(bis);
240 }
241 
242 #if defined(CONFIG_OF_BOARD_SETUP)
ft_board_setup(void * blob,bd_t * bd)243 int ft_board_setup(void *blob, bd_t *bd)
244 {
245 	FT_FSL_PCI_SETUP;
246 
247 	return 0;
248 }
249 #endif
250 
print_laws(void)251 void print_laws(void)
252 {
253 	/* We don't emulate LAWs yet */
254 }
255 
fixed_sdram(void)256 phys_size_t fixed_sdram(void)
257 {
258 	return get_linear_ram_size();
259 }
260 
fsl_ddr_sdram_size(void)261 phys_size_t fsl_ddr_sdram_size(void)
262 {
263 	return get_linear_ram_size();
264 }
265 
init_tlbs(void)266 void init_tlbs(void)
267 {
268 	phys_size_t ram_size;
269 
270 	/*
271 	 * Create a temporary AS=1 map for the fdt
272 	 *
273 	 * We use ESEL=0 here to overwrite the previous AS=0 map for ourselves
274 	 * which was only 4k big. This way we don't have to clear any other maps.
275 	 */
276 	map_fdt_as(0);
277 
278 	/* Fetch RAM size from the fdt */
279 	ram_size = get_linear_ram_size();
280 
281 	/* And remove our fdt map again */
282 	disable_tlb(0);
283 
284 	/* Create an internal map of manually created TLB maps */
285 	init_used_tlb_cams();
286 
287 	/* Create a dynamic AS=0 CCSRBAR mapping */
288 	assert(!tlb_map_range(CONFIG_SYS_CCSRBAR, CONFIG_SYS_CCSRBAR_PHYS,
289 			      1024 * 1024, TLB_MAP_IO));
290 
291 	/* Create a RAM map that spans all accessible RAM */
292 	setup_ddr_tlbs(ram_size >> 20);
293 
294 	/* Create a map for the TLB */
295 	assert(!tlb_map_range((ulong)get_fdt_virt(), get_fdt_phys(),
296 			      1024 * 1024, TLB_MAP_RAM));
297 }
298 
init_laws(void)299 void init_laws(void)
300 {
301 	/* We don't emulate LAWs yet */
302 }
303 
get_cpu_freq(void)304 static uint32_t get_cpu_freq(void)
305 {
306 	void *fdt = get_fdt_virt();
307 	int cpus_node = fdt_path_offset(fdt, "/cpus");
308 	int cpu_node = fdt_first_subnode(fdt, cpus_node);
309 	const char *prop = "clock-frequency";
310 	return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
311 }
312 
get_sys_info(sys_info_t * sys_info)313 void get_sys_info(sys_info_t *sys_info)
314 {
315 	int freq = get_cpu_freq();
316 
317 	memset(sys_info, 0, sizeof(sys_info_t));
318 	sys_info->freq_systembus = freq;
319 	sys_info->freq_ddrbus = freq;
320 	sys_info->freq_processor[0] = freq;
321 }
322 
get_clocks(void)323 int get_clocks (void)
324 {
325 	sys_info_t sys_info;
326 
327 	get_sys_info(&sys_info);
328 
329 	gd->cpu_clk = sys_info.freq_processor[0];
330 	gd->bus_clk = sys_info.freq_systembus;
331 	gd->mem_clk = sys_info.freq_ddrbus;
332 	gd->arch.lbc_clk = sys_info.freq_ddrbus;
333 
334 	return 0;
335 }
336 
get_tbclk(void)337 unsigned long get_tbclk (void)
338 {
339 	void *fdt = get_fdt_virt();
340 	int cpus_node = fdt_path_offset(fdt, "/cpus");
341 	int cpu_node = fdt_first_subnode(fdt, cpus_node);
342 	const char *prop = "timebase-frequency";
343 	return fdt_getprop_u32_default_node(fdt, cpu_node, 0, prop, 0);
344 }
345 
346 /********************************************
347  * get_bus_freq
348  * return system bus freq in Hz
349  *********************************************/
get_bus_freq(ulong dummy)350 ulong get_bus_freq (ulong dummy)
351 {
352 	sys_info_t sys_info;
353 	get_sys_info(&sys_info);
354 	return sys_info.freq_systembus;
355 }
356 
357 /*
358  * Return the number of cores on this SOC.
359  */
cpu_numcores(void)360 int cpu_numcores(void)
361 {
362 	/*
363 	 * The QEMU u-boot target only needs to drive the first core,
364 	 * spinning and device tree nodes get driven by QEMU itself
365 	 */
366 	return 1;
367 }
368 
369 /*
370  * Return a 32-bit mask indicating which cores are present on this SOC.
371  */
cpu_mask(void)372 u32 cpu_mask(void)
373 {
374 	return (1 << cpu_numcores()) - 1;
375 }
376