• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Utilities for manipulating the loss collections."""
16
17from __future__ import absolute_import
18from __future__ import division
19from __future__ import print_function
20
21from tensorflow.python.eager import context
22from tensorflow.python.framework import constant_op
23from tensorflow.python.framework import ops
24from tensorflow.python.ops import math_ops
25from tensorflow.python.util.tf_export import tf_export
26
27
28@tf_export(v1=["losses.add_loss"])
29def add_loss(loss, loss_collection=ops.GraphKeys.LOSSES):
30  """Adds a externally defined loss to the collection of losses.
31
32  Args:
33    loss: A loss `Tensor`.
34    loss_collection: Optional collection to add the loss to.
35  """
36  # Since we have no way of figuring out when a training iteration starts or
37  # ends, holding on to a loss when executing eagerly is indistingishable from
38  # leaking memory. We instead leave the collection empty.
39  if loss_collection and not context.executing_eagerly():
40    ops.add_to_collection(loss_collection, loss)
41
42
43@tf_export(v1=["losses.get_losses"])
44def get_losses(scope=None, loss_collection=ops.GraphKeys.LOSSES):
45  """Gets the list of losses from the loss_collection.
46
47  Args:
48    scope: An optional scope name for filtering the losses to return.
49    loss_collection: Optional losses collection.
50
51  Returns:
52    a list of loss tensors.
53  """
54  return ops.get_collection(loss_collection, scope)
55
56
57@tf_export(v1=["losses.get_regularization_losses"])
58def get_regularization_losses(scope=None):
59  """Gets the list of regularization losses.
60
61  Args:
62    scope: An optional scope name for filtering the losses to return.
63
64  Returns:
65    A list of regularization losses as Tensors.
66  """
67  return ops.get_collection(ops.GraphKeys.REGULARIZATION_LOSSES, scope)
68
69
70@tf_export(v1=["losses.get_regularization_loss"])
71def get_regularization_loss(scope=None, name="total_regularization_loss"):
72  """Gets the total regularization loss.
73
74  Args:
75    scope: An optional scope name for filtering the losses to return.
76    name: The name of the returned tensor.
77
78  Returns:
79    A scalar regularization loss.
80  """
81  losses = get_regularization_losses(scope)
82  if losses:
83    return math_ops.add_n(losses, name=name)
84  else:
85    return constant_op.constant(0.0)
86
87
88@tf_export(v1=["losses.get_total_loss"])
89def get_total_loss(add_regularization_losses=True, name="total_loss"):
90  """Returns a tensor whose value represents the total loss.
91
92  In particular, this adds any losses you have added with `tf.add_loss()` to
93  any regularization losses that have been added by regularization parameters
94  on layers constructors e.g. `tf.layers`. Be very sure to use this if you
95  are constructing a loss_op manually. Otherwise regularization arguments
96  on `tf.layers` methods will not function.
97
98  Args:
99    add_regularization_losses: A boolean indicating whether or not to use the
100      regularization losses in the sum.
101    name: The name of the returned tensor.
102
103  Returns:
104    A `Tensor` whose value represents the total loss.
105
106  Raises:
107    ValueError: if `losses` is not iterable.
108  """
109  losses = get_losses()
110  if add_regularization_losses:
111    losses += get_regularization_losses()
112  return math_ops.add_n(losses, name=name)
113