• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <debug.h>
11 #include <gic_common.h>
12 #include <interrupt_props.h>
13 #include "../common/gic_common_private.h"
14 #include "gicv3_private.h"
15 
16 /*
17  * Accessor to read the GIC Distributor IGRPMODR corresponding to the
18  * interrupt `id`, 32 interrupt IDs at a time.
19  */
gicd_read_igrpmodr(uintptr_t base,unsigned int id)20 unsigned int gicd_read_igrpmodr(uintptr_t base, unsigned int id)
21 {
22 	unsigned n = id >> IGRPMODR_SHIFT;
23 	return mmio_read_32(base + GICD_IGRPMODR + (n << 2));
24 }
25 
26 /*
27  * Accessor to write the GIC Distributor IGRPMODR corresponding to the
28  * interrupt `id`, 32 interrupt IDs at a time.
29  */
gicd_write_igrpmodr(uintptr_t base,unsigned int id,unsigned int val)30 void gicd_write_igrpmodr(uintptr_t base, unsigned int id, unsigned int val)
31 {
32 	unsigned n = id >> IGRPMODR_SHIFT;
33 	mmio_write_32(base + GICD_IGRPMODR + (n << 2), val);
34 }
35 
36 /*
37  * Accessor to get the bit corresponding to interrupt ID
38  * in GIC Distributor IGRPMODR.
39  */
gicd_get_igrpmodr(uintptr_t base,unsigned int id)40 unsigned int gicd_get_igrpmodr(uintptr_t base, unsigned int id)
41 {
42 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
43 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
44 
45 	return (reg_val >> bit_num) & 0x1;
46 }
47 
48 /*
49  * Accessor to set the bit corresponding to interrupt ID
50  * in GIC Distributor IGRPMODR.
51  */
gicd_set_igrpmodr(uintptr_t base,unsigned int id)52 void gicd_set_igrpmodr(uintptr_t base, unsigned int id)
53 {
54 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
55 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
56 
57 	gicd_write_igrpmodr(base, id, reg_val | (1 << bit_num));
58 }
59 
60 /*
61  * Accessor to clear the bit corresponding to interrupt ID
62  * in GIC Distributor IGRPMODR.
63  */
gicd_clr_igrpmodr(uintptr_t base,unsigned int id)64 void gicd_clr_igrpmodr(uintptr_t base, unsigned int id)
65 {
66 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
67 	unsigned int reg_val = gicd_read_igrpmodr(base, id);
68 
69 	gicd_write_igrpmodr(base, id, reg_val & ~(1 << bit_num));
70 }
71 
72 /*
73  * Accessor to read the GIC Re-distributor IPRIORITYR corresponding to the
74  * interrupt `id`, 4 interrupts IDs at a time.
75  */
gicr_read_ipriorityr(uintptr_t base,unsigned int id)76 unsigned int gicr_read_ipriorityr(uintptr_t base, unsigned int id)
77 {
78 	unsigned n = id >> IPRIORITYR_SHIFT;
79 	return mmio_read_32(base + GICR_IPRIORITYR + (n << 2));
80 }
81 
82 /*
83  * Accessor to write the GIC Re-distributor IPRIORITYR corresponding to the
84  * interrupt `id`, 4 interrupts IDs at a time.
85  */
gicr_write_ipriorityr(uintptr_t base,unsigned int id,unsigned int val)86 void gicr_write_ipriorityr(uintptr_t base, unsigned int id, unsigned int val)
87 {
88 	unsigned n = id >> IPRIORITYR_SHIFT;
89 	mmio_write_32(base + GICR_IPRIORITYR + (n << 2), val);
90 }
91 
92 /*
93  * Accessor to get the bit corresponding to interrupt ID
94  * from GIC Re-distributor IGROUPR0.
95  */
gicr_get_igroupr0(uintptr_t base,unsigned int id)96 unsigned int gicr_get_igroupr0(uintptr_t base, unsigned int id)
97 {
98 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
99 	unsigned int reg_val = gicr_read_igroupr0(base);
100 
101 	return (reg_val >> bit_num) & 0x1;
102 }
103 
104 /*
105  * Accessor to set the bit corresponding to interrupt ID
106  * in GIC Re-distributor IGROUPR0.
107  */
gicr_set_igroupr0(uintptr_t base,unsigned int id)108 void gicr_set_igroupr0(uintptr_t base, unsigned int id)
109 {
110 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
111 	unsigned int reg_val = gicr_read_igroupr0(base);
112 
113 	gicr_write_igroupr0(base, reg_val | (1 << bit_num));
114 }
115 
116 /*
117  * Accessor to clear the bit corresponding to interrupt ID
118  * in GIC Re-distributor IGROUPR0.
119  */
gicr_clr_igroupr0(uintptr_t base,unsigned int id)120 void gicr_clr_igroupr0(uintptr_t base, unsigned int id)
121 {
122 	unsigned bit_num = id & ((1 << IGROUPR_SHIFT) - 1);
123 	unsigned int reg_val = gicr_read_igroupr0(base);
124 
125 	gicr_write_igroupr0(base, reg_val & ~(1 << bit_num));
126 }
127 
128 /*
129  * Accessor to get the bit corresponding to interrupt ID
130  * from GIC Re-distributor IGRPMODR0.
131  */
gicr_get_igrpmodr0(uintptr_t base,unsigned int id)132 unsigned int gicr_get_igrpmodr0(uintptr_t base, unsigned int id)
133 {
134 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
135 	unsigned int reg_val = gicr_read_igrpmodr0(base);
136 
137 	return (reg_val >> bit_num) & 0x1;
138 }
139 
140 /*
141  * Accessor to set the bit corresponding to interrupt ID
142  * in GIC Re-distributor IGRPMODR0.
143  */
gicr_set_igrpmodr0(uintptr_t base,unsigned int id)144 void gicr_set_igrpmodr0(uintptr_t base, unsigned int id)
145 {
146 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
147 	unsigned int reg_val = gicr_read_igrpmodr0(base);
148 
149 	gicr_write_igrpmodr0(base, reg_val | (1 << bit_num));
150 }
151 
152 /*
153  * Accessor to clear the bit corresponding to interrupt ID
154  * in GIC Re-distributor IGRPMODR0.
155  */
gicr_clr_igrpmodr0(uintptr_t base,unsigned int id)156 void gicr_clr_igrpmodr0(uintptr_t base, unsigned int id)
157 {
158 	unsigned bit_num = id & ((1 << IGRPMODR_SHIFT) - 1);
159 	unsigned int reg_val = gicr_read_igrpmodr0(base);
160 
161 	gicr_write_igrpmodr0(base, reg_val & ~(1 << bit_num));
162 }
163 
164 /*
165  * Accessor to set the bit corresponding to interrupt ID
166  * in GIC Re-distributor ISENABLER0.
167  */
gicr_set_isenabler0(uintptr_t base,unsigned int id)168 void gicr_set_isenabler0(uintptr_t base, unsigned int id)
169 {
170 	unsigned bit_num = id & ((1 << ISENABLER_SHIFT) - 1);
171 
172 	gicr_write_isenabler0(base, (1 << bit_num));
173 }
174 
175 /*
176  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
177  * ICENABLER0.
178  */
gicr_set_icenabler0(uintptr_t base,unsigned int id)179 void gicr_set_icenabler0(uintptr_t base, unsigned int id)
180 {
181 	unsigned bit_num = id & ((1 << ICENABLER_SHIFT) - 1);
182 
183 	gicr_write_icenabler0(base, (1 << bit_num));
184 }
185 
186 /*
187  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
188  * ISACTIVER0.
189  */
gicr_get_isactiver0(uintptr_t base,unsigned int id)190 unsigned int gicr_get_isactiver0(uintptr_t base, unsigned int id)
191 {
192 	unsigned bit_num = id & ((1 << ISACTIVER_SHIFT) - 1);
193 	unsigned int reg_val = gicr_read_isactiver0(base);
194 
195 	return (reg_val >> bit_num) & 0x1;
196 }
197 
198 /*
199  * Accessor to clear the bit corresponding to interrupt ID in GIC Re-distributor
200  * ICPENDRR0.
201  */
gicr_set_icpendr0(uintptr_t base,unsigned int id)202 void gicr_set_icpendr0(uintptr_t base, unsigned int id)
203 {
204 	unsigned bit_num = id & ((1 << ICPENDR_SHIFT) - 1);
205 
206 	gicr_write_icpendr0(base, (1 << bit_num));
207 }
208 
209 /*
210  * Accessor to set the bit corresponding to interrupt ID in GIC Re-distributor
211  * ISPENDR0.
212  */
gicr_set_ispendr0(uintptr_t base,unsigned int id)213 void gicr_set_ispendr0(uintptr_t base, unsigned int id)
214 {
215 	unsigned bit_num = id & ((1 << ISPENDR_SHIFT) - 1);
216 
217 	gicr_write_ispendr0(base, (1 << bit_num));
218 }
219 
220 /*
221  * Accessor to set the byte corresponding to interrupt ID
222  * in GIC Re-distributor IPRIORITYR.
223  */
gicr_set_ipriorityr(uintptr_t base,unsigned int id,unsigned int pri)224 void gicr_set_ipriorityr(uintptr_t base, unsigned int id, unsigned int pri)
225 {
226 	mmio_write_8(base + GICR_IPRIORITYR + id, pri & GIC_PRI_MASK);
227 }
228 
229 /*
230  * Accessor to set the bit fields corresponding to interrupt ID
231  * in GIC Re-distributor ICFGR0.
232  */
gicr_set_icfgr0(uintptr_t base,unsigned int id,unsigned int cfg)233 void gicr_set_icfgr0(uintptr_t base, unsigned int id, unsigned int cfg)
234 {
235 	unsigned bit_num = id & ((1 << ICFGR_SHIFT) - 1);
236 	uint32_t reg_val = gicr_read_icfgr0(base);
237 
238 	/* Clear the field, and insert required configuration */
239 	reg_val &= ~(GIC_CFG_MASK << bit_num);
240 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_num);
241 
242 	gicr_write_icfgr0(base, reg_val);
243 }
244 
245 /*
246  * Accessor to set the bit fields corresponding to interrupt ID
247  * in GIC Re-distributor ICFGR1.
248  */
gicr_set_icfgr1(uintptr_t base,unsigned int id,unsigned int cfg)249 void gicr_set_icfgr1(uintptr_t base, unsigned int id, unsigned int cfg)
250 {
251 	unsigned bit_num = id & ((1 << ICFGR_SHIFT) - 1);
252 	uint32_t reg_val = gicr_read_icfgr1(base);
253 
254 	/* Clear the field, and insert required configuration */
255 	reg_val &= ~(GIC_CFG_MASK << bit_num);
256 	reg_val |= ((cfg & GIC_CFG_MASK) << bit_num);
257 
258 	gicr_write_icfgr1(base, reg_val);
259 }
260 
261 /******************************************************************************
262  * This function marks the core as awake in the re-distributor and
263  * ensures that the interface is active.
264  *****************************************************************************/
gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)265 void gicv3_rdistif_mark_core_awake(uintptr_t gicr_base)
266 {
267 	/*
268 	 * The WAKER_PS_BIT should be changed to 0
269 	 * only when WAKER_CA_BIT is 1.
270 	 */
271 	assert(gicr_read_waker(gicr_base) & WAKER_CA_BIT);
272 
273 	/* Mark the connected core as awake */
274 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) & ~WAKER_PS_BIT);
275 
276 	/* Wait till the WAKER_CA_BIT changes to 0 */
277 	while (gicr_read_waker(gicr_base) & WAKER_CA_BIT)
278 		;
279 }
280 
281 
282 /******************************************************************************
283  * This function marks the core as asleep in the re-distributor and ensures
284  * that the interface is quiescent.
285  *****************************************************************************/
gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)286 void gicv3_rdistif_mark_core_asleep(uintptr_t gicr_base)
287 {
288 	/* Mark the connected core as asleep */
289 	gicr_write_waker(gicr_base, gicr_read_waker(gicr_base) | WAKER_PS_BIT);
290 
291 	/* Wait till the WAKER_CA_BIT changes to 1 */
292 	while (!(gicr_read_waker(gicr_base) & WAKER_CA_BIT))
293 		;
294 }
295 
296 
297 /*******************************************************************************
298  * This function probes the Redistributor frames when the driver is initialised
299  * and saves their base addresses. These base addresses are used later to
300  * initialise each Redistributor interface.
301  ******************************************************************************/
gicv3_rdistif_base_addrs_probe(uintptr_t * rdistif_base_addrs,unsigned int rdistif_num,uintptr_t gicr_base,mpidr_hash_fn mpidr_to_core_pos)302 void gicv3_rdistif_base_addrs_probe(uintptr_t *rdistif_base_addrs,
303 					unsigned int rdistif_num,
304 					uintptr_t gicr_base,
305 					mpidr_hash_fn mpidr_to_core_pos)
306 {
307 	u_register_t mpidr;
308 	unsigned int proc_num;
309 	unsigned long long typer_val;
310 	uintptr_t rdistif_base = gicr_base;
311 
312 	assert(rdistif_base_addrs);
313 
314 	/*
315 	 * Iterate over the Redistributor frames. Store the base address of each
316 	 * frame in the platform provided array. Use the "Processor Number"
317 	 * field to index into the array if the platform has not provided a hash
318 	 * function to convert an MPIDR (obtained from the "Affinity Value"
319 	 * field into a linear index.
320 	 */
321 	do {
322 		typer_val = gicr_read_typer(rdistif_base);
323 		if (mpidr_to_core_pos) {
324 			mpidr = mpidr_from_gicr_typer(typer_val);
325 			proc_num = mpidr_to_core_pos(mpidr);
326 		} else {
327 			proc_num = (typer_val >> TYPER_PROC_NUM_SHIFT) &
328 				TYPER_PROC_NUM_MASK;
329 		}
330 		assert(proc_num < rdistif_num);
331 		rdistif_base_addrs[proc_num] = rdistif_base;
332 		rdistif_base += (1 << GICR_PCPUBASE_SHIFT);
333 	} while (!(typer_val & TYPER_LAST_BIT));
334 }
335 
336 /*******************************************************************************
337  * Helper function to configure the default attributes of SPIs.
338  ******************************************************************************/
gicv3_spis_configure_defaults(uintptr_t gicd_base)339 void gicv3_spis_configure_defaults(uintptr_t gicd_base)
340 {
341 	unsigned int index, num_ints;
342 
343 	num_ints = gicd_read_typer(gicd_base);
344 	num_ints &= TYPER_IT_LINES_NO_MASK;
345 	num_ints = (num_ints + 1) << 5;
346 
347 	/*
348 	 * Treat all SPIs as G1NS by default. The number of interrupts is
349 	 * calculated as 32 * (IT_LINES + 1). We do 32 at a time.
350 	 */
351 	for (index = MIN_SPI_ID; index < num_ints; index += 32)
352 		gicd_write_igroupr(gicd_base, index, ~0U);
353 
354 	/* Setup the default SPI priorities doing four at a time */
355 	for (index = MIN_SPI_ID; index < num_ints; index += 4)
356 		gicd_write_ipriorityr(gicd_base,
357 				      index,
358 				      GICD_IPRIORITYR_DEF_VAL);
359 
360 	/*
361 	 * Treat all SPIs as level triggered by default, write 16 at
362 	 * a time
363 	 */
364 	for (index = MIN_SPI_ID; index < num_ints; index += 16)
365 		gicd_write_icfgr(gicd_base, index, 0);
366 }
367 
368 #if !ERROR_DEPRECATED
369 /*******************************************************************************
370  * Helper function to configure secure G0 and G1S SPIs.
371  ******************************************************************************/
gicv3_secure_spis_configure(uintptr_t gicd_base,unsigned int num_ints,const unsigned int * sec_intr_list,unsigned int int_grp)372 void gicv3_secure_spis_configure(uintptr_t gicd_base,
373 				     unsigned int num_ints,
374 				     const unsigned int *sec_intr_list,
375 				     unsigned int int_grp)
376 {
377 	unsigned int index, irq_num;
378 	unsigned long long gic_affinity_val;
379 
380 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
381 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
382 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
383 
384 	for (index = 0; index < num_ints; index++) {
385 		irq_num = sec_intr_list[index];
386 		if (irq_num >= MIN_SPI_ID) {
387 
388 			/* Configure this interrupt as a secure interrupt */
389 			gicd_clr_igroupr(gicd_base, irq_num);
390 
391 			/* Configure this interrupt as G0 or a G1S interrupt */
392 			if (int_grp == INTR_GROUP1S)
393 				gicd_set_igrpmodr(gicd_base, irq_num);
394 			else
395 				gicd_clr_igrpmodr(gicd_base, irq_num);
396 
397 			/* Set the priority of this interrupt */
398 			gicd_set_ipriorityr(gicd_base,
399 					      irq_num,
400 					      GIC_HIGHEST_SEC_PRIORITY);
401 
402 			/* Target SPIs to the primary CPU */
403 			gic_affinity_val =
404 				gicd_irouter_val_from_mpidr(read_mpidr(), 0);
405 			gicd_write_irouter(gicd_base,
406 					   irq_num,
407 					   gic_affinity_val);
408 
409 			/* Enable this interrupt */
410 			gicd_set_isenabler(gicd_base, irq_num);
411 		}
412 	}
413 
414 }
415 #endif
416 
417 /*******************************************************************************
418  * Helper function to configure properties of secure SPIs
419  ******************************************************************************/
gicv3_secure_spis_configure_props(uintptr_t gicd_base,const interrupt_prop_t * interrupt_props,unsigned int interrupt_props_num)420 unsigned int gicv3_secure_spis_configure_props(uintptr_t gicd_base,
421 		const interrupt_prop_t *interrupt_props,
422 		unsigned int interrupt_props_num)
423 {
424 	unsigned int i;
425 	const interrupt_prop_t *current_prop;
426 	unsigned long long gic_affinity_val;
427 	unsigned int ctlr_enable = 0;
428 
429 	/* Make sure there's a valid property array */
430 	assert(interrupt_props != NULL);
431 	assert(interrupt_props_num > 0);
432 
433 	for (i = 0; i < interrupt_props_num; i++) {
434 		current_prop = &interrupt_props[i];
435 
436 		if (current_prop->intr_num < MIN_SPI_ID)
437 			continue;
438 
439 		/* Configure this interrupt as a secure interrupt */
440 		gicd_clr_igroupr(gicd_base, current_prop->intr_num);
441 
442 		/* Configure this interrupt as G0 or a G1S interrupt */
443 		assert((current_prop->intr_grp == INTR_GROUP0) ||
444 				(current_prop->intr_grp == INTR_GROUP1S));
445 		if (current_prop->intr_grp == INTR_GROUP1S) {
446 			gicd_set_igrpmodr(gicd_base, current_prop->intr_num);
447 			ctlr_enable |= CTLR_ENABLE_G1S_BIT;
448 		} else {
449 			gicd_clr_igrpmodr(gicd_base, current_prop->intr_num);
450 			ctlr_enable |= CTLR_ENABLE_G0_BIT;
451 		}
452 
453 		/* Set interrupt configuration */
454 		gicd_set_icfgr(gicd_base, current_prop->intr_num,
455 				current_prop->intr_cfg);
456 
457 		/* Set the priority of this interrupt */
458 		gicd_set_ipriorityr(gicd_base, current_prop->intr_num,
459 				current_prop->intr_pri);
460 
461 		/* Target SPIs to the primary CPU */
462 		gic_affinity_val = gicd_irouter_val_from_mpidr(read_mpidr(), 0);
463 		gicd_write_irouter(gicd_base, current_prop->intr_num,
464 				gic_affinity_val);
465 
466 		/* Enable this interrupt */
467 		gicd_set_isenabler(gicd_base, current_prop->intr_num);
468 	}
469 
470 	return ctlr_enable;
471 }
472 
473 /*******************************************************************************
474  * Helper function to configure the default attributes of SPIs.
475  ******************************************************************************/
gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)476 void gicv3_ppi_sgi_configure_defaults(uintptr_t gicr_base)
477 {
478 	unsigned int index;
479 
480 	/*
481 	 * Disable all SGIs (imp. def.)/PPIs before configuring them. This is a
482 	 * more scalable approach as it avoids clearing the enable bits in the
483 	 * GICD_CTLR
484 	 */
485 	gicr_write_icenabler0(gicr_base, ~0);
486 	gicr_wait_for_pending_write(gicr_base);
487 
488 	/* Treat all SGIs/PPIs as G1NS by default. */
489 	gicr_write_igroupr0(gicr_base, ~0U);
490 
491 	/* Setup the default PPI/SGI priorities doing four at a time */
492 	for (index = 0; index < MIN_SPI_ID; index += 4)
493 		gicr_write_ipriorityr(gicr_base,
494 				      index,
495 				      GICD_IPRIORITYR_DEF_VAL);
496 
497 	/* Configure all PPIs as level triggered by default */
498 	gicr_write_icfgr1(gicr_base, 0);
499 }
500 
501 #if !ERROR_DEPRECATED
502 /*******************************************************************************
503  * Helper function to configure secure G0 and G1S SPIs.
504  ******************************************************************************/
gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,unsigned int num_ints,const unsigned int * sec_intr_list,unsigned int int_grp)505 void gicv3_secure_ppi_sgi_configure(uintptr_t gicr_base,
506 					unsigned int num_ints,
507 					const unsigned int *sec_intr_list,
508 					unsigned int int_grp)
509 {
510 	unsigned int index, irq_num;
511 
512 	assert((int_grp == INTR_GROUP1S) || (int_grp == INTR_GROUP0));
513 	/* If `num_ints` is not 0, ensure that `sec_intr_list` is not NULL */
514 	assert(num_ints ? (uintptr_t)sec_intr_list : 1);
515 
516 	for (index = 0; index < num_ints; index++) {
517 		irq_num = sec_intr_list[index];
518 		if (irq_num < MIN_SPI_ID) {
519 
520 			/* Configure this interrupt as a secure interrupt */
521 			gicr_clr_igroupr0(gicr_base, irq_num);
522 
523 			/* Configure this interrupt as G0 or a G1S interrupt */
524 			if (int_grp == INTR_GROUP1S)
525 				gicr_set_igrpmodr0(gicr_base, irq_num);
526 			else
527 				gicr_clr_igrpmodr0(gicr_base, irq_num);
528 
529 			/* Set the priority of this interrupt */
530 			gicr_set_ipriorityr(gicr_base,
531 					    irq_num,
532 					    GIC_HIGHEST_SEC_PRIORITY);
533 
534 			/* Enable this interrupt */
535 			gicr_set_isenabler0(gicr_base, irq_num);
536 		}
537 	}
538 }
539 #endif
540 
541 /*******************************************************************************
542  * Helper function to configure properties of secure G0 and G1S PPIs and SGIs.
543  ******************************************************************************/
gicv3_secure_ppi_sgi_configure_props(uintptr_t gicr_base,const interrupt_prop_t * interrupt_props,unsigned int interrupt_props_num)544 void gicv3_secure_ppi_sgi_configure_props(uintptr_t gicr_base,
545 		const interrupt_prop_t *interrupt_props,
546 		unsigned int interrupt_props_num)
547 {
548 	unsigned int i;
549 	const interrupt_prop_t *current_prop;
550 
551 	/* Make sure there's a valid property array */
552 	assert(interrupt_props != NULL);
553 	assert(interrupt_props_num > 0);
554 
555 	for (i = 0; i < interrupt_props_num; i++) {
556 		current_prop = &interrupt_props[i];
557 
558 		if (current_prop->intr_num >= MIN_SPI_ID)
559 			continue;
560 
561 		/* Configure this interrupt as a secure interrupt */
562 		gicr_clr_igroupr0(gicr_base, current_prop->intr_num);
563 
564 		/* Configure this interrupt as G0 or a G1S interrupt */
565 		assert((current_prop->intr_grp == INTR_GROUP0) ||
566 				(current_prop->intr_grp == INTR_GROUP1S));
567 		if (current_prop->intr_grp == INTR_GROUP1S)
568 			gicr_set_igrpmodr0(gicr_base, current_prop->intr_num);
569 		else
570 			gicr_clr_igrpmodr0(gicr_base, current_prop->intr_num);
571 
572 		/* Set the priority of this interrupt */
573 		gicr_set_ipriorityr(gicr_base, current_prop->intr_num,
574 				current_prop->intr_pri);
575 
576 		/*
577 		 * Set interrupt configuration for PPIs. Configuration for SGIs
578 		 * are ignored.
579 		 */
580 		if ((current_prop->intr_num >= MIN_PPI_ID) &&
581 				(current_prop->intr_num < MIN_SPI_ID)) {
582 			gicr_set_icfgr1(gicr_base, current_prop->intr_num,
583 					current_prop->intr_cfg);
584 		}
585 
586 		/* Enable this interrupt */
587 		gicr_set_isenabler0(gicr_base, current_prop->intr_num);
588 	}
589 }
590