1# Copyright 2017 The TensorFlow Authors. All Rights Reserved. 2# 3# Licensed under the Apache License, Version 2.0 (the "License"); 4# you may not use this file except in compliance with the License. 5# You may obtain a copy of the License at 6# 7# http://www.apache.org/licenses/LICENSE-2.0 8# 9# Unless required by applicable law or agreed to in writing, software 10# distributed under the License is distributed on an "AS IS" BASIS, 11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12# See the License for the specific language governing permissions and 13# limitations under the License. 14# ============================================================================== 15"""TensorFlow Debugger: Tools for debugging gradients.""" 16 17from __future__ import absolute_import 18from __future__ import division 19from __future__ import print_function 20 21import re 22import uuid 23 24import six 25 26from tensorflow.python.debug.lib import debug_data 27from tensorflow.python.debug.lib import debug_graphs 28from tensorflow.python.framework import ops 29from tensorflow.python.ops import gen_array_ops 30from tensorflow.python.ops import variables 31 32_GRADIENT_DEBUG_TAG = "gradient_debug_" 33 34_gradient_debuggers = {} 35 36 37def _tensor_to_grad_debug_op_name(tensor, grad_debugger_uuid): 38 op_name, slot = debug_graphs.parse_node_or_tensor_name(tensor.name) 39 return "%s_%d/%s%s" % (op_name, slot, _GRADIENT_DEBUG_TAG, grad_debugger_uuid) 40 41 42def _parse_grad_debug_op_name(op_name): 43 """Parse the name of a debug gradient op. 44 45 Args: 46 op_name: the name of the debug gradient op. 47 48 Returns: 49 1) The UUID of the GradientsDebugger that created the debug gradient op. 50 2) Name of the original tensor whose gradient is debugged by the debug 51 gradient op. 52 """ 53 name_items = op_name.split("/") 54 assert len(name_items) > 1 55 assert name_items[-1].startswith(_GRADIENT_DEBUG_TAG) 56 57 grad_debugger_uuid = name_items[-1][len(_GRADIENT_DEBUG_TAG):] 58 if "_" in grad_debugger_uuid: 59 grad_debugger_uuid = grad_debugger_uuid[:grad_debugger_uuid.index("_")] 60 orig_tensor_slot = int(name_items[-2][name_items[-2].rfind("_") + 1:]) 61 orig_base_op_name = name_items[-2][:name_items[-2].rfind("_")] 62 orig_tensor_name = ("/".join(name_items[:-2] + [orig_base_op_name]) + 63 ":%d" % orig_tensor_slot) 64 65 return grad_debugger_uuid, orig_tensor_name 66 67 68class GradientsDebugger(object): 69 """Gradients Debugger. 70 71 Allows retrieval of gradient tensors created by TensorFlow's automatic 72 differentiation algorithm, i.e., `tf.gradients` and optimizer classes that 73 use it. 74 """ 75 # TODO(cais): Add examples code in the doc string? 76 77 def __init__(self, y_tensor=None): 78 """Constructor of GradientsDebugger. 79 80 Args: 81 y_tensor: optional: the `tf.Tensor` to be differentiated, i.e., the tensor 82 on the numerator of the differentiation. 83 """ 84 85 self._uuid = uuid.uuid4().hex 86 _gradient_debuggers[self._uuid] = self 87 88 # A dict mapping x-tensor names to gradient tensor. x-tensor refers to the 89 # independent tf.Tensor, i.e., the tensor on the denominator of the 90 # differentiation. 91 self._gradient_tensors = {} 92 self._y_tensor = y_tensor 93 94 self._graph = None 95 if y_tensor: 96 self._graph = y_tensor.graph 97 98 self._is_active_context = False 99 100 @property 101 def y_tensor(self): 102 return self._y_tensor 103 104 @property 105 def graph(self): 106 return self._graph 107 108 def __enter__(self): 109 self._is_active_context = True 110 111 def __exit__(self, unused_type, unused_value, unused_traceback): 112 self._is_active_context = False 113 114 def identify_gradient(self, input_tensor): 115 """Create a debug identity tensor that registers and forwards gradients. 116 117 The side effect of this method is that when gradient tensor(s) are created 118 with respect to the any paths that include the `input_tensor`, the gradient 119 tensor(s) with repsect to `input_tensor` will be registered with this 120 this `GradientsDebugger` instance and can later be retrieved, with the 121 methods `gradient_tensor` and `gradient_tensors`. 122 123 Example: 124 125 ```python 126 x = tf.Variable(1.0) 127 y = tf.add(x, x) 128 129 grad_debugger = tf_debug.GradientsDebugger() 130 debug_y = grad_debugger.identify_gradient(y) 131 z = tf.square(debug_y) 132 133 # Create a train op under the grad_debugger context. 134 with grad_debugger: 135 train_op = tf.train.GradientDescentOptimizer(z) 136 137 # Now we can reflect through grad_debugger to get the gradient tensor 138 # with respect to y. 139 y_grad = grad_debugger.gradient_tensor(y) 140 ``` 141 142 Args: 143 input_tensor: the input `tf.Tensor` object whose related gradient tensors 144 are to be reigstered with this `GradientsDebugger` instance when they 145 are created, e.g., during `tf.gradients` calls or the construction 146 of optimization (training) op that uses `tf.gradients`. 147 148 Returns: 149 A forwarded identity of `input_tensor`, as a `tf.Tensor`. 150 151 Raises: 152 ValueError: If an op with name that duplicates the gradient-debugging op 153 already exists in the graph (highly unlikely). 154 """ 155 # TODO(cais): Allow overriding gradient. 156 # TODO(cais): Implement value_stack. 157 grad_debug_op_name = _tensor_to_grad_debug_op_name(input_tensor, self._uuid) 158 # pylint: disable=protected-access 159 identity_op = ( 160 gen_array_ops.debug_gradient_ref_identity 161 if input_tensor.dtype._is_ref_dtype else 162 gen_array_ops.debug_gradient_identity) 163 # pylint: enable=protected-access 164 debug_grad_identity = identity_op(input_tensor, name=grad_debug_op_name) 165 assert debug_grad_identity.dtype == input_tensor.dtype 166 if debug_grad_identity.op.name != grad_debug_op_name: 167 raise ValueError( 168 "The graph already contains an op named %s" % grad_debug_op_name) 169 return debug_grad_identity 170 171 def watch_gradients_by_tensors(self, graph, tensors): 172 """Watch gradient tensors by x-tensor(s). 173 174 The side effect of this method is that when gradient tensor(s) are created 175 with respect to the any paths that include the `x_tensor`s, the gradient 176 tensor(s) with repsect to the tensor will be registered with this 177 this `GradientsDebugger` instance and can later be retrieved, with the 178 methods `gradient_tensor` and `gradient_tensors`. 179 180 Unlike the method `identify_gradient`, this method is used to retrieve 181 gradient tensors after the construction of the forward subgraph has 182 completed (but before the construction of the backward subgraph). 183 184 This method is the same as `watch_gradients_by_x_tensor_names` except that 185 the tensors are specified by the Python `tf.Tensor` or `tf.Variable` 186 objects, instead by name patterns. 187 188 Example: 189 190 ```python 191 x = tf.Variable(1.0) 192 y = tf.add(x, x, name="y") 193 z = tf.square(debug_y) 194 195 # Create a train op under the grad_debugger context. 196 grad_debugger = tf_debug.GradientsDebugger() 197 with grad_debugger.watch_gradients_by_tensors(y): 198 train_op = tf.train.GradientDescentOptimizer(z) 199 200 # Now we can reflect through grad_debugger to get the gradient tensor 201 # with respect to y. 202 y_grad = grad_debugger.gradient_tensor(y) 203 # or 204 y_grad = grad_debugger.gradient_tensor("y:0") 205 ``` 206 207 Args: 208 graph: the `tf.Graph` to watch the gradients on. 209 tensors: a `tf.Tensor` or `tf.Variable` object, or a list of such objects. 210 211 Returns: 212 The GradientsDebugger instance itself. 213 """ 214 215 if not isinstance(tensors, list): 216 tensors = [tensors] 217 218 tensor_name_regex = [] 219 for tensor in tensors: 220 tensor_name_regex.append(re.escape(tensor.name) + "$") 221 tensor_name_regex = "(" + "|".join(tensor_name_regex) + ")" 222 return self.watch_gradients_by_tensor_names(graph, tensor_name_regex) 223 224 def watch_gradients_by_tensor_names(self, graph, tensor_name_regex): 225 """Watch gradient tensors by name(s) of the x-tensor(s). 226 227 The side effect of this method is that when gradient tensor(s) are created 228 with respect to the x-tensors, the gradient tensor(s) will be registered 229 with this `GradientsDebugger` instance and can later be retrieved. 230 231 Unlike the `identify_gradient` method, this method is used after the 232 construction of the forward graph has completed. Unlike the 233 `watch_gradients_by_tensor` method, this method does not use handles to the 234 tensors of interest; it uses their names. 235 236 This method is the same as `watch_gradients_by_tensors` except that the 237 x-tensors are specified by name patterns, instead of `tf.Tensor` or 238 `tf.Variable` objects. 239 240 Example: 241 242 ```python 243 x = tf.Variable(1.0, name="x") 244 y = tf.add(x, x, name="y") 245 z = tf.square(debug_y) 246 247 # Create a train op under the grad_debugger context. 248 grad_debugger = tf_debug.GradientsDebugger() 249 with grad_debugger.watch_gradients_by_tensor_names(r"(x|y):0$"): 250 train_op = tf.train.GradientDescentOptimizer(z) 251 252 # Now we can reflect through grad_debugger to get the gradient tensor 253 # with respect to x and y. 254 x_grad = grad_debugger.gradient_tensor("x:0") 255 y_grad = grad_debugger.gradient_tensor("y:0") 256 ``` 257 258 Args: 259 graph: the `tf.Graph` to watch the gradients on. 260 tensor_name_regex: the regular-expression pattern of the name(s) of the 261 x-tensor(s) to watch. x-tensor refers to the tensors on the denominator 262 of the differentiation. 263 264 Returns: 265 The GradientsDebugger instance itself. 266 """ 267 tensor_name_pattern = re.compile(tensor_name_regex) 268 with graph.as_default(): 269 for op in graph.get_operations(): 270 for output in op.outputs: 271 if tensor_name_pattern.match(output.name): 272 debug_op = self.identify_gradient(output) 273 274 # Make a copy of output.consumers() since we'll modify the consumers 275 # TODO(skyewm): this is unnecessary once the C API is enabled 276 for consumer in list(output.consumers()): 277 if consumer == debug_op.op: 278 continue 279 280 # Locate the slot index of the original input. 281 for i, consumer_input in enumerate(consumer.inputs): 282 if consumer_input == output: 283 consumer._update_input(i, debug_op) # pylint: disable=protected-access 284 return self 285 286 def _check_same_graph(self, tensor): 287 if self._graph is None: 288 self._graph = tensor.graph 289 elif self._graph != tensor.graph: 290 raise ValueError( 291 "The graph of the value (%s) is not the same as the graph %s" % 292 (tensor.graph, self._graph)) 293 294 def register_gradient_tensor(self, 295 x_tensor_name, 296 gradient_tensor): 297 """Register the gradient tensor for an x-tensor. 298 299 Args: 300 x_tensor_name: (`str`) the name of the independent `tf.Tensor`, i.e., 301 the tensor on the denominator of the differentiation. 302 gradient_tensor: the gradient `tf.Tensor`. 303 """ 304 if len(_gradient_debuggers) == 1 or self._is_active_context: 305 self._check_same_graph(gradient_tensor) 306 self._gradient_tensors[x_tensor_name] = gradient_tensor 307 308 def gradient_tensor(self, x_tensor): 309 """Get the gradient tensor of an x-tensor. 310 311 Args: 312 x_tensor: (`tf.Tensor`, `tf.Variable` or `str`) The x-tensor object or its 313 name. x-tensor refers to the independent `tf.Tensor`, i.e., the tensor 314 on the denominator of the differentiation. 315 316 Returns: 317 If found, the gradient tensor. 318 319 Raises: 320 TypeError: If `x_tensor` is not a `tf.Tensor`, `tf.Variable` or `str`. 321 LookupError: If the `x_tensor` has not been registered with a gradient 322 tensor. 323 """ 324 x_tensor_name = self._get_tensor_name(x_tensor) 325 if x_tensor_name not in self._gradient_tensors: 326 raise LookupError( 327 "This GradientsDebugger has not received any gradient tensor for " 328 "x-tensor %s" % x_tensor_name) 329 return self._gradient_tensors[x_tensor_name] 330 331 def gradient_tensors(self): 332 """Get the gradient tensors that this object is aware of. 333 334 Returns: 335 A dict mapping x-tensor names to gradient tensor objects. x-tensor refers 336 to the tensors on the denominator of the differentation. 337 """ 338 return self._gradient_tensors 339 340 def _get_tensor_name(self, tensor): 341 if isinstance(tensor, (ops.Tensor, variables.Variable)): 342 return tensor.name 343 elif isinstance(tensor, six.string_types): 344 return tensor 345 else: 346 raise TypeError( 347 "x_tensor must be a str or tf.Tensor or tf.Variable, " 348 "but instead has type %s" % type(tensor)) 349 350 351def clear_gradient_debuggers(): 352 """Clear all globally registered gradient debuggers.""" 353 _gradient_debuggers.clear() 354 355 356@ops.RegisterGradient("DebugGradientIdentity") 357def _identify_gradient_grad(op, dy): 358 """Gradient function for the DebugIdentity op.""" 359 # TODO(cais): Allow overriding gradient. 360 grad_debugger_uuid, orig_tensor_name = _parse_grad_debug_op_name(op.name) 361 grad_debugger = _gradient_debuggers[grad_debugger_uuid] 362 grad_debugger.register_gradient_tensor(orig_tensor_name, dy) 363 return dy 364 365 366@ops.RegisterGradient("DebugGradientRefIdentity") 367def _identify_gradient_grad_ref(op, dy): 368 """Gradient function for the DebugIdentity op.""" 369 return _identify_gradient_grad(op, dy) 370 371 372def gradient_values_from_dump(grad_debugger, x_tensor, dump): 373 """Find gradient values from a `DebugDumpDir` object. 374 375 Args: 376 grad_debugger: the `tf_debug.GradientsDebugger` instance to be used. 377 x_tensor: (`tf.Tensor`, `tf.Variable` or `str`) The x-tensor object or its 378 name. x-tensor refers to the independent `tf.Tensor`, i.e., the tensor 379 on the denominator of the differentiation. 380 dump: A `tfdbg.DebugDumpDir` object. 381 382 Returns: 383 If this `GradientsDebugger` instance has the gradient tensor of `x_tensor` 384 registered: a list of `numpy.ndarray` representing the value of the 385 gradient tensor from `dump`. The list could be empty, if the gradient 386 tensor is not executed in the `tf.Session.run()` call that generated 387 the `dump`. The list could also contain multiple values of the gradient 388 tensor, e.g., if gradient tensor is computed repeatedly in a 389 `tf.while_loop` during the run that generated the `dump`. 390 391 Raises: 392 LookupError: If this `GradientsDebugger` instance does not have the 393 gradient tensor of `x_tensor` registered. 394 ValueError: If this `GradientsDebugger` has a `tf.Graph` object that 395 does not match the `tf.Graph` object of the `dump`. 396 TypeError: If `x_tensor` is not a `tf.Tensor`, `tf.Variable` or `str`. 397 """ 398 # TODO(cais): Use this method in LocalCLIDebugWrapperSession to present the 399 # gradient tensors to the TFDBG CLI. 400 401 # If possible, verify that the Python graph of the dump and that of this 402 # GradientsDebugger match. 403 if (dump.python_graph and grad_debugger.graph and 404 dump.python_graph != grad_debugger.graph): 405 raise ValueError( 406 "This GradientsDebugger instance has a graph (%s) that differs from " 407 "the graph of the DebugDumpDir object (%s)." % 408 (grad_debugger.graph, dump.python_graph)) 409 410 gradient_tensor = grad_debugger.gradient_tensor(x_tensor) 411 node_name, output_slot = debug_graphs.parse_node_or_tensor_name( 412 gradient_tensor.name) 413 414 try: 415 return dump.get_tensors(node_name, output_slot, "DebugIdentity") 416 except debug_data.WatchKeyDoesNotExistInDebugDumpDirError: 417 return [] 418