• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include "glsl_symbol_table.h"
25 #include "ast.h"
26 #include "compiler/glsl_types.h"
27 #include "ir.h"
28 #include "main/core.h" /* for MIN2 */
29 #include "main/shaderobj.h"
30 #include "builtin_functions.h"
31 
32 static ir_rvalue *
33 convert_component(ir_rvalue *src, const glsl_type *desired_type);
34 
35 static unsigned
process_parameters(exec_list * instructions,exec_list * actual_parameters,exec_list * parameters,struct _mesa_glsl_parse_state * state)36 process_parameters(exec_list *instructions, exec_list *actual_parameters,
37                    exec_list *parameters,
38                    struct _mesa_glsl_parse_state *state)
39 {
40    void *mem_ctx = state;
41    unsigned count = 0;
42 
43    foreach_list_typed(ast_node, ast, link, parameters) {
44       /* We need to process the parameters first in order to know if we can
45        * raise or not a unitialized warning. Calling set_is_lhs silence the
46        * warning for now. Raising the warning or not will be checked at
47        * verify_parameter_modes.
48        */
49       ast->set_is_lhs(true);
50       ir_rvalue *result = ast->hir(instructions, state);
51 
52       ir_constant *const constant =
53          result->constant_expression_value(mem_ctx);
54 
55       if (constant != NULL)
56          result = constant;
57 
58       actual_parameters->push_tail(result);
59       count++;
60    }
61 
62    return count;
63 }
64 
65 
66 /**
67  * Generate a source prototype for a function signature
68  *
69  * \param return_type Return type of the function.  May be \c NULL.
70  * \param name        Name of the function.
71  * \param parameters  List of \c ir_instruction nodes representing the
72  *                    parameter list for the function.  This may be either a
73  *                    formal (\c ir_variable) or actual (\c ir_rvalue)
74  *                    parameter list.  Only the type is used.
75  *
76  * \return
77  * A ralloced string representing the prototype of the function.
78  */
79 char *
prototype_string(const glsl_type * return_type,const char * name,exec_list * parameters)80 prototype_string(const glsl_type *return_type, const char *name,
81                  exec_list *parameters)
82 {
83    char *str = NULL;
84 
85    if (return_type != NULL)
86       str = ralloc_asprintf(NULL, "%s ", return_type->name);
87 
88    ralloc_asprintf_append(&str, "%s(", name);
89 
90    const char *comma = "";
91    foreach_in_list(const ir_variable, param, parameters) {
92       ralloc_asprintf_append(&str, "%s%s", comma, param->type->name);
93       comma = ", ";
94    }
95 
96    ralloc_strcat(&str, ")");
97    return str;
98 }
99 
100 static bool
verify_image_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,const ir_variable * formal,const ir_variable * actual)101 verify_image_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
102                        const ir_variable *formal, const ir_variable *actual)
103 {
104    /**
105     * From the ARB_shader_image_load_store specification:
106     *
107     * "The values of image variables qualified with coherent,
108     *  volatile, restrict, readonly, or writeonly may not be passed
109     *  to functions whose formal parameters lack such
110     *  qualifiers. [...] It is legal to have additional qualifiers
111     *  on a formal parameter, but not to have fewer."
112     */
113    if (actual->data.memory_coherent && !formal->data.memory_coherent) {
114       _mesa_glsl_error(loc, state,
115                        "function call parameter `%s' drops "
116                        "`coherent' qualifier", formal->name);
117       return false;
118    }
119 
120    if (actual->data.memory_volatile && !formal->data.memory_volatile) {
121       _mesa_glsl_error(loc, state,
122                        "function call parameter `%s' drops "
123                        "`volatile' qualifier", formal->name);
124       return false;
125    }
126 
127    if (actual->data.memory_restrict && !formal->data.memory_restrict) {
128       _mesa_glsl_error(loc, state,
129                        "function call parameter `%s' drops "
130                        "`restrict' qualifier", formal->name);
131       return false;
132    }
133 
134    if (actual->data.memory_read_only && !formal->data.memory_read_only) {
135       _mesa_glsl_error(loc, state,
136                        "function call parameter `%s' drops "
137                        "`readonly' qualifier", formal->name);
138       return false;
139    }
140 
141    if (actual->data.memory_write_only && !formal->data.memory_write_only) {
142       _mesa_glsl_error(loc, state,
143                        "function call parameter `%s' drops "
144                        "`writeonly' qualifier", formal->name);
145       return false;
146    }
147 
148    return true;
149 }
150 
151 static bool
verify_first_atomic_parameter(YYLTYPE * loc,_mesa_glsl_parse_state * state,ir_variable * var)152 verify_first_atomic_parameter(YYLTYPE *loc, _mesa_glsl_parse_state *state,
153                               ir_variable *var)
154 {
155    if (!var ||
156        (!var->is_in_shader_storage_block() &&
157         var->data.mode != ir_var_shader_shared)) {
158       _mesa_glsl_error(loc, state, "First argument to atomic function "
159                        "must be a buffer or shared variable");
160       return false;
161    }
162    return true;
163 }
164 
165 static bool
is_atomic_function(const char * func_name)166 is_atomic_function(const char *func_name)
167 {
168    return !strcmp(func_name, "atomicAdd") ||
169           !strcmp(func_name, "atomicMin") ||
170           !strcmp(func_name, "atomicMax") ||
171           !strcmp(func_name, "atomicAnd") ||
172           !strcmp(func_name, "atomicOr") ||
173           !strcmp(func_name, "atomicXor") ||
174           !strcmp(func_name, "atomicExchange") ||
175           !strcmp(func_name, "atomicCompSwap");
176 }
177 
178 /**
179  * Verify that 'out' and 'inout' actual parameters are lvalues.  Also, verify
180  * that 'const_in' formal parameters (an extension in our IR) correspond to
181  * ir_constant actual parameters.
182  */
183 static bool
verify_parameter_modes(_mesa_glsl_parse_state * state,ir_function_signature * sig,exec_list & actual_ir_parameters,exec_list & actual_ast_parameters)184 verify_parameter_modes(_mesa_glsl_parse_state *state,
185                        ir_function_signature *sig,
186                        exec_list &actual_ir_parameters,
187                        exec_list &actual_ast_parameters)
188 {
189    exec_node *actual_ir_node  = actual_ir_parameters.get_head_raw();
190    exec_node *actual_ast_node = actual_ast_parameters.get_head_raw();
191 
192    foreach_in_list(const ir_variable, formal, &sig->parameters) {
193       /* The lists must be the same length. */
194       assert(!actual_ir_node->is_tail_sentinel());
195       assert(!actual_ast_node->is_tail_sentinel());
196 
197       const ir_rvalue *const actual = (ir_rvalue *) actual_ir_node;
198       const ast_expression *const actual_ast =
199          exec_node_data(ast_expression, actual_ast_node, link);
200 
201       /* FIXME: 'loc' is incorrect (as of 2011-01-21). It is always
202        * FIXME: 0:0(0).
203        */
204       YYLTYPE loc = actual_ast->get_location();
205 
206       /* Verify that 'const_in' parameters are ir_constants. */
207       if (formal->data.mode == ir_var_const_in &&
208           actual->ir_type != ir_type_constant) {
209          _mesa_glsl_error(&loc, state,
210                           "parameter `in %s' must be a constant expression",
211                           formal->name);
212          return false;
213       }
214 
215       /* Verify that shader_in parameters are shader inputs */
216       if (formal->data.must_be_shader_input) {
217          const ir_rvalue *val = actual;
218 
219          /* GLSL 4.40 allows swizzles, while earlier GLSL versions do not. */
220          if (val->ir_type == ir_type_swizzle) {
221             if (!state->is_version(440, 0)) {
222                _mesa_glsl_error(&loc, state,
223                                 "parameter `%s` must not be swizzled",
224                                 formal->name);
225                return false;
226             }
227             val = ((ir_swizzle *)val)->val;
228          }
229 
230          for (;;) {
231             if (val->ir_type == ir_type_dereference_array) {
232                val = ((ir_dereference_array *)val)->array;
233             } else if (val->ir_type == ir_type_dereference_record &&
234                        !state->es_shader) {
235                val = ((ir_dereference_record *)val)->record;
236             } else
237                break;
238          }
239 
240          ir_variable *var = NULL;
241          if (const ir_dereference_variable *deref_var = val->as_dereference_variable())
242             var = deref_var->variable_referenced();
243 
244          if (!var || var->data.mode != ir_var_shader_in) {
245             _mesa_glsl_error(&loc, state,
246                              "parameter `%s` must be a shader input",
247                              formal->name);
248             return false;
249          }
250 
251          var->data.must_be_shader_input = 1;
252       }
253 
254       /* Verify that 'out' and 'inout' actual parameters are lvalues. */
255       if (formal->data.mode == ir_var_function_out
256           || formal->data.mode == ir_var_function_inout) {
257          const char *mode = NULL;
258          switch (formal->data.mode) {
259          case ir_var_function_out:   mode = "out";   break;
260          case ir_var_function_inout: mode = "inout"; break;
261          default:                    assert(false);  break;
262          }
263 
264          /* This AST-based check catches errors like f(i++).  The IR-based
265           * is_lvalue() is insufficient because the actual parameter at the
266           * IR-level is just a temporary value, which is an l-value.
267           */
268          if (actual_ast->non_lvalue_description != NULL) {
269             _mesa_glsl_error(&loc, state,
270                              "function parameter '%s %s' references a %s",
271                              mode, formal->name,
272                              actual_ast->non_lvalue_description);
273             return false;
274          }
275 
276          ir_variable *var = actual->variable_referenced();
277 
278          if (var && formal->data.mode == ir_var_function_inout) {
279             if ((var->data.mode == ir_var_auto ||
280                  var->data.mode == ir_var_shader_out) &&
281                 !var->data.assigned &&
282                 !is_gl_identifier(var->name)) {
283                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
284                                   var->name);
285             }
286          }
287 
288          if (var)
289             var->data.assigned = true;
290 
291          if (var && var->data.read_only) {
292             _mesa_glsl_error(&loc, state,
293                              "function parameter '%s %s' references the "
294                              "read-only variable '%s'",
295                              mode, formal->name,
296                              actual->variable_referenced()->name);
297             return false;
298          } else if (!actual->is_lvalue(state)) {
299             _mesa_glsl_error(&loc, state,
300                              "function parameter '%s %s' is not an lvalue",
301                              mode, formal->name);
302             return false;
303          }
304       } else {
305          assert(formal->data.mode == ir_var_function_in ||
306                 formal->data.mode == ir_var_const_in);
307          ir_variable *var = actual->variable_referenced();
308          if (var) {
309             if ((var->data.mode == ir_var_auto ||
310                  var->data.mode == ir_var_shader_out) &&
311                 !var->data.assigned &&
312                 !is_gl_identifier(var->name)) {
313                _mesa_glsl_warning(&loc, state, "`%s' used uninitialized",
314                                   var->name);
315             }
316          }
317       }
318 
319       if (formal->type->is_image() &&
320           actual->variable_referenced()) {
321          if (!verify_image_parameter(&loc, state, formal,
322                                      actual->variable_referenced()))
323             return false;
324       }
325 
326       actual_ir_node  = actual_ir_node->next;
327       actual_ast_node = actual_ast_node->next;
328    }
329 
330    /* The first parameter of atomic functions must be a buffer variable */
331    const char *func_name = sig->function_name();
332    bool is_atomic = is_atomic_function(func_name);
333    if (is_atomic) {
334       const ir_rvalue *const actual =
335          (ir_rvalue *) actual_ir_parameters.get_head_raw();
336 
337       const ast_expression *const actual_ast =
338          exec_node_data(ast_expression,
339                         actual_ast_parameters.get_head_raw(), link);
340       YYLTYPE loc = actual_ast->get_location();
341 
342       if (!verify_first_atomic_parameter(&loc, state,
343                                          actual->variable_referenced())) {
344          return false;
345       }
346    }
347 
348    return true;
349 }
350 
351 static void
fix_parameter(void * mem_ctx,ir_rvalue * actual,const glsl_type * formal_type,exec_list * before_instructions,exec_list * after_instructions,bool parameter_is_inout)352 fix_parameter(void *mem_ctx, ir_rvalue *actual, const glsl_type *formal_type,
353               exec_list *before_instructions, exec_list *after_instructions,
354               bool parameter_is_inout)
355 {
356    ir_expression *const expr = actual->as_expression();
357 
358    /* If the types match exactly and the parameter is not a vector-extract,
359     * nothing needs to be done to fix the parameter.
360     */
361    if (formal_type == actual->type
362        && (expr == NULL || expr->operation != ir_binop_vector_extract))
363       return;
364 
365    /* To convert an out parameter, we need to create a temporary variable to
366     * hold the value before conversion, and then perform the conversion after
367     * the function call returns.
368     *
369     * This has the effect of transforming code like this:
370     *
371     *   void f(out int x);
372     *   float value;
373     *   f(value);
374     *
375     * Into IR that's equivalent to this:
376     *
377     *   void f(out int x);
378     *   float value;
379     *   int out_parameter_conversion;
380     *   f(out_parameter_conversion);
381     *   value = float(out_parameter_conversion);
382     *
383     * If the parameter is an ir_expression of ir_binop_vector_extract,
384     * additional conversion is needed in the post-call re-write.
385     */
386    ir_variable *tmp =
387       new(mem_ctx) ir_variable(formal_type, "inout_tmp", ir_var_temporary);
388 
389    before_instructions->push_tail(tmp);
390 
391    /* If the parameter is an inout parameter, copy the value of the actual
392     * parameter to the new temporary.  Note that no type conversion is allowed
393     * here because inout parameters must match types exactly.
394     */
395    if (parameter_is_inout) {
396       /* Inout parameters should never require conversion, since that would
397        * require an implicit conversion to exist both to and from the formal
398        * parameter type, and there are no bidirectional implicit conversions.
399        */
400       assert (actual->type == formal_type);
401 
402       ir_dereference_variable *const deref_tmp_1 =
403          new(mem_ctx) ir_dereference_variable(tmp);
404       ir_assignment *const assignment =
405          new(mem_ctx) ir_assignment(deref_tmp_1, actual);
406       before_instructions->push_tail(assignment);
407    }
408 
409    /* Replace the parameter in the call with a dereference of the new
410     * temporary.
411     */
412    ir_dereference_variable *const deref_tmp_2 =
413       new(mem_ctx) ir_dereference_variable(tmp);
414    actual->replace_with(deref_tmp_2);
415 
416 
417    /* Copy the temporary variable to the actual parameter with optional
418     * type conversion applied.
419     */
420    ir_rvalue *rhs = new(mem_ctx) ir_dereference_variable(tmp);
421    if (actual->type != formal_type)
422       rhs = convert_component(rhs, actual->type);
423 
424    ir_rvalue *lhs = actual;
425    if (expr != NULL && expr->operation == ir_binop_vector_extract) {
426       lhs = new(mem_ctx) ir_dereference_array(expr->operands[0]->clone(mem_ctx,
427                                                                        NULL),
428                                               expr->operands[1]->clone(mem_ctx,
429                                                                        NULL));
430    }
431 
432    ir_assignment *const assignment_2 = new(mem_ctx) ir_assignment(lhs, rhs);
433    after_instructions->push_tail(assignment_2);
434 }
435 
436 /**
437  * Generate a function call.
438  *
439  * For non-void functions, this returns a dereference of the temporary
440  * variable which stores the return value for the call.  For void functions,
441  * this returns NULL.
442  */
443 static ir_rvalue *
generate_call(exec_list * instructions,ir_function_signature * sig,exec_list * actual_parameters,ir_variable * sub_var,ir_rvalue * array_idx,struct _mesa_glsl_parse_state * state)444 generate_call(exec_list *instructions, ir_function_signature *sig,
445               exec_list *actual_parameters,
446               ir_variable *sub_var,
447               ir_rvalue *array_idx,
448               struct _mesa_glsl_parse_state *state)
449 {
450    void *ctx = state;
451    exec_list post_call_conversions;
452 
453    /* Perform implicit conversion of arguments.  For out parameters, we need
454     * to place them in a temporary variable and do the conversion after the
455     * call takes place.  Since we haven't emitted the call yet, we'll place
456     * the post-call conversions in a temporary exec_list, and emit them later.
457     */
458    foreach_two_lists(formal_node, &sig->parameters,
459                      actual_node, actual_parameters) {
460       ir_rvalue *actual = (ir_rvalue *) actual_node;
461       ir_variable *formal = (ir_variable *) formal_node;
462 
463       if (formal->type->is_numeric() || formal->type->is_boolean()) {
464          switch (formal->data.mode) {
465          case ir_var_const_in:
466          case ir_var_function_in: {
467             ir_rvalue *converted
468                = convert_component(actual, formal->type);
469             actual->replace_with(converted);
470             break;
471          }
472          case ir_var_function_out:
473          case ir_var_function_inout:
474             fix_parameter(ctx, actual, formal->type,
475                           instructions, &post_call_conversions,
476                           formal->data.mode == ir_var_function_inout);
477             break;
478          default:
479             assert (!"Illegal formal parameter mode");
480             break;
481          }
482       }
483    }
484 
485    /* Section 4.3.2 (Const) of the GLSL 1.10.59 spec says:
486     *
487     *     "Initializers for const declarations must be formed from literal
488     *     values, other const variables (not including function call
489     *     paramaters), or expressions of these.
490     *
491     *     Constructors may be used in such expressions, but function calls may
492     *     not."
493     *
494     * Section 4.3.3 (Constant Expressions) of the GLSL 1.20.8 spec says:
495     *
496     *     "A constant expression is one of
497     *
498     *         ...
499     *
500     *         - a built-in function call whose arguments are all constant
501     *           expressions, with the exception of the texture lookup
502     *           functions, the noise functions, and ftransform. The built-in
503     *           functions dFdx, dFdy, and fwidth must return 0 when evaluated
504     *           inside an initializer with an argument that is a constant
505     *           expression."
506     *
507     * Section 5.10 (Constant Expressions) of the GLSL ES 1.00.17 spec says:
508     *
509     *     "A constant expression is one of
510     *
511     *         ...
512     *
513     *         - a built-in function call whose arguments are all constant
514     *           expressions, with the exception of the texture lookup
515     *           functions."
516     *
517     * Section 4.3.3 (Constant Expressions) of the GLSL ES 3.00.4 spec says:
518     *
519     *     "A constant expression is one of
520     *
521     *         ...
522     *
523     *         - a built-in function call whose arguments are all constant
524     *           expressions, with the exception of the texture lookup
525     *           functions.  The built-in functions dFdx, dFdy, and fwidth must
526     *           return 0 when evaluated inside an initializer with an argument
527     *           that is a constant expression."
528     *
529     * If the function call is a constant expression, don't generate any
530     * instructions; just generate an ir_constant.
531     */
532    if (state->is_version(120, 100)) {
533       ir_constant *value = sig->constant_expression_value(ctx,
534                                                           actual_parameters,
535                                                           NULL);
536       if (value != NULL) {
537          return value;
538       }
539    }
540 
541    ir_dereference_variable *deref = NULL;
542    if (!sig->return_type->is_void()) {
543       /* Create a new temporary to hold the return value. */
544       char *const name = ir_variable::temporaries_allocate_names
545          ? ralloc_asprintf(ctx, "%s_retval", sig->function_name())
546          : NULL;
547 
548       ir_variable *var;
549 
550       var = new(ctx) ir_variable(sig->return_type, name, ir_var_temporary);
551       instructions->push_tail(var);
552 
553       ralloc_free(name);
554 
555       deref = new(ctx) ir_dereference_variable(var);
556    }
557 
558    ir_call *call = new(ctx) ir_call(sig, deref,
559                                     actual_parameters, sub_var, array_idx);
560    instructions->push_tail(call);
561    if (sig->is_builtin()) {
562       /* inline immediately */
563       call->generate_inline(call);
564       call->remove();
565    }
566 
567    /* Also emit any necessary out-parameter conversions. */
568    instructions->append_list(&post_call_conversions);
569 
570    return deref ? deref->clone(ctx, NULL) : NULL;
571 }
572 
573 /**
574  * Given a function name and parameter list, find the matching signature.
575  */
576 static ir_function_signature *
match_function_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state)577 match_function_by_name(const char *name,
578                        exec_list *actual_parameters,
579                        struct _mesa_glsl_parse_state *state)
580 {
581    ir_function *f = state->symbols->get_function(name);
582    ir_function_signature *local_sig = NULL;
583    ir_function_signature *sig = NULL;
584 
585    /* Is the function hidden by a record type constructor? */
586    if (state->symbols->get_type(name))
587       return sig; /* no match */
588 
589    /* Is the function hidden by a variable (impossible in 1.10)? */
590    if (!state->symbols->separate_function_namespace
591        && state->symbols->get_variable(name))
592       return sig; /* no match */
593 
594    if (f != NULL) {
595       /* In desktop GL, the presence of a user-defined signature hides any
596        * built-in signatures, so we must ignore them.  In contrast, in ES2
597        * user-defined signatures add new overloads, so we must consider them.
598        */
599       bool allow_builtins = state->es_shader || !f->has_user_signature();
600 
601       /* Look for a match in the local shader.  If exact, we're done. */
602       bool is_exact = false;
603       sig = local_sig = f->matching_signature(state, actual_parameters,
604                                               allow_builtins, &is_exact);
605       if (is_exact)
606          return sig;
607 
608       if (!allow_builtins)
609          return sig;
610    }
611 
612    /* Local shader has no exact candidates; check the built-ins. */
613    _mesa_glsl_initialize_builtin_functions();
614    sig = _mesa_glsl_find_builtin_function(state, name, actual_parameters);
615    return sig;
616 }
617 
618 static ir_function_signature *
match_subroutine_by_name(const char * name,exec_list * actual_parameters,struct _mesa_glsl_parse_state * state,ir_variable ** var_r)619 match_subroutine_by_name(const char *name,
620                          exec_list *actual_parameters,
621                          struct _mesa_glsl_parse_state *state,
622                          ir_variable **var_r)
623 {
624    void *ctx = state;
625    ir_function_signature *sig = NULL;
626    ir_function *f, *found = NULL;
627    const char *new_name;
628    ir_variable *var;
629    bool is_exact = false;
630 
631    new_name =
632       ralloc_asprintf(ctx, "%s_%s",
633                       _mesa_shader_stage_to_subroutine_prefix(state->stage),
634                       name);
635    var = state->symbols->get_variable(new_name);
636    if (!var)
637       return NULL;
638 
639    for (int i = 0; i < state->num_subroutine_types; i++) {
640       f = state->subroutine_types[i];
641       if (strcmp(f->name, var->type->without_array()->name))
642          continue;
643       found = f;
644       break;
645    }
646 
647    if (!found)
648       return NULL;
649    *var_r = var;
650    sig = found->matching_signature(state, actual_parameters,
651                                    false, &is_exact);
652    return sig;
653 }
654 
655 static ir_rvalue *
generate_array_index(void * mem_ctx,exec_list * instructions,struct _mesa_glsl_parse_state * state,YYLTYPE loc,const ast_expression * array,ast_expression * idx,const char ** function_name,exec_list * actual_parameters)656 generate_array_index(void *mem_ctx, exec_list *instructions,
657                      struct _mesa_glsl_parse_state *state, YYLTYPE loc,
658                      const ast_expression *array, ast_expression *idx,
659                      const char **function_name, exec_list *actual_parameters)
660 {
661    if (array->oper == ast_array_index) {
662       /* This handles arrays of arrays */
663       ir_rvalue *outer_array = generate_array_index(mem_ctx, instructions,
664                                                     state, loc,
665                                                     array->subexpressions[0],
666                                                     array->subexpressions[1],
667                                                     function_name,
668                                                     actual_parameters);
669       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
670 
671       YYLTYPE index_loc = idx->get_location();
672       return _mesa_ast_array_index_to_hir(mem_ctx, state, outer_array,
673                                           outer_array_idx, loc,
674                                           index_loc);
675    } else {
676       ir_variable *sub_var = NULL;
677       *function_name = array->primary_expression.identifier;
678 
679       if (!match_subroutine_by_name(*function_name, actual_parameters,
680                                     state, &sub_var)) {
681          _mesa_glsl_error(&loc, state, "Unknown subroutine `%s'",
682                           *function_name);
683          *function_name = NULL; /* indicate error condition to caller */
684          return NULL;
685       }
686 
687       ir_rvalue *outer_array_idx = idx->hir(instructions, state);
688       return new(mem_ctx) ir_dereference_array(sub_var, outer_array_idx);
689    }
690 }
691 
692 static void
print_function_prototypes(_mesa_glsl_parse_state * state,YYLTYPE * loc,ir_function * f)693 print_function_prototypes(_mesa_glsl_parse_state *state, YYLTYPE *loc,
694                           ir_function *f)
695 {
696    if (f == NULL)
697       return;
698 
699    foreach_in_list(ir_function_signature, sig, &f->signatures) {
700       if (sig->is_builtin() && !sig->is_builtin_available(state))
701          continue;
702 
703       char *str = prototype_string(sig->return_type, f->name,
704                                    &sig->parameters);
705       _mesa_glsl_error(loc, state, "   %s", str);
706       ralloc_free(str);
707    }
708 }
709 
710 /**
711  * Raise a "no matching function" error, listing all possible overloads the
712  * compiler considered so developers can figure out what went wrong.
713  */
714 static void
no_matching_function_error(const char * name,YYLTYPE * loc,exec_list * actual_parameters,_mesa_glsl_parse_state * state)715 no_matching_function_error(const char *name,
716                            YYLTYPE *loc,
717                            exec_list *actual_parameters,
718                            _mesa_glsl_parse_state *state)
719 {
720    gl_shader *sh = _mesa_glsl_get_builtin_function_shader();
721 
722    if (state->symbols->get_function(name) == NULL
723        && (!state->uses_builtin_functions
724            || sh->symbols->get_function(name) == NULL)) {
725       _mesa_glsl_error(loc, state, "no function with name '%s'", name);
726    } else {
727       char *str = prototype_string(NULL, name, actual_parameters);
728       _mesa_glsl_error(loc, state,
729                        "no matching function for call to `%s';"
730                        " candidates are:",
731                        str);
732       ralloc_free(str);
733 
734       print_function_prototypes(state, loc,
735                                 state->symbols->get_function(name));
736 
737       if (state->uses_builtin_functions) {
738          print_function_prototypes(state, loc,
739                                    sh->symbols->get_function(name));
740       }
741    }
742 }
743 
744 /**
745  * Perform automatic type conversion of constructor parameters
746  *
747  * This implements the rules in the "Conversion and Scalar Constructors"
748  * section (GLSL 1.10 section 5.4.1), not the "Implicit Conversions" rules.
749  */
750 static ir_rvalue *
convert_component(ir_rvalue * src,const glsl_type * desired_type)751 convert_component(ir_rvalue *src, const glsl_type *desired_type)
752 {
753    void *ctx = ralloc_parent(src);
754    const unsigned a = desired_type->base_type;
755    const unsigned b = src->type->base_type;
756    ir_expression *result = NULL;
757 
758    if (src->type->is_error())
759       return src;
760 
761    assert(a <= GLSL_TYPE_IMAGE);
762    assert(b <= GLSL_TYPE_IMAGE);
763 
764    if (a == b)
765       return src;
766 
767    switch (a) {
768    case GLSL_TYPE_UINT:
769       switch (b) {
770       case GLSL_TYPE_INT:
771          result = new(ctx) ir_expression(ir_unop_i2u, src);
772          break;
773       case GLSL_TYPE_FLOAT:
774          result = new(ctx) ir_expression(ir_unop_f2u, src);
775          break;
776       case GLSL_TYPE_BOOL:
777          result = new(ctx) ir_expression(ir_unop_i2u,
778                                          new(ctx) ir_expression(ir_unop_b2i,
779                                                                 src));
780          break;
781       case GLSL_TYPE_DOUBLE:
782          result = new(ctx) ir_expression(ir_unop_d2u, src);
783          break;
784       case GLSL_TYPE_UINT64:
785          result = new(ctx) ir_expression(ir_unop_u642u, src);
786          break;
787       case GLSL_TYPE_INT64:
788          result = new(ctx) ir_expression(ir_unop_i642u, src);
789          break;
790       case GLSL_TYPE_SAMPLER:
791          result = new(ctx) ir_expression(ir_unop_unpack_sampler_2x32, src);
792          break;
793       case GLSL_TYPE_IMAGE:
794          result = new(ctx) ir_expression(ir_unop_unpack_image_2x32, src);
795          break;
796       }
797       break;
798    case GLSL_TYPE_INT:
799       switch (b) {
800       case GLSL_TYPE_UINT:
801          result = new(ctx) ir_expression(ir_unop_u2i, src);
802          break;
803       case GLSL_TYPE_FLOAT:
804          result = new(ctx) ir_expression(ir_unop_f2i, src);
805          break;
806       case GLSL_TYPE_BOOL:
807          result = new(ctx) ir_expression(ir_unop_b2i, src);
808          break;
809       case GLSL_TYPE_DOUBLE:
810          result = new(ctx) ir_expression(ir_unop_d2i, src);
811          break;
812       case GLSL_TYPE_UINT64:
813          result = new(ctx) ir_expression(ir_unop_u642i, src);
814          break;
815       case GLSL_TYPE_INT64:
816          result = new(ctx) ir_expression(ir_unop_i642i, src);
817          break;
818       }
819       break;
820    case GLSL_TYPE_FLOAT:
821       switch (b) {
822       case GLSL_TYPE_UINT:
823          result = new(ctx) ir_expression(ir_unop_u2f, desired_type, src, NULL);
824          break;
825       case GLSL_TYPE_INT:
826          result = new(ctx) ir_expression(ir_unop_i2f, desired_type, src, NULL);
827          break;
828       case GLSL_TYPE_BOOL:
829          result = new(ctx) ir_expression(ir_unop_b2f, desired_type, src, NULL);
830          break;
831       case GLSL_TYPE_DOUBLE:
832          result = new(ctx) ir_expression(ir_unop_d2f, desired_type, src, NULL);
833          break;
834       case GLSL_TYPE_UINT64:
835          result = new(ctx) ir_expression(ir_unop_u642f, desired_type, src, NULL);
836          break;
837       case GLSL_TYPE_INT64:
838          result = new(ctx) ir_expression(ir_unop_i642f, desired_type, src, NULL);
839          break;
840       }
841       break;
842    case GLSL_TYPE_BOOL:
843       switch (b) {
844       case GLSL_TYPE_UINT:
845          result = new(ctx) ir_expression(ir_unop_i2b,
846                                          new(ctx) ir_expression(ir_unop_u2i,
847                                                                 src));
848          break;
849       case GLSL_TYPE_INT:
850          result = new(ctx) ir_expression(ir_unop_i2b, desired_type, src, NULL);
851          break;
852       case GLSL_TYPE_FLOAT:
853          result = new(ctx) ir_expression(ir_unop_f2b, desired_type, src, NULL);
854          break;
855       case GLSL_TYPE_DOUBLE:
856          result = new(ctx) ir_expression(ir_unop_d2b, desired_type, src, NULL);
857          break;
858       case GLSL_TYPE_UINT64:
859          result = new(ctx) ir_expression(ir_unop_i642b,
860                                          new(ctx) ir_expression(ir_unop_u642i64,
861                                                                 src));
862          break;
863       case GLSL_TYPE_INT64:
864          result = new(ctx) ir_expression(ir_unop_i642b, desired_type, src, NULL);
865          break;
866       }
867       break;
868    case GLSL_TYPE_DOUBLE:
869       switch (b) {
870       case GLSL_TYPE_INT:
871          result = new(ctx) ir_expression(ir_unop_i2d, src);
872          break;
873       case GLSL_TYPE_UINT:
874          result = new(ctx) ir_expression(ir_unop_u2d, src);
875          break;
876       case GLSL_TYPE_BOOL:
877          result = new(ctx) ir_expression(ir_unop_f2d,
878                                          new(ctx) ir_expression(ir_unop_b2f,
879                                                                 src));
880          break;
881       case GLSL_TYPE_FLOAT:
882          result = new(ctx) ir_expression(ir_unop_f2d, desired_type, src, NULL);
883          break;
884       case GLSL_TYPE_UINT64:
885          result = new(ctx) ir_expression(ir_unop_u642d, desired_type, src, NULL);
886          break;
887       case GLSL_TYPE_INT64:
888          result = new(ctx) ir_expression(ir_unop_i642d, desired_type, src, NULL);
889          break;
890       }
891       break;
892    case GLSL_TYPE_UINT64:
893       switch (b) {
894       case GLSL_TYPE_INT:
895          result = new(ctx) ir_expression(ir_unop_i2u64, src);
896          break;
897       case GLSL_TYPE_UINT:
898          result = new(ctx) ir_expression(ir_unop_u2u64, src);
899          break;
900       case GLSL_TYPE_BOOL:
901          result = new(ctx) ir_expression(ir_unop_i642u64,
902                                          new(ctx) ir_expression(ir_unop_b2i64,
903                                                                 src));
904          break;
905       case GLSL_TYPE_FLOAT:
906          result = new(ctx) ir_expression(ir_unop_f2u64, src);
907          break;
908       case GLSL_TYPE_DOUBLE:
909          result = new(ctx) ir_expression(ir_unop_d2u64, src);
910          break;
911       case GLSL_TYPE_INT64:
912          result = new(ctx) ir_expression(ir_unop_i642u64, src);
913          break;
914       }
915       break;
916    case GLSL_TYPE_INT64:
917       switch (b) {
918       case GLSL_TYPE_INT:
919          result = new(ctx) ir_expression(ir_unop_i2i64, src);
920          break;
921       case GLSL_TYPE_UINT:
922          result = new(ctx) ir_expression(ir_unop_u2i64, src);
923          break;
924       case GLSL_TYPE_BOOL:
925          result = new(ctx) ir_expression(ir_unop_b2i64, src);
926          break;
927       case GLSL_TYPE_FLOAT:
928          result = new(ctx) ir_expression(ir_unop_f2i64, src);
929          break;
930       case GLSL_TYPE_DOUBLE:
931          result = new(ctx) ir_expression(ir_unop_d2i64, src);
932          break;
933       case GLSL_TYPE_UINT64:
934          result = new(ctx) ir_expression(ir_unop_u642i64, src);
935          break;
936       }
937       break;
938    case GLSL_TYPE_SAMPLER:
939       switch (b) {
940       case GLSL_TYPE_UINT:
941          result = new(ctx)
942             ir_expression(ir_unop_pack_sampler_2x32, desired_type, src);
943          break;
944       }
945       break;
946    case GLSL_TYPE_IMAGE:
947       switch (b) {
948       case GLSL_TYPE_UINT:
949          result = new(ctx)
950             ir_expression(ir_unop_pack_image_2x32, desired_type, src);
951          break;
952       }
953       break;
954    }
955 
956    assert(result != NULL);
957    assert(result->type == desired_type);
958 
959    /* Try constant folding; it may fold in the conversion we just added. */
960    ir_constant *const constant = result->constant_expression_value(ctx);
961    return (constant != NULL) ? (ir_rvalue *) constant : (ir_rvalue *) result;
962 }
963 
964 
965 /**
966  * Perform automatic type and constant conversion of constructor parameters
967  *
968  * This implements the rules in the "Implicit Conversions" rules, not the
969  * "Conversion and Scalar Constructors".
970  *
971  * After attempting the implicit conversion, an attempt to convert into a
972  * constant valued expression is also done.
973  *
974  * The \c from \c ir_rvalue is converted "in place".
975  *
976  * \param from   Operand that is being converted
977  * \param to     Base type the operand will be converted to
978  * \param state  GLSL compiler state
979  *
980  * \return
981  * If the attempt to convert into a constant expression succeeds, \c true is
982  * returned. Otherwise \c false is returned.
983  */
984 static bool
implicitly_convert_component(ir_rvalue * & from,const glsl_base_type to,struct _mesa_glsl_parse_state * state)985 implicitly_convert_component(ir_rvalue * &from, const glsl_base_type to,
986                              struct _mesa_glsl_parse_state *state)
987 {
988    void *mem_ctx = state;
989    ir_rvalue *result = from;
990 
991    if (to != from->type->base_type) {
992       const glsl_type *desired_type =
993          glsl_type::get_instance(to,
994                                  from->type->vector_elements,
995                                  from->type->matrix_columns);
996 
997       if (from->type->can_implicitly_convert_to(desired_type, state)) {
998          /* Even though convert_component() implements the constructor
999           * conversion rules (not the implicit conversion rules), its safe
1000           * to use it here because we already checked that the implicit
1001           * conversion is legal.
1002           */
1003          result = convert_component(from, desired_type);
1004       }
1005    }
1006 
1007    ir_rvalue *const constant = result->constant_expression_value(mem_ctx);
1008 
1009    if (constant != NULL)
1010       result = constant;
1011 
1012    if (from != result) {
1013       from->replace_with(result);
1014       from = result;
1015    }
1016 
1017    return constant != NULL;
1018 }
1019 
1020 
1021 /**
1022  * Dereference a specific component from a scalar, vector, or matrix
1023  */
1024 static ir_rvalue *
dereference_component(ir_rvalue * src,unsigned component)1025 dereference_component(ir_rvalue *src, unsigned component)
1026 {
1027    void *ctx = ralloc_parent(src);
1028    assert(component < src->type->components());
1029 
1030    /* If the source is a constant, just create a new constant instead of a
1031     * dereference of the existing constant.
1032     */
1033    ir_constant *constant = src->as_constant();
1034    if (constant)
1035       return new(ctx) ir_constant(constant, component);
1036 
1037    if (src->type->is_scalar()) {
1038       return src;
1039    } else if (src->type->is_vector()) {
1040       return new(ctx) ir_swizzle(src, component, 0, 0, 0, 1);
1041    } else {
1042       assert(src->type->is_matrix());
1043 
1044       /* Dereference a row of the matrix, then call this function again to get
1045        * a specific element from that row.
1046        */
1047       const int c = component / src->type->column_type()->vector_elements;
1048       const int r = component % src->type->column_type()->vector_elements;
1049       ir_constant *const col_index = new(ctx) ir_constant(c);
1050       ir_dereference *const col = new(ctx) ir_dereference_array(src,
1051                                                                 col_index);
1052 
1053       col->type = src->type->column_type();
1054 
1055       return dereference_component(col, r);
1056    }
1057 
1058    assert(!"Should not get here.");
1059    return NULL;
1060 }
1061 
1062 
1063 static ir_rvalue *
process_vec_mat_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1064 process_vec_mat_constructor(exec_list *instructions,
1065                             const glsl_type *constructor_type,
1066                             YYLTYPE *loc, exec_list *parameters,
1067                             struct _mesa_glsl_parse_state *state)
1068 {
1069    void *ctx = state;
1070 
1071    /* The ARB_shading_language_420pack spec says:
1072     *
1073     * "If an initializer is a list of initializers enclosed in curly braces,
1074     *  the variable being declared must be a vector, a matrix, an array, or a
1075     *  structure.
1076     *
1077     *      int i = { 1 }; // illegal, i is not an aggregate"
1078     */
1079    if (constructor_type->vector_elements <= 1) {
1080       _mesa_glsl_error(loc, state, "aggregates can only initialize vectors, "
1081                        "matrices, arrays, and structs");
1082       return ir_rvalue::error_value(ctx);
1083    }
1084 
1085    exec_list actual_parameters;
1086    const unsigned parameter_count =
1087       process_parameters(instructions, &actual_parameters, parameters, state);
1088 
1089    if (parameter_count == 0
1090        || (constructor_type->is_vector() &&
1091            constructor_type->vector_elements != parameter_count)
1092        || (constructor_type->is_matrix() &&
1093            constructor_type->matrix_columns != parameter_count)) {
1094       _mesa_glsl_error(loc, state, "%s constructor must have %u parameters",
1095                        constructor_type->is_vector() ? "vector" : "matrix",
1096                        constructor_type->vector_elements);
1097       return ir_rvalue::error_value(ctx);
1098    }
1099 
1100    bool all_parameters_are_constant = true;
1101 
1102    /* Type cast each parameter and, if possible, fold constants. */
1103    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1104       /* Apply implicit conversions (not the scalar constructor rules, see the
1105        * spec quote above!) and attempt to convert the parameter to a constant
1106        * valued expression. After doing so, track whether or not all the
1107        * parameters to the constructor are trivially constant valued
1108        * expressions.
1109        */
1110       all_parameters_are_constant &=
1111          implicitly_convert_component(ir, constructor_type->base_type, state);
1112 
1113       if (constructor_type->is_matrix()) {
1114          if (ir->type != constructor_type->column_type()) {
1115             _mesa_glsl_error(loc, state, "type error in matrix constructor: "
1116                              "expected: %s, found %s",
1117                              constructor_type->column_type()->name,
1118                              ir->type->name);
1119             return ir_rvalue::error_value(ctx);
1120          }
1121       } else if (ir->type != constructor_type->get_scalar_type()) {
1122          _mesa_glsl_error(loc, state, "type error in vector constructor: "
1123                           "expected: %s, found %s",
1124                           constructor_type->get_scalar_type()->name,
1125                           ir->type->name);
1126          return ir_rvalue::error_value(ctx);
1127       }
1128    }
1129 
1130    if (all_parameters_are_constant)
1131       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1132 
1133    ir_variable *var = new(ctx) ir_variable(constructor_type, "vec_mat_ctor",
1134                                            ir_var_temporary);
1135    instructions->push_tail(var);
1136 
1137    int i = 0;
1138 
1139    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1140       ir_instruction *assignment = NULL;
1141 
1142       if (var->type->is_matrix()) {
1143          ir_rvalue *lhs =
1144             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1145          assignment = new(ctx) ir_assignment(lhs, rhs);
1146       } else {
1147          /* use writemask rather than index for vector */
1148          assert(var->type->is_vector());
1149          assert(i < 4);
1150          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1151          assignment = new(ctx) ir_assignment(lhs, rhs, NULL,
1152                                              (unsigned)(1 << i));
1153       }
1154 
1155       instructions->push_tail(assignment);
1156 
1157       i++;
1158    }
1159 
1160    return new(ctx) ir_dereference_variable(var);
1161 }
1162 
1163 
1164 static ir_rvalue *
process_array_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1165 process_array_constructor(exec_list *instructions,
1166                           const glsl_type *constructor_type,
1167                           YYLTYPE *loc, exec_list *parameters,
1168                           struct _mesa_glsl_parse_state *state)
1169 {
1170    void *ctx = state;
1171    /* Array constructors come in two forms: sized and unsized.  Sized array
1172     * constructors look like 'vec4[2](a, b)', where 'a' and 'b' are vec4
1173     * variables.  In this case the number of parameters must exactly match the
1174     * specified size of the array.
1175     *
1176     * Unsized array constructors look like 'vec4[](a, b)', where 'a' and 'b'
1177     * are vec4 variables.  In this case the size of the array being constructed
1178     * is determined by the number of parameters.
1179     *
1180     * From page 52 (page 58 of the PDF) of the GLSL 1.50 spec:
1181     *
1182     *    "There must be exactly the same number of arguments as the size of
1183     *    the array being constructed. If no size is present in the
1184     *    constructor, then the array is explicitly sized to the number of
1185     *    arguments provided. The arguments are assigned in order, starting at
1186     *    element 0, to the elements of the constructed array. Each argument
1187     *    must be the same type as the element type of the array, or be a type
1188     *    that can be converted to the element type of the array according to
1189     *    Section 4.1.10 "Implicit Conversions.""
1190     */
1191    exec_list actual_parameters;
1192    const unsigned parameter_count =
1193       process_parameters(instructions, &actual_parameters, parameters, state);
1194    bool is_unsized_array = constructor_type->is_unsized_array();
1195 
1196    if ((parameter_count == 0) ||
1197        (!is_unsized_array && (constructor_type->length != parameter_count))) {
1198       const unsigned min_param = is_unsized_array
1199          ? 1 : constructor_type->length;
1200 
1201       _mesa_glsl_error(loc, state, "array constructor must have %s %u "
1202                        "parameter%s",
1203                        is_unsized_array ? "at least" : "exactly",
1204                        min_param, (min_param <= 1) ? "" : "s");
1205       return ir_rvalue::error_value(ctx);
1206    }
1207 
1208    if (is_unsized_array) {
1209       constructor_type =
1210          glsl_type::get_array_instance(constructor_type->fields.array,
1211                                        parameter_count);
1212       assert(constructor_type != NULL);
1213       assert(constructor_type->length == parameter_count);
1214    }
1215 
1216    bool all_parameters_are_constant = true;
1217    const glsl_type *element_type = constructor_type->fields.array;
1218 
1219    /* Type cast each parameter and, if possible, fold constants. */
1220    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1221       /* Apply implicit conversions (not the scalar constructor rules, see the
1222        * spec quote above!) and attempt to convert the parameter to a constant
1223        * valued expression. After doing so, track whether or not all the
1224        * parameters to the constructor are trivially constant valued
1225        * expressions.
1226        */
1227       all_parameters_are_constant &=
1228          implicitly_convert_component(ir, element_type->base_type, state);
1229 
1230       if (constructor_type->fields.array->is_unsized_array()) {
1231          /* As the inner parameters of the constructor are created without
1232           * knowledge of each other we need to check to make sure unsized
1233           * parameters of unsized constructors all end up with the same size.
1234           *
1235           * e.g we make sure to fail for a constructor like this:
1236           * vec4[][] a = vec4[][](vec4[](vec4(0.0), vec4(1.0)),
1237           *                       vec4[](vec4(0.0), vec4(1.0), vec4(1.0)),
1238           *                       vec4[](vec4(0.0), vec4(1.0)));
1239           */
1240          if (element_type->is_unsized_array()) {
1241             /* This is the first parameter so just get the type */
1242             element_type = ir->type;
1243          } else if (element_type != ir->type) {
1244             _mesa_glsl_error(loc, state, "type error in array constructor: "
1245                              "expected: %s, found %s",
1246                              element_type->name,
1247                              ir->type->name);
1248             return ir_rvalue::error_value(ctx);
1249          }
1250       } else if (ir->type != constructor_type->fields.array) {
1251          _mesa_glsl_error(loc, state, "type error in array constructor: "
1252                           "expected: %s, found %s",
1253                           constructor_type->fields.array->name,
1254                           ir->type->name);
1255          return ir_rvalue::error_value(ctx);
1256       } else {
1257          element_type = ir->type;
1258       }
1259    }
1260 
1261    if (constructor_type->fields.array->is_unsized_array()) {
1262       constructor_type =
1263          glsl_type::get_array_instance(element_type,
1264                                        parameter_count);
1265       assert(constructor_type != NULL);
1266       assert(constructor_type->length == parameter_count);
1267    }
1268 
1269    if (all_parameters_are_constant)
1270       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1271 
1272    ir_variable *var = new(ctx) ir_variable(constructor_type, "array_ctor",
1273                                            ir_var_temporary);
1274    instructions->push_tail(var);
1275 
1276    int i = 0;
1277    foreach_in_list(ir_rvalue, rhs, &actual_parameters) {
1278       ir_rvalue *lhs = new(ctx) ir_dereference_array(var,
1279                                                      new(ctx) ir_constant(i));
1280 
1281       ir_instruction *assignment = new(ctx) ir_assignment(lhs, rhs);
1282       instructions->push_tail(assignment);
1283 
1284       i++;
1285    }
1286 
1287    return new(ctx) ir_dereference_variable(var);
1288 }
1289 
1290 
1291 /**
1292  * Determine if a list consists of a single scalar r-value
1293  */
1294 static bool
single_scalar_parameter(exec_list * parameters)1295 single_scalar_parameter(exec_list *parameters)
1296 {
1297    const ir_rvalue *const p = (ir_rvalue *) parameters->get_head_raw();
1298    assert(((ir_rvalue *)p)->as_rvalue() != NULL);
1299 
1300    return (p->type->is_scalar() && p->next->is_tail_sentinel());
1301 }
1302 
1303 
1304 /**
1305  * Generate inline code for a vector constructor
1306  *
1307  * The generated constructor code will consist of a temporary variable
1308  * declaration of the same type as the constructor.  A sequence of assignments
1309  * from constructor parameters to the temporary will follow.
1310  *
1311  * \return
1312  * An \c ir_dereference_variable of the temprorary generated in the constructor
1313  * body.
1314  */
1315 static ir_rvalue *
emit_inline_vector_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1316 emit_inline_vector_constructor(const glsl_type *type,
1317                                exec_list *instructions,
1318                                exec_list *parameters,
1319                                void *ctx)
1320 {
1321    assert(!parameters->is_empty());
1322 
1323    ir_variable *var = new(ctx) ir_variable(type, "vec_ctor", ir_var_temporary);
1324    instructions->push_tail(var);
1325 
1326    /* There are three kinds of vector constructors.
1327     *
1328     *  - Construct a vector from a single scalar by replicating that scalar to
1329     *    all components of the vector.
1330     *
1331     *  - Construct a vector from at least a matrix. This case should already
1332     *    have been taken care of in ast_function_expression::hir by breaking
1333     *    down the matrix into a series of column vectors.
1334     *
1335     *  - Construct a vector from an arbirary combination of vectors and
1336     *    scalars.  The components of the constructor parameters are assigned
1337     *    to the vector in order until the vector is full.
1338     */
1339    const unsigned lhs_components = type->components();
1340    if (single_scalar_parameter(parameters)) {
1341       ir_rvalue *first_param = (ir_rvalue *)parameters->get_head_raw();
1342       ir_rvalue *rhs = new(ctx) ir_swizzle(first_param, 0, 0, 0, 0,
1343                                            lhs_components);
1344       ir_dereference_variable *lhs = new(ctx) ir_dereference_variable(var);
1345       const unsigned mask = (1U << lhs_components) - 1;
1346 
1347       assert(rhs->type == lhs->type);
1348 
1349       ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs, NULL, mask);
1350       instructions->push_tail(inst);
1351    } else {
1352       unsigned base_component = 0;
1353       unsigned base_lhs_component = 0;
1354       ir_constant_data data;
1355       unsigned constant_mask = 0, constant_components = 0;
1356 
1357       memset(&data, 0, sizeof(data));
1358 
1359       foreach_in_list(ir_rvalue, param, parameters) {
1360          unsigned rhs_components = param->type->components();
1361 
1362          /* Do not try to assign more components to the vector than it has! */
1363          if ((rhs_components + base_lhs_component) > lhs_components) {
1364             rhs_components = lhs_components - base_lhs_component;
1365          }
1366 
1367          const ir_constant *const c = param->as_constant();
1368          if (c != NULL) {
1369             for (unsigned i = 0; i < rhs_components; i++) {
1370                switch (c->type->base_type) {
1371                case GLSL_TYPE_UINT:
1372                   data.u[i + base_component] = c->get_uint_component(i);
1373                   break;
1374                case GLSL_TYPE_INT:
1375                   data.i[i + base_component] = c->get_int_component(i);
1376                   break;
1377                case GLSL_TYPE_FLOAT:
1378                   data.f[i + base_component] = c->get_float_component(i);
1379                   break;
1380                case GLSL_TYPE_DOUBLE:
1381                   data.d[i + base_component] = c->get_double_component(i);
1382                   break;
1383                case GLSL_TYPE_BOOL:
1384                   data.b[i + base_component] = c->get_bool_component(i);
1385                   break;
1386                case GLSL_TYPE_UINT64:
1387                   data.u64[i + base_component] = c->get_uint64_component(i);
1388                   break;
1389                case GLSL_TYPE_INT64:
1390                   data.i64[i + base_component] = c->get_int64_component(i);
1391                   break;
1392                default:
1393                   assert(!"Should not get here.");
1394                   break;
1395                }
1396             }
1397 
1398             /* Mask of fields to be written in the assignment. */
1399             constant_mask |= ((1U << rhs_components) - 1) << base_lhs_component;
1400             constant_components += rhs_components;
1401 
1402             base_component += rhs_components;
1403          }
1404          /* Advance the component index by the number of components
1405           * that were just assigned.
1406           */
1407          base_lhs_component += rhs_components;
1408       }
1409 
1410       if (constant_mask != 0) {
1411          ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1412          const glsl_type *rhs_type =
1413             glsl_type::get_instance(var->type->base_type,
1414                                     constant_components,
1415                                     1);
1416          ir_rvalue *rhs = new(ctx) ir_constant(rhs_type, &data);
1417 
1418          ir_instruction *inst =
1419             new(ctx) ir_assignment(lhs, rhs, NULL, constant_mask);
1420          instructions->push_tail(inst);
1421       }
1422 
1423       base_component = 0;
1424       foreach_in_list(ir_rvalue, param, parameters) {
1425          unsigned rhs_components = param->type->components();
1426 
1427          /* Do not try to assign more components to the vector than it has! */
1428          if ((rhs_components + base_component) > lhs_components) {
1429             rhs_components = lhs_components - base_component;
1430          }
1431 
1432          /* If we do not have any components left to copy, break out of the
1433           * loop. This can happen when initializing a vec4 with a mat3 as the
1434           * mat3 would have been broken into a series of column vectors.
1435           */
1436          if (rhs_components == 0) {
1437             break;
1438          }
1439 
1440          const ir_constant *const c = param->as_constant();
1441          if (c == NULL) {
1442             /* Mask of fields to be written in the assignment. */
1443             const unsigned write_mask = ((1U << rhs_components) - 1)
1444                << base_component;
1445 
1446             ir_dereference *lhs = new(ctx) ir_dereference_variable(var);
1447 
1448             /* Generate a swizzle so that LHS and RHS sizes match. */
1449             ir_rvalue *rhs =
1450                new(ctx) ir_swizzle(param, 0, 1, 2, 3, rhs_components);
1451 
1452             ir_instruction *inst =
1453                new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1454             instructions->push_tail(inst);
1455          }
1456 
1457          /* Advance the component index by the number of components that were
1458           * just assigned.
1459           */
1460          base_component += rhs_components;
1461       }
1462    }
1463    return new(ctx) ir_dereference_variable(var);
1464 }
1465 
1466 
1467 /**
1468  * Generate assignment of a portion of a vector to a portion of a matrix column
1469  *
1470  * \param src_base  First component of the source to be used in assignment
1471  * \param column    Column of destination to be assiged
1472  * \param row_base  First component of the destination column to be assigned
1473  * \param count     Number of components to be assigned
1474  *
1475  * \note
1476  * \c src_base + \c count must be less than or equal to the number of
1477  * components in the source vector.
1478  */
1479 static ir_instruction *
assign_to_matrix_column(ir_variable * var,unsigned column,unsigned row_base,ir_rvalue * src,unsigned src_base,unsigned count,void * mem_ctx)1480 assign_to_matrix_column(ir_variable *var, unsigned column, unsigned row_base,
1481                         ir_rvalue *src, unsigned src_base, unsigned count,
1482                         void *mem_ctx)
1483 {
1484    ir_constant *col_idx = new(mem_ctx) ir_constant(column);
1485    ir_dereference *column_ref = new(mem_ctx) ir_dereference_array(var,
1486                                                                   col_idx);
1487 
1488    assert(column_ref->type->components() >= (row_base + count));
1489    assert(src->type->components() >= (src_base + count));
1490 
1491    /* Generate a swizzle that extracts the number of components from the source
1492     * that are to be assigned to the column of the matrix.
1493     */
1494    if (count < src->type->vector_elements) {
1495       src = new(mem_ctx) ir_swizzle(src,
1496                                     src_base + 0, src_base + 1,
1497                                     src_base + 2, src_base + 3,
1498                                     count);
1499    }
1500 
1501    /* Mask of fields to be written in the assignment. */
1502    const unsigned write_mask = ((1U << count) - 1) << row_base;
1503 
1504    return new(mem_ctx) ir_assignment(column_ref, src, NULL, write_mask);
1505 }
1506 
1507 
1508 /**
1509  * Generate inline code for a matrix constructor
1510  *
1511  * The generated constructor code will consist of a temporary variable
1512  * declaration of the same type as the constructor.  A sequence of assignments
1513  * from constructor parameters to the temporary will follow.
1514  *
1515  * \return
1516  * An \c ir_dereference_variable of the temprorary generated in the constructor
1517  * body.
1518  */
1519 static ir_rvalue *
emit_inline_matrix_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * ctx)1520 emit_inline_matrix_constructor(const glsl_type *type,
1521                                exec_list *instructions,
1522                                exec_list *parameters,
1523                                void *ctx)
1524 {
1525    assert(!parameters->is_empty());
1526 
1527    ir_variable *var = new(ctx) ir_variable(type, "mat_ctor", ir_var_temporary);
1528    instructions->push_tail(var);
1529 
1530    /* There are three kinds of matrix constructors.
1531     *
1532     *  - Construct a matrix from a single scalar by replicating that scalar to
1533     *    along the diagonal of the matrix and setting all other components to
1534     *    zero.
1535     *
1536     *  - Construct a matrix from an arbirary combination of vectors and
1537     *    scalars.  The components of the constructor parameters are assigned
1538     *    to the matrix in column-major order until the matrix is full.
1539     *
1540     *  - Construct a matrix from a single matrix.  The source matrix is copied
1541     *    to the upper left portion of the constructed matrix, and the remaining
1542     *    elements take values from the identity matrix.
1543     */
1544    ir_rvalue *const first_param = (ir_rvalue *) parameters->get_head_raw();
1545    if (single_scalar_parameter(parameters)) {
1546       /* Assign the scalar to the X component of a vec4, and fill the remaining
1547        * components with zero.
1548        */
1549       glsl_base_type param_base_type = first_param->type->base_type;
1550       assert(first_param->type->is_float() || first_param->type->is_double());
1551       ir_variable *rhs_var =
1552          new(ctx) ir_variable(glsl_type::get_instance(param_base_type, 4, 1),
1553                               "mat_ctor_vec",
1554                               ir_var_temporary);
1555       instructions->push_tail(rhs_var);
1556 
1557       ir_constant_data zero;
1558       for (unsigned i = 0; i < 4; i++)
1559          if (first_param->type->is_float())
1560             zero.f[i] = 0.0;
1561          else
1562             zero.d[i] = 0.0;
1563 
1564       ir_instruction *inst =
1565          new(ctx) ir_assignment(new(ctx) ir_dereference_variable(rhs_var),
1566                                 new(ctx) ir_constant(rhs_var->type, &zero));
1567       instructions->push_tail(inst);
1568 
1569       ir_dereference *const rhs_ref =
1570          new(ctx) ir_dereference_variable(rhs_var);
1571 
1572       inst = new(ctx) ir_assignment(rhs_ref, first_param, NULL, 0x01);
1573       instructions->push_tail(inst);
1574 
1575       /* Assign the temporary vector to each column of the destination matrix
1576        * with a swizzle that puts the X component on the diagonal of the
1577        * matrix.  In some cases this may mean that the X component does not
1578        * get assigned into the column at all (i.e., when the matrix has more
1579        * columns than rows).
1580        */
1581       static const unsigned rhs_swiz[4][4] = {
1582          { 0, 1, 1, 1 },
1583          { 1, 0, 1, 1 },
1584          { 1, 1, 0, 1 },
1585          { 1, 1, 1, 0 }
1586       };
1587 
1588       const unsigned cols_to_init = MIN2(type->matrix_columns,
1589                                          type->vector_elements);
1590       for (unsigned i = 0; i < cols_to_init; i++) {
1591          ir_constant *const col_idx = new(ctx) ir_constant(i);
1592          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1593                                                                   col_idx);
1594 
1595          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1596          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, rhs_swiz[i],
1597                                                     type->vector_elements);
1598 
1599          inst = new(ctx) ir_assignment(col_ref, rhs);
1600          instructions->push_tail(inst);
1601       }
1602 
1603       for (unsigned i = cols_to_init; i < type->matrix_columns; i++) {
1604          ir_constant *const col_idx = new(ctx) ir_constant(i);
1605          ir_rvalue *const col_ref = new(ctx) ir_dereference_array(var,
1606                                                                   col_idx);
1607 
1608          ir_rvalue *const rhs_ref = new(ctx) ir_dereference_variable(rhs_var);
1609          ir_rvalue *const rhs = new(ctx) ir_swizzle(rhs_ref, 1, 1, 1, 1,
1610                                                     type->vector_elements);
1611 
1612          inst = new(ctx) ir_assignment(col_ref, rhs);
1613          instructions->push_tail(inst);
1614       }
1615    } else if (first_param->type->is_matrix()) {
1616       /* From page 50 (56 of the PDF) of the GLSL 1.50 spec:
1617        *
1618        *     "If a matrix is constructed from a matrix, then each component
1619        *     (column i, row j) in the result that has a corresponding
1620        *     component (column i, row j) in the argument will be initialized
1621        *     from there. All other components will be initialized to the
1622        *     identity matrix. If a matrix argument is given to a matrix
1623        *     constructor, it is an error to have any other arguments."
1624        */
1625       assert(first_param->next->is_tail_sentinel());
1626       ir_rvalue *const src_matrix = first_param;
1627 
1628       /* If the source matrix is smaller, pre-initialize the relavent parts of
1629        * the destination matrix to the identity matrix.
1630        */
1631       if ((src_matrix->type->matrix_columns < var->type->matrix_columns) ||
1632           (src_matrix->type->vector_elements < var->type->vector_elements)) {
1633 
1634          /* If the source matrix has fewer rows, every column of the
1635           * destination must be initialized.  Otherwise only the columns in
1636           * the destination that do not exist in the source must be
1637           * initialized.
1638           */
1639          unsigned col =
1640             (src_matrix->type->vector_elements < var->type->vector_elements)
1641             ? 0 : src_matrix->type->matrix_columns;
1642 
1643          const glsl_type *const col_type = var->type->column_type();
1644          for (/* empty */; col < var->type->matrix_columns; col++) {
1645             ir_constant_data ident;
1646 
1647             if (!col_type->is_double()) {
1648                ident.f[0] = 0.0f;
1649                ident.f[1] = 0.0f;
1650                ident.f[2] = 0.0f;
1651                ident.f[3] = 0.0f;
1652                ident.f[col] = 1.0f;
1653             } else {
1654                ident.d[0] = 0.0;
1655                ident.d[1] = 0.0;
1656                ident.d[2] = 0.0;
1657                ident.d[3] = 0.0;
1658                ident.d[col] = 1.0;
1659             }
1660 
1661             ir_rvalue *const rhs = new(ctx) ir_constant(col_type, &ident);
1662 
1663             ir_rvalue *const lhs =
1664                new(ctx) ir_dereference_array(var, new(ctx) ir_constant(col));
1665 
1666             ir_instruction *inst = new(ctx) ir_assignment(lhs, rhs);
1667             instructions->push_tail(inst);
1668          }
1669       }
1670 
1671       /* Assign columns from the source matrix to the destination matrix.
1672        *
1673        * Since the parameter will be used in the RHS of multiple assignments,
1674        * generate a temporary and copy the paramter there.
1675        */
1676       ir_variable *const rhs_var =
1677          new(ctx) ir_variable(first_param->type, "mat_ctor_mat",
1678                               ir_var_temporary);
1679       instructions->push_tail(rhs_var);
1680 
1681       ir_dereference *const rhs_var_ref =
1682          new(ctx) ir_dereference_variable(rhs_var);
1683       ir_instruction *const inst =
1684          new(ctx) ir_assignment(rhs_var_ref, first_param);
1685       instructions->push_tail(inst);
1686 
1687       const unsigned last_row = MIN2(src_matrix->type->vector_elements,
1688                                      var->type->vector_elements);
1689       const unsigned last_col = MIN2(src_matrix->type->matrix_columns,
1690                                      var->type->matrix_columns);
1691 
1692       unsigned swiz[4] = { 0, 0, 0, 0 };
1693       for (unsigned i = 1; i < last_row; i++)
1694          swiz[i] = i;
1695 
1696       const unsigned write_mask = (1U << last_row) - 1;
1697 
1698       for (unsigned i = 0; i < last_col; i++) {
1699          ir_dereference *const lhs =
1700             new(ctx) ir_dereference_array(var, new(ctx) ir_constant(i));
1701          ir_rvalue *const rhs_col =
1702             new(ctx) ir_dereference_array(rhs_var, new(ctx) ir_constant(i));
1703 
1704          /* If one matrix has columns that are smaller than the columns of the
1705           * other matrix, wrap the column access of the larger with a swizzle
1706           * so that the LHS and RHS of the assignment have the same size (and
1707           * therefore have the same type).
1708           *
1709           * It would be perfectly valid to unconditionally generate the
1710           * swizzles, this this will typically result in a more compact IR
1711           * tree.
1712           */
1713          ir_rvalue *rhs;
1714          if (lhs->type->vector_elements != rhs_col->type->vector_elements) {
1715             rhs = new(ctx) ir_swizzle(rhs_col, swiz, last_row);
1716          } else {
1717             rhs = rhs_col;
1718          }
1719 
1720          ir_instruction *inst =
1721             new(ctx) ir_assignment(lhs, rhs, NULL, write_mask);
1722          instructions->push_tail(inst);
1723       }
1724    } else {
1725       const unsigned cols = type->matrix_columns;
1726       const unsigned rows = type->vector_elements;
1727       unsigned remaining_slots = rows * cols;
1728       unsigned col_idx = 0;
1729       unsigned row_idx = 0;
1730 
1731       foreach_in_list(ir_rvalue, rhs, parameters) {
1732          unsigned rhs_components = rhs->type->components();
1733          unsigned rhs_base = 0;
1734 
1735          if (remaining_slots == 0)
1736             break;
1737 
1738          /* Since the parameter might be used in the RHS of two assignments,
1739           * generate a temporary and copy the paramter there.
1740           */
1741          ir_variable *rhs_var =
1742             new(ctx) ir_variable(rhs->type, "mat_ctor_vec", ir_var_temporary);
1743          instructions->push_tail(rhs_var);
1744 
1745          ir_dereference *rhs_var_ref =
1746             new(ctx) ir_dereference_variable(rhs_var);
1747          ir_instruction *inst = new(ctx) ir_assignment(rhs_var_ref, rhs);
1748          instructions->push_tail(inst);
1749 
1750          do {
1751             /* Assign the current parameter to as many components of the matrix
1752              * as it will fill.
1753              *
1754              * NOTE: A single vector parameter can span two matrix columns.  A
1755              * single vec4, for example, can completely fill a mat2.
1756              */
1757             unsigned count = MIN2(rows - row_idx,
1758                                   rhs_components - rhs_base);
1759 
1760             rhs_var_ref = new(ctx) ir_dereference_variable(rhs_var);
1761             ir_instruction *inst = assign_to_matrix_column(var, col_idx,
1762                                                            row_idx,
1763                                                            rhs_var_ref,
1764                                                            rhs_base,
1765                                                            count, ctx);
1766             instructions->push_tail(inst);
1767             rhs_base += count;
1768             row_idx += count;
1769             remaining_slots -= count;
1770 
1771             /* Sometimes, there is still data left in the parameters and
1772              * components left to be set in the destination but in other
1773              * column.
1774              */
1775             if (row_idx >= rows) {
1776                row_idx = 0;
1777                col_idx++;
1778             }
1779          } while(remaining_slots > 0 && rhs_base < rhs_components);
1780       }
1781    }
1782 
1783    return new(ctx) ir_dereference_variable(var);
1784 }
1785 
1786 
1787 static ir_rvalue *
emit_inline_record_constructor(const glsl_type * type,exec_list * instructions,exec_list * parameters,void * mem_ctx)1788 emit_inline_record_constructor(const glsl_type *type,
1789                                exec_list *instructions,
1790                                exec_list *parameters,
1791                                void *mem_ctx)
1792 {
1793    ir_variable *const var =
1794       new(mem_ctx) ir_variable(type, "record_ctor", ir_var_temporary);
1795    ir_dereference_variable *const d =
1796       new(mem_ctx) ir_dereference_variable(var);
1797 
1798    instructions->push_tail(var);
1799 
1800    exec_node *node = parameters->get_head_raw();
1801    for (unsigned i = 0; i < type->length; i++) {
1802       assert(!node->is_tail_sentinel());
1803 
1804       ir_dereference *const lhs =
1805          new(mem_ctx) ir_dereference_record(d->clone(mem_ctx, NULL),
1806                                             type->fields.structure[i].name);
1807 
1808       ir_rvalue *const rhs = ((ir_instruction *) node)->as_rvalue();
1809       assert(rhs != NULL);
1810 
1811       ir_instruction *const assign = new(mem_ctx) ir_assignment(lhs, rhs);
1812 
1813       instructions->push_tail(assign);
1814       node = node->next;
1815    }
1816 
1817    return d;
1818 }
1819 
1820 
1821 static ir_rvalue *
process_record_constructor(exec_list * instructions,const glsl_type * constructor_type,YYLTYPE * loc,exec_list * parameters,struct _mesa_glsl_parse_state * state)1822 process_record_constructor(exec_list *instructions,
1823                            const glsl_type *constructor_type,
1824                            YYLTYPE *loc, exec_list *parameters,
1825                            struct _mesa_glsl_parse_state *state)
1826 {
1827    void *ctx = state;
1828    /* From page 32 (page 38 of the PDF) of the GLSL 1.20 spec:
1829     *
1830     *    "The arguments to the constructor will be used to set the structure's
1831     *     fields, in order, using one argument per field. Each argument must
1832     *     be the same type as the field it sets, or be a type that can be
1833     *     converted to the field's type according to Section 4.1.10 “Implicit
1834     *     Conversions.”"
1835     *
1836     * From page 35 (page 41 of the PDF) of the GLSL 4.20 spec:
1837     *
1838     *    "In all cases, the innermost initializer (i.e., not a list of
1839     *     initializers enclosed in curly braces) applied to an object must
1840     *     have the same type as the object being initialized or be a type that
1841     *     can be converted to the object's type according to section 4.1.10
1842     *     "Implicit Conversions". In the latter case, an implicit conversion
1843     *     will be done on the initializer before the assignment is done."
1844     */
1845    exec_list actual_parameters;
1846 
1847    const unsigned parameter_count =
1848          process_parameters(instructions, &actual_parameters, parameters,
1849                             state);
1850 
1851    if (parameter_count != constructor_type->length) {
1852       _mesa_glsl_error(loc, state,
1853                        "%s parameters in constructor for `%s'",
1854                        parameter_count > constructor_type->length
1855                        ? "too many": "insufficient",
1856                        constructor_type->name);
1857       return ir_rvalue::error_value(ctx);
1858    }
1859 
1860    bool all_parameters_are_constant = true;
1861 
1862    int i = 0;
1863    /* Type cast each parameter and, if possible, fold constants. */
1864    foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
1865 
1866       const glsl_struct_field *struct_field =
1867          &constructor_type->fields.structure[i];
1868 
1869       /* Apply implicit conversions (not the scalar constructor rules, see the
1870        * spec quote above!) and attempt to convert the parameter to a constant
1871        * valued expression. After doing so, track whether or not all the
1872        * parameters to the constructor are trivially constant valued
1873        * expressions.
1874        */
1875       all_parameters_are_constant &=
1876          implicitly_convert_component(ir, struct_field->type->base_type,
1877                                       state);
1878 
1879       if (ir->type != struct_field->type) {
1880          _mesa_glsl_error(loc, state,
1881                           "parameter type mismatch in constructor for `%s.%s' "
1882                           "(%s vs %s)",
1883                           constructor_type->name,
1884                           struct_field->name,
1885                           ir->type->name,
1886                           struct_field->type->name);
1887          return ir_rvalue::error_value(ctx);
1888       }
1889 
1890       i++;
1891    }
1892 
1893    if (all_parameters_are_constant) {
1894       return new(ctx) ir_constant(constructor_type, &actual_parameters);
1895    } else {
1896       return emit_inline_record_constructor(constructor_type, instructions,
1897                                             &actual_parameters, state);
1898    }
1899 }
1900 
1901 ir_rvalue *
handle_method(exec_list * instructions,struct _mesa_glsl_parse_state * state)1902 ast_function_expression::handle_method(exec_list *instructions,
1903                                        struct _mesa_glsl_parse_state *state)
1904 {
1905    const ast_expression *field = subexpressions[0];
1906    ir_rvalue *op;
1907    ir_rvalue *result;
1908    void *ctx = state;
1909    /* Handle "method calls" in GLSL 1.20 - namely, array.length() */
1910    YYLTYPE loc = get_location();
1911    state->check_version(120, 300, &loc, "methods not supported");
1912 
1913    const char *method;
1914    method = field->primary_expression.identifier;
1915 
1916    /* This would prevent to raise "uninitialized variable" warnings when
1917     * calling array.length.
1918     */
1919    field->subexpressions[0]->set_is_lhs(true);
1920    op = field->subexpressions[0]->hir(instructions, state);
1921    if (strcmp(method, "length") == 0) {
1922       if (!this->expressions.is_empty()) {
1923          _mesa_glsl_error(&loc, state, "length method takes no arguments");
1924          goto fail;
1925       }
1926 
1927       if (op->type->is_array()) {
1928          if (op->type->is_unsized_array()) {
1929             if (!state->has_shader_storage_buffer_objects()) {
1930                _mesa_glsl_error(&loc, state,
1931                                 "length called on unsized array"
1932                                 " only available with"
1933                                 " ARB_shader_storage_buffer_object");
1934             }
1935             /* Calculate length of an unsized array in run-time */
1936             result = new(ctx) ir_expression(ir_unop_ssbo_unsized_array_length,
1937                                             op);
1938          } else {
1939             result = new(ctx) ir_constant(op->type->array_size());
1940          }
1941       } else if (op->type->is_vector()) {
1942          if (state->has_420pack()) {
1943             /* .length() returns int. */
1944             result = new(ctx) ir_constant((int) op->type->vector_elements);
1945          } else {
1946             _mesa_glsl_error(&loc, state, "length method on matrix only"
1947                              " available with ARB_shading_language_420pack");
1948             goto fail;
1949          }
1950       } else if (op->type->is_matrix()) {
1951          if (state->has_420pack()) {
1952             /* .length() returns int. */
1953             result = new(ctx) ir_constant((int) op->type->matrix_columns);
1954          } else {
1955             _mesa_glsl_error(&loc, state, "length method on matrix only"
1956                              " available with ARB_shading_language_420pack");
1957             goto fail;
1958          }
1959       } else {
1960          _mesa_glsl_error(&loc, state, "length called on scalar.");
1961          goto fail;
1962       }
1963    } else {
1964       _mesa_glsl_error(&loc, state, "unknown method: `%s'", method);
1965       goto fail;
1966    }
1967    return result;
1968  fail:
1969    return ir_rvalue::error_value(ctx);
1970 }
1971 
is_valid_constructor(const glsl_type * type,struct _mesa_glsl_parse_state * state)1972 static inline bool is_valid_constructor(const glsl_type *type,
1973                                         struct _mesa_glsl_parse_state *state)
1974 {
1975    return type->is_numeric() || type->is_boolean() ||
1976           (state->has_bindless() && (type->is_sampler() || type->is_image()));
1977 }
1978 
1979 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)1980 ast_function_expression::hir(exec_list *instructions,
1981                              struct _mesa_glsl_parse_state *state)
1982 {
1983    void *ctx = state;
1984    /* There are three sorts of function calls.
1985     *
1986     * 1. constructors - The first subexpression is an ast_type_specifier.
1987     * 2. methods - Only the .length() method of array types.
1988     * 3. functions - Calls to regular old functions.
1989     *
1990     */
1991    if (is_constructor()) {
1992       const ast_type_specifier *type =
1993          (ast_type_specifier *) subexpressions[0];
1994       YYLTYPE loc = type->get_location();
1995       const char *name;
1996 
1997       const glsl_type *const constructor_type = type->glsl_type(& name, state);
1998 
1999       /* constructor_type can be NULL if a variable with the same name as the
2000        * structure has come into scope.
2001        */
2002       if (constructor_type == NULL) {
2003          _mesa_glsl_error(& loc, state, "unknown type `%s' (structure name "
2004                           "may be shadowed by a variable with the same name)",
2005                           type->type_name);
2006          return ir_rvalue::error_value(ctx);
2007       }
2008 
2009 
2010       /* Constructors for opaque types are illegal.
2011        *
2012        * From section 4.1.7 of the ARB_bindless_texture spec:
2013        *
2014        * "Samplers are represented using 64-bit integer handles, and may be "
2015        *  converted to and from 64-bit integers using constructors."
2016        *
2017        * From section 4.1.X of the ARB_bindless_texture spec:
2018        *
2019        * "Images are represented using 64-bit integer handles, and may be
2020        *  converted to and from 64-bit integers using constructors."
2021        */
2022       if (constructor_type->contains_atomic() ||
2023           (!state->has_bindless() && constructor_type->contains_opaque())) {
2024          _mesa_glsl_error(& loc, state, "cannot construct %s type `%s'",
2025                           state->has_bindless() ? "atomic" : "opaque",
2026                           constructor_type->name);
2027          return ir_rvalue::error_value(ctx);
2028       }
2029 
2030       if (constructor_type->is_subroutine()) {
2031          _mesa_glsl_error(& loc, state,
2032                           "subroutine name cannot be a constructor `%s'",
2033                           constructor_type->name);
2034          return ir_rvalue::error_value(ctx);
2035       }
2036 
2037       if (constructor_type->is_array()) {
2038          if (!state->check_version(120, 300, &loc,
2039                                    "array constructors forbidden")) {
2040             return ir_rvalue::error_value(ctx);
2041          }
2042 
2043          return process_array_constructor(instructions, constructor_type,
2044                                           & loc, &this->expressions, state);
2045       }
2046 
2047 
2048       /* There are two kinds of constructor calls.  Constructors for arrays and
2049        * structures must have the exact number of arguments with matching types
2050        * in the correct order.  These constructors follow essentially the same
2051        * type matching rules as functions.
2052        *
2053        * Constructors for built-in language types, such as mat4 and vec2, are
2054        * free form.  The only requirements are that the parameters must provide
2055        * enough values of the correct scalar type and that no arguments are
2056        * given past the last used argument.
2057        *
2058        * When using the C-style initializer syntax from GLSL 4.20, constructors
2059        * must have the exact number of arguments with matching types in the
2060        * correct order.
2061        */
2062       if (constructor_type->is_record()) {
2063          return process_record_constructor(instructions, constructor_type,
2064                                            &loc, &this->expressions,
2065                                            state);
2066       }
2067 
2068       if (!is_valid_constructor(constructor_type, state))
2069          return ir_rvalue::error_value(ctx);
2070 
2071       /* Total number of components of the type being constructed. */
2072       const unsigned type_components = constructor_type->components();
2073 
2074       /* Number of components from parameters that have actually been
2075        * consumed.  This is used to perform several kinds of error checking.
2076        */
2077       unsigned components_used = 0;
2078 
2079       unsigned matrix_parameters = 0;
2080       unsigned nonmatrix_parameters = 0;
2081       exec_list actual_parameters;
2082 
2083       foreach_list_typed(ast_node, ast, link, &this->expressions) {
2084          ir_rvalue *result = ast->hir(instructions, state);
2085 
2086          /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2087           *
2088           *    "It is an error to provide extra arguments beyond this
2089           *    last used argument."
2090           */
2091          if (components_used >= type_components) {
2092             _mesa_glsl_error(& loc, state, "too many parameters to `%s' "
2093                              "constructor",
2094                              constructor_type->name);
2095             return ir_rvalue::error_value(ctx);
2096          }
2097 
2098          if (!is_valid_constructor(result->type, state)) {
2099             _mesa_glsl_error(& loc, state, "cannot construct `%s' from a "
2100                              "non-numeric data type",
2101                              constructor_type->name);
2102             return ir_rvalue::error_value(ctx);
2103          }
2104 
2105          /* Count the number of matrix and nonmatrix parameters.  This
2106           * is used below to enforce some of the constructor rules.
2107           */
2108          if (result->type->is_matrix())
2109             matrix_parameters++;
2110          else
2111             nonmatrix_parameters++;
2112 
2113          actual_parameters.push_tail(result);
2114          components_used += result->type->components();
2115       }
2116 
2117       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2118        *
2119        *    "It is an error to construct matrices from other matrices. This
2120        *    is reserved for future use."
2121        */
2122       if (matrix_parameters > 0
2123           && constructor_type->is_matrix()
2124           && !state->check_version(120, 100, &loc,
2125                                    "cannot construct `%s' from a matrix",
2126                                    constructor_type->name)) {
2127          return ir_rvalue::error_value(ctx);
2128       }
2129 
2130       /* From page 50 (page 56 of the PDF) of the GLSL 1.50 spec:
2131        *
2132        *    "If a matrix argument is given to a matrix constructor, it is
2133        *    an error to have any other arguments."
2134        */
2135       if ((matrix_parameters > 0)
2136           && ((matrix_parameters + nonmatrix_parameters) > 1)
2137           && constructor_type->is_matrix()) {
2138          _mesa_glsl_error(& loc, state, "for matrix `%s' constructor, "
2139                           "matrix must be only parameter",
2140                           constructor_type->name);
2141          return ir_rvalue::error_value(ctx);
2142       }
2143 
2144       /* From page 28 (page 34 of the PDF) of the GLSL 1.10 spec:
2145        *
2146        *    "In these cases, there must be enough components provided in the
2147        *    arguments to provide an initializer for every component in the
2148        *    constructed value."
2149        */
2150       if (components_used < type_components && components_used != 1
2151           && matrix_parameters == 0) {
2152          _mesa_glsl_error(& loc, state, "too few components to construct "
2153                           "`%s'",
2154                           constructor_type->name);
2155          return ir_rvalue::error_value(ctx);
2156       }
2157 
2158       /* Matrices can never be consumed as is by any constructor but matrix
2159        * constructors. If the constructor type is not matrix, always break the
2160        * matrix up into a series of column vectors.
2161        */
2162       if (!constructor_type->is_matrix()) {
2163          foreach_in_list_safe(ir_rvalue, matrix, &actual_parameters) {
2164             if (!matrix->type->is_matrix())
2165                continue;
2166 
2167             /* Create a temporary containing the matrix. */
2168             ir_variable *var = new(ctx) ir_variable(matrix->type, "matrix_tmp",
2169                                                     ir_var_temporary);
2170             instructions->push_tail(var);
2171             instructions->push_tail(
2172                new(ctx) ir_assignment(new(ctx) ir_dereference_variable(var),
2173                                       matrix));
2174             var->constant_value = matrix->constant_expression_value(ctx);
2175 
2176             /* Replace the matrix with dereferences of its columns. */
2177             for (int i = 0; i < matrix->type->matrix_columns; i++) {
2178                matrix->insert_before(
2179                   new (ctx) ir_dereference_array(var,
2180                                                  new(ctx) ir_constant(i)));
2181             }
2182             matrix->remove();
2183          }
2184       }
2185 
2186       bool all_parameters_are_constant = true;
2187 
2188       /* Type cast each parameter and, if possible, fold constants.*/
2189       foreach_in_list_safe(ir_rvalue, ir, &actual_parameters) {
2190          const glsl_type *desired_type;
2191 
2192          /* From section 5.4.1 of the ARB_bindless_texture spec:
2193           *
2194           * "In the following four constructors, the low 32 bits of the sampler
2195           *  type correspond to the .x component of the uvec2 and the high 32
2196           *  bits correspond to the .y component."
2197           *
2198           *  uvec2(any sampler type)     // Converts a sampler type to a
2199           *                              //   pair of 32-bit unsigned integers
2200           *  any sampler type(uvec2)     // Converts a pair of 32-bit unsigned integers to
2201           *                              //   a sampler type
2202           *  uvec2(any image type)       // Converts an image type to a
2203           *                              //   pair of 32-bit unsigned integers
2204           *  any image type(uvec2)       // Converts a pair of 32-bit unsigned integers to
2205           *                              //   an image type
2206           */
2207          if (ir->type->is_sampler() || ir->type->is_image()) {
2208             /* Convert a sampler/image type to a pair of 32-bit unsigned
2209              * integers as defined by ARB_bindless_texture.
2210              */
2211             if (constructor_type != glsl_type::uvec2_type) {
2212                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2213                                 "be converted to a pair of 32-bit unsigned "
2214                                 "integers");
2215             }
2216             desired_type = glsl_type::uvec2_type;
2217          } else if (constructor_type->is_sampler() ||
2218                     constructor_type->is_image()) {
2219             /* Convert a pair of 32-bit unsigned integers to a sampler or image
2220              * type as defined by ARB_bindless_texture.
2221              */
2222             if (ir->type != glsl_type::uvec2_type) {
2223                _mesa_glsl_error(&loc, state, "sampler and image types can only "
2224                                 "be converted from a pair of 32-bit unsigned "
2225                                 "integers");
2226             }
2227             desired_type = constructor_type;
2228          } else {
2229             desired_type =
2230                glsl_type::get_instance(constructor_type->base_type,
2231                                        ir->type->vector_elements,
2232                                        ir->type->matrix_columns);
2233          }
2234 
2235          ir_rvalue *result = convert_component(ir, desired_type);
2236 
2237          /* Attempt to convert the parameter to a constant valued expression.
2238           * After doing so, track whether or not all the parameters to the
2239           * constructor are trivially constant valued expressions.
2240           */
2241          ir_rvalue *const constant = result->constant_expression_value(ctx);
2242 
2243          if (constant != NULL)
2244             result = constant;
2245          else
2246             all_parameters_are_constant = false;
2247 
2248          if (result != ir) {
2249             ir->replace_with(result);
2250          }
2251       }
2252 
2253       /* If all of the parameters are trivially constant, create a
2254        * constant representing the complete collection of parameters.
2255        */
2256       if (all_parameters_are_constant) {
2257          return new(ctx) ir_constant(constructor_type, &actual_parameters);
2258       } else if (constructor_type->is_scalar()) {
2259          return dereference_component((ir_rvalue *)
2260                                       actual_parameters.get_head_raw(),
2261                                       0);
2262       } else if (constructor_type->is_vector()) {
2263          return emit_inline_vector_constructor(constructor_type,
2264                                                instructions,
2265                                                &actual_parameters,
2266                                                ctx);
2267       } else {
2268          assert(constructor_type->is_matrix());
2269          return emit_inline_matrix_constructor(constructor_type,
2270                                                instructions,
2271                                                &actual_parameters,
2272                                                ctx);
2273       }
2274    } else if (subexpressions[0]->oper == ast_field_selection) {
2275       return handle_method(instructions, state);
2276    } else {
2277       const ast_expression *id = subexpressions[0];
2278       const char *func_name = NULL;
2279       YYLTYPE loc = get_location();
2280       exec_list actual_parameters;
2281       ir_variable *sub_var = NULL;
2282       ir_rvalue *array_idx = NULL;
2283 
2284       process_parameters(instructions, &actual_parameters, &this->expressions,
2285                          state);
2286 
2287       if (id->oper == ast_array_index) {
2288          array_idx = generate_array_index(ctx, instructions, state, loc,
2289                                           id->subexpressions[0],
2290                                           id->subexpressions[1], &func_name,
2291                                           &actual_parameters);
2292       } else if (id->oper == ast_identifier) {
2293          func_name = id->primary_expression.identifier;
2294       } else {
2295          _mesa_glsl_error(&loc, state, "function name is not an identifier");
2296       }
2297 
2298       /* an error was emitted earlier */
2299       if (!func_name)
2300          return ir_rvalue::error_value(ctx);
2301 
2302       ir_function_signature *sig =
2303          match_function_by_name(func_name, &actual_parameters, state);
2304 
2305       ir_rvalue *value = NULL;
2306       if (sig == NULL) {
2307          sig = match_subroutine_by_name(func_name, &actual_parameters,
2308                                         state, &sub_var);
2309       }
2310 
2311       if (sig == NULL) {
2312          no_matching_function_error(func_name, &loc,
2313                                     &actual_parameters, state);
2314          value = ir_rvalue::error_value(ctx);
2315       } else if (!verify_parameter_modes(state, sig,
2316                                          actual_parameters,
2317                                          this->expressions)) {
2318          /* an error has already been emitted */
2319          value = ir_rvalue::error_value(ctx);
2320       } else if (sig->is_builtin() && strcmp(func_name, "ftransform") == 0) {
2321          /* ftransform refers to global variables, and we don't have any code
2322           * for remapping the variable references in the built-in shader.
2323           */
2324          ir_variable *mvp =
2325             state->symbols->get_variable("gl_ModelViewProjectionMatrix");
2326          ir_variable *vtx = state->symbols->get_variable("gl_Vertex");
2327          value = new(ctx) ir_expression(ir_binop_mul, glsl_type::vec4_type,
2328                                         new(ctx) ir_dereference_variable(mvp),
2329                                         new(ctx) ir_dereference_variable(vtx));
2330       } else {
2331          if (state->stage == MESA_SHADER_TESS_CTRL &&
2332              sig->is_builtin() && strcmp(func_name, "barrier") == 0) {
2333             if (state->current_function == NULL ||
2334                 strcmp(state->current_function->function_name(), "main") != 0) {
2335                _mesa_glsl_error(&loc, state,
2336                                 "barrier() may only be used in main()");
2337             }
2338 
2339             if (state->found_return) {
2340                _mesa_glsl_error(&loc, state,
2341                                 "barrier() may not be used after return");
2342             }
2343 
2344             if (instructions != &state->current_function->body) {
2345                _mesa_glsl_error(&loc, state,
2346                                 "barrier() may not be used in control flow");
2347             }
2348          }
2349 
2350          value = generate_call(instructions, sig, &actual_parameters, sub_var,
2351                                array_idx, state);
2352          if (!value) {
2353             ir_variable *const tmp = new(ctx) ir_variable(glsl_type::void_type,
2354                                                           "void_var",
2355                                                           ir_var_temporary);
2356             instructions->push_tail(tmp);
2357             value = new(ctx) ir_dereference_variable(tmp);
2358          }
2359       }
2360 
2361       return value;
2362    }
2363 
2364    unreachable("not reached");
2365 }
2366 
2367 bool
has_sequence_subexpression() const2368 ast_function_expression::has_sequence_subexpression() const
2369 {
2370    foreach_list_typed(const ast_node, ast, link, &this->expressions) {
2371       if (ast->has_sequence_subexpression())
2372          return true;
2373    }
2374 
2375    return false;
2376 }
2377 
2378 ir_rvalue *
hir(exec_list * instructions,struct _mesa_glsl_parse_state * state)2379 ast_aggregate_initializer::hir(exec_list *instructions,
2380                                struct _mesa_glsl_parse_state *state)
2381 {
2382    void *ctx = state;
2383    YYLTYPE loc = this->get_location();
2384 
2385    if (!this->constructor_type) {
2386       _mesa_glsl_error(&loc, state, "type of C-style initializer unknown");
2387       return ir_rvalue::error_value(ctx);
2388    }
2389    const glsl_type *const constructor_type = this->constructor_type;
2390 
2391    if (!state->has_420pack()) {
2392       _mesa_glsl_error(&loc, state, "C-style initialization requires the "
2393                        "GL_ARB_shading_language_420pack extension");
2394       return ir_rvalue::error_value(ctx);
2395    }
2396 
2397    if (constructor_type->is_array()) {
2398       return process_array_constructor(instructions, constructor_type, &loc,
2399                                        &this->expressions, state);
2400    }
2401 
2402    if (constructor_type->is_record()) {
2403       return process_record_constructor(instructions, constructor_type, &loc,
2404                                         &this->expressions, state);
2405    }
2406 
2407    return process_vec_mat_constructor(instructions, constructor_type, &loc,
2408                                       &this->expressions, state);
2409 }
2410