• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution expander,
11 // which is used to generate the code corresponding to a given scalar evolution
12 // expression.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/Analysis/ScalarEvolutionExpander.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/IntrinsicInst.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/ADT/STLExtras.h"
23 
24 using namespace llvm;
25 
26 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
27 /// reusing an existing cast if a suitable one exists, moving an existing
28 /// cast if a suitable one exists but isn't in the right place, or
29 /// creating a new one.
ReuseOrCreateCast(Value * V,Type * Ty,Instruction::CastOps Op,BasicBlock::iterator IP)30 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
31                                        Instruction::CastOps Op,
32                                        BasicBlock::iterator IP) {
33   // Check to see if there is already a cast!
34   for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
35        UI != E; ++UI) {
36     User *U = *UI;
37     if (U->getType() == Ty)
38       if (CastInst *CI = dyn_cast<CastInst>(U))
39         if (CI->getOpcode() == Op) {
40           // If the cast isn't where we want it, fix it.
41           if (BasicBlock::iterator(CI) != IP) {
42             // Create a new cast, and leave the old cast in place in case
43             // it is being used as an insert point. Clear its operand
44             // so that it doesn't hold anything live.
45             Instruction *NewCI = CastInst::Create(Op, V, Ty, "", IP);
46             NewCI->takeName(CI);
47             CI->replaceAllUsesWith(NewCI);
48             CI->setOperand(0, UndefValue::get(V->getType()));
49             rememberInstruction(NewCI);
50             return NewCI;
51           }
52           rememberInstruction(CI);
53           return CI;
54         }
55   }
56 
57   // Create a new cast.
58   Instruction *I = CastInst::Create(Op, V, Ty, V->getName(), IP);
59   rememberInstruction(I);
60   return I;
61 }
62 
63 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
64 /// which must be possible with a noop cast, doing what we can to share
65 /// the casts.
InsertNoopCastOfTo(Value * V,Type * Ty)66 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
67   Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
68   assert((Op == Instruction::BitCast ||
69           Op == Instruction::PtrToInt ||
70           Op == Instruction::IntToPtr) &&
71          "InsertNoopCastOfTo cannot perform non-noop casts!");
72   assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
73          "InsertNoopCastOfTo cannot change sizes!");
74 
75   // Short-circuit unnecessary bitcasts.
76   if (Op == Instruction::BitCast && V->getType() == Ty)
77     return V;
78 
79   // Short-circuit unnecessary inttoptr<->ptrtoint casts.
80   if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
81       SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
82     if (CastInst *CI = dyn_cast<CastInst>(V))
83       if ((CI->getOpcode() == Instruction::PtrToInt ||
84            CI->getOpcode() == Instruction::IntToPtr) &&
85           SE.getTypeSizeInBits(CI->getType()) ==
86           SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
87         return CI->getOperand(0);
88     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
89       if ((CE->getOpcode() == Instruction::PtrToInt ||
90            CE->getOpcode() == Instruction::IntToPtr) &&
91           SE.getTypeSizeInBits(CE->getType()) ==
92           SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
93         return CE->getOperand(0);
94   }
95 
96   // Fold a cast of a constant.
97   if (Constant *C = dyn_cast<Constant>(V))
98     return ConstantExpr::getCast(Op, C, Ty);
99 
100   // Cast the argument at the beginning of the entry block, after
101   // any bitcasts of other arguments.
102   if (Argument *A = dyn_cast<Argument>(V)) {
103     BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
104     while ((isa<BitCastInst>(IP) &&
105             isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
106             cast<BitCastInst>(IP)->getOperand(0) != A) ||
107            isa<DbgInfoIntrinsic>(IP) ||
108            isa<LandingPadInst>(IP))
109       ++IP;
110     return ReuseOrCreateCast(A, Ty, Op, IP);
111   }
112 
113   // Cast the instruction immediately after the instruction.
114   Instruction *I = cast<Instruction>(V);
115   BasicBlock::iterator IP = I; ++IP;
116   if (InvokeInst *II = dyn_cast<InvokeInst>(I))
117     IP = II->getNormalDest()->begin();
118   while (isa<PHINode>(IP) || isa<DbgInfoIntrinsic>(IP) ||
119          isa<LandingPadInst>(IP))
120     ++IP;
121   return ReuseOrCreateCast(I, Ty, Op, IP);
122 }
123 
124 /// InsertBinop - Insert the specified binary operator, doing a small amount
125 /// of work to avoid inserting an obviously redundant operation.
InsertBinop(Instruction::BinaryOps Opcode,Value * LHS,Value * RHS)126 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
127                                  Value *LHS, Value *RHS) {
128   // Fold a binop with constant operands.
129   if (Constant *CLHS = dyn_cast<Constant>(LHS))
130     if (Constant *CRHS = dyn_cast<Constant>(RHS))
131       return ConstantExpr::get(Opcode, CLHS, CRHS);
132 
133   // Do a quick scan to see if we have this binop nearby.  If so, reuse it.
134   unsigned ScanLimit = 6;
135   BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
136   // Scanning starts from the last instruction before the insertion point.
137   BasicBlock::iterator IP = Builder.GetInsertPoint();
138   if (IP != BlockBegin) {
139     --IP;
140     for (; ScanLimit; --IP, --ScanLimit) {
141       // Don't count dbg.value against the ScanLimit, to avoid perturbing the
142       // generated code.
143       if (isa<DbgInfoIntrinsic>(IP))
144         ScanLimit++;
145       if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
146           IP->getOperand(1) == RHS)
147         return IP;
148       if (IP == BlockBegin) break;
149     }
150   }
151 
152   // Save the original insertion point so we can restore it when we're done.
153   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
154   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
155 
156   // Move the insertion point out of as many loops as we can.
157   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
158     if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
159     BasicBlock *Preheader = L->getLoopPreheader();
160     if (!Preheader) break;
161 
162     // Ok, move up a level.
163     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
164   }
165 
166   // If we haven't found this binop, insert it.
167   Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
168   BO->setDebugLoc(SaveInsertPt->getDebugLoc());
169   rememberInstruction(BO);
170 
171   // Restore the original insert point.
172   if (SaveInsertBB)
173     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
174 
175   return BO;
176 }
177 
178 /// FactorOutConstant - Test if S is divisible by Factor, using signed
179 /// division. If so, update S with Factor divided out and return true.
180 /// S need not be evenly divisible if a reasonable remainder can be
181 /// computed.
182 /// TODO: When ScalarEvolution gets a SCEVSDivExpr, this can be made
183 /// unnecessary; in its place, just signed-divide Ops[i] by the scale and
184 /// check to see if the divide was folded.
FactorOutConstant(const SCEV * & S,const SCEV * & Remainder,const SCEV * Factor,ScalarEvolution & SE,const TargetData * TD)185 static bool FactorOutConstant(const SCEV *&S,
186                               const SCEV *&Remainder,
187                               const SCEV *Factor,
188                               ScalarEvolution &SE,
189                               const TargetData *TD) {
190   // Everything is divisible by one.
191   if (Factor->isOne())
192     return true;
193 
194   // x/x == 1.
195   if (S == Factor) {
196     S = SE.getConstant(S->getType(), 1);
197     return true;
198   }
199 
200   // For a Constant, check for a multiple of the given factor.
201   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
202     // 0/x == 0.
203     if (C->isZero())
204       return true;
205     // Check for divisibility.
206     if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
207       ConstantInt *CI =
208         ConstantInt::get(SE.getContext(),
209                          C->getValue()->getValue().sdiv(
210                                                    FC->getValue()->getValue()));
211       // If the quotient is zero and the remainder is non-zero, reject
212       // the value at this scale. It will be considered for subsequent
213       // smaller scales.
214       if (!CI->isZero()) {
215         const SCEV *Div = SE.getConstant(CI);
216         S = Div;
217         Remainder =
218           SE.getAddExpr(Remainder,
219                         SE.getConstant(C->getValue()->getValue().srem(
220                                                   FC->getValue()->getValue())));
221         return true;
222       }
223     }
224   }
225 
226   // In a Mul, check if there is a constant operand which is a multiple
227   // of the given factor.
228   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
229     if (TD) {
230       // With TargetData, the size is known. Check if there is a constant
231       // operand which is a multiple of the given factor. If so, we can
232       // factor it.
233       const SCEVConstant *FC = cast<SCEVConstant>(Factor);
234       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
235         if (!C->getValue()->getValue().srem(FC->getValue()->getValue())) {
236           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
237           NewMulOps[0] =
238             SE.getConstant(C->getValue()->getValue().sdiv(
239                                                    FC->getValue()->getValue()));
240           S = SE.getMulExpr(NewMulOps);
241           return true;
242         }
243     } else {
244       // Without TargetData, check if Factor can be factored out of any of the
245       // Mul's operands. If so, we can just remove it.
246       for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
247         const SCEV *SOp = M->getOperand(i);
248         const SCEV *Remainder = SE.getConstant(SOp->getType(), 0);
249         if (FactorOutConstant(SOp, Remainder, Factor, SE, TD) &&
250             Remainder->isZero()) {
251           SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
252           NewMulOps[i] = SOp;
253           S = SE.getMulExpr(NewMulOps);
254           return true;
255         }
256       }
257     }
258   }
259 
260   // In an AddRec, check if both start and step are divisible.
261   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
262     const SCEV *Step = A->getStepRecurrence(SE);
263     const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
264     if (!FactorOutConstant(Step, StepRem, Factor, SE, TD))
265       return false;
266     if (!StepRem->isZero())
267       return false;
268     const SCEV *Start = A->getStart();
269     if (!FactorOutConstant(Start, Remainder, Factor, SE, TD))
270       return false;
271     // FIXME: can use A->getNoWrapFlags(FlagNW)
272     S = SE.getAddRecExpr(Start, Step, A->getLoop(), SCEV::FlagAnyWrap);
273     return true;
274   }
275 
276   return false;
277 }
278 
279 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
280 /// is the number of SCEVAddRecExprs present, which are kept at the end of
281 /// the list.
282 ///
SimplifyAddOperands(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)283 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
284                                 Type *Ty,
285                                 ScalarEvolution &SE) {
286   unsigned NumAddRecs = 0;
287   for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
288     ++NumAddRecs;
289   // Group Ops into non-addrecs and addrecs.
290   SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
291   SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
292   // Let ScalarEvolution sort and simplify the non-addrecs list.
293   const SCEV *Sum = NoAddRecs.empty() ?
294                     SE.getConstant(Ty, 0) :
295                     SE.getAddExpr(NoAddRecs);
296   // If it returned an add, use the operands. Otherwise it simplified
297   // the sum into a single value, so just use that.
298   Ops.clear();
299   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
300     Ops.append(Add->op_begin(), Add->op_end());
301   else if (!Sum->isZero())
302     Ops.push_back(Sum);
303   // Then append the addrecs.
304   Ops.append(AddRecs.begin(), AddRecs.end());
305 }
306 
307 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
308 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
309 /// This helps expose more opportunities for folding parts of the expressions
310 /// into GEP indices.
311 ///
SplitAddRecs(SmallVectorImpl<const SCEV * > & Ops,Type * Ty,ScalarEvolution & SE)312 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
313                          Type *Ty,
314                          ScalarEvolution &SE) {
315   // Find the addrecs.
316   SmallVector<const SCEV *, 8> AddRecs;
317   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
318     while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
319       const SCEV *Start = A->getStart();
320       if (Start->isZero()) break;
321       const SCEV *Zero = SE.getConstant(Ty, 0);
322       AddRecs.push_back(SE.getAddRecExpr(Zero,
323                                          A->getStepRecurrence(SE),
324                                          A->getLoop(),
325                                          // FIXME: A->getNoWrapFlags(FlagNW)
326                                          SCEV::FlagAnyWrap));
327       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
328         Ops[i] = Zero;
329         Ops.append(Add->op_begin(), Add->op_end());
330         e += Add->getNumOperands();
331       } else {
332         Ops[i] = Start;
333       }
334     }
335   if (!AddRecs.empty()) {
336     // Add the addrecs onto the end of the list.
337     Ops.append(AddRecs.begin(), AddRecs.end());
338     // Resort the operand list, moving any constants to the front.
339     SimplifyAddOperands(Ops, Ty, SE);
340   }
341 }
342 
343 /// expandAddToGEP - Expand an addition expression with a pointer type into
344 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
345 /// BasicAliasAnalysis and other passes analyze the result. See the rules
346 /// for getelementptr vs. inttoptr in
347 /// http://llvm.org/docs/LangRef.html#pointeraliasing
348 /// for details.
349 ///
350 /// Design note: The correctness of using getelementptr here depends on
351 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
352 /// they may introduce pointer arithmetic which may not be safely converted
353 /// into getelementptr.
354 ///
355 /// Design note: It might seem desirable for this function to be more
356 /// loop-aware. If some of the indices are loop-invariant while others
357 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
358 /// loop-invariant portions of the overall computation outside the loop.
359 /// However, there are a few reasons this is not done here. Hoisting simple
360 /// arithmetic is a low-level optimization that often isn't very
361 /// important until late in the optimization process. In fact, passes
362 /// like InstructionCombining will combine GEPs, even if it means
363 /// pushing loop-invariant computation down into loops, so even if the
364 /// GEPs were split here, the work would quickly be undone. The
365 /// LoopStrengthReduction pass, which is usually run quite late (and
366 /// after the last InstructionCombining pass), takes care of hoisting
367 /// loop-invariant portions of expressions, after considering what
368 /// can be folded using target addressing modes.
369 ///
expandAddToGEP(const SCEV * const * op_begin,const SCEV * const * op_end,PointerType * PTy,Type * Ty,Value * V)370 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
371                                     const SCEV *const *op_end,
372                                     PointerType *PTy,
373                                     Type *Ty,
374                                     Value *V) {
375   Type *ElTy = PTy->getElementType();
376   SmallVector<Value *, 4> GepIndices;
377   SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
378   bool AnyNonZeroIndices = false;
379 
380   // Split AddRecs up into parts as either of the parts may be usable
381   // without the other.
382   SplitAddRecs(Ops, Ty, SE);
383 
384   // Descend down the pointer's type and attempt to convert the other
385   // operands into GEP indices, at each level. The first index in a GEP
386   // indexes into the array implied by the pointer operand; the rest of
387   // the indices index into the element or field type selected by the
388   // preceding index.
389   for (;;) {
390     // If the scale size is not 0, attempt to factor out a scale for
391     // array indexing.
392     SmallVector<const SCEV *, 8> ScaledOps;
393     if (ElTy->isSized()) {
394       const SCEV *ElSize = SE.getSizeOfExpr(ElTy);
395       if (!ElSize->isZero()) {
396         SmallVector<const SCEV *, 8> NewOps;
397         for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
398           const SCEV *Op = Ops[i];
399           const SCEV *Remainder = SE.getConstant(Ty, 0);
400           if (FactorOutConstant(Op, Remainder, ElSize, SE, SE.TD)) {
401             // Op now has ElSize factored out.
402             ScaledOps.push_back(Op);
403             if (!Remainder->isZero())
404               NewOps.push_back(Remainder);
405             AnyNonZeroIndices = true;
406           } else {
407             // The operand was not divisible, so add it to the list of operands
408             // we'll scan next iteration.
409             NewOps.push_back(Ops[i]);
410           }
411         }
412         // If we made any changes, update Ops.
413         if (!ScaledOps.empty()) {
414           Ops = NewOps;
415           SimplifyAddOperands(Ops, Ty, SE);
416         }
417       }
418     }
419 
420     // Record the scaled array index for this level of the type. If
421     // we didn't find any operands that could be factored, tentatively
422     // assume that element zero was selected (since the zero offset
423     // would obviously be folded away).
424     Value *Scaled = ScaledOps.empty() ?
425                     Constant::getNullValue(Ty) :
426                     expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
427     GepIndices.push_back(Scaled);
428 
429     // Collect struct field index operands.
430     while (StructType *STy = dyn_cast<StructType>(ElTy)) {
431       bool FoundFieldNo = false;
432       // An empty struct has no fields.
433       if (STy->getNumElements() == 0) break;
434       if (SE.TD) {
435         // With TargetData, field offsets are known. See if a constant offset
436         // falls within any of the struct fields.
437         if (Ops.empty()) break;
438         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
439           if (SE.getTypeSizeInBits(C->getType()) <= 64) {
440             const StructLayout &SL = *SE.TD->getStructLayout(STy);
441             uint64_t FullOffset = C->getValue()->getZExtValue();
442             if (FullOffset < SL.getSizeInBytes()) {
443               unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
444               GepIndices.push_back(
445                   ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
446               ElTy = STy->getTypeAtIndex(ElIdx);
447               Ops[0] =
448                 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
449               AnyNonZeroIndices = true;
450               FoundFieldNo = true;
451             }
452           }
453       } else {
454         // Without TargetData, just check for an offsetof expression of the
455         // appropriate struct type.
456         for (unsigned i = 0, e = Ops.size(); i != e; ++i)
457           if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Ops[i])) {
458             Type *CTy;
459             Constant *FieldNo;
460             if (U->isOffsetOf(CTy, FieldNo) && CTy == STy) {
461               GepIndices.push_back(FieldNo);
462               ElTy =
463                 STy->getTypeAtIndex(cast<ConstantInt>(FieldNo)->getZExtValue());
464               Ops[i] = SE.getConstant(Ty, 0);
465               AnyNonZeroIndices = true;
466               FoundFieldNo = true;
467               break;
468             }
469           }
470       }
471       // If no struct field offsets were found, tentatively assume that
472       // field zero was selected (since the zero offset would obviously
473       // be folded away).
474       if (!FoundFieldNo) {
475         ElTy = STy->getTypeAtIndex(0u);
476         GepIndices.push_back(
477           Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
478       }
479     }
480 
481     if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
482       ElTy = ATy->getElementType();
483     else
484       break;
485   }
486 
487   // If none of the operands were convertible to proper GEP indices, cast
488   // the base to i8* and do an ugly getelementptr with that. It's still
489   // better than ptrtoint+arithmetic+inttoptr at least.
490   if (!AnyNonZeroIndices) {
491     // Cast the base to i8*.
492     V = InsertNoopCastOfTo(V,
493        Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
494 
495     // Expand the operands for a plain byte offset.
496     Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
497 
498     // Fold a GEP with constant operands.
499     if (Constant *CLHS = dyn_cast<Constant>(V))
500       if (Constant *CRHS = dyn_cast<Constant>(Idx))
501         return ConstantExpr::getGetElementPtr(CLHS, CRHS);
502 
503     // Do a quick scan to see if we have this GEP nearby.  If so, reuse it.
504     unsigned ScanLimit = 6;
505     BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
506     // Scanning starts from the last instruction before the insertion point.
507     BasicBlock::iterator IP = Builder.GetInsertPoint();
508     if (IP != BlockBegin) {
509       --IP;
510       for (; ScanLimit; --IP, --ScanLimit) {
511         // Don't count dbg.value against the ScanLimit, to avoid perturbing the
512         // generated code.
513         if (isa<DbgInfoIntrinsic>(IP))
514           ScanLimit++;
515         if (IP->getOpcode() == Instruction::GetElementPtr &&
516             IP->getOperand(0) == V && IP->getOperand(1) == Idx)
517           return IP;
518         if (IP == BlockBegin) break;
519       }
520     }
521 
522     // Save the original insertion point so we can restore it when we're done.
523     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
524     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
525 
526     // Move the insertion point out of as many loops as we can.
527     while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
528       if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
529       BasicBlock *Preheader = L->getLoopPreheader();
530       if (!Preheader) break;
531 
532       // Ok, move up a level.
533       Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
534     }
535 
536     // Emit a GEP.
537     Value *GEP = Builder.CreateGEP(V, Idx, "uglygep");
538     rememberInstruction(GEP);
539 
540     // Restore the original insert point.
541     if (SaveInsertBB)
542       restoreInsertPoint(SaveInsertBB, SaveInsertPt);
543 
544     return GEP;
545   }
546 
547   // Save the original insertion point so we can restore it when we're done.
548   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
549   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
550 
551   // Move the insertion point out of as many loops as we can.
552   while (const Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock())) {
553     if (!L->isLoopInvariant(V)) break;
554 
555     bool AnyIndexNotLoopInvariant = false;
556     for (SmallVectorImpl<Value *>::const_iterator I = GepIndices.begin(),
557          E = GepIndices.end(); I != E; ++I)
558       if (!L->isLoopInvariant(*I)) {
559         AnyIndexNotLoopInvariant = true;
560         break;
561       }
562     if (AnyIndexNotLoopInvariant)
563       break;
564 
565     BasicBlock *Preheader = L->getLoopPreheader();
566     if (!Preheader) break;
567 
568     // Ok, move up a level.
569     Builder.SetInsertPoint(Preheader, Preheader->getTerminator());
570   }
571 
572   // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
573   // because ScalarEvolution may have changed the address arithmetic to
574   // compute a value which is beyond the end of the allocated object.
575   Value *Casted = V;
576   if (V->getType() != PTy)
577     Casted = InsertNoopCastOfTo(Casted, PTy);
578   Value *GEP = Builder.CreateGEP(Casted,
579                                  GepIndices,
580                                  "scevgep");
581   Ops.push_back(SE.getUnknown(GEP));
582   rememberInstruction(GEP);
583 
584   // Restore the original insert point.
585   if (SaveInsertBB)
586     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
587 
588   return expand(SE.getAddExpr(Ops));
589 }
590 
591 /// isNonConstantNegative - Return true if the specified scev is negated, but
592 /// not a constant.
isNonConstantNegative(const SCEV * F)593 static bool isNonConstantNegative(const SCEV *F) {
594   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(F);
595   if (!Mul) return false;
596 
597   // If there is a constant factor, it will be first.
598   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
599   if (!SC) return false;
600 
601   // Return true if the value is negative, this matches things like (-42 * V).
602   return SC->getValue()->getValue().isNegative();
603 }
604 
605 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
606 /// SCEV expansion. If they are nested, this is the most nested. If they are
607 /// neighboring, pick the later.
PickMostRelevantLoop(const Loop * A,const Loop * B,DominatorTree & DT)608 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
609                                         DominatorTree &DT) {
610   if (!A) return B;
611   if (!B) return A;
612   if (A->contains(B)) return B;
613   if (B->contains(A)) return A;
614   if (DT.dominates(A->getHeader(), B->getHeader())) return B;
615   if (DT.dominates(B->getHeader(), A->getHeader())) return A;
616   return A; // Arbitrarily break the tie.
617 }
618 
619 /// getRelevantLoop - Get the most relevant loop associated with the given
620 /// expression, according to PickMostRelevantLoop.
getRelevantLoop(const SCEV * S)621 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
622   // Test whether we've already computed the most relevant loop for this SCEV.
623   std::pair<DenseMap<const SCEV *, const Loop *>::iterator, bool> Pair =
624     RelevantLoops.insert(std::make_pair(S, static_cast<const Loop *>(0)));
625   if (!Pair.second)
626     return Pair.first->second;
627 
628   if (isa<SCEVConstant>(S))
629     // A constant has no relevant loops.
630     return 0;
631   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
632     if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
633       return Pair.first->second = SE.LI->getLoopFor(I->getParent());
634     // A non-instruction has no relevant loops.
635     return 0;
636   }
637   if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
638     const Loop *L = 0;
639     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
640       L = AR->getLoop();
641     for (SCEVNAryExpr::op_iterator I = N->op_begin(), E = N->op_end();
642          I != E; ++I)
643       L = PickMostRelevantLoop(L, getRelevantLoop(*I), *SE.DT);
644     return RelevantLoops[N] = L;
645   }
646   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
647     const Loop *Result = getRelevantLoop(C->getOperand());
648     return RelevantLoops[C] = Result;
649   }
650   if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
651     const Loop *Result =
652       PickMostRelevantLoop(getRelevantLoop(D->getLHS()),
653                            getRelevantLoop(D->getRHS()),
654                            *SE.DT);
655     return RelevantLoops[D] = Result;
656   }
657   llvm_unreachable("Unexpected SCEV type!");
658   return 0;
659 }
660 
661 namespace {
662 
663 /// LoopCompare - Compare loops by PickMostRelevantLoop.
664 class LoopCompare {
665   DominatorTree &DT;
666 public:
LoopCompare(DominatorTree & dt)667   explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
668 
operator ()(std::pair<const Loop *,const SCEV * > LHS,std::pair<const Loop *,const SCEV * > RHS) const669   bool operator()(std::pair<const Loop *, const SCEV *> LHS,
670                   std::pair<const Loop *, const SCEV *> RHS) const {
671     // Keep pointer operands sorted at the end.
672     if (LHS.second->getType()->isPointerTy() !=
673         RHS.second->getType()->isPointerTy())
674       return LHS.second->getType()->isPointerTy();
675 
676     // Compare loops with PickMostRelevantLoop.
677     if (LHS.first != RHS.first)
678       return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
679 
680     // If one operand is a non-constant negative and the other is not,
681     // put the non-constant negative on the right so that a sub can
682     // be used instead of a negate and add.
683     if (isNonConstantNegative(LHS.second)) {
684       if (!isNonConstantNegative(RHS.second))
685         return false;
686     } else if (isNonConstantNegative(RHS.second))
687       return true;
688 
689     // Otherwise they are equivalent according to this comparison.
690     return false;
691   }
692 };
693 
694 }
695 
visitAddExpr(const SCEVAddExpr * S)696 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
697   Type *Ty = SE.getEffectiveSCEVType(S->getType());
698 
699   // Collect all the add operands in a loop, along with their associated loops.
700   // Iterate in reverse so that constants are emitted last, all else equal, and
701   // so that pointer operands are inserted first, which the code below relies on
702   // to form more involved GEPs.
703   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
704   for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
705        E(S->op_begin()); I != E; ++I)
706     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
707 
708   // Sort by loop. Use a stable sort so that constants follow non-constants and
709   // pointer operands precede non-pointer operands.
710   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
711 
712   // Emit instructions to add all the operands. Hoist as much as possible
713   // out of loops, and form meaningful getelementptrs where possible.
714   Value *Sum = 0;
715   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
716        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
717     const Loop *CurLoop = I->first;
718     const SCEV *Op = I->second;
719     if (!Sum) {
720       // This is the first operand. Just expand it.
721       Sum = expand(Op);
722       ++I;
723     } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
724       // The running sum expression is a pointer. Try to form a getelementptr
725       // at this level with that as the base.
726       SmallVector<const SCEV *, 4> NewOps;
727       for (; I != E && I->first == CurLoop; ++I) {
728         // If the operand is SCEVUnknown and not instructions, peek through
729         // it, to enable more of it to be folded into the GEP.
730         const SCEV *X = I->second;
731         if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
732           if (!isa<Instruction>(U->getValue()))
733             X = SE.getSCEV(U->getValue());
734         NewOps.push_back(X);
735       }
736       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
737     } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
738       // The running sum is an integer, and there's a pointer at this level.
739       // Try to form a getelementptr. If the running sum is instructions,
740       // use a SCEVUnknown to avoid re-analyzing them.
741       SmallVector<const SCEV *, 4> NewOps;
742       NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
743                                                SE.getSCEV(Sum));
744       for (++I; I != E && I->first == CurLoop; ++I)
745         NewOps.push_back(I->second);
746       Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
747     } else if (isNonConstantNegative(Op)) {
748       // Instead of doing a negate and add, just do a subtract.
749       Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
750       Sum = InsertNoopCastOfTo(Sum, Ty);
751       Sum = InsertBinop(Instruction::Sub, Sum, W);
752       ++I;
753     } else {
754       // A simple add.
755       Value *W = expandCodeFor(Op, Ty);
756       Sum = InsertNoopCastOfTo(Sum, Ty);
757       // Canonicalize a constant to the RHS.
758       if (isa<Constant>(Sum)) std::swap(Sum, W);
759       Sum = InsertBinop(Instruction::Add, Sum, W);
760       ++I;
761     }
762   }
763 
764   return Sum;
765 }
766 
visitMulExpr(const SCEVMulExpr * S)767 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
768   Type *Ty = SE.getEffectiveSCEVType(S->getType());
769 
770   // Collect all the mul operands in a loop, along with their associated loops.
771   // Iterate in reverse so that constants are emitted last, all else equal.
772   SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
773   for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
774        E(S->op_begin()); I != E; ++I)
775     OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
776 
777   // Sort by loop. Use a stable sort so that constants follow non-constants.
778   std::stable_sort(OpsAndLoops.begin(), OpsAndLoops.end(), LoopCompare(*SE.DT));
779 
780   // Emit instructions to mul all the operands. Hoist as much as possible
781   // out of loops.
782   Value *Prod = 0;
783   for (SmallVectorImpl<std::pair<const Loop *, const SCEV *> >::iterator
784        I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E; ) {
785     const SCEV *Op = I->second;
786     if (!Prod) {
787       // This is the first operand. Just expand it.
788       Prod = expand(Op);
789       ++I;
790     } else if (Op->isAllOnesValue()) {
791       // Instead of doing a multiply by negative one, just do a negate.
792       Prod = InsertNoopCastOfTo(Prod, Ty);
793       Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod);
794       ++I;
795     } else {
796       // A simple mul.
797       Value *W = expandCodeFor(Op, Ty);
798       Prod = InsertNoopCastOfTo(Prod, Ty);
799       // Canonicalize a constant to the RHS.
800       if (isa<Constant>(Prod)) std::swap(Prod, W);
801       Prod = InsertBinop(Instruction::Mul, Prod, W);
802       ++I;
803     }
804   }
805 
806   return Prod;
807 }
808 
visitUDivExpr(const SCEVUDivExpr * S)809 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
810   Type *Ty = SE.getEffectiveSCEVType(S->getType());
811 
812   Value *LHS = expandCodeFor(S->getLHS(), Ty);
813   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
814     const APInt &RHS = SC->getValue()->getValue();
815     if (RHS.isPowerOf2())
816       return InsertBinop(Instruction::LShr, LHS,
817                          ConstantInt::get(Ty, RHS.logBase2()));
818   }
819 
820   Value *RHS = expandCodeFor(S->getRHS(), Ty);
821   return InsertBinop(Instruction::UDiv, LHS, RHS);
822 }
823 
824 /// Move parts of Base into Rest to leave Base with the minimal
825 /// expression that provides a pointer operand suitable for a
826 /// GEP expansion.
ExposePointerBase(const SCEV * & Base,const SCEV * & Rest,ScalarEvolution & SE)827 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
828                               ScalarEvolution &SE) {
829   while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
830     Base = A->getStart();
831     Rest = SE.getAddExpr(Rest,
832                          SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
833                                           A->getStepRecurrence(SE),
834                                           A->getLoop(),
835                                           // FIXME: A->getNoWrapFlags(FlagNW)
836                                           SCEV::FlagAnyWrap));
837   }
838   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
839     Base = A->getOperand(A->getNumOperands()-1);
840     SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
841     NewAddOps.back() = Rest;
842     Rest = SE.getAddExpr(NewAddOps);
843     ExposePointerBase(Base, Rest, SE);
844   }
845 }
846 
847 /// Determine if this is a well-behaved chain of instructions leading back to
848 /// the PHI. If so, it may be reused by expanded expressions.
isNormalAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)849 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
850                                          const Loop *L) {
851   if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
852       (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
853     return false;
854   // If any of the operands don't dominate the insert position, bail.
855   // Addrec operands are always loop-invariant, so this can only happen
856   // if there are instructions which haven't been hoisted.
857   if (L == IVIncInsertLoop) {
858     for (User::op_iterator OI = IncV->op_begin()+1,
859            OE = IncV->op_end(); OI != OE; ++OI)
860       if (Instruction *OInst = dyn_cast<Instruction>(OI))
861         if (!SE.DT->dominates(OInst, IVIncInsertPos))
862           return false;
863   }
864   // Advance to the next instruction.
865   IncV = dyn_cast<Instruction>(IncV->getOperand(0));
866   if (!IncV)
867     return false;
868 
869   if (IncV->mayHaveSideEffects())
870     return false;
871 
872   if (IncV != PN)
873     return true;
874 
875   return isNormalAddRecExprPHI(PN, IncV, L);
876 }
877 
878 /// Determine if this cyclic phi is in a form that would have been generated by
879 /// LSR. We don't care if the phi was actually expanded in this pass, as long
880 /// as it is in a low-cost form, for example, no implied multiplication. This
881 /// should match any patterns generated by getAddRecExprPHILiterally and
882 /// expandAddtoGEP.
isExpandedAddRecExprPHI(PHINode * PN,Instruction * IncV,const Loop * L)883 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
884                                            const Loop *L) {
885   switch (IncV->getOpcode()) {
886   // Check for a simple Add/Sub or GEP of a loop invariant step.
887   case Instruction::Add:
888   case Instruction::Sub:
889     return IncV->getOperand(0) == PN
890       && L->isLoopInvariant(IncV->getOperand(1));
891   case Instruction::BitCast:
892     IncV = dyn_cast<GetElementPtrInst>(IncV->getOperand(0));
893     if (!IncV)
894       return false;
895     // fall-thru to GEP handling
896   case Instruction::GetElementPtr: {
897     // This must be a pointer addition of constants (pretty) or some number of
898     // address-size elements (ugly).
899     for (Instruction::op_iterator I = IncV->op_begin()+1, E = IncV->op_end();
900          I != E; ++I) {
901       if (isa<Constant>(*I))
902         continue;
903       // ugly geps have 2 operands.
904       // i1* is used by the expander to represent an address-size element.
905       if (IncV->getNumOperands() != 2)
906         return false;
907       unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
908       if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
909           && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
910         return false;
911       // Ensure the operands dominate the insertion point. I don't know of a
912       // case when this would not be true, so this is somewhat untested.
913       if (L == IVIncInsertLoop) {
914         for (User::op_iterator OI = IncV->op_begin()+1,
915                OE = IncV->op_end(); OI != OE; ++OI)
916           if (Instruction *OInst = dyn_cast<Instruction>(OI))
917             if (!SE.DT->dominates(OInst, IVIncInsertPos))
918               return false;
919       }
920       break;
921     }
922     IncV = dyn_cast<Instruction>(IncV->getOperand(0));
923     if (IncV && IncV->getOpcode() == Instruction::BitCast)
924       IncV = dyn_cast<Instruction>(IncV->getOperand(0));
925     return IncV == PN;
926   }
927   default:
928     return false;
929   }
930 }
931 
932 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
933 /// the base addrec, which is the addrec without any non-loop-dominating
934 /// values, and return the PHI.
935 PHINode *
getAddRecExprPHILiterally(const SCEVAddRecExpr * Normalized,const Loop * L,Type * ExpandTy,Type * IntTy)936 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
937                                         const Loop *L,
938                                         Type *ExpandTy,
939                                         Type *IntTy) {
940   assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
941 
942   // Reuse a previously-inserted PHI, if present.
943   BasicBlock *LatchBlock = L->getLoopLatch();
944   if (LatchBlock) {
945     for (BasicBlock::iterator I = L->getHeader()->begin();
946          PHINode *PN = dyn_cast<PHINode>(I); ++I) {
947       if (!SE.isSCEVable(PN->getType()) ||
948           (SE.getEffectiveSCEVType(PN->getType()) !=
949            SE.getEffectiveSCEVType(Normalized->getType())) ||
950           SE.getSCEV(PN) != Normalized)
951         continue;
952 
953       Instruction *IncV =
954         cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock));
955 
956       if (LSRMode) {
957         if (!isExpandedAddRecExprPHI(PN, IncV, L))
958           continue;
959       }
960       else {
961         if (!isNormalAddRecExprPHI(PN, IncV, L))
962           continue;
963       }
964       // Ok, the add recurrence looks usable.
965       // Remember this PHI, even in post-inc mode.
966       InsertedValues.insert(PN);
967       // Remember the increment.
968       rememberInstruction(IncV);
969       if (L == IVIncInsertLoop)
970         do {
971           if (SE.DT->dominates(IncV, IVIncInsertPos))
972             break;
973           // Make sure the increment is where we want it. But don't move it
974           // down past a potential existing post-inc user.
975           IncV->moveBefore(IVIncInsertPos);
976           IVIncInsertPos = IncV;
977           IncV = cast<Instruction>(IncV->getOperand(0));
978         } while (IncV != PN);
979       return PN;
980     }
981   }
982 
983   // Save the original insertion point so we can restore it when we're done.
984   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
985   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
986 
987   // Expand code for the start value.
988   Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
989                                 L->getHeader()->begin());
990 
991   // StartV must be hoisted into L's preheader to dominate the new phi.
992   assert(!isa<Instruction>(StartV) ||
993          SE.DT->properlyDominates(cast<Instruction>(StartV)->getParent(),
994                                   L->getHeader()));
995 
996   // Expand code for the step value. Insert instructions right before the
997   // terminator corresponding to the back-edge. Do this before creating the PHI
998   // so that PHI reuse code doesn't see an incomplete PHI. If the stride is
999   // negative, insert a sub instead of an add for the increment (unless it's a
1000   // constant, because subtracts of constants are canonicalized to adds).
1001   const SCEV *Step = Normalized->getStepRecurrence(SE);
1002   bool isPointer = ExpandTy->isPointerTy();
1003   bool isNegative = !isPointer && isNonConstantNegative(Step);
1004   if (isNegative)
1005     Step = SE.getNegativeSCEV(Step);
1006   Value *StepV = expandCodeFor(Step, IntTy, L->getHeader()->begin());
1007 
1008   // Create the PHI.
1009   BasicBlock *Header = L->getHeader();
1010   Builder.SetInsertPoint(Header, Header->begin());
1011   pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1012   PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1013                                   Twine(IVName) + ".iv");
1014   rememberInstruction(PN);
1015 
1016   // Create the step instructions and populate the PHI.
1017   for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1018     BasicBlock *Pred = *HPI;
1019 
1020     // Add a start value.
1021     if (!L->contains(Pred)) {
1022       PN->addIncoming(StartV, Pred);
1023       continue;
1024     }
1025 
1026     // Create a step value and add it to the PHI. If IVIncInsertLoop is
1027     // non-null and equal to the addrec's loop, insert the instructions
1028     // at IVIncInsertPos.
1029     Instruction *InsertPos = L == IVIncInsertLoop ?
1030       IVIncInsertPos : Pred->getTerminator();
1031     Builder.SetInsertPoint(InsertPos);
1032     Value *IncV;
1033     // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1034     if (isPointer) {
1035       PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1036       // If the step isn't constant, don't use an implicitly scaled GEP, because
1037       // that would require a multiply inside the loop.
1038       if (!isa<ConstantInt>(StepV))
1039         GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1040                                     GEPPtrTy->getAddressSpace());
1041       const SCEV *const StepArray[1] = { SE.getSCEV(StepV) };
1042       IncV = expandAddToGEP(StepArray, StepArray+1, GEPPtrTy, IntTy, PN);
1043       if (IncV->getType() != PN->getType()) {
1044         IncV = Builder.CreateBitCast(IncV, PN->getType());
1045         rememberInstruction(IncV);
1046       }
1047     } else {
1048       IncV = isNegative ?
1049         Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1050         Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1051       rememberInstruction(IncV);
1052     }
1053     PN->addIncoming(IncV, Pred);
1054   }
1055 
1056   // Restore the original insert point.
1057   if (SaveInsertBB)
1058     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1059 
1060   // Remember this PHI, even in post-inc mode.
1061   InsertedValues.insert(PN);
1062 
1063   return PN;
1064 }
1065 
expandAddRecExprLiterally(const SCEVAddRecExpr * S)1066 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1067   Type *STy = S->getType();
1068   Type *IntTy = SE.getEffectiveSCEVType(STy);
1069   const Loop *L = S->getLoop();
1070 
1071   // Determine a normalized form of this expression, which is the expression
1072   // before any post-inc adjustment is made.
1073   const SCEVAddRecExpr *Normalized = S;
1074   if (PostIncLoops.count(L)) {
1075     PostIncLoopSet Loops;
1076     Loops.insert(L);
1077     Normalized =
1078       cast<SCEVAddRecExpr>(TransformForPostIncUse(Normalize, S, 0, 0,
1079                                                   Loops, SE, *SE.DT));
1080   }
1081 
1082   // Strip off any non-loop-dominating component from the addrec start.
1083   const SCEV *Start = Normalized->getStart();
1084   const SCEV *PostLoopOffset = 0;
1085   if (!SE.properlyDominates(Start, L->getHeader())) {
1086     PostLoopOffset = Start;
1087     Start = SE.getConstant(Normalized->getType(), 0);
1088     Normalized = cast<SCEVAddRecExpr>(
1089       SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1090                        Normalized->getLoop(),
1091                        // FIXME: Normalized->getNoWrapFlags(FlagNW)
1092                        SCEV::FlagAnyWrap));
1093   }
1094 
1095   // Strip off any non-loop-dominating component from the addrec step.
1096   const SCEV *Step = Normalized->getStepRecurrence(SE);
1097   const SCEV *PostLoopScale = 0;
1098   if (!SE.dominates(Step, L->getHeader())) {
1099     PostLoopScale = Step;
1100     Step = SE.getConstant(Normalized->getType(), 1);
1101     Normalized =
1102       cast<SCEVAddRecExpr>(SE.getAddRecExpr(Start, Step,
1103                                             Normalized->getLoop(),
1104                                             // FIXME: Normalized
1105                                             // ->getNoWrapFlags(FlagNW)
1106                                             SCEV::FlagAnyWrap));
1107   }
1108 
1109   // Expand the core addrec. If we need post-loop scaling, force it to
1110   // expand to an integer type to avoid the need for additional casting.
1111   Type *ExpandTy = PostLoopScale ? IntTy : STy;
1112   PHINode *PN = getAddRecExprPHILiterally(Normalized, L, ExpandTy, IntTy);
1113 
1114   // Accommodate post-inc mode, if necessary.
1115   Value *Result;
1116   if (!PostIncLoops.count(L))
1117     Result = PN;
1118   else {
1119     // In PostInc mode, use the post-incremented value.
1120     BasicBlock *LatchBlock = L->getLoopLatch();
1121     assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1122     Result = PN->getIncomingValueForBlock(LatchBlock);
1123 
1124     // For an expansion to use the postinc form, the client must call
1125     // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1126     // or dominated by IVIncInsertPos.
1127     assert((!isa<Instruction>(Result) ||
1128             SE.DT->dominates(cast<Instruction>(Result),
1129                              Builder.GetInsertPoint())) &&
1130            "postinc expansion does not dominate use");
1131   }
1132 
1133   // Re-apply any non-loop-dominating scale.
1134   if (PostLoopScale) {
1135     Result = InsertNoopCastOfTo(Result, IntTy);
1136     Result = Builder.CreateMul(Result,
1137                                expandCodeFor(PostLoopScale, IntTy));
1138     rememberInstruction(Result);
1139   }
1140 
1141   // Re-apply any non-loop-dominating offset.
1142   if (PostLoopOffset) {
1143     if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1144       const SCEV *const OffsetArray[1] = { PostLoopOffset };
1145       Result = expandAddToGEP(OffsetArray, OffsetArray+1, PTy, IntTy, Result);
1146     } else {
1147       Result = InsertNoopCastOfTo(Result, IntTy);
1148       Result = Builder.CreateAdd(Result,
1149                                  expandCodeFor(PostLoopOffset, IntTy));
1150       rememberInstruction(Result);
1151     }
1152   }
1153 
1154   return Result;
1155 }
1156 
visitAddRecExpr(const SCEVAddRecExpr * S)1157 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1158   if (!CanonicalMode) return expandAddRecExprLiterally(S);
1159 
1160   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1161   const Loop *L = S->getLoop();
1162 
1163   // First check for an existing canonical IV in a suitable type.
1164   PHINode *CanonicalIV = 0;
1165   if (PHINode *PN = L->getCanonicalInductionVariable())
1166     if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1167       CanonicalIV = PN;
1168 
1169   // Rewrite an AddRec in terms of the canonical induction variable, if
1170   // its type is more narrow.
1171   if (CanonicalIV &&
1172       SE.getTypeSizeInBits(CanonicalIV->getType()) >
1173       SE.getTypeSizeInBits(Ty)) {
1174     SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1175     for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1176       NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1177     Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1178                                        // FIXME: S->getNoWrapFlags(FlagNW)
1179                                        SCEV::FlagAnyWrap));
1180     BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1181     BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1182     BasicBlock::iterator NewInsertPt =
1183       llvm::next(BasicBlock::iterator(cast<Instruction>(V)));
1184     while (isa<PHINode>(NewInsertPt) || isa<DbgInfoIntrinsic>(NewInsertPt) ||
1185            isa<LandingPadInst>(NewInsertPt))
1186       ++NewInsertPt;
1187     V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), 0,
1188                       NewInsertPt);
1189     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1190     return V;
1191   }
1192 
1193   // {X,+,F} --> X + {0,+,F}
1194   if (!S->getStart()->isZero()) {
1195     SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1196     NewOps[0] = SE.getConstant(Ty, 0);
1197     // FIXME: can use S->getNoWrapFlags()
1198     const SCEV *Rest = SE.getAddRecExpr(NewOps, L, SCEV::FlagAnyWrap);
1199 
1200     // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1201     // comments on expandAddToGEP for details.
1202     const SCEV *Base = S->getStart();
1203     const SCEV *RestArray[1] = { Rest };
1204     // Dig into the expression to find the pointer base for a GEP.
1205     ExposePointerBase(Base, RestArray[0], SE);
1206     // If we found a pointer, expand the AddRec with a GEP.
1207     if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1208       // Make sure the Base isn't something exotic, such as a multiplied
1209       // or divided pointer value. In those cases, the result type isn't
1210       // actually a pointer type.
1211       if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1212         Value *StartV = expand(Base);
1213         assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1214         return expandAddToGEP(RestArray, RestArray+1, PTy, Ty, StartV);
1215       }
1216     }
1217 
1218     // Just do a normal add. Pre-expand the operands to suppress folding.
1219     return expand(SE.getAddExpr(SE.getUnknown(expand(S->getStart())),
1220                                 SE.getUnknown(expand(Rest))));
1221   }
1222 
1223   // If we don't yet have a canonical IV, create one.
1224   if (!CanonicalIV) {
1225     // Create and insert the PHI node for the induction variable in the
1226     // specified loop.
1227     BasicBlock *Header = L->getHeader();
1228     pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1229     CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1230                                   Header->begin());
1231     rememberInstruction(CanonicalIV);
1232 
1233     Constant *One = ConstantInt::get(Ty, 1);
1234     for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1235       BasicBlock *HP = *HPI;
1236       if (L->contains(HP)) {
1237         // Insert a unit add instruction right before the terminator
1238         // corresponding to the back-edge.
1239         Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1240                                                      "indvar.next",
1241                                                      HP->getTerminator());
1242         Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1243         rememberInstruction(Add);
1244         CanonicalIV->addIncoming(Add, HP);
1245       } else {
1246         CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1247       }
1248     }
1249   }
1250 
1251   // {0,+,1} --> Insert a canonical induction variable into the loop!
1252   if (S->isAffine() && S->getOperand(1)->isOne()) {
1253     assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1254            "IVs with types different from the canonical IV should "
1255            "already have been handled!");
1256     return CanonicalIV;
1257   }
1258 
1259   // {0,+,F} --> {0,+,1} * F
1260 
1261   // If this is a simple linear addrec, emit it now as a special case.
1262   if (S->isAffine())    // {0,+,F} --> i*F
1263     return
1264       expand(SE.getTruncateOrNoop(
1265         SE.getMulExpr(SE.getUnknown(CanonicalIV),
1266                       SE.getNoopOrAnyExtend(S->getOperand(1),
1267                                             CanonicalIV->getType())),
1268         Ty));
1269 
1270   // If this is a chain of recurrences, turn it into a closed form, using the
1271   // folders, then expandCodeFor the closed form.  This allows the folders to
1272   // simplify the expression without having to build a bunch of special code
1273   // into this folder.
1274   const SCEV *IH = SE.getUnknown(CanonicalIV);   // Get I as a "symbolic" SCEV.
1275 
1276   // Promote S up to the canonical IV type, if the cast is foldable.
1277   const SCEV *NewS = S;
1278   const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1279   if (isa<SCEVAddRecExpr>(Ext))
1280     NewS = Ext;
1281 
1282   const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1283   //cerr << "Evaluated: " << *this << "\n     to: " << *V << "\n";
1284 
1285   // Truncate the result down to the original type, if needed.
1286   const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1287   return expand(T);
1288 }
1289 
visitTruncateExpr(const SCEVTruncateExpr * S)1290 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1291   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1292   Value *V = expandCodeFor(S->getOperand(),
1293                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1294   Value *I = Builder.CreateTrunc(V, Ty);
1295   rememberInstruction(I);
1296   return I;
1297 }
1298 
visitZeroExtendExpr(const SCEVZeroExtendExpr * S)1299 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1300   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1301   Value *V = expandCodeFor(S->getOperand(),
1302                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1303   Value *I = Builder.CreateZExt(V, Ty);
1304   rememberInstruction(I);
1305   return I;
1306 }
1307 
visitSignExtendExpr(const SCEVSignExtendExpr * S)1308 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1309   Type *Ty = SE.getEffectiveSCEVType(S->getType());
1310   Value *V = expandCodeFor(S->getOperand(),
1311                            SE.getEffectiveSCEVType(S->getOperand()->getType()));
1312   Value *I = Builder.CreateSExt(V, Ty);
1313   rememberInstruction(I);
1314   return I;
1315 }
1316 
visitSMaxExpr(const SCEVSMaxExpr * S)1317 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1318   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1319   Type *Ty = LHS->getType();
1320   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1321     // In the case of mixed integer and pointer types, do the
1322     // rest of the comparisons as integer.
1323     if (S->getOperand(i)->getType() != Ty) {
1324       Ty = SE.getEffectiveSCEVType(Ty);
1325       LHS = InsertNoopCastOfTo(LHS, Ty);
1326     }
1327     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1328     Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1329     rememberInstruction(ICmp);
1330     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1331     rememberInstruction(Sel);
1332     LHS = Sel;
1333   }
1334   // In the case of mixed integer and pointer types, cast the
1335   // final result back to the pointer type.
1336   if (LHS->getType() != S->getType())
1337     LHS = InsertNoopCastOfTo(LHS, S->getType());
1338   return LHS;
1339 }
1340 
visitUMaxExpr(const SCEVUMaxExpr * S)1341 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1342   Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1343   Type *Ty = LHS->getType();
1344   for (int i = S->getNumOperands()-2; i >= 0; --i) {
1345     // In the case of mixed integer and pointer types, do the
1346     // rest of the comparisons as integer.
1347     if (S->getOperand(i)->getType() != Ty) {
1348       Ty = SE.getEffectiveSCEVType(Ty);
1349       LHS = InsertNoopCastOfTo(LHS, Ty);
1350     }
1351     Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1352     Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1353     rememberInstruction(ICmp);
1354     Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1355     rememberInstruction(Sel);
1356     LHS = Sel;
1357   }
1358   // In the case of mixed integer and pointer types, cast the
1359   // final result back to the pointer type.
1360   if (LHS->getType() != S->getType())
1361     LHS = InsertNoopCastOfTo(LHS, S->getType());
1362   return LHS;
1363 }
1364 
expandCodeFor(const SCEV * SH,Type * Ty,Instruction * I)1365 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1366                                    Instruction *I) {
1367   BasicBlock::iterator IP = I;
1368   while (isInsertedInstruction(IP) || isa<DbgInfoIntrinsic>(IP))
1369     ++IP;
1370   Builder.SetInsertPoint(IP->getParent(), IP);
1371   return expandCodeFor(SH, Ty);
1372 }
1373 
expandCodeFor(const SCEV * SH,Type * Ty)1374 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1375   // Expand the code for this SCEV.
1376   Value *V = expand(SH);
1377   if (Ty) {
1378     assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1379            "non-trivial casts should be done with the SCEVs directly!");
1380     V = InsertNoopCastOfTo(V, Ty);
1381   }
1382   return V;
1383 }
1384 
expand(const SCEV * S)1385 Value *SCEVExpander::expand(const SCEV *S) {
1386   // Compute an insertion point for this SCEV object. Hoist the instructions
1387   // as far out in the loop nest as possible.
1388   Instruction *InsertPt = Builder.GetInsertPoint();
1389   for (Loop *L = SE.LI->getLoopFor(Builder.GetInsertBlock()); ;
1390        L = L->getParentLoop())
1391     if (SE.isLoopInvariant(S, L)) {
1392       if (!L) break;
1393       if (BasicBlock *Preheader = L->getLoopPreheader())
1394         InsertPt = Preheader->getTerminator();
1395     } else {
1396       // If the SCEV is computable at this level, insert it into the header
1397       // after the PHIs (and after any other instructions that we've inserted
1398       // there) so that it is guaranteed to dominate any user inside the loop.
1399       if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1400         InsertPt = L->getHeader()->getFirstInsertionPt();
1401       while (isInsertedInstruction(InsertPt) || isa<DbgInfoIntrinsic>(InsertPt))
1402         InsertPt = llvm::next(BasicBlock::iterator(InsertPt));
1403       break;
1404     }
1405 
1406   // Check to see if we already expanded this here.
1407   std::map<std::pair<const SCEV *, Instruction *>,
1408            AssertingVH<Value> >::iterator I =
1409     InsertedExpressions.find(std::make_pair(S, InsertPt));
1410   if (I != InsertedExpressions.end())
1411     return I->second;
1412 
1413   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1414   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1415   Builder.SetInsertPoint(InsertPt->getParent(), InsertPt);
1416 
1417   // Expand the expression into instructions.
1418   Value *V = visit(S);
1419 
1420   // Remember the expanded value for this SCEV at this location.
1421   //
1422   // This is independent of PostIncLoops. The mapped value simply materializes
1423   // the expression at this insertion point. If the mapped value happened to be
1424   // a postinc expansion, it could be reused by a non postinc user, but only if
1425   // its insertion point was already at the head of the loop.
1426   InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1427 
1428   restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1429   return V;
1430 }
1431 
rememberInstruction(Value * I)1432 void SCEVExpander::rememberInstruction(Value *I) {
1433   if (!PostIncLoops.empty())
1434     InsertedPostIncValues.insert(I);
1435   else
1436     InsertedValues.insert(I);
1437 
1438   // If we just claimed an existing instruction and that instruction had
1439   // been the insert point, adjust the insert point forward so that
1440   // subsequently inserted code will be dominated.
1441   if (Builder.GetInsertPoint() == I) {
1442     BasicBlock::iterator It = cast<Instruction>(I);
1443     do { ++It; } while (isInsertedInstruction(It) ||
1444                         isa<DbgInfoIntrinsic>(It));
1445     Builder.SetInsertPoint(Builder.GetInsertBlock(), It);
1446   }
1447 }
1448 
restoreInsertPoint(BasicBlock * BB,BasicBlock::iterator I)1449 void SCEVExpander::restoreInsertPoint(BasicBlock *BB, BasicBlock::iterator I) {
1450   // If we acquired more instructions since the old insert point was saved,
1451   // advance past them.
1452   while (isInsertedInstruction(I) || isa<DbgInfoIntrinsic>(I)) ++I;
1453 
1454   Builder.SetInsertPoint(BB, I);
1455 }
1456 
1457 /// getOrInsertCanonicalInductionVariable - This method returns the
1458 /// canonical induction variable of the specified type for the specified
1459 /// loop (inserting one if there is none).  A canonical induction variable
1460 /// starts at zero and steps by one on each iteration.
1461 PHINode *
getOrInsertCanonicalInductionVariable(const Loop * L,Type * Ty)1462 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1463                                                     Type *Ty) {
1464   assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1465 
1466   // Build a SCEV for {0,+,1}<L>.
1467   // Conservatively use FlagAnyWrap for now.
1468   const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1469                                    SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1470 
1471   // Emit code for it.
1472   BasicBlock *SaveInsertBB = Builder.GetInsertBlock();
1473   BasicBlock::iterator SaveInsertPt = Builder.GetInsertPoint();
1474   PHINode *V = cast<PHINode>(expandCodeFor(H, 0, L->getHeader()->begin()));
1475   if (SaveInsertBB)
1476     restoreInsertPoint(SaveInsertBB, SaveInsertPt);
1477 
1478   return V;
1479 }
1480 
1481 /// hoistStep - Attempt to hoist an IV increment above a potential use.
1482 ///
1483 /// To successfully hoist, two criteria must be met:
1484 /// - IncV operands dominate InsertPos and
1485 /// - InsertPos dominates IncV
1486 ///
1487 /// Meeting the second condition means that we don't need to check all of IncV's
1488 /// existing uses (it's moving up in the domtree).
1489 ///
1490 /// This does not yet recursively hoist the operands, although that would
1491 /// not be difficult.
1492 ///
1493 /// This does not require a SCEVExpander instance and could be replaced by a
1494 /// general code-insertion helper.
hoistStep(Instruction * IncV,Instruction * InsertPos,const DominatorTree * DT)1495 bool SCEVExpander::hoistStep(Instruction *IncV, Instruction *InsertPos,
1496                              const DominatorTree *DT) {
1497   if (DT->dominates(IncV, InsertPos))
1498     return true;
1499 
1500   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
1501     return false;
1502 
1503   if (IncV->mayHaveSideEffects())
1504     return false;
1505 
1506   // Attempt to hoist IncV
1507   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
1508        OI != OE; ++OI) {
1509     Instruction *OInst = dyn_cast<Instruction>(OI);
1510     if (OInst && !DT->dominates(OInst, InsertPos))
1511       return false;
1512   }
1513   IncV->moveBefore(InsertPos);
1514   return true;
1515 }
1516 
1517 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1518 /// replace them with their most canonical representative. Return the number of
1519 /// phis eliminated.
1520 ///
1521 /// This does not depend on any SCEVExpander state but should be used in
1522 /// the same context that SCEVExpander is used.
replaceCongruentIVs(Loop * L,const DominatorTree * DT,SmallVectorImpl<WeakVH> & DeadInsts)1523 unsigned SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1524                                            SmallVectorImpl<WeakVH> &DeadInsts) {
1525   unsigned NumElim = 0;
1526   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1527   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1528     PHINode *Phi = cast<PHINode>(I);
1529     if (!SE.isSCEVable(Phi->getType()))
1530       continue;
1531 
1532     PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1533     if (!OrigPhiRef) {
1534       OrigPhiRef = Phi;
1535       continue;
1536     }
1537 
1538     // If one phi derives from the other via GEPs, types may differ.
1539     // We could consider adding a bitcast here to handle it.
1540     if (OrigPhiRef->getType() != Phi->getType())
1541       continue;
1542 
1543     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1544       Instruction *OrigInc =
1545         cast<Instruction>(OrigPhiRef->getIncomingValueForBlock(LatchBlock));
1546       Instruction *IsomorphicInc =
1547         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1548 
1549       // If this phi is more canonical, swap it with the original.
1550       if (!isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)
1551           && isExpandedAddRecExprPHI(Phi, IsomorphicInc, L)) {
1552         std::swap(OrigPhiRef, Phi);
1553         std::swap(OrigInc, IsomorphicInc);
1554       }
1555       // Replacing the congruent phi is sufficient because acyclic redundancy
1556       // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1557       // that a phi is congruent, it's often the head of an IV user cycle that
1558       // is isomorphic with the original phi. So it's worth eagerly cleaning up
1559       // the common case of a single IV increment.
1560       if (OrigInc != IsomorphicInc &&
1561           OrigInc->getType() == IsomorphicInc->getType() &&
1562           SE.getSCEV(OrigInc) == SE.getSCEV(IsomorphicInc) &&
1563           hoistStep(OrigInc, IsomorphicInc, DT)) {
1564         DEBUG_WITH_TYPE(DebugType, dbgs()
1565                         << "INDVARS: Eliminated congruent iv.inc: "
1566                         << *IsomorphicInc << '\n');
1567         IsomorphicInc->replaceAllUsesWith(OrigInc);
1568         DeadInsts.push_back(IsomorphicInc);
1569       }
1570     }
1571     DEBUG_WITH_TYPE(DebugType, dbgs()
1572                     << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1573     ++NumElim;
1574     Phi->replaceAllUsesWith(OrigPhiRef);
1575     DeadInsts.push_back(Phi);
1576   }
1577   return NumElim;
1578 }
1579