1 /*
2 * Copyright 2011 Daniel Drown
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 * translate.c - CLAT functions / partial implementation of rfc6145
17 */
18 #include <string.h>
19
20 #include "netutils/checksum.h"
21
22 #include "clatd.h"
23 #include "common.h"
24 #include "config.h"
25 #include "debug.h"
26 #include "icmp.h"
27 #include "logging.h"
28 #include "translate.h"
29 #include "tun.h"
30
31 /* function: packet_checksum
32 * calculates the checksum over all the packet components starting from pos
33 * checksum - checksum of packet components before pos
34 * packet - packet to calculate the checksum of
35 * pos - position to start counting from
36 * returns - the completed 16-bit checksum, ready to write into a checksum header field
37 */
packet_checksum(uint32_t checksum,clat_packet packet,clat_packet_index pos)38 uint16_t packet_checksum(uint32_t checksum, clat_packet packet, clat_packet_index pos) {
39 int i;
40 for (i = pos; i < CLAT_POS_MAX; i++) {
41 if (packet[i].iov_len > 0) {
42 checksum = ip_checksum_add(checksum, packet[i].iov_base, packet[i].iov_len);
43 }
44 }
45 return ip_checksum_finish(checksum);
46 }
47
48 /* function: packet_length
49 * returns the total length of all the packet components after pos
50 * packet - packet to calculate the length of
51 * pos - position to start counting after
52 * returns: the total length of the packet components after pos
53 */
packet_length(clat_packet packet,clat_packet_index pos)54 uint16_t packet_length(clat_packet packet, clat_packet_index pos) {
55 size_t len = 0;
56 int i;
57 for (i = pos + 1; i < CLAT_POS_MAX; i++) {
58 len += packet[i].iov_len;
59 }
60 return len;
61 }
62
63 /* function: is_in_plat_subnet
64 * returns true iff the given IPv6 address is in the plat subnet.
65 * addr - IPv6 address
66 */
is_in_plat_subnet(const struct in6_addr * addr6)67 int is_in_plat_subnet(const struct in6_addr *addr6) {
68 // Assumes a /96 plat subnet.
69 return (addr6 != NULL) && (memcmp(addr6, &Global_Clatd_Config.plat_subnet, 12) == 0);
70 }
71
72 /* function: ipv6_addr_to_ipv4_addr
73 * return the corresponding ipv4 address for the given ipv6 address
74 * addr6 - ipv6 address
75 * returns: the IPv4 address
76 */
ipv6_addr_to_ipv4_addr(const struct in6_addr * addr6)77 uint32_t ipv6_addr_to_ipv4_addr(const struct in6_addr *addr6) {
78 if (is_in_plat_subnet(addr6)) {
79 // Assumes a /96 plat subnet.
80 return addr6->s6_addr32[3];
81 } else if (IN6_ARE_ADDR_EQUAL(addr6, &Global_Clatd_Config.ipv6_local_subnet)) {
82 // Special-case our own address.
83 return Global_Clatd_Config.ipv4_local_subnet.s_addr;
84 } else {
85 // Third party packet. Let the caller deal with it.
86 return INADDR_NONE;
87 }
88 }
89
90 /* function: ipv4_addr_to_ipv6_addr
91 * return the corresponding ipv6 address for the given ipv4 address
92 * addr4 - ipv4 address
93 */
ipv4_addr_to_ipv6_addr(uint32_t addr4)94 struct in6_addr ipv4_addr_to_ipv6_addr(uint32_t addr4) {
95 struct in6_addr addr6;
96 // Both addresses are in network byte order (addr4 comes from a network packet, and the config
97 // file entry is read using inet_ntop).
98 if (addr4 == Global_Clatd_Config.ipv4_local_subnet.s_addr) {
99 return Global_Clatd_Config.ipv6_local_subnet;
100 } else {
101 // Assumes a /96 plat subnet.
102 addr6 = Global_Clatd_Config.plat_subnet;
103 addr6.s6_addr32[3] = addr4;
104 return addr6;
105 }
106 }
107
108 /* function: fill_tun_header
109 * fill in the header for the tun fd
110 * tun_header - tunnel header, already allocated
111 * proto - ethernet protocol id: ETH_P_IP(ipv4) or ETH_P_IPV6(ipv6)
112 */
fill_tun_header(struct tun_pi * tun_header,uint16_t proto)113 void fill_tun_header(struct tun_pi *tun_header, uint16_t proto) {
114 tun_header->flags = 0;
115 tun_header->proto = htons(proto);
116 }
117
118 /* function: fill_ip_header
119 * generate an ipv4 header from an ipv6 header
120 * ip_targ - (ipv4) target packet header, source: original ipv4 addr, dest: local subnet addr
121 * payload_len - length of other data inside packet
122 * protocol - protocol number (tcp, udp, etc)
123 * old_header - (ipv6) source packet header, source: nat64 prefix, dest: local subnet prefix
124 */
fill_ip_header(struct iphdr * ip,uint16_t payload_len,uint8_t protocol,const struct ip6_hdr * old_header)125 void fill_ip_header(struct iphdr *ip, uint16_t payload_len, uint8_t protocol,
126 const struct ip6_hdr *old_header) {
127 int ttl_guess;
128 memset(ip, 0, sizeof(struct iphdr));
129
130 ip->ihl = 5;
131 ip->version = 4;
132 ip->tos = 0;
133 ip->tot_len = htons(sizeof(struct iphdr) + payload_len);
134 ip->id = 0;
135 ip->frag_off = htons(IP_DF);
136 ip->ttl = old_header->ip6_hlim;
137 ip->protocol = protocol;
138 ip->check = 0;
139
140 ip->saddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_src);
141 ip->daddr = ipv6_addr_to_ipv4_addr(&old_header->ip6_dst);
142
143 // Third-party ICMPv6 message. This may have been originated by an native IPv6 address.
144 // In that case, the source IPv6 address can't be translated and we need to make up an IPv4
145 // source address. For now, use 255.0.0.<ttl>, which at least looks useful in traceroute.
146 if ((uint32_t)ip->saddr == INADDR_NONE) {
147 ttl_guess = icmp_guess_ttl(old_header->ip6_hlim);
148 ip->saddr = htonl((0xff << 24) + ttl_guess);
149 }
150 }
151
152 /* function: fill_ip6_header
153 * generate an ipv6 header from an ipv4 header
154 * ip6 - (ipv6) target packet header, source: local subnet prefix, dest: nat64 prefix
155 * payload_len - length of other data inside packet
156 * protocol - protocol number (tcp, udp, etc)
157 * old_header - (ipv4) source packet header, source: local subnet addr, dest: internet's ipv4 addr
158 */
fill_ip6_header(struct ip6_hdr * ip6,uint16_t payload_len,uint8_t protocol,const struct iphdr * old_header)159 void fill_ip6_header(struct ip6_hdr *ip6, uint16_t payload_len, uint8_t protocol,
160 const struct iphdr *old_header) {
161 memset(ip6, 0, sizeof(struct ip6_hdr));
162
163 ip6->ip6_vfc = 6 << 4;
164 ip6->ip6_plen = htons(payload_len);
165 ip6->ip6_nxt = protocol;
166 ip6->ip6_hlim = old_header->ttl;
167
168 ip6->ip6_src = ipv4_addr_to_ipv6_addr(old_header->saddr);
169 ip6->ip6_dst = ipv4_addr_to_ipv6_addr(old_header->daddr);
170 }
171
172 /* function: maybe_fill_frag_header
173 * fills a fragmentation header
174 * generate an ipv6 fragment header from an ipv4 header
175 * frag_hdr - target (ipv6) fragmentation header
176 * ip6_targ - target (ipv6) header
177 * old_header - (ipv4) source packet header
178 * returns: the length of the fragmentation header if present, or zero if not present
179 */
maybe_fill_frag_header(struct ip6_frag * frag_hdr,struct ip6_hdr * ip6_targ,const struct iphdr * old_header)180 size_t maybe_fill_frag_header(struct ip6_frag *frag_hdr, struct ip6_hdr *ip6_targ,
181 const struct iphdr *old_header) {
182 uint16_t frag_flags = ntohs(old_header->frag_off);
183 uint16_t frag_off = frag_flags & IP_OFFMASK;
184 if (frag_off == 0 && (frag_flags & IP_MF) == 0) {
185 // Not a fragment.
186 return 0;
187 }
188
189 frag_hdr->ip6f_nxt = ip6_targ->ip6_nxt;
190 frag_hdr->ip6f_reserved = 0;
191 // In IPv4, the offset is the bottom 13 bits; in IPv6 it's the top 13 bits.
192 frag_hdr->ip6f_offlg = htons(frag_off << 3);
193 if (frag_flags & IP_MF) {
194 frag_hdr->ip6f_offlg |= IP6F_MORE_FRAG;
195 }
196 frag_hdr->ip6f_ident = htonl(ntohs(old_header->id));
197 ip6_targ->ip6_nxt = IPPROTO_FRAGMENT;
198
199 return sizeof(*frag_hdr);
200 }
201
202 /* function: parse_frag_header
203 * return the length of the fragmentation header if present, or zero if not present
204 * generate an ipv6 fragment header from an ipv4 header
205 * frag_hdr - (ipv6) fragmentation header
206 * ip_targ - target (ipv4) header
207 * returns: the next header value
208 */
parse_frag_header(const struct ip6_frag * frag_hdr,struct iphdr * ip_targ)209 uint8_t parse_frag_header(const struct ip6_frag *frag_hdr, struct iphdr *ip_targ) {
210 uint16_t frag_off = (ntohs(frag_hdr->ip6f_offlg & IP6F_OFF_MASK) >> 3);
211 if (frag_hdr->ip6f_offlg & IP6F_MORE_FRAG) {
212 frag_off |= IP_MF;
213 }
214 ip_targ->frag_off = htons(frag_off);
215 ip_targ->id = htons(ntohl(frag_hdr->ip6f_ident) & 0xffff);
216 ip_targ->protocol = frag_hdr->ip6f_nxt;
217 return frag_hdr->ip6f_nxt;
218 }
219
220 /* function: icmp_to_icmp6
221 * translate ipv4 icmp to ipv6 icmp
222 * out - output packet
223 * icmp - source packet icmp header
224 * checksum - pseudo-header checksum
225 * payload - icmp payload
226 * payload_size - size of payload
227 * returns: the highest position in the output clat_packet that's filled in
228 */
icmp_to_icmp6(clat_packet out,clat_packet_index pos,const struct icmphdr * icmp,uint32_t checksum,const uint8_t * payload,size_t payload_size)229 int icmp_to_icmp6(clat_packet out, clat_packet_index pos, const struct icmphdr *icmp,
230 uint32_t checksum, const uint8_t *payload, size_t payload_size) {
231 struct icmp6_hdr *icmp6_targ = out[pos].iov_base;
232 uint8_t icmp6_type;
233 int clat_packet_len;
234
235 memset(icmp6_targ, 0, sizeof(struct icmp6_hdr));
236
237 icmp6_type = icmp_to_icmp6_type(icmp->type, icmp->code);
238 icmp6_targ->icmp6_type = icmp6_type;
239 icmp6_targ->icmp6_code = icmp_to_icmp6_code(icmp->type, icmp->code);
240
241 out[pos].iov_len = sizeof(struct icmp6_hdr);
242
243 if (pos == CLAT_POS_TRANSPORTHDR && is_icmp_error(icmp->type) && icmp6_type != ICMP6_PARAM_PROB) {
244 // An ICMP error we understand, one level deep.
245 // Translate the nested packet (the one that caused the error).
246 clat_packet_len = ipv4_packet(out, pos + 1, payload, payload_size);
247
248 // The pseudo-header checksum was calculated on the transport length of the original IPv4
249 // packet that we were asked to translate. This transport length is 20 bytes smaller than it
250 // needs to be, because the ICMP error contains an IPv4 header, which we will be translating to
251 // an IPv6 header, which is 20 bytes longer. Fix it up here.
252 // We only need to do this for ICMP->ICMPv6, not ICMPv6->ICMP, because ICMP does not use the
253 // pseudo-header when calculating its checksum (as the IPv4 header has its own checksum).
254 checksum = checksum + htons(20);
255 } else if (icmp6_type == ICMP6_ECHO_REQUEST || icmp6_type == ICMP6_ECHO_REPLY) {
256 // Ping packet.
257 icmp6_targ->icmp6_id = icmp->un.echo.id;
258 icmp6_targ->icmp6_seq = icmp->un.echo.sequence;
259 out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
260 out[CLAT_POS_PAYLOAD].iov_len = payload_size;
261 clat_packet_len = CLAT_POS_PAYLOAD + 1;
262 } else {
263 // Unknown type/code. The type/code conversion functions have already logged an error.
264 return 0;
265 }
266
267 icmp6_targ->icmp6_cksum = 0; // Checksum field must be 0 when calculating checksum.
268 icmp6_targ->icmp6_cksum = packet_checksum(checksum, out, pos);
269
270 return clat_packet_len;
271 }
272
273 /* function: icmp6_to_icmp
274 * translate ipv6 icmp to ipv4 icmp
275 * out - output packet
276 * icmp6 - source packet icmp6 header
277 * payload - icmp6 payload
278 * payload_size - size of payload
279 * returns: the highest position in the output clat_packet that's filled in
280 */
icmp6_to_icmp(clat_packet out,clat_packet_index pos,const struct icmp6_hdr * icmp6,const uint8_t * payload,size_t payload_size)281 int icmp6_to_icmp(clat_packet out, clat_packet_index pos, const struct icmp6_hdr *icmp6,
282 const uint8_t *payload, size_t payload_size) {
283 struct icmphdr *icmp_targ = out[pos].iov_base;
284 uint8_t icmp_type;
285 int clat_packet_len;
286
287 memset(icmp_targ, 0, sizeof(struct icmphdr));
288
289 icmp_type = icmp6_to_icmp_type(icmp6->icmp6_type, icmp6->icmp6_code);
290 icmp_targ->type = icmp_type;
291 icmp_targ->code = icmp6_to_icmp_code(icmp6->icmp6_type, icmp6->icmp6_code);
292
293 out[pos].iov_len = sizeof(struct icmphdr);
294
295 if (pos == CLAT_POS_TRANSPORTHDR && is_icmp6_error(icmp6->icmp6_type) &&
296 icmp_type != ICMP_PARAMETERPROB) {
297 // An ICMPv6 error we understand, one level deep.
298 // Translate the nested packet (the one that caused the error).
299 clat_packet_len = ipv6_packet(out, pos + 1, payload, payload_size);
300 } else if (icmp_type == ICMP_ECHO || icmp_type == ICMP_ECHOREPLY) {
301 // Ping packet.
302 icmp_targ->un.echo.id = icmp6->icmp6_id;
303 icmp_targ->un.echo.sequence = icmp6->icmp6_seq;
304 out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
305 out[CLAT_POS_PAYLOAD].iov_len = payload_size;
306 clat_packet_len = CLAT_POS_PAYLOAD + 1;
307 } else {
308 // Unknown type/code. The type/code conversion functions have already logged an error.
309 return 0;
310 }
311
312 icmp_targ->checksum = 0; // Checksum field must be 0 when calculating checksum.
313 icmp_targ->checksum = packet_checksum(0, out, pos);
314
315 return clat_packet_len;
316 }
317
318 /* function: generic_packet
319 * takes a generic IP packet and sets it up for translation
320 * out - output packet
321 * pos - position in the output packet of the transport header
322 * payload - pointer to IP payload
323 * len - size of ip payload
324 * returns: the highest position in the output clat_packet that's filled in
325 */
generic_packet(clat_packet out,clat_packet_index pos,const uint8_t * payload,size_t len)326 int generic_packet(clat_packet out, clat_packet_index pos, const uint8_t *payload, size_t len) {
327 out[pos].iov_len = 0;
328 out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
329 out[CLAT_POS_PAYLOAD].iov_len = len;
330
331 return CLAT_POS_PAYLOAD + 1;
332 }
333
334 /* function: udp_packet
335 * takes a udp packet and sets it up for translation
336 * out - output packet
337 * udp - pointer to udp header in packet
338 * old_sum - pseudo-header checksum of old header
339 * new_sum - pseudo-header checksum of new header
340 * len - size of ip payload
341 */
udp_packet(clat_packet out,clat_packet_index pos,const struct udphdr * udp,uint32_t old_sum,uint32_t new_sum,size_t len)342 int udp_packet(clat_packet out, clat_packet_index pos, const struct udphdr *udp, uint32_t old_sum,
343 uint32_t new_sum, size_t len) {
344 const uint8_t *payload;
345 size_t payload_size;
346
347 if (len < sizeof(struct udphdr)) {
348 logmsg_dbg(ANDROID_LOG_ERROR, "udp_packet/(too small)");
349 return 0;
350 }
351
352 payload = (const uint8_t *)(udp + 1);
353 payload_size = len - sizeof(struct udphdr);
354
355 return udp_translate(out, pos, udp, old_sum, new_sum, payload, payload_size);
356 }
357
358 /* function: tcp_packet
359 * takes a tcp packet and sets it up for translation
360 * out - output packet
361 * tcp - pointer to tcp header in packet
362 * checksum - pseudo-header checksum
363 * len - size of ip payload
364 * returns: the highest position in the output clat_packet that's filled in
365 */
tcp_packet(clat_packet out,clat_packet_index pos,const struct tcphdr * tcp,uint32_t old_sum,uint32_t new_sum,size_t len)366 int tcp_packet(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp, uint32_t old_sum,
367 uint32_t new_sum, size_t len) {
368 const uint8_t *payload;
369 size_t payload_size, header_size;
370
371 if (len < sizeof(struct tcphdr)) {
372 logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/(too small)");
373 return 0;
374 }
375
376 if (tcp->doff < 5) {
377 logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/tcp header length set to less than 5: %x", tcp->doff);
378 return 0;
379 }
380
381 if ((size_t)tcp->doff * 4 > len) {
382 logmsg_dbg(ANDROID_LOG_ERROR, "tcp_packet/tcp header length set too large: %x", tcp->doff);
383 return 0;
384 }
385
386 header_size = tcp->doff * 4;
387 payload = ((const uint8_t *)tcp) + header_size;
388 payload_size = len - header_size;
389
390 return tcp_translate(out, pos, tcp, header_size, old_sum, new_sum, payload, payload_size);
391 }
392
393 /* function: udp_translate
394 * common between ipv4/ipv6 - setup checksum and send udp packet
395 * out - output packet
396 * udp - udp header
397 * old_sum - pseudo-header checksum of old header
398 * new_sum - pseudo-header checksum of new header
399 * payload - tcp payload
400 * payload_size - size of payload
401 * returns: the highest position in the output clat_packet that's filled in
402 */
udp_translate(clat_packet out,clat_packet_index pos,const struct udphdr * udp,uint32_t old_sum,uint32_t new_sum,const uint8_t * payload,size_t payload_size)403 int udp_translate(clat_packet out, clat_packet_index pos, const struct udphdr *udp,
404 uint32_t old_sum, uint32_t new_sum, const uint8_t *payload, size_t payload_size) {
405 struct udphdr *udp_targ = out[pos].iov_base;
406
407 memcpy(udp_targ, udp, sizeof(struct udphdr));
408
409 out[pos].iov_len = sizeof(struct udphdr);
410 out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
411 out[CLAT_POS_PAYLOAD].iov_len = payload_size;
412
413 if (udp_targ->check) {
414 udp_targ->check = ip_checksum_adjust(udp->check, old_sum, new_sum);
415 } else {
416 // Zero checksums are special. RFC 768 says, "An all zero transmitted checksum value means that
417 // the transmitter generated no checksum (for debugging or for higher level protocols that
418 // don't care)." However, in IPv6 zero UDP checksums were only permitted by RFC 6935 (2013). So
419 // for safety we recompute it.
420 udp_targ->check = 0; // Checksum field must be 0 when calculating checksum.
421 udp_targ->check = packet_checksum(new_sum, out, pos);
422 }
423
424 // RFC 768: "If the computed checksum is zero, it is transmitted as all ones (the equivalent
425 // in one's complement arithmetic)."
426 if (!udp_targ->check) {
427 udp_targ->check = 0xffff;
428 }
429
430 return CLAT_POS_PAYLOAD + 1;
431 }
432
433 /* function: tcp_translate
434 * common between ipv4/ipv6 - setup checksum and send tcp packet
435 * out - output packet
436 * tcp - tcp header
437 * header_size - size of tcp header including options
438 * checksum - partial checksum covering ipv4/ipv6 header
439 * payload - tcp payload
440 * payload_size - size of payload
441 * returns: the highest position in the output clat_packet that's filled in
442 */
tcp_translate(clat_packet out,clat_packet_index pos,const struct tcphdr * tcp,size_t header_size,uint32_t old_sum,uint32_t new_sum,const uint8_t * payload,size_t payload_size)443 int tcp_translate(clat_packet out, clat_packet_index pos, const struct tcphdr *tcp,
444 size_t header_size, uint32_t old_sum, uint32_t new_sum, const uint8_t *payload,
445 size_t payload_size) {
446 struct tcphdr *tcp_targ = out[pos].iov_base;
447 out[pos].iov_len = header_size;
448
449 if (header_size > MAX_TCP_HDR) {
450 // A TCP header cannot be more than MAX_TCP_HDR bytes long because it's a 4-bit field that
451 // counts in 4-byte words. So this can never happen unless there is a bug in the caller.
452 logmsg(ANDROID_LOG_ERROR, "tcp_translate: header too long %d > %d, truncating", header_size,
453 MAX_TCP_HDR);
454 header_size = MAX_TCP_HDR;
455 }
456
457 memcpy(tcp_targ, tcp, header_size);
458
459 out[CLAT_POS_PAYLOAD].iov_base = (uint8_t *)payload;
460 out[CLAT_POS_PAYLOAD].iov_len = payload_size;
461
462 tcp_targ->check = ip_checksum_adjust(tcp->check, old_sum, new_sum);
463
464 return CLAT_POS_PAYLOAD + 1;
465 }
466
467 // Weak symbol so we can override it in the unit test.
468 void send_rawv6(int fd, clat_packet out, int iov_len) __attribute__((weak));
469
send_rawv6(int fd,clat_packet out,int iov_len)470 void send_rawv6(int fd, clat_packet out, int iov_len) {
471 // A send on a raw socket requires a destination address to be specified even if the socket's
472 // protocol is IPPROTO_RAW. This is the address that will be used in routing lookups; the
473 // destination address in the packet header only affects what appears on the wire, not where the
474 // packet is sent to.
475 static struct sockaddr_in6 sin6 = { AF_INET6, 0, 0, { { { 0, 0, 0, 0 } } }, 0 };
476 static struct msghdr msg = {
477 .msg_name = &sin6,
478 .msg_namelen = sizeof(sin6),
479 };
480
481 msg.msg_iov = out, msg.msg_iovlen = iov_len,
482 sin6.sin6_addr = ((struct ip6_hdr *)out[CLAT_POS_IPHDR].iov_base)->ip6_dst;
483 sendmsg(fd, &msg, 0);
484 }
485
486 /* function: translate_packet
487 * takes a packet, translates it, and writes it to fd
488 * fd - fd to write translated packet to
489 * to_ipv6 - true if translating to ipv6, false if translating to ipv4
490 * packet - packet
491 * packetsize - size of packet
492 */
translate_packet(int fd,int to_ipv6,const uint8_t * packet,size_t packetsize)493 void translate_packet(int fd, int to_ipv6, const uint8_t *packet, size_t packetsize) {
494 int iov_len = 0;
495
496 // Allocate buffers for all packet headers.
497 struct tun_pi tun_targ;
498 char iphdr[sizeof(struct ip6_hdr)];
499 char fraghdr[sizeof(struct ip6_frag)];
500 char transporthdr[MAX_TCP_HDR];
501 char icmp_iphdr[sizeof(struct ip6_hdr)];
502 char icmp_fraghdr[sizeof(struct ip6_frag)];
503 char icmp_transporthdr[MAX_TCP_HDR];
504
505 // iovec of the packets we'll send. This gets passed down to the translation functions.
506 clat_packet out = {
507 { &tun_targ, 0 }, // Tunnel header.
508 { iphdr, 0 }, // IP header.
509 { fraghdr, 0 }, // Fragment header.
510 { transporthdr, 0 }, // Transport layer header.
511 { icmp_iphdr, 0 }, // ICMP error inner IP header.
512 { icmp_fraghdr, 0 }, // ICMP error fragmentation header.
513 { icmp_transporthdr, 0 }, // ICMP error transport layer header.
514 { NULL, 0 }, // Payload. No buffer, it's a pointer to the original payload.
515 };
516
517 if (to_ipv6) {
518 iov_len = ipv4_packet(out, CLAT_POS_IPHDR, packet, packetsize);
519 if (iov_len > 0) {
520 send_rawv6(fd, out, iov_len);
521 }
522 } else {
523 iov_len = ipv6_packet(out, CLAT_POS_IPHDR, packet, packetsize);
524 if (iov_len > 0) {
525 fill_tun_header(&tun_targ, ETH_P_IP);
526 out[CLAT_POS_TUNHDR].iov_len = sizeof(tun_targ);
527 send_tun(fd, out, iov_len);
528 }
529 }
530 }
531