• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/PseudoSourceValue.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCContext.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/SmallSet.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/StringExtras.h"
47 #include "llvm/ADT/VectorExtras.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Dwarf.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
55 using namespace llvm;
56 using namespace dwarf;
57 
58 STATISTIC(NumTailCalls, "Number of tail calls");
59 
60 // Forward declarations.
61 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62                        SDValue V2);
63 
64 static SDValue Insert128BitVector(SDValue Result,
65                                   SDValue Vec,
66                                   SDValue Idx,
67                                   SelectionDAG &DAG,
68                                   DebugLoc dl);
69 
70 static SDValue Extract128BitVector(SDValue Vec,
71                                    SDValue Idx,
72                                    SelectionDAG &DAG,
73                                    DebugLoc dl);
74 
75 /// Generate a DAG to grab 128-bits from a vector > 128 bits.  This
76 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
77 /// simple subregister reference.  Idx is an index in the 128 bits we
78 /// want.  It need not be aligned to a 128-bit bounday.  That makes
79 /// lowering EXTRACT_VECTOR_ELT operations easier.
Extract128BitVector(SDValue Vec,SDValue Idx,SelectionDAG & DAG,DebugLoc dl)80 static SDValue Extract128BitVector(SDValue Vec,
81                                    SDValue Idx,
82                                    SelectionDAG &DAG,
83                                    DebugLoc dl) {
84   EVT VT = Vec.getValueType();
85   assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86   EVT ElVT = VT.getVectorElementType();
87   int Factor = VT.getSizeInBits()/128;
88   EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89                                   VT.getVectorNumElements()/Factor);
90 
91   // Extract from UNDEF is UNDEF.
92   if (Vec.getOpcode() == ISD::UNDEF)
93     return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94 
95   if (isa<ConstantSDNode>(Idx)) {
96     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97 
98     // Extract the relevant 128 bits.  Generate an EXTRACT_SUBVECTOR
99     // we can match to VEXTRACTF128.
100     unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101 
102     // This is the index of the first element of the 128-bit chunk
103     // we want.
104     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105                                  * ElemsPerChunk);
106 
107     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108     SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109                                  VecIdx);
110 
111     return Result;
112   }
113 
114   return SDValue();
115 }
116 
117 /// Generate a DAG to put 128-bits into a vector > 128 bits.  This
118 /// sets things up to match to an AVX VINSERTF128 instruction or a
119 /// simple superregister reference.  Idx is an index in the 128 bits
120 /// we want.  It need not be aligned to a 128-bit bounday.  That makes
121 /// lowering INSERT_VECTOR_ELT operations easier.
Insert128BitVector(SDValue Result,SDValue Vec,SDValue Idx,SelectionDAG & DAG,DebugLoc dl)122 static SDValue Insert128BitVector(SDValue Result,
123                                   SDValue Vec,
124                                   SDValue Idx,
125                                   SelectionDAG &DAG,
126                                   DebugLoc dl) {
127   if (isa<ConstantSDNode>(Idx)) {
128     EVT VT = Vec.getValueType();
129     assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130 
131     EVT ElVT = VT.getVectorElementType();
132     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133     EVT ResultVT = Result.getValueType();
134 
135     // Insert the relevant 128 bits.
136     unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137 
138     // This is the index of the first element of the 128-bit chunk
139     // we want.
140     unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141                                  * ElemsPerChunk);
142 
143     SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144     Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145                          VecIdx);
146     return Result;
147   }
148 
149   return SDValue();
150 }
151 
createTLOF(X86TargetMachine & TM)152 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153   const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154   bool is64Bit = Subtarget->is64Bit();
155 
156   if (Subtarget->isTargetEnvMacho()) {
157     if (is64Bit)
158       return new X8664_MachoTargetObjectFile();
159     return new TargetLoweringObjectFileMachO();
160   }
161 
162   if (Subtarget->isTargetELF())
163     return new TargetLoweringObjectFileELF();
164   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165     return new TargetLoweringObjectFileCOFF();
166   llvm_unreachable("unknown subtarget type");
167 }
168 
X86TargetLowering(X86TargetMachine & TM)169 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170   : TargetLowering(TM, createTLOF(TM)) {
171   Subtarget = &TM.getSubtarget<X86Subtarget>();
172   X86ScalarSSEf64 = Subtarget->hasXMMInt();
173   X86ScalarSSEf32 = Subtarget->hasXMM();
174   X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175 
176   RegInfo = TM.getRegisterInfo();
177   TD = getTargetData();
178 
179   // Set up the TargetLowering object.
180   static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181 
182   // X86 is weird, it always uses i8 for shift amounts and setcc results.
183   setBooleanContents(ZeroOrOneBooleanContent);
184   // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186 
187   // For 64-bit since we have so many registers use the ILP scheduler, for
188   // 32-bit code use the register pressure specific scheduling.
189   if (Subtarget->is64Bit())
190     setSchedulingPreference(Sched::ILP);
191   else
192     setSchedulingPreference(Sched::RegPressure);
193   setStackPointerRegisterToSaveRestore(X86StackPtr);
194 
195   if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196     // Setup Windows compiler runtime calls.
197     setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198     setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199     setLibcallName(RTLIB::SREM_I64, "_allrem");
200     setLibcallName(RTLIB::UREM_I64, "_aullrem");
201     setLibcallName(RTLIB::MUL_I64, "_allmul");
202     setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203     setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204     setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205     setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206     setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207     setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208     setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209     setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210     setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211   }
212 
213   if (Subtarget->isTargetDarwin()) {
214     // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215     setUseUnderscoreSetJmp(false);
216     setUseUnderscoreLongJmp(false);
217   } else if (Subtarget->isTargetMingw()) {
218     // MS runtime is weird: it exports _setjmp, but longjmp!
219     setUseUnderscoreSetJmp(true);
220     setUseUnderscoreLongJmp(false);
221   } else {
222     setUseUnderscoreSetJmp(true);
223     setUseUnderscoreLongJmp(true);
224   }
225 
226   // Set up the register classes.
227   addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228   addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229   addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230   if (Subtarget->is64Bit())
231     addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232 
233   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234 
235   // We don't accept any truncstore of integer registers.
236   setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238   setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239   setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240   setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241   setTruncStoreAction(MVT::i16, MVT::i8,  Expand);
242 
243   // SETOEQ and SETUNE require checking two conditions.
244   setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245   setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246   setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247   setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248   setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249   setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250 
251   // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252   // operation.
253   setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote);
254   setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote);
255   setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote);
256 
257   if (Subtarget->is64Bit()) {
258     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote);
259     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Expand);
260   } else if (!UseSoftFloat) {
261     // We have an algorithm for SSE2->double, and we turn this into a
262     // 64-bit FILD followed by conditional FADD for other targets.
263     setOperationAction(ISD::UINT_TO_FP     , MVT::i64  , Custom);
264     // We have an algorithm for SSE2, and we turn this into a 64-bit
265     // FILD for other targets.
266     setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Custom);
267   }
268 
269   // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270   // this operation.
271   setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote);
272   setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote);
273 
274   if (!UseSoftFloat) {
275     // SSE has no i16 to fp conversion, only i32
276     if (X86ScalarSSEf32) {
277       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
278       // f32 and f64 cases are Legal, f80 case is not
279       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
280     } else {
281       setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Custom);
282       setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Custom);
283     }
284   } else {
285     setOperationAction(ISD::SINT_TO_FP     , MVT::i16  , Promote);
286     setOperationAction(ISD::SINT_TO_FP     , MVT::i32  , Promote);
287   }
288 
289   // In 32-bit mode these are custom lowered.  In 64-bit mode F32 and F64
290   // are Legal, f80 is custom lowered.
291   setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom);
292   setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom);
293 
294   // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295   // this operation.
296   setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote);
297   setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote);
298 
299   if (X86ScalarSSEf32) {
300     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Promote);
301     // f32 and f64 cases are Legal, f80 case is not
302     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
303   } else {
304     setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom);
305     setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom);
306   }
307 
308   // Handle FP_TO_UINT by promoting the destination to a larger signed
309   // conversion.
310   setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote);
311   setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote);
312   setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote);
313 
314   if (Subtarget->is64Bit()) {
315     setOperationAction(ISD::FP_TO_UINT     , MVT::i64  , Expand);
316     setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote);
317   } else if (!UseSoftFloat) {
318     // Since AVX is a superset of SSE3, only check for SSE here.
319     if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320       // Expand FP_TO_UINT into a select.
321       // FIXME: We would like to use a Custom expander here eventually to do
322       // the optimal thing for SSE vs. the default expansion in the legalizer.
323       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Expand);
324     else
325       // With SSE3 we can use fisttpll to convert to a signed i64; without
326       // SSE, we're stuck with a fistpll.
327       setOperationAction(ISD::FP_TO_UINT   , MVT::i32  , Custom);
328   }
329 
330   // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331   if (!X86ScalarSSEf64) {
332     setOperationAction(ISD::BITCAST        , MVT::f32  , Expand);
333     setOperationAction(ISD::BITCAST        , MVT::i32  , Expand);
334     if (Subtarget->is64Bit()) {
335       setOperationAction(ISD::BITCAST      , MVT::f64  , Expand);
336       // Without SSE, i64->f64 goes through memory.
337       setOperationAction(ISD::BITCAST      , MVT::i64  , Expand);
338     }
339   }
340 
341   // Scalar integer divide and remainder are lowered to use operations that
342   // produce two results, to match the available instructions. This exposes
343   // the two-result form to trivial CSE, which is able to combine x/y and x%y
344   // into a single instruction.
345   //
346   // Scalar integer multiply-high is also lowered to use two-result
347   // operations, to match the available instructions. However, plain multiply
348   // (low) operations are left as Legal, as there are single-result
349   // instructions for this in x86. Using the two-result multiply instructions
350   // when both high and low results are needed must be arranged by dagcombine.
351   for (unsigned i = 0, e = 4; i != e; ++i) {
352     MVT VT = IntVTs[i];
353     setOperationAction(ISD::MULHS, VT, Expand);
354     setOperationAction(ISD::MULHU, VT, Expand);
355     setOperationAction(ISD::SDIV, VT, Expand);
356     setOperationAction(ISD::UDIV, VT, Expand);
357     setOperationAction(ISD::SREM, VT, Expand);
358     setOperationAction(ISD::UREM, VT, Expand);
359 
360     // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361     setOperationAction(ISD::ADDC, VT, Custom);
362     setOperationAction(ISD::ADDE, VT, Custom);
363     setOperationAction(ISD::SUBC, VT, Custom);
364     setOperationAction(ISD::SUBE, VT, Custom);
365   }
366 
367   setOperationAction(ISD::BR_JT            , MVT::Other, Expand);
368   setOperationAction(ISD::BRCOND           , MVT::Other, Custom);
369   setOperationAction(ISD::BR_CC            , MVT::Other, Expand);
370   setOperationAction(ISD::SELECT_CC        , MVT::Other, Expand);
371   if (Subtarget->is64Bit())
372     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Legal);
374   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Legal);
375   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand);
376   setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand);
377   setOperationAction(ISD::FREM             , MVT::f32  , Expand);
378   setOperationAction(ISD::FREM             , MVT::f64  , Expand);
379   setOperationAction(ISD::FREM             , MVT::f80  , Expand);
380   setOperationAction(ISD::FLT_ROUNDS_      , MVT::i32  , Custom);
381 
382   if (Subtarget->hasBMI()) {
383     setOperationAction(ISD::CTTZ           , MVT::i8   , Promote);
384   } else {
385     setOperationAction(ISD::CTTZ           , MVT::i8   , Custom);
386     setOperationAction(ISD::CTTZ           , MVT::i16  , Custom);
387     setOperationAction(ISD::CTTZ           , MVT::i32  , Custom);
388     if (Subtarget->is64Bit())
389       setOperationAction(ISD::CTTZ         , MVT::i64  , Custom);
390   }
391 
392   if (Subtarget->hasLZCNT()) {
393     setOperationAction(ISD::CTLZ           , MVT::i8   , Promote);
394   } else {
395     setOperationAction(ISD::CTLZ           , MVT::i8   , Custom);
396     setOperationAction(ISD::CTLZ           , MVT::i16  , Custom);
397     setOperationAction(ISD::CTLZ           , MVT::i32  , Custom);
398     if (Subtarget->is64Bit())
399       setOperationAction(ISD::CTLZ         , MVT::i64  , Custom);
400   }
401 
402   if (Subtarget->hasPOPCNT()) {
403     setOperationAction(ISD::CTPOP          , MVT::i8   , Promote);
404   } else {
405     setOperationAction(ISD::CTPOP          , MVT::i8   , Expand);
406     setOperationAction(ISD::CTPOP          , MVT::i16  , Expand);
407     setOperationAction(ISD::CTPOP          , MVT::i32  , Expand);
408     if (Subtarget->is64Bit())
409       setOperationAction(ISD::CTPOP        , MVT::i64  , Expand);
410   }
411 
412   setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom);
413   setOperationAction(ISD::BSWAP            , MVT::i16  , Expand);
414 
415   // These should be promoted to a larger select which is supported.
416   setOperationAction(ISD::SELECT          , MVT::i1   , Promote);
417   // X86 wants to expand cmov itself.
418   setOperationAction(ISD::SELECT          , MVT::i8   , Custom);
419   setOperationAction(ISD::SELECT          , MVT::i16  , Custom);
420   setOperationAction(ISD::SELECT          , MVT::i32  , Custom);
421   setOperationAction(ISD::SELECT          , MVT::f32  , Custom);
422   setOperationAction(ISD::SELECT          , MVT::f64  , Custom);
423   setOperationAction(ISD::SELECT          , MVT::f80  , Custom);
424   setOperationAction(ISD::SETCC           , MVT::i8   , Custom);
425   setOperationAction(ISD::SETCC           , MVT::i16  , Custom);
426   setOperationAction(ISD::SETCC           , MVT::i32  , Custom);
427   setOperationAction(ISD::SETCC           , MVT::f32  , Custom);
428   setOperationAction(ISD::SETCC           , MVT::f64  , Custom);
429   setOperationAction(ISD::SETCC           , MVT::f80  , Custom);
430   if (Subtarget->is64Bit()) {
431     setOperationAction(ISD::SELECT        , MVT::i64  , Custom);
432     setOperationAction(ISD::SETCC         , MVT::i64  , Custom);
433   }
434   setOperationAction(ISD::EH_RETURN       , MVT::Other, Custom);
435 
436   // Darwin ABI issue.
437   setOperationAction(ISD::ConstantPool    , MVT::i32  , Custom);
438   setOperationAction(ISD::JumpTable       , MVT::i32  , Custom);
439   setOperationAction(ISD::GlobalAddress   , MVT::i32  , Custom);
440   setOperationAction(ISD::GlobalTLSAddress, MVT::i32  , Custom);
441   if (Subtarget->is64Bit())
442     setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
443   setOperationAction(ISD::ExternalSymbol  , MVT::i32  , Custom);
444   setOperationAction(ISD::BlockAddress    , MVT::i32  , Custom);
445   if (Subtarget->is64Bit()) {
446     setOperationAction(ISD::ConstantPool  , MVT::i64  , Custom);
447     setOperationAction(ISD::JumpTable     , MVT::i64  , Custom);
448     setOperationAction(ISD::GlobalAddress , MVT::i64  , Custom);
449     setOperationAction(ISD::ExternalSymbol, MVT::i64  , Custom);
450     setOperationAction(ISD::BlockAddress  , MVT::i64  , Custom);
451   }
452   // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
453   setOperationAction(ISD::SHL_PARTS       , MVT::i32  , Custom);
454   setOperationAction(ISD::SRA_PARTS       , MVT::i32  , Custom);
455   setOperationAction(ISD::SRL_PARTS       , MVT::i32  , Custom);
456   if (Subtarget->is64Bit()) {
457     setOperationAction(ISD::SHL_PARTS     , MVT::i64  , Custom);
458     setOperationAction(ISD::SRA_PARTS     , MVT::i64  , Custom);
459     setOperationAction(ISD::SRL_PARTS     , MVT::i64  , Custom);
460   }
461 
462   if (Subtarget->hasXMM())
463     setOperationAction(ISD::PREFETCH      , MVT::Other, Legal);
464 
465   setOperationAction(ISD::MEMBARRIER    , MVT::Other, Custom);
466   setOperationAction(ISD::ATOMIC_FENCE  , MVT::Other, Custom);
467 
468   // On X86 and X86-64, atomic operations are lowered to locked instructions.
469   // Locked instructions, in turn, have implicit fence semantics (all memory
470   // operations are flushed before issuing the locked instruction, and they
471   // are not buffered), so we can fold away the common pattern of
472   // fence-atomic-fence.
473   setShouldFoldAtomicFences(true);
474 
475   // Expand certain atomics
476   for (unsigned i = 0, e = 4; i != e; ++i) {
477     MVT VT = IntVTs[i];
478     setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
479     setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
480     setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
481   }
482 
483   if (!Subtarget->is64Bit()) {
484     setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
485     setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
486     setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
487     setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
488     setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
489     setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
490     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
491     setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
492   }
493 
494   if (Subtarget->hasCmpxchg16b()) {
495     setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
496   }
497 
498   // FIXME - use subtarget debug flags
499   if (!Subtarget->isTargetDarwin() &&
500       !Subtarget->isTargetELF() &&
501       !Subtarget->isTargetCygMing()) {
502     setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
503   }
504 
505   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
506   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
507   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
508   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
509   if (Subtarget->is64Bit()) {
510     setExceptionPointerRegister(X86::RAX);
511     setExceptionSelectorRegister(X86::RDX);
512   } else {
513     setExceptionPointerRegister(X86::EAX);
514     setExceptionSelectorRegister(X86::EDX);
515   }
516   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
517   setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
518 
519   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
520   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
521 
522   setOperationAction(ISD::TRAP, MVT::Other, Legal);
523 
524   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
525   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
526   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
527   if (Subtarget->is64Bit()) {
528     setOperationAction(ISD::VAARG           , MVT::Other, Custom);
529     setOperationAction(ISD::VACOPY          , MVT::Other, Custom);
530   } else {
531     setOperationAction(ISD::VAARG           , MVT::Other, Expand);
532     setOperationAction(ISD::VACOPY          , MVT::Other, Expand);
533   }
534 
535   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
536   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
537 
538   if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
539     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
540                        MVT::i64 : MVT::i32, Custom);
541   else if (EnableSegmentedStacks)
542     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
543                        MVT::i64 : MVT::i32, Custom);
544   else
545     setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
546                        MVT::i64 : MVT::i32, Expand);
547 
548   if (!UseSoftFloat && X86ScalarSSEf64) {
549     // f32 and f64 use SSE.
550     // Set up the FP register classes.
551     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
552     addRegisterClass(MVT::f64, X86::FR64RegisterClass);
553 
554     // Use ANDPD to simulate FABS.
555     setOperationAction(ISD::FABS , MVT::f64, Custom);
556     setOperationAction(ISD::FABS , MVT::f32, Custom);
557 
558     // Use XORP to simulate FNEG.
559     setOperationAction(ISD::FNEG , MVT::f64, Custom);
560     setOperationAction(ISD::FNEG , MVT::f32, Custom);
561 
562     // Use ANDPD and ORPD to simulate FCOPYSIGN.
563     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
564     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565 
566     // Lower this to FGETSIGNx86 plus an AND.
567     setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
568     setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
569 
570     // We don't support sin/cos/fmod
571     setOperationAction(ISD::FSIN , MVT::f64, Expand);
572     setOperationAction(ISD::FCOS , MVT::f64, Expand);
573     setOperationAction(ISD::FSIN , MVT::f32, Expand);
574     setOperationAction(ISD::FCOS , MVT::f32, Expand);
575 
576     // Expand FP immediates into loads from the stack, except for the special
577     // cases we handle.
578     addLegalFPImmediate(APFloat(+0.0)); // xorpd
579     addLegalFPImmediate(APFloat(+0.0f)); // xorps
580   } else if (!UseSoftFloat && X86ScalarSSEf32) {
581     // Use SSE for f32, x87 for f64.
582     // Set up the FP register classes.
583     addRegisterClass(MVT::f32, X86::FR32RegisterClass);
584     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
585 
586     // Use ANDPS to simulate FABS.
587     setOperationAction(ISD::FABS , MVT::f32, Custom);
588 
589     // Use XORP to simulate FNEG.
590     setOperationAction(ISD::FNEG , MVT::f32, Custom);
591 
592     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
593 
594     // Use ANDPS and ORPS to simulate FCOPYSIGN.
595     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
596     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
597 
598     // We don't support sin/cos/fmod
599     setOperationAction(ISD::FSIN , MVT::f32, Expand);
600     setOperationAction(ISD::FCOS , MVT::f32, Expand);
601 
602     // Special cases we handle for FP constants.
603     addLegalFPImmediate(APFloat(+0.0f)); // xorps
604     addLegalFPImmediate(APFloat(+0.0)); // FLD0
605     addLegalFPImmediate(APFloat(+1.0)); // FLD1
606     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
607     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
608 
609     if (!UnsafeFPMath) {
610       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
611       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
612     }
613   } else if (!UseSoftFloat) {
614     // f32 and f64 in x87.
615     // Set up the FP register classes.
616     addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
617     addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
618 
619     setOperationAction(ISD::UNDEF,     MVT::f64, Expand);
620     setOperationAction(ISD::UNDEF,     MVT::f32, Expand);
621     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
622     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
623 
624     if (!UnsafeFPMath) {
625       setOperationAction(ISD::FSIN           , MVT::f64  , Expand);
626       setOperationAction(ISD::FCOS           , MVT::f64  , Expand);
627     }
628     addLegalFPImmediate(APFloat(+0.0)); // FLD0
629     addLegalFPImmediate(APFloat(+1.0)); // FLD1
630     addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
631     addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
632     addLegalFPImmediate(APFloat(+0.0f)); // FLD0
633     addLegalFPImmediate(APFloat(+1.0f)); // FLD1
634     addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
635     addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
636   }
637 
638   // We don't support FMA.
639   setOperationAction(ISD::FMA, MVT::f64, Expand);
640   setOperationAction(ISD::FMA, MVT::f32, Expand);
641 
642   // Long double always uses X87.
643   if (!UseSoftFloat) {
644     addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
645     setOperationAction(ISD::UNDEF,     MVT::f80, Expand);
646     setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
647     {
648       APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
649       addLegalFPImmediate(TmpFlt);  // FLD0
650       TmpFlt.changeSign();
651       addLegalFPImmediate(TmpFlt);  // FLD0/FCHS
652 
653       bool ignored;
654       APFloat TmpFlt2(+1.0);
655       TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
656                       &ignored);
657       addLegalFPImmediate(TmpFlt2);  // FLD1
658       TmpFlt2.changeSign();
659       addLegalFPImmediate(TmpFlt2);  // FLD1/FCHS
660     }
661 
662     if (!UnsafeFPMath) {
663       setOperationAction(ISD::FSIN           , MVT::f80  , Expand);
664       setOperationAction(ISD::FCOS           , MVT::f80  , Expand);
665     }
666 
667     setOperationAction(ISD::FMA, MVT::f80, Expand);
668   }
669 
670   // Always use a library call for pow.
671   setOperationAction(ISD::FPOW             , MVT::f32  , Expand);
672   setOperationAction(ISD::FPOW             , MVT::f64  , Expand);
673   setOperationAction(ISD::FPOW             , MVT::f80  , Expand);
674 
675   setOperationAction(ISD::FLOG, MVT::f80, Expand);
676   setOperationAction(ISD::FLOG2, MVT::f80, Expand);
677   setOperationAction(ISD::FLOG10, MVT::f80, Expand);
678   setOperationAction(ISD::FEXP, MVT::f80, Expand);
679   setOperationAction(ISD::FEXP2, MVT::f80, Expand);
680 
681   // First set operation action for all vector types to either promote
682   // (for widening) or expand (for scalarization). Then we will selectively
683   // turn on ones that can be effectively codegen'd.
684   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
685        VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
686     setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
687     setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
688     setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
689     setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
690     setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
691     setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
692     setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
693     setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
694     setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
695     setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
696     setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
697     setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
698     setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
699     setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
700     setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
701     setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
702     setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703     setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704     setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
705     setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
706     setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
707     setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
708     setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
709     setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
710     setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
711     setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712     setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713     setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
714     setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
715     setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
716     setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
717     setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
718     setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
719     setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
720     setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
721     setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
722     setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
723     setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
724     setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
725     setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
726     setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
727     setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
728     setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
729     setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
730     setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
731     setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
732     setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
733     setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734     setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
736     setOperationAction(ISD::TRUNCATE,  (MVT::SimpleValueType)VT, Expand);
737     setOperationAction(ISD::SIGN_EXTEND,  (MVT::SimpleValueType)VT, Expand);
738     setOperationAction(ISD::ZERO_EXTEND,  (MVT::SimpleValueType)VT, Expand);
739     setOperationAction(ISD::ANY_EXTEND,  (MVT::SimpleValueType)VT, Expand);
740     setOperationAction(ISD::VSELECT,  (MVT::SimpleValueType)VT, Expand);
741     for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742          InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743       setTruncStoreAction((MVT::SimpleValueType)VT,
744                           (MVT::SimpleValueType)InnerVT, Expand);
745     setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746     setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747     setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748   }
749 
750   // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751   // with -msoft-float, disable use of MMX as well.
752   if (!UseSoftFloat && Subtarget->hasMMX()) {
753     addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754     // No operations on x86mmx supported, everything uses intrinsics.
755   }
756 
757   // MMX-sized vectors (other than x86mmx) are expected to be expanded
758   // into smaller operations.
759   setOperationAction(ISD::MULHS,              MVT::v8i8,  Expand);
760   setOperationAction(ISD::MULHS,              MVT::v4i16, Expand);
761   setOperationAction(ISD::MULHS,              MVT::v2i32, Expand);
762   setOperationAction(ISD::MULHS,              MVT::v1i64, Expand);
763   setOperationAction(ISD::AND,                MVT::v8i8,  Expand);
764   setOperationAction(ISD::AND,                MVT::v4i16, Expand);
765   setOperationAction(ISD::AND,                MVT::v2i32, Expand);
766   setOperationAction(ISD::AND,                MVT::v1i64, Expand);
767   setOperationAction(ISD::OR,                 MVT::v8i8,  Expand);
768   setOperationAction(ISD::OR,                 MVT::v4i16, Expand);
769   setOperationAction(ISD::OR,                 MVT::v2i32, Expand);
770   setOperationAction(ISD::OR,                 MVT::v1i64, Expand);
771   setOperationAction(ISD::XOR,                MVT::v8i8,  Expand);
772   setOperationAction(ISD::XOR,                MVT::v4i16, Expand);
773   setOperationAction(ISD::XOR,                MVT::v2i32, Expand);
774   setOperationAction(ISD::XOR,                MVT::v1i64, Expand);
775   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i8,  Expand);
776   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v4i16, Expand);
777   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v2i32, Expand);
778   setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v1i64, Expand);
779   setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v1i64, Expand);
780   setOperationAction(ISD::SELECT,             MVT::v8i8,  Expand);
781   setOperationAction(ISD::SELECT,             MVT::v4i16, Expand);
782   setOperationAction(ISD::SELECT,             MVT::v2i32, Expand);
783   setOperationAction(ISD::SELECT,             MVT::v1i64, Expand);
784   setOperationAction(ISD::BITCAST,            MVT::v8i8,  Expand);
785   setOperationAction(ISD::BITCAST,            MVT::v4i16, Expand);
786   setOperationAction(ISD::BITCAST,            MVT::v2i32, Expand);
787   setOperationAction(ISD::BITCAST,            MVT::v1i64, Expand);
788 
789   if (!UseSoftFloat && Subtarget->hasXMM()) {
790     addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791 
792     setOperationAction(ISD::FADD,               MVT::v4f32, Legal);
793     setOperationAction(ISD::FSUB,               MVT::v4f32, Legal);
794     setOperationAction(ISD::FMUL,               MVT::v4f32, Legal);
795     setOperationAction(ISD::FDIV,               MVT::v4f32, Legal);
796     setOperationAction(ISD::FSQRT,              MVT::v4f32, Legal);
797     setOperationAction(ISD::FNEG,               MVT::v4f32, Custom);
798     setOperationAction(ISD::LOAD,               MVT::v4f32, Legal);
799     setOperationAction(ISD::BUILD_VECTOR,       MVT::v4f32, Custom);
800     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v4f32, Custom);
801     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802     setOperationAction(ISD::SELECT,             MVT::v4f32, Custom);
803     setOperationAction(ISD::SETCC,              MVT::v4f32, Custom);
804   }
805 
806   if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807     addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808 
809     // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810     // registers cannot be used even for integer operations.
811     addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812     addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813     addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814     addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815 
816     setOperationAction(ISD::ADD,                MVT::v16i8, Legal);
817     setOperationAction(ISD::ADD,                MVT::v8i16, Legal);
818     setOperationAction(ISD::ADD,                MVT::v4i32, Legal);
819     setOperationAction(ISD::ADD,                MVT::v2i64, Legal);
820     setOperationAction(ISD::MUL,                MVT::v2i64, Custom);
821     setOperationAction(ISD::SUB,                MVT::v16i8, Legal);
822     setOperationAction(ISD::SUB,                MVT::v8i16, Legal);
823     setOperationAction(ISD::SUB,                MVT::v4i32, Legal);
824     setOperationAction(ISD::SUB,                MVT::v2i64, Legal);
825     setOperationAction(ISD::MUL,                MVT::v8i16, Legal);
826     setOperationAction(ISD::FADD,               MVT::v2f64, Legal);
827     setOperationAction(ISD::FSUB,               MVT::v2f64, Legal);
828     setOperationAction(ISD::FMUL,               MVT::v2f64, Legal);
829     setOperationAction(ISD::FDIV,               MVT::v2f64, Legal);
830     setOperationAction(ISD::FSQRT,              MVT::v2f64, Legal);
831     setOperationAction(ISD::FNEG,               MVT::v2f64, Custom);
832 
833     setOperationAction(ISD::SETCC,              MVT::v2i64, Custom);
834     setOperationAction(ISD::SETCC,              MVT::v16i8, Custom);
835     setOperationAction(ISD::SETCC,              MVT::v8i16, Custom);
836     setOperationAction(ISD::SETCC,              MVT::v4i32, Custom);
837 
838     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v16i8, Custom);
839     setOperationAction(ISD::SCALAR_TO_VECTOR,   MVT::v8i16, Custom);
840     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
841     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
842     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
843 
844     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2f64, Custom);
845     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v2i64, Custom);
846     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i8, Custom);
847     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i16, Custom);
848     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i32, Custom);
849 
850     // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852       EVT VT = (MVT::SimpleValueType)i;
853       // Do not attempt to custom lower non-power-of-2 vectors
854       if (!isPowerOf2_32(VT.getVectorNumElements()))
855         continue;
856       // Do not attempt to custom lower non-128-bit vectors
857       if (!VT.is128BitVector())
858         continue;
859       setOperationAction(ISD::BUILD_VECTOR,
860                          VT.getSimpleVT().SimpleTy, Custom);
861       setOperationAction(ISD::VECTOR_SHUFFLE,
862                          VT.getSimpleVT().SimpleTy, Custom);
863       setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864                          VT.getSimpleVT().SimpleTy, Custom);
865     }
866 
867     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2f64, Custom);
868     setOperationAction(ISD::BUILD_VECTOR,       MVT::v2i64, Custom);
869     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2f64, Custom);
870     setOperationAction(ISD::VECTOR_SHUFFLE,     MVT::v2i64, Custom);
871     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2f64, Custom);
872     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873 
874     if (Subtarget->is64Bit()) {
875       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Custom);
876       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877     }
878 
879     // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880     for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882       EVT VT = SVT;
883 
884       // Do not attempt to promote non-128-bit vectors
885       if (!VT.is128BitVector())
886         continue;
887 
888       setOperationAction(ISD::AND,    SVT, Promote);
889       AddPromotedToType (ISD::AND,    SVT, MVT::v2i64);
890       setOperationAction(ISD::OR,     SVT, Promote);
891       AddPromotedToType (ISD::OR,     SVT, MVT::v2i64);
892       setOperationAction(ISD::XOR,    SVT, Promote);
893       AddPromotedToType (ISD::XOR,    SVT, MVT::v2i64);
894       setOperationAction(ISD::LOAD,   SVT, Promote);
895       AddPromotedToType (ISD::LOAD,   SVT, MVT::v2i64);
896       setOperationAction(ISD::SELECT, SVT, Promote);
897       AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898     }
899 
900     setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901 
902     // Custom lower v2i64 and v2f64 selects.
903     setOperationAction(ISD::LOAD,               MVT::v2f64, Legal);
904     setOperationAction(ISD::LOAD,               MVT::v2i64, Legal);
905     setOperationAction(ISD::SELECT,             MVT::v2f64, Custom);
906     setOperationAction(ISD::SELECT,             MVT::v2i64, Custom);
907 
908     setOperationAction(ISD::FP_TO_SINT,         MVT::v4i32, Legal);
909     setOperationAction(ISD::SINT_TO_FP,         MVT::v4i32, Legal);
910   }
911 
912   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
913     setOperationAction(ISD::FFLOOR,             MVT::f32,   Legal);
914     setOperationAction(ISD::FCEIL,              MVT::f32,   Legal);
915     setOperationAction(ISD::FTRUNC,             MVT::f32,   Legal);
916     setOperationAction(ISD::FRINT,              MVT::f32,   Legal);
917     setOperationAction(ISD::FNEARBYINT,         MVT::f32,   Legal);
918     setOperationAction(ISD::FFLOOR,             MVT::f64,   Legal);
919     setOperationAction(ISD::FCEIL,              MVT::f64,   Legal);
920     setOperationAction(ISD::FTRUNC,             MVT::f64,   Legal);
921     setOperationAction(ISD::FRINT,              MVT::f64,   Legal);
922     setOperationAction(ISD::FNEARBYINT,         MVT::f64,   Legal);
923 
924     // FIXME: Do we need to handle scalar-to-vector here?
925     setOperationAction(ISD::MUL,                MVT::v4i32, Legal);
926 
927     // Can turn SHL into an integer multiply.
928     setOperationAction(ISD::SHL,                MVT::v4i32, Custom);
929     setOperationAction(ISD::SHL,                MVT::v16i8, Custom);
930 
931     setOperationAction(ISD::VSELECT,            MVT::v2f64, Legal);
932     setOperationAction(ISD::VSELECT,            MVT::v2i64, Legal);
933     setOperationAction(ISD::VSELECT,            MVT::v16i8, Legal);
934     setOperationAction(ISD::VSELECT,            MVT::v4i32, Legal);
935     setOperationAction(ISD::VSELECT,            MVT::v4f32, Legal);
936 
937     // i8 and i16 vectors are custom , because the source register and source
938     // source memory operand types are not the same width.  f32 vectors are
939     // custom since the immediate controlling the insert encodes additional
940     // information.
941     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v16i8, Custom);
942     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v8i16, Custom);
943     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4i32, Custom);
944     setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v4f32, Custom);
945 
946     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
947     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
948     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
949     setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
950 
951     if (Subtarget->is64Bit()) {
952       setOperationAction(ISD::INSERT_VECTOR_ELT,  MVT::v2i64, Legal);
953       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
954     }
955   }
956 
957   if (Subtarget->hasXMMInt()) {
958     setOperationAction(ISD::SRL,               MVT::v2i64, Custom);
959     setOperationAction(ISD::SRL,               MVT::v4i32, Custom);
960     setOperationAction(ISD::SRL,               MVT::v16i8, Custom);
961     setOperationAction(ISD::SRL,               MVT::v8i16, Custom);
962 
963     setOperationAction(ISD::SHL,               MVT::v2i64, Custom);
964     setOperationAction(ISD::SHL,               MVT::v4i32, Custom);
965     setOperationAction(ISD::SHL,               MVT::v8i16, Custom);
966 
967     setOperationAction(ISD::SRA,               MVT::v4i32, Custom);
968     setOperationAction(ISD::SRA,               MVT::v8i16, Custom);
969   }
970 
971   if (Subtarget->hasSSE42() || Subtarget->hasAVX())
972     setOperationAction(ISD::SETCC,             MVT::v2i64, Custom);
973 
974   if (!UseSoftFloat && Subtarget->hasAVX()) {
975     addRegisterClass(MVT::v32i8,  X86::VR256RegisterClass);
976     addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
977     addRegisterClass(MVT::v8i32,  X86::VR256RegisterClass);
978     addRegisterClass(MVT::v8f32,  X86::VR256RegisterClass);
979     addRegisterClass(MVT::v4i64,  X86::VR256RegisterClass);
980     addRegisterClass(MVT::v4f64,  X86::VR256RegisterClass);
981 
982     setOperationAction(ISD::LOAD,               MVT::v8f32, Legal);
983     setOperationAction(ISD::LOAD,               MVT::v4f64, Legal);
984     setOperationAction(ISD::LOAD,               MVT::v4i64, Legal);
985 
986     setOperationAction(ISD::FADD,               MVT::v8f32, Legal);
987     setOperationAction(ISD::FSUB,               MVT::v8f32, Legal);
988     setOperationAction(ISD::FMUL,               MVT::v8f32, Legal);
989     setOperationAction(ISD::FDIV,               MVT::v8f32, Legal);
990     setOperationAction(ISD::FSQRT,              MVT::v8f32, Legal);
991     setOperationAction(ISD::FNEG,               MVT::v8f32, Custom);
992 
993     setOperationAction(ISD::FADD,               MVT::v4f64, Legal);
994     setOperationAction(ISD::FSUB,               MVT::v4f64, Legal);
995     setOperationAction(ISD::FMUL,               MVT::v4f64, Legal);
996     setOperationAction(ISD::FDIV,               MVT::v4f64, Legal);
997     setOperationAction(ISD::FSQRT,              MVT::v4f64, Legal);
998     setOperationAction(ISD::FNEG,               MVT::v4f64, Custom);
999 
1000     setOperationAction(ISD::FP_TO_SINT,         MVT::v8i32, Legal);
1001     setOperationAction(ISD::SINT_TO_FP,         MVT::v8i32, Legal);
1002     setOperationAction(ISD::FP_ROUND,           MVT::v4f32, Legal);
1003 
1004     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4f64,  Custom);
1005     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v4i64,  Custom);
1006     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8f32,  Custom);
1007     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v8i32,  Custom);
1008     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v32i8,  Custom);
1009     setOperationAction(ISD::CONCAT_VECTORS,     MVT::v16i16, Custom);
1010 
1011     setOperationAction(ISD::SRL,               MVT::v4i64, Custom);
1012     setOperationAction(ISD::SRL,               MVT::v8i32, Custom);
1013     setOperationAction(ISD::SRL,               MVT::v16i16, Custom);
1014     setOperationAction(ISD::SRL,               MVT::v32i8, Custom);
1015 
1016     setOperationAction(ISD::SHL,               MVT::v4i64, Custom);
1017     setOperationAction(ISD::SHL,               MVT::v8i32, Custom);
1018     setOperationAction(ISD::SHL,               MVT::v16i16, Custom);
1019     setOperationAction(ISD::SHL,               MVT::v32i8, Custom);
1020 
1021     setOperationAction(ISD::SRA,               MVT::v8i32, Custom);
1022     setOperationAction(ISD::SRA,               MVT::v16i16, Custom);
1023 
1024     setOperationAction(ISD::SETCC,             MVT::v32i8, Custom);
1025     setOperationAction(ISD::SETCC,             MVT::v16i16, Custom);
1026     setOperationAction(ISD::SETCC,             MVT::v8i32, Custom);
1027     setOperationAction(ISD::SETCC,             MVT::v4i64, Custom);
1028 
1029     setOperationAction(ISD::SELECT,            MVT::v4f64, Custom);
1030     setOperationAction(ISD::SELECT,            MVT::v4i64, Custom);
1031     setOperationAction(ISD::SELECT,            MVT::v8f32, Custom);
1032 
1033     setOperationAction(ISD::VSELECT,            MVT::v4f64, Legal);
1034     setOperationAction(ISD::VSELECT,            MVT::v4i64, Legal);
1035     setOperationAction(ISD::VSELECT,            MVT::v8i32, Legal);
1036     setOperationAction(ISD::VSELECT,            MVT::v8f32, Legal);
1037 
1038     setOperationAction(ISD::ADD,               MVT::v4i64, Custom);
1039     setOperationAction(ISD::ADD,               MVT::v8i32, Custom);
1040     setOperationAction(ISD::ADD,               MVT::v16i16, Custom);
1041     setOperationAction(ISD::ADD,               MVT::v32i8, Custom);
1042 
1043     setOperationAction(ISD::SUB,               MVT::v4i64, Custom);
1044     setOperationAction(ISD::SUB,               MVT::v8i32, Custom);
1045     setOperationAction(ISD::SUB,               MVT::v16i16, Custom);
1046     setOperationAction(ISD::SUB,               MVT::v32i8, Custom);
1047 
1048     setOperationAction(ISD::MUL,               MVT::v4i64, Custom);
1049     setOperationAction(ISD::MUL,               MVT::v8i32, Custom);
1050     setOperationAction(ISD::MUL,               MVT::v16i16, Custom);
1051     // Don't lower v32i8 because there is no 128-bit byte mul
1052 
1053     // Custom lower several nodes for 256-bit types.
1054     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1055                   i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1056       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1057       EVT VT = SVT;
1058 
1059       // Extract subvector is special because the value type
1060       // (result) is 128-bit but the source is 256-bit wide.
1061       if (VT.is128BitVector())
1062         setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1063 
1064       // Do not attempt to custom lower other non-256-bit vectors
1065       if (!VT.is256BitVector())
1066         continue;
1067 
1068       setOperationAction(ISD::BUILD_VECTOR,       SVT, Custom);
1069       setOperationAction(ISD::VECTOR_SHUFFLE,     SVT, Custom);
1070       setOperationAction(ISD::INSERT_VECTOR_ELT,  SVT, Custom);
1071       setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1072       setOperationAction(ISD::SCALAR_TO_VECTOR,   SVT, Custom);
1073       setOperationAction(ISD::INSERT_SUBVECTOR,   SVT, Custom);
1074     }
1075 
1076     // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1077     for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1078       MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1079       EVT VT = SVT;
1080 
1081       // Do not attempt to promote non-256-bit vectors
1082       if (!VT.is256BitVector())
1083         continue;
1084 
1085       setOperationAction(ISD::AND,    SVT, Promote);
1086       AddPromotedToType (ISD::AND,    SVT, MVT::v4i64);
1087       setOperationAction(ISD::OR,     SVT, Promote);
1088       AddPromotedToType (ISD::OR,     SVT, MVT::v4i64);
1089       setOperationAction(ISD::XOR,    SVT, Promote);
1090       AddPromotedToType (ISD::XOR,    SVT, MVT::v4i64);
1091       setOperationAction(ISD::LOAD,   SVT, Promote);
1092       AddPromotedToType (ISD::LOAD,   SVT, MVT::v4i64);
1093       setOperationAction(ISD::SELECT, SVT, Promote);
1094       AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1095     }
1096   }
1097 
1098   // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1099   // of this type with custom code.
1100   for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1101          VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1102     setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1103   }
1104 
1105   // We want to custom lower some of our intrinsics.
1106   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1107 
1108 
1109   // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1110   // handle type legalization for these operations here.
1111   //
1112   // FIXME: We really should do custom legalization for addition and
1113   // subtraction on x86-32 once PR3203 is fixed.  We really can't do much better
1114   // than generic legalization for 64-bit multiplication-with-overflow, though.
1115   for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1116     // Add/Sub/Mul with overflow operations are custom lowered.
1117     MVT VT = IntVTs[i];
1118     setOperationAction(ISD::SADDO, VT, Custom);
1119     setOperationAction(ISD::UADDO, VT, Custom);
1120     setOperationAction(ISD::SSUBO, VT, Custom);
1121     setOperationAction(ISD::USUBO, VT, Custom);
1122     setOperationAction(ISD::SMULO, VT, Custom);
1123     setOperationAction(ISD::UMULO, VT, Custom);
1124   }
1125 
1126   // There are no 8-bit 3-address imul/mul instructions
1127   setOperationAction(ISD::SMULO, MVT::i8, Expand);
1128   setOperationAction(ISD::UMULO, MVT::i8, Expand);
1129 
1130   if (!Subtarget->is64Bit()) {
1131     // These libcalls are not available in 32-bit.
1132     setLibcallName(RTLIB::SHL_I128, 0);
1133     setLibcallName(RTLIB::SRL_I128, 0);
1134     setLibcallName(RTLIB::SRA_I128, 0);
1135   }
1136 
1137   // We have target-specific dag combine patterns for the following nodes:
1138   setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1139   setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1140   setTargetDAGCombine(ISD::BITCAST);
1141   setTargetDAGCombine(ISD::BUILD_VECTOR);
1142   setTargetDAGCombine(ISD::VSELECT);
1143   setTargetDAGCombine(ISD::SELECT);
1144   setTargetDAGCombine(ISD::SHL);
1145   setTargetDAGCombine(ISD::SRA);
1146   setTargetDAGCombine(ISD::SRL);
1147   setTargetDAGCombine(ISD::OR);
1148   setTargetDAGCombine(ISD::AND);
1149   setTargetDAGCombine(ISD::ADD);
1150   setTargetDAGCombine(ISD::FADD);
1151   setTargetDAGCombine(ISD::FSUB);
1152   setTargetDAGCombine(ISD::SUB);
1153   setTargetDAGCombine(ISD::LOAD);
1154   setTargetDAGCombine(ISD::STORE);
1155   setTargetDAGCombine(ISD::ZERO_EXTEND);
1156   setTargetDAGCombine(ISD::SINT_TO_FP);
1157   if (Subtarget->is64Bit())
1158     setTargetDAGCombine(ISD::MUL);
1159 
1160   computeRegisterProperties();
1161 
1162   // On Darwin, -Os means optimize for size without hurting performance,
1163   // do not reduce the limit.
1164   maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1165   maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1166   maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1167   maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1168   maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1169   maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1170   setPrefLoopAlignment(16);
1171   benefitFromCodePlacementOpt = true;
1172 
1173   setPrefFunctionAlignment(4);
1174 }
1175 
1176 
getSetCCResultType(EVT VT) const1177 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1178   if (!VT.isVector()) return MVT::i8;
1179   return VT.changeVectorElementTypeToInteger();
1180 }
1181 
1182 
1183 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1184 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign)1185 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1186   if (MaxAlign == 16)
1187     return;
1188   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1189     if (VTy->getBitWidth() == 128)
1190       MaxAlign = 16;
1191   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1192     unsigned EltAlign = 0;
1193     getMaxByValAlign(ATy->getElementType(), EltAlign);
1194     if (EltAlign > MaxAlign)
1195       MaxAlign = EltAlign;
1196   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1197     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1198       unsigned EltAlign = 0;
1199       getMaxByValAlign(STy->getElementType(i), EltAlign);
1200       if (EltAlign > MaxAlign)
1201         MaxAlign = EltAlign;
1202       if (MaxAlign == 16)
1203         break;
1204     }
1205   }
1206   return;
1207 }
1208 
1209 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1210 /// function arguments in the caller parameter area. For X86, aggregates
1211 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1212 /// are at 4-byte boundaries.
getByValTypeAlignment(Type * Ty) const1213 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1214   if (Subtarget->is64Bit()) {
1215     // Max of 8 and alignment of type.
1216     unsigned TyAlign = TD->getABITypeAlignment(Ty);
1217     if (TyAlign > 8)
1218       return TyAlign;
1219     return 8;
1220   }
1221 
1222   unsigned Align = 4;
1223   if (Subtarget->hasXMM())
1224     getMaxByValAlign(Ty, Align);
1225   return Align;
1226 }
1227 
1228 /// getOptimalMemOpType - Returns the target specific optimal type for load
1229 /// and store operations as a result of memset, memcpy, and memmove
1230 /// lowering. If DstAlign is zero that means it's safe to destination
1231 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1232 /// means there isn't a need to check it against alignment requirement,
1233 /// probably because the source does not need to be loaded. If
1234 /// 'NonScalarIntSafe' is true, that means it's safe to return a
1235 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1236 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1237 /// constant so it does not need to be loaded.
1238 /// It returns EVT::Other if the type should be determined using generic
1239 /// target-independent logic.
1240 EVT
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool NonScalarIntSafe,bool MemcpyStrSrc,MachineFunction & MF) const1241 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1242                                        unsigned DstAlign, unsigned SrcAlign,
1243                                        bool NonScalarIntSafe,
1244                                        bool MemcpyStrSrc,
1245                                        MachineFunction &MF) const {
1246   // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1247   // linux.  This is because the stack realignment code can't handle certain
1248   // cases like PR2962.  This should be removed when PR2962 is fixed.
1249   const Function *F = MF.getFunction();
1250   if (NonScalarIntSafe &&
1251       !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1252     if (Size >= 16 &&
1253         (Subtarget->isUnalignedMemAccessFast() ||
1254          ((DstAlign == 0 || DstAlign >= 16) &&
1255           (SrcAlign == 0 || SrcAlign >= 16))) &&
1256         Subtarget->getStackAlignment() >= 16) {
1257       if (Subtarget->hasAVX() &&
1258           Subtarget->getStackAlignment() >= 32)
1259         return MVT::v8f32;
1260       if (Subtarget->hasXMMInt())
1261         return MVT::v4i32;
1262       if (Subtarget->hasXMM())
1263         return MVT::v4f32;
1264     } else if (!MemcpyStrSrc && Size >= 8 &&
1265                !Subtarget->is64Bit() &&
1266                Subtarget->getStackAlignment() >= 8 &&
1267                Subtarget->hasXMMInt()) {
1268       // Do not use f64 to lower memcpy if source is string constant. It's
1269       // better to use i32 to avoid the loads.
1270       return MVT::f64;
1271     }
1272   }
1273   if (Subtarget->is64Bit() && Size >= 8)
1274     return MVT::i64;
1275   return MVT::i32;
1276 }
1277 
1278 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1279 /// current function.  The returned value is a member of the
1280 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const1281 unsigned X86TargetLowering::getJumpTableEncoding() const {
1282   // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1283   // symbol.
1284   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1285       Subtarget->isPICStyleGOT())
1286     return MachineJumpTableInfo::EK_Custom32;
1287 
1288   // Otherwise, use the normal jump table encoding heuristics.
1289   return TargetLowering::getJumpTableEncoding();
1290 }
1291 
1292 const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned uid,MCContext & Ctx) const1293 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1294                                              const MachineBasicBlock *MBB,
1295                                              unsigned uid,MCContext &Ctx) const{
1296   assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1297          Subtarget->isPICStyleGOT());
1298   // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1299   // entries.
1300   return MCSymbolRefExpr::Create(MBB->getSymbol(),
1301                                  MCSymbolRefExpr::VK_GOTOFF, Ctx);
1302 }
1303 
1304 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1305 /// jumptable.
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const1306 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1307                                                     SelectionDAG &DAG) const {
1308   if (!Subtarget->is64Bit())
1309     // This doesn't have DebugLoc associated with it, but is not really the
1310     // same as a Register.
1311     return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1312   return Table;
1313 }
1314 
1315 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1316 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1317 /// MCExpr.
1318 const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const1319 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1320                              MCContext &Ctx) const {
1321   // X86-64 uses RIP relative addressing based on the jump table label.
1322   if (Subtarget->isPICStyleRIPRel())
1323     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1324 
1325   // Otherwise, the reference is relative to the PIC base.
1326   return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1327 }
1328 
1329 // FIXME: Why this routine is here? Move to RegInfo!
1330 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const1331 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1332   const TargetRegisterClass *RRC = 0;
1333   uint8_t Cost = 1;
1334   switch (VT.getSimpleVT().SimpleTy) {
1335   default:
1336     return TargetLowering::findRepresentativeClass(VT);
1337   case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1338     RRC = (Subtarget->is64Bit()
1339            ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1340     break;
1341   case MVT::x86mmx:
1342     RRC = X86::VR64RegisterClass;
1343     break;
1344   case MVT::f32: case MVT::f64:
1345   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1346   case MVT::v4f32: case MVT::v2f64:
1347   case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1348   case MVT::v4f64:
1349     RRC = X86::VR128RegisterClass;
1350     break;
1351   }
1352   return std::make_pair(RRC, Cost);
1353 }
1354 
getStackCookieLocation(unsigned & AddressSpace,unsigned & Offset) const1355 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1356                                                unsigned &Offset) const {
1357   if (!Subtarget->isTargetLinux())
1358     return false;
1359 
1360   if (Subtarget->is64Bit()) {
1361     // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1362     Offset = 0x28;
1363     if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1364       AddressSpace = 256;
1365     else
1366       AddressSpace = 257;
1367   } else {
1368     // %gs:0x14 on i386
1369     Offset = 0x14;
1370     AddressSpace = 256;
1371   }
1372   return true;
1373 }
1374 
1375 
1376 //===----------------------------------------------------------------------===//
1377 //               Return Value Calling Convention Implementation
1378 //===----------------------------------------------------------------------===//
1379 
1380 #include "X86GenCallingConv.inc"
1381 
1382 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1383 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1384 				  MachineFunction &MF, bool isVarArg,
1385                         const SmallVectorImpl<ISD::OutputArg> &Outs,
1386                         LLVMContext &Context) const {
1387   SmallVector<CCValAssign, 16> RVLocs;
1388   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1389                  RVLocs, Context);
1390   return CCInfo.CheckReturn(Outs, RetCC_X86);
1391 }
1392 
1393 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1394 X86TargetLowering::LowerReturn(SDValue Chain,
1395                                CallingConv::ID CallConv, bool isVarArg,
1396                                const SmallVectorImpl<ISD::OutputArg> &Outs,
1397                                const SmallVectorImpl<SDValue> &OutVals,
1398                                DebugLoc dl, SelectionDAG &DAG) const {
1399   MachineFunction &MF = DAG.getMachineFunction();
1400   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1401 
1402   SmallVector<CCValAssign, 16> RVLocs;
1403   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1404                  RVLocs, *DAG.getContext());
1405   CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1406 
1407   // Add the regs to the liveout set for the function.
1408   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1409   for (unsigned i = 0; i != RVLocs.size(); ++i)
1410     if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1411       MRI.addLiveOut(RVLocs[i].getLocReg());
1412 
1413   SDValue Flag;
1414 
1415   SmallVector<SDValue, 6> RetOps;
1416   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1417   // Operand #1 = Bytes To Pop
1418   RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1419                    MVT::i16));
1420 
1421   // Copy the result values into the output registers.
1422   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1423     CCValAssign &VA = RVLocs[i];
1424     assert(VA.isRegLoc() && "Can only return in registers!");
1425     SDValue ValToCopy = OutVals[i];
1426     EVT ValVT = ValToCopy.getValueType();
1427 
1428     // If this is x86-64, and we disabled SSE, we can't return FP values,
1429     // or SSE or MMX vectors.
1430     if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1431          VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1432           (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1433       report_fatal_error("SSE register return with SSE disabled");
1434     }
1435     // Likewise we can't return F64 values with SSE1 only.  gcc does so, but
1436     // llvm-gcc has never done it right and no one has noticed, so this
1437     // should be OK for now.
1438     if (ValVT == MVT::f64 &&
1439         (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1440       report_fatal_error("SSE2 register return with SSE2 disabled");
1441 
1442     // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1443     // the RET instruction and handled by the FP Stackifier.
1444     if (VA.getLocReg() == X86::ST0 ||
1445         VA.getLocReg() == X86::ST1) {
1446       // If this is a copy from an xmm register to ST(0), use an FPExtend to
1447       // change the value to the FP stack register class.
1448       if (isScalarFPTypeInSSEReg(VA.getValVT()))
1449         ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1450       RetOps.push_back(ValToCopy);
1451       // Don't emit a copytoreg.
1452       continue;
1453     }
1454 
1455     // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1456     // which is returned in RAX / RDX.
1457     if (Subtarget->is64Bit()) {
1458       if (ValVT == MVT::x86mmx) {
1459         if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1460           ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1461           ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1462                                   ValToCopy);
1463           // If we don't have SSE2 available, convert to v4f32 so the generated
1464           // register is legal.
1465           if (!Subtarget->hasXMMInt())
1466             ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1467         }
1468       }
1469     }
1470 
1471     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1472     Flag = Chain.getValue(1);
1473   }
1474 
1475   // The x86-64 ABI for returning structs by value requires that we copy
1476   // the sret argument into %rax for the return. We saved the argument into
1477   // a virtual register in the entry block, so now we copy the value out
1478   // and into %rax.
1479   if (Subtarget->is64Bit() &&
1480       DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1481     MachineFunction &MF = DAG.getMachineFunction();
1482     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1483     unsigned Reg = FuncInfo->getSRetReturnReg();
1484     assert(Reg &&
1485            "SRetReturnReg should have been set in LowerFormalArguments().");
1486     SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1487 
1488     Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1489     Flag = Chain.getValue(1);
1490 
1491     // RAX now acts like a return value.
1492     MRI.addLiveOut(X86::RAX);
1493   }
1494 
1495   RetOps[0] = Chain;  // Update chain.
1496 
1497   // Add the flag if we have it.
1498   if (Flag.getNode())
1499     RetOps.push_back(Flag);
1500 
1501   return DAG.getNode(X86ISD::RET_FLAG, dl,
1502                      MVT::Other, &RetOps[0], RetOps.size());
1503 }
1504 
isUsedByReturnOnly(SDNode * N) const1505 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1506   if (N->getNumValues() != 1)
1507     return false;
1508   if (!N->hasNUsesOfValue(1, 0))
1509     return false;
1510 
1511   SDNode *Copy = *N->use_begin();
1512   if (Copy->getOpcode() != ISD::CopyToReg &&
1513       Copy->getOpcode() != ISD::FP_EXTEND)
1514     return false;
1515 
1516   bool HasRet = false;
1517   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1518        UI != UE; ++UI) {
1519     if (UI->getOpcode() != X86ISD::RET_FLAG)
1520       return false;
1521     HasRet = true;
1522   }
1523 
1524   return HasRet;
1525 }
1526 
1527 EVT
getTypeForExtArgOrReturn(LLVMContext & Context,EVT VT,ISD::NodeType ExtendKind) const1528 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1529                                             ISD::NodeType ExtendKind) const {
1530   MVT ReturnMVT;
1531   // TODO: Is this also valid on 32-bit?
1532   if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1533     ReturnMVT = MVT::i8;
1534   else
1535     ReturnMVT = MVT::i32;
1536 
1537   EVT MinVT = getRegisterType(Context, ReturnMVT);
1538   return VT.bitsLT(MinVT) ? MinVT : VT;
1539 }
1540 
1541 /// LowerCallResult - Lower the result values of a call into the
1542 /// appropriate copies out of appropriate physical registers.
1543 ///
1544 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1545 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1546                                    CallingConv::ID CallConv, bool isVarArg,
1547                                    const SmallVectorImpl<ISD::InputArg> &Ins,
1548                                    DebugLoc dl, SelectionDAG &DAG,
1549                                    SmallVectorImpl<SDValue> &InVals) const {
1550 
1551   // Assign locations to each value returned by this call.
1552   SmallVector<CCValAssign, 16> RVLocs;
1553   bool Is64Bit = Subtarget->is64Bit();
1554   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1555 		 getTargetMachine(), RVLocs, *DAG.getContext());
1556   CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1557 
1558   // Copy all of the result registers out of their specified physreg.
1559   for (unsigned i = 0; i != RVLocs.size(); ++i) {
1560     CCValAssign &VA = RVLocs[i];
1561     EVT CopyVT = VA.getValVT();
1562 
1563     // If this is x86-64, and we disabled SSE, we can't return FP values
1564     if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1565         ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1566       report_fatal_error("SSE register return with SSE disabled");
1567     }
1568 
1569     SDValue Val;
1570 
1571     // If this is a call to a function that returns an fp value on the floating
1572     // point stack, we must guarantee the the value is popped from the stack, so
1573     // a CopyFromReg is not good enough - the copy instruction may be eliminated
1574     // if the return value is not used. We use the FpPOP_RETVAL instruction
1575     // instead.
1576     if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1577       // If we prefer to use the value in xmm registers, copy it out as f80 and
1578       // use a truncate to move it from fp stack reg to xmm reg.
1579       if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1580       SDValue Ops[] = { Chain, InFlag };
1581       Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1582                                          MVT::Other, MVT::Glue, Ops, 2), 1);
1583       Val = Chain.getValue(0);
1584 
1585       // Round the f80 to the right size, which also moves it to the appropriate
1586       // xmm register.
1587       if (CopyVT != VA.getValVT())
1588         Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1589                           // This truncation won't change the value.
1590                           DAG.getIntPtrConstant(1));
1591     } else {
1592       Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1593                                  CopyVT, InFlag).getValue(1);
1594       Val = Chain.getValue(0);
1595     }
1596     InFlag = Chain.getValue(2);
1597     InVals.push_back(Val);
1598   }
1599 
1600   return Chain;
1601 }
1602 
1603 
1604 //===----------------------------------------------------------------------===//
1605 //                C & StdCall & Fast Calling Convention implementation
1606 //===----------------------------------------------------------------------===//
1607 //  StdCall calling convention seems to be standard for many Windows' API
1608 //  routines and around. It differs from C calling convention just a little:
1609 //  callee should clean up the stack, not caller. Symbols should be also
1610 //  decorated in some fancy way :) It doesn't support any vector arguments.
1611 //  For info on fast calling convention see Fast Calling Convention (tail call)
1612 //  implementation LowerX86_32FastCCCallTo.
1613 
1614 /// CallIsStructReturn - Determines whether a call uses struct return
1615 /// semantics.
CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> & Outs)1616 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1617   if (Outs.empty())
1618     return false;
1619 
1620   return Outs[0].Flags.isSRet();
1621 }
1622 
1623 /// ArgsAreStructReturn - Determines whether a function uses struct
1624 /// return semantics.
1625 static bool
ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> & Ins)1626 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1627   if (Ins.empty())
1628     return false;
1629 
1630   return Ins[0].Flags.isSRet();
1631 }
1632 
1633 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1634 /// by "Src" to address "Dst" with size and alignment information specified by
1635 /// the specific parameter attribute. The copy will be passed as a byval
1636 /// function parameter.
1637 static SDValue
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,DebugLoc dl)1638 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1639                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1640                           DebugLoc dl) {
1641   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1642 
1643   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1644                        /*isVolatile*/false, /*AlwaysInline=*/true,
1645                        MachinePointerInfo(), MachinePointerInfo());
1646 }
1647 
1648 /// IsTailCallConvention - Return true if the calling convention is one that
1649 /// supports tail call optimization.
IsTailCallConvention(CallingConv::ID CC)1650 static bool IsTailCallConvention(CallingConv::ID CC) {
1651   return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1652 }
1653 
mayBeEmittedAsTailCall(CallInst * CI) const1654 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1655   if (!CI->isTailCall())
1656     return false;
1657 
1658   CallSite CS(CI);
1659   CallingConv::ID CalleeCC = CS.getCallingConv();
1660   if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1661     return false;
1662 
1663   return true;
1664 }
1665 
1666 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1667 /// a tailcall target by changing its ABI.
FuncIsMadeTailCallSafe(CallingConv::ID CC)1668 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1669   return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1670 }
1671 
1672 SDValue
LowerMemArgument(SDValue Chain,CallingConv::ID CallConv,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,MachineFrameInfo * MFI,unsigned i) const1673 X86TargetLowering::LowerMemArgument(SDValue Chain,
1674                                     CallingConv::ID CallConv,
1675                                     const SmallVectorImpl<ISD::InputArg> &Ins,
1676                                     DebugLoc dl, SelectionDAG &DAG,
1677                                     const CCValAssign &VA,
1678                                     MachineFrameInfo *MFI,
1679                                     unsigned i) const {
1680   // Create the nodes corresponding to a load from this parameter slot.
1681   ISD::ArgFlagsTy Flags = Ins[i].Flags;
1682   bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1683   bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1684   EVT ValVT;
1685 
1686   // If value is passed by pointer we have address passed instead of the value
1687   // itself.
1688   if (VA.getLocInfo() == CCValAssign::Indirect)
1689     ValVT = VA.getLocVT();
1690   else
1691     ValVT = VA.getValVT();
1692 
1693   // FIXME: For now, all byval parameter objects are marked mutable. This can be
1694   // changed with more analysis.
1695   // In case of tail call optimization mark all arguments mutable. Since they
1696   // could be overwritten by lowering of arguments in case of a tail call.
1697   if (Flags.isByVal()) {
1698     unsigned Bytes = Flags.getByValSize();
1699     if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1700     int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1701     return DAG.getFrameIndex(FI, getPointerTy());
1702   } else {
1703     int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1704                                     VA.getLocMemOffset(), isImmutable);
1705     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1706     return DAG.getLoad(ValVT, dl, Chain, FIN,
1707                        MachinePointerInfo::getFixedStack(FI),
1708                        false, false, 0);
1709   }
1710 }
1711 
1712 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1713 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1714                                         CallingConv::ID CallConv,
1715                                         bool isVarArg,
1716                                       const SmallVectorImpl<ISD::InputArg> &Ins,
1717                                         DebugLoc dl,
1718                                         SelectionDAG &DAG,
1719                                         SmallVectorImpl<SDValue> &InVals)
1720                                           const {
1721   MachineFunction &MF = DAG.getMachineFunction();
1722   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1723 
1724   const Function* Fn = MF.getFunction();
1725   if (Fn->hasExternalLinkage() &&
1726       Subtarget->isTargetCygMing() &&
1727       Fn->getName() == "main")
1728     FuncInfo->setForceFramePointer(true);
1729 
1730   MachineFrameInfo *MFI = MF.getFrameInfo();
1731   bool Is64Bit = Subtarget->is64Bit();
1732   bool IsWin64 = Subtarget->isTargetWin64();
1733 
1734   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1735          "Var args not supported with calling convention fastcc or ghc");
1736 
1737   // Assign locations to all of the incoming arguments.
1738   SmallVector<CCValAssign, 16> ArgLocs;
1739   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1740                  ArgLocs, *DAG.getContext());
1741 
1742   // Allocate shadow area for Win64
1743   if (IsWin64) {
1744     CCInfo.AllocateStack(32, 8);
1745   }
1746 
1747   CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1748 
1749   unsigned LastVal = ~0U;
1750   SDValue ArgValue;
1751   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1752     CCValAssign &VA = ArgLocs[i];
1753     // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1754     // places.
1755     assert(VA.getValNo() != LastVal &&
1756            "Don't support value assigned to multiple locs yet");
1757     (void)LastVal;
1758     LastVal = VA.getValNo();
1759 
1760     if (VA.isRegLoc()) {
1761       EVT RegVT = VA.getLocVT();
1762       TargetRegisterClass *RC = NULL;
1763       if (RegVT == MVT::i32)
1764         RC = X86::GR32RegisterClass;
1765       else if (Is64Bit && RegVT == MVT::i64)
1766         RC = X86::GR64RegisterClass;
1767       else if (RegVT == MVT::f32)
1768         RC = X86::FR32RegisterClass;
1769       else if (RegVT == MVT::f64)
1770         RC = X86::FR64RegisterClass;
1771       else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1772         RC = X86::VR256RegisterClass;
1773       else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1774         RC = X86::VR128RegisterClass;
1775       else if (RegVT == MVT::x86mmx)
1776         RC = X86::VR64RegisterClass;
1777       else
1778         llvm_unreachable("Unknown argument type!");
1779 
1780       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1781       ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1782 
1783       // If this is an 8 or 16-bit value, it is really passed promoted to 32
1784       // bits.  Insert an assert[sz]ext to capture this, then truncate to the
1785       // right size.
1786       if (VA.getLocInfo() == CCValAssign::SExt)
1787         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1788                                DAG.getValueType(VA.getValVT()));
1789       else if (VA.getLocInfo() == CCValAssign::ZExt)
1790         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1791                                DAG.getValueType(VA.getValVT()));
1792       else if (VA.getLocInfo() == CCValAssign::BCvt)
1793         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1794 
1795       if (VA.isExtInLoc()) {
1796         // Handle MMX values passed in XMM regs.
1797         if (RegVT.isVector()) {
1798           ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1799                                  ArgValue);
1800         } else
1801           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1802       }
1803     } else {
1804       assert(VA.isMemLoc());
1805       ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1806     }
1807 
1808     // If value is passed via pointer - do a load.
1809     if (VA.getLocInfo() == CCValAssign::Indirect)
1810       ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1811                              MachinePointerInfo(), false, false, 0);
1812 
1813     InVals.push_back(ArgValue);
1814   }
1815 
1816   // The x86-64 ABI for returning structs by value requires that we copy
1817   // the sret argument into %rax for the return. Save the argument into
1818   // a virtual register so that we can access it from the return points.
1819   if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1820     X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1821     unsigned Reg = FuncInfo->getSRetReturnReg();
1822     if (!Reg) {
1823       Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1824       FuncInfo->setSRetReturnReg(Reg);
1825     }
1826     SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1827     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1828   }
1829 
1830   unsigned StackSize = CCInfo.getNextStackOffset();
1831   // Align stack specially for tail calls.
1832   if (FuncIsMadeTailCallSafe(CallConv))
1833     StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1834 
1835   // If the function takes variable number of arguments, make a frame index for
1836   // the start of the first vararg value... for expansion of llvm.va_start.
1837   if (isVarArg) {
1838     if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1839                     CallConv != CallingConv::X86_ThisCall)) {
1840       FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1841     }
1842     if (Is64Bit) {
1843       unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1844 
1845       // FIXME: We should really autogenerate these arrays
1846       static const unsigned GPR64ArgRegsWin64[] = {
1847         X86::RCX, X86::RDX, X86::R8,  X86::R9
1848       };
1849       static const unsigned GPR64ArgRegs64Bit[] = {
1850         X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1851       };
1852       static const unsigned XMMArgRegs64Bit[] = {
1853         X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1854         X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1855       };
1856       const unsigned *GPR64ArgRegs;
1857       unsigned NumXMMRegs = 0;
1858 
1859       if (IsWin64) {
1860         // The XMM registers which might contain var arg parameters are shadowed
1861         // in their paired GPR.  So we only need to save the GPR to their home
1862         // slots.
1863         TotalNumIntRegs = 4;
1864         GPR64ArgRegs = GPR64ArgRegsWin64;
1865       } else {
1866         TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1867         GPR64ArgRegs = GPR64ArgRegs64Bit;
1868 
1869         NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1870       }
1871       unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1872                                                        TotalNumIntRegs);
1873 
1874       bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1875       assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1876              "SSE register cannot be used when SSE is disabled!");
1877       assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1878              "SSE register cannot be used when SSE is disabled!");
1879       if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1880         // Kernel mode asks for SSE to be disabled, so don't push them
1881         // on the stack.
1882         TotalNumXMMRegs = 0;
1883 
1884       if (IsWin64) {
1885         const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1886         // Get to the caller-allocated home save location.  Add 8 to account
1887         // for the return address.
1888         int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1889         FuncInfo->setRegSaveFrameIndex(
1890           MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1891         // Fixup to set vararg frame on shadow area (4 x i64).
1892         if (NumIntRegs < 4)
1893           FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1894       } else {
1895         // For X86-64, if there are vararg parameters that are passed via
1896         // registers, then we must store them to their spots on the stack so they
1897         // may be loaded by deferencing the result of va_next.
1898         FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1899         FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1900         FuncInfo->setRegSaveFrameIndex(
1901           MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1902                                false));
1903       }
1904 
1905       // Store the integer parameter registers.
1906       SmallVector<SDValue, 8> MemOps;
1907       SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1908                                         getPointerTy());
1909       unsigned Offset = FuncInfo->getVarArgsGPOffset();
1910       for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1911         SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1912                                   DAG.getIntPtrConstant(Offset));
1913         unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1914                                      X86::GR64RegisterClass);
1915         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1916         SDValue Store =
1917           DAG.getStore(Val.getValue(1), dl, Val, FIN,
1918                        MachinePointerInfo::getFixedStack(
1919                          FuncInfo->getRegSaveFrameIndex(), Offset),
1920                        false, false, 0);
1921         MemOps.push_back(Store);
1922         Offset += 8;
1923       }
1924 
1925       if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1926         // Now store the XMM (fp + vector) parameter registers.
1927         SmallVector<SDValue, 11> SaveXMMOps;
1928         SaveXMMOps.push_back(Chain);
1929 
1930         unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1931         SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1932         SaveXMMOps.push_back(ALVal);
1933 
1934         SaveXMMOps.push_back(DAG.getIntPtrConstant(
1935                                FuncInfo->getRegSaveFrameIndex()));
1936         SaveXMMOps.push_back(DAG.getIntPtrConstant(
1937                                FuncInfo->getVarArgsFPOffset()));
1938 
1939         for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1940           unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1941                                        X86::VR128RegisterClass);
1942           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1943           SaveXMMOps.push_back(Val);
1944         }
1945         MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1946                                      MVT::Other,
1947                                      &SaveXMMOps[0], SaveXMMOps.size()));
1948       }
1949 
1950       if (!MemOps.empty())
1951         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1952                             &MemOps[0], MemOps.size());
1953     }
1954   }
1955 
1956   // Some CCs need callee pop.
1957   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1958     FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1959   } else {
1960     FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1961     // If this is an sret function, the return should pop the hidden pointer.
1962     if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1963       FuncInfo->setBytesToPopOnReturn(4);
1964   }
1965 
1966   if (!Is64Bit) {
1967     // RegSaveFrameIndex is X86-64 only.
1968     FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1969     if (CallConv == CallingConv::X86_FastCall ||
1970         CallConv == CallingConv::X86_ThisCall)
1971       // fastcc functions can't have varargs.
1972       FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1973   }
1974 
1975   FuncInfo->setArgumentStackSize(StackSize);
1976 
1977   return Chain;
1978 }
1979 
1980 SDValue
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1981 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1982                                     SDValue StackPtr, SDValue Arg,
1983                                     DebugLoc dl, SelectionDAG &DAG,
1984                                     const CCValAssign &VA,
1985                                     ISD::ArgFlagsTy Flags) const {
1986   unsigned LocMemOffset = VA.getLocMemOffset();
1987   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1988   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1989   if (Flags.isByVal())
1990     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1991 
1992   return DAG.getStore(Chain, dl, Arg, PtrOff,
1993                       MachinePointerInfo::getStack(LocMemOffset),
1994                       false, false, 0);
1995 }
1996 
1997 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1998 /// optimization is performed and it is required.
1999 SDValue
EmitTailCallLoadRetAddr(SelectionDAG & DAG,SDValue & OutRetAddr,SDValue Chain,bool IsTailCall,bool Is64Bit,int FPDiff,DebugLoc dl) const2000 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2001                                            SDValue &OutRetAddr, SDValue Chain,
2002                                            bool IsTailCall, bool Is64Bit,
2003                                            int FPDiff, DebugLoc dl) const {
2004   // Adjust the Return address stack slot.
2005   EVT VT = getPointerTy();
2006   OutRetAddr = getReturnAddressFrameIndex(DAG);
2007 
2008   // Load the "old" Return address.
2009   OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2010                            false, false, 0);
2011   return SDValue(OutRetAddr.getNode(), 1);
2012 }
2013 
2014 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2015 /// optimization is performed and it is required (FPDiff!=0).
2016 static SDValue
EmitTailCallStoreRetAddr(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue RetAddrFrIdx,bool Is64Bit,int FPDiff,DebugLoc dl)2017 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2018                          SDValue Chain, SDValue RetAddrFrIdx,
2019                          bool Is64Bit, int FPDiff, DebugLoc dl) {
2020   // Store the return address to the appropriate stack slot.
2021   if (!FPDiff) return Chain;
2022   // Calculate the new stack slot for the return address.
2023   int SlotSize = Is64Bit ? 8 : 4;
2024   int NewReturnAddrFI =
2025     MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2026   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2027   SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2028   Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2029                        MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2030                        false, false, 0);
2031   return Chain;
2032 }
2033 
2034 SDValue
LowerCall(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool & isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2035 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2036                              CallingConv::ID CallConv, bool isVarArg,
2037                              bool &isTailCall,
2038                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2039                              const SmallVectorImpl<SDValue> &OutVals,
2040                              const SmallVectorImpl<ISD::InputArg> &Ins,
2041                              DebugLoc dl, SelectionDAG &DAG,
2042                              SmallVectorImpl<SDValue> &InVals) const {
2043   MachineFunction &MF = DAG.getMachineFunction();
2044   bool Is64Bit        = Subtarget->is64Bit();
2045   bool IsWin64        = Subtarget->isTargetWin64();
2046   bool IsStructRet    = CallIsStructReturn(Outs);
2047   bool IsSibcall      = false;
2048 
2049   if (isTailCall) {
2050     // Check if it's really possible to do a tail call.
2051     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2052                     isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2053                                                    Outs, OutVals, Ins, DAG);
2054 
2055     // Sibcalls are automatically detected tailcalls which do not require
2056     // ABI changes.
2057     if (!GuaranteedTailCallOpt && isTailCall)
2058       IsSibcall = true;
2059 
2060     if (isTailCall)
2061       ++NumTailCalls;
2062   }
2063 
2064   assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2065          "Var args not supported with calling convention fastcc or ghc");
2066 
2067   // Analyze operands of the call, assigning locations to each operand.
2068   SmallVector<CCValAssign, 16> ArgLocs;
2069   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2070                  ArgLocs, *DAG.getContext());
2071 
2072   // Allocate shadow area for Win64
2073   if (IsWin64) {
2074     CCInfo.AllocateStack(32, 8);
2075   }
2076 
2077   CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2078 
2079   // Get a count of how many bytes are to be pushed on the stack.
2080   unsigned NumBytes = CCInfo.getNextStackOffset();
2081   if (IsSibcall)
2082     // This is a sibcall. The memory operands are available in caller's
2083     // own caller's stack.
2084     NumBytes = 0;
2085   else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2086     NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2087 
2088   int FPDiff = 0;
2089   if (isTailCall && !IsSibcall) {
2090     // Lower arguments at fp - stackoffset + fpdiff.
2091     unsigned NumBytesCallerPushed =
2092       MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2093     FPDiff = NumBytesCallerPushed - NumBytes;
2094 
2095     // Set the delta of movement of the returnaddr stackslot.
2096     // But only set if delta is greater than previous delta.
2097     if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2098       MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2099   }
2100 
2101   if (!IsSibcall)
2102     Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2103 
2104   SDValue RetAddrFrIdx;
2105   // Load return address for tail calls.
2106   if (isTailCall && FPDiff)
2107     Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2108                                     Is64Bit, FPDiff, dl);
2109 
2110   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2111   SmallVector<SDValue, 8> MemOpChains;
2112   SDValue StackPtr;
2113 
2114   // Walk the register/memloc assignments, inserting copies/loads.  In the case
2115   // of tail call optimization arguments are handle later.
2116   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2117     CCValAssign &VA = ArgLocs[i];
2118     EVT RegVT = VA.getLocVT();
2119     SDValue Arg = OutVals[i];
2120     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2121     bool isByVal = Flags.isByVal();
2122 
2123     // Promote the value if needed.
2124     switch (VA.getLocInfo()) {
2125     default: llvm_unreachable("Unknown loc info!");
2126     case CCValAssign::Full: break;
2127     case CCValAssign::SExt:
2128       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2129       break;
2130     case CCValAssign::ZExt:
2131       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2132       break;
2133     case CCValAssign::AExt:
2134       if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2135         // Special case: passing MMX values in XMM registers.
2136         Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2137         Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2138         Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2139       } else
2140         Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2141       break;
2142     case CCValAssign::BCvt:
2143       Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2144       break;
2145     case CCValAssign::Indirect: {
2146       // Store the argument.
2147       SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2148       int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2149       Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2150                            MachinePointerInfo::getFixedStack(FI),
2151                            false, false, 0);
2152       Arg = SpillSlot;
2153       break;
2154     }
2155     }
2156 
2157     if (VA.isRegLoc()) {
2158       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2159       if (isVarArg && IsWin64) {
2160         // Win64 ABI requires argument XMM reg to be copied to the corresponding
2161         // shadow reg if callee is a varargs function.
2162         unsigned ShadowReg = 0;
2163         switch (VA.getLocReg()) {
2164         case X86::XMM0: ShadowReg = X86::RCX; break;
2165         case X86::XMM1: ShadowReg = X86::RDX; break;
2166         case X86::XMM2: ShadowReg = X86::R8; break;
2167         case X86::XMM3: ShadowReg = X86::R9; break;
2168         }
2169         if (ShadowReg)
2170           RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2171       }
2172     } else if (!IsSibcall && (!isTailCall || isByVal)) {
2173       assert(VA.isMemLoc());
2174       if (StackPtr.getNode() == 0)
2175         StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2176       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2177                                              dl, DAG, VA, Flags));
2178     }
2179   }
2180 
2181   if (!MemOpChains.empty())
2182     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2183                         &MemOpChains[0], MemOpChains.size());
2184 
2185   // Build a sequence of copy-to-reg nodes chained together with token chain
2186   // and flag operands which copy the outgoing args into registers.
2187   SDValue InFlag;
2188   // Tail call byval lowering might overwrite argument registers so in case of
2189   // tail call optimization the copies to registers are lowered later.
2190   if (!isTailCall)
2191     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2192       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2193                                RegsToPass[i].second, InFlag);
2194       InFlag = Chain.getValue(1);
2195     }
2196 
2197   if (Subtarget->isPICStyleGOT()) {
2198     // ELF / PIC requires GOT in the EBX register before function calls via PLT
2199     // GOT pointer.
2200     if (!isTailCall) {
2201       Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2202                                DAG.getNode(X86ISD::GlobalBaseReg,
2203                                            DebugLoc(), getPointerTy()),
2204                                InFlag);
2205       InFlag = Chain.getValue(1);
2206     } else {
2207       // If we are tail calling and generating PIC/GOT style code load the
2208       // address of the callee into ECX. The value in ecx is used as target of
2209       // the tail jump. This is done to circumvent the ebx/callee-saved problem
2210       // for tail calls on PIC/GOT architectures. Normally we would just put the
2211       // address of GOT into ebx and then call target@PLT. But for tail calls
2212       // ebx would be restored (since ebx is callee saved) before jumping to the
2213       // target@PLT.
2214 
2215       // Note: The actual moving to ECX is done further down.
2216       GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2217       if (G && !G->getGlobal()->hasHiddenVisibility() &&
2218           !G->getGlobal()->hasProtectedVisibility())
2219         Callee = LowerGlobalAddress(Callee, DAG);
2220       else if (isa<ExternalSymbolSDNode>(Callee))
2221         Callee = LowerExternalSymbol(Callee, DAG);
2222     }
2223   }
2224 
2225   if (Is64Bit && isVarArg && !IsWin64) {
2226     // From AMD64 ABI document:
2227     // For calls that may call functions that use varargs or stdargs
2228     // (prototype-less calls or calls to functions containing ellipsis (...) in
2229     // the declaration) %al is used as hidden argument to specify the number
2230     // of SSE registers used. The contents of %al do not need to match exactly
2231     // the number of registers, but must be an ubound on the number of SSE
2232     // registers used and is in the range 0 - 8 inclusive.
2233 
2234     // Count the number of XMM registers allocated.
2235     static const unsigned XMMArgRegs[] = {
2236       X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2237       X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2238     };
2239     unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2240     assert((Subtarget->hasXMM() || !NumXMMRegs)
2241            && "SSE registers cannot be used when SSE is disabled");
2242 
2243     Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2244                              DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2245     InFlag = Chain.getValue(1);
2246   }
2247 
2248 
2249   // For tail calls lower the arguments to the 'real' stack slot.
2250   if (isTailCall) {
2251     // Force all the incoming stack arguments to be loaded from the stack
2252     // before any new outgoing arguments are stored to the stack, because the
2253     // outgoing stack slots may alias the incoming argument stack slots, and
2254     // the alias isn't otherwise explicit. This is slightly more conservative
2255     // than necessary, because it means that each store effectively depends
2256     // on every argument instead of just those arguments it would clobber.
2257     SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2258 
2259     SmallVector<SDValue, 8> MemOpChains2;
2260     SDValue FIN;
2261     int FI = 0;
2262     // Do not flag preceding copytoreg stuff together with the following stuff.
2263     InFlag = SDValue();
2264     if (GuaranteedTailCallOpt) {
2265       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2266         CCValAssign &VA = ArgLocs[i];
2267         if (VA.isRegLoc())
2268           continue;
2269         assert(VA.isMemLoc());
2270         SDValue Arg = OutVals[i];
2271         ISD::ArgFlagsTy Flags = Outs[i].Flags;
2272         // Create frame index.
2273         int32_t Offset = VA.getLocMemOffset()+FPDiff;
2274         uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2275         FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2276         FIN = DAG.getFrameIndex(FI, getPointerTy());
2277 
2278         if (Flags.isByVal()) {
2279           // Copy relative to framepointer.
2280           SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2281           if (StackPtr.getNode() == 0)
2282             StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2283                                           getPointerTy());
2284           Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2285 
2286           MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2287                                                            ArgChain,
2288                                                            Flags, DAG, dl));
2289         } else {
2290           // Store relative to framepointer.
2291           MemOpChains2.push_back(
2292             DAG.getStore(ArgChain, dl, Arg, FIN,
2293                          MachinePointerInfo::getFixedStack(FI),
2294                          false, false, 0));
2295         }
2296       }
2297     }
2298 
2299     if (!MemOpChains2.empty())
2300       Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2301                           &MemOpChains2[0], MemOpChains2.size());
2302 
2303     // Copy arguments to their registers.
2304     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2305       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2306                                RegsToPass[i].second, InFlag);
2307       InFlag = Chain.getValue(1);
2308     }
2309     InFlag =SDValue();
2310 
2311     // Store the return address to the appropriate stack slot.
2312     Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2313                                      FPDiff, dl);
2314   }
2315 
2316   if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2317     assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2318     // In the 64-bit large code model, we have to make all calls
2319     // through a register, since the call instruction's 32-bit
2320     // pc-relative offset may not be large enough to hold the whole
2321     // address.
2322   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2323     // If the callee is a GlobalAddress node (quite common, every direct call
2324     // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2325     // it.
2326 
2327     // We should use extra load for direct calls to dllimported functions in
2328     // non-JIT mode.
2329     const GlobalValue *GV = G->getGlobal();
2330     if (!GV->hasDLLImportLinkage()) {
2331       unsigned char OpFlags = 0;
2332       bool ExtraLoad = false;
2333       unsigned WrapperKind = ISD::DELETED_NODE;
2334 
2335       // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2336       // external symbols most go through the PLT in PIC mode.  If the symbol
2337       // has hidden or protected visibility, or if it is static or local, then
2338       // we don't need to use the PLT - we can directly call it.
2339       if (Subtarget->isTargetELF() &&
2340           getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2341           GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2342         OpFlags = X86II::MO_PLT;
2343       } else if (Subtarget->isPICStyleStubAny() &&
2344                  (GV->isDeclaration() || GV->isWeakForLinker()) &&
2345                  (!Subtarget->getTargetTriple().isMacOSX() ||
2346                   Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2347         // PC-relative references to external symbols should go through $stub,
2348         // unless we're building with the leopard linker or later, which
2349         // automatically synthesizes these stubs.
2350         OpFlags = X86II::MO_DARWIN_STUB;
2351       } else if (Subtarget->isPICStyleRIPRel() &&
2352                  isa<Function>(GV) &&
2353                  cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2354         // If the function is marked as non-lazy, generate an indirect call
2355         // which loads from the GOT directly. This avoids runtime overhead
2356         // at the cost of eager binding (and one extra byte of encoding).
2357         OpFlags = X86II::MO_GOTPCREL;
2358         WrapperKind = X86ISD::WrapperRIP;
2359         ExtraLoad = true;
2360       }
2361 
2362       Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2363                                           G->getOffset(), OpFlags);
2364 
2365       // Add a wrapper if needed.
2366       if (WrapperKind != ISD::DELETED_NODE)
2367         Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2368       // Add extra indirection if needed.
2369       if (ExtraLoad)
2370         Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2371                              MachinePointerInfo::getGOT(),
2372                              false, false, 0);
2373     }
2374   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2375     unsigned char OpFlags = 0;
2376 
2377     // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2378     // external symbols should go through the PLT.
2379     if (Subtarget->isTargetELF() &&
2380         getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2381       OpFlags = X86II::MO_PLT;
2382     } else if (Subtarget->isPICStyleStubAny() &&
2383                (!Subtarget->getTargetTriple().isMacOSX() ||
2384                 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2385       // PC-relative references to external symbols should go through $stub,
2386       // unless we're building with the leopard linker or later, which
2387       // automatically synthesizes these stubs.
2388       OpFlags = X86II::MO_DARWIN_STUB;
2389     }
2390 
2391     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2392                                          OpFlags);
2393   }
2394 
2395   // Returns a chain & a flag for retval copy to use.
2396   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2397   SmallVector<SDValue, 8> Ops;
2398 
2399   if (!IsSibcall && isTailCall) {
2400     Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2401                            DAG.getIntPtrConstant(0, true), InFlag);
2402     InFlag = Chain.getValue(1);
2403   }
2404 
2405   Ops.push_back(Chain);
2406   Ops.push_back(Callee);
2407 
2408   if (isTailCall)
2409     Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2410 
2411   // Add argument registers to the end of the list so that they are known live
2412   // into the call.
2413   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2414     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2415                                   RegsToPass[i].second.getValueType()));
2416 
2417   // Add an implicit use GOT pointer in EBX.
2418   if (!isTailCall && Subtarget->isPICStyleGOT())
2419     Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2420 
2421   // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2422   if (Is64Bit && isVarArg && !IsWin64)
2423     Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2424 
2425   if (InFlag.getNode())
2426     Ops.push_back(InFlag);
2427 
2428   if (isTailCall) {
2429     // We used to do:
2430     //// If this is the first return lowered for this function, add the regs
2431     //// to the liveout set for the function.
2432     // This isn't right, although it's probably harmless on x86; liveouts
2433     // should be computed from returns not tail calls.  Consider a void
2434     // function making a tail call to a function returning int.
2435     return DAG.getNode(X86ISD::TC_RETURN, dl,
2436                        NodeTys, &Ops[0], Ops.size());
2437   }
2438 
2439   Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2440   InFlag = Chain.getValue(1);
2441 
2442   // Create the CALLSEQ_END node.
2443   unsigned NumBytesForCalleeToPush;
2444   if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2445     NumBytesForCalleeToPush = NumBytes;    // Callee pops everything
2446   else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2447     // If this is a call to a struct-return function, the callee
2448     // pops the hidden struct pointer, so we have to push it back.
2449     // This is common for Darwin/X86, Linux & Mingw32 targets.
2450     NumBytesForCalleeToPush = 4;
2451   else
2452     NumBytesForCalleeToPush = 0;  // Callee pops nothing.
2453 
2454   // Returns a flag for retval copy to use.
2455   if (!IsSibcall) {
2456     Chain = DAG.getCALLSEQ_END(Chain,
2457                                DAG.getIntPtrConstant(NumBytes, true),
2458                                DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2459                                                      true),
2460                                InFlag);
2461     InFlag = Chain.getValue(1);
2462   }
2463 
2464   // Handle result values, copying them out of physregs into vregs that we
2465   // return.
2466   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2467                          Ins, dl, DAG, InVals);
2468 }
2469 
2470 
2471 //===----------------------------------------------------------------------===//
2472 //                Fast Calling Convention (tail call) implementation
2473 //===----------------------------------------------------------------------===//
2474 
2475 //  Like std call, callee cleans arguments, convention except that ECX is
2476 //  reserved for storing the tail called function address. Only 2 registers are
2477 //  free for argument passing (inreg). Tail call optimization is performed
2478 //  provided:
2479 //                * tailcallopt is enabled
2480 //                * caller/callee are fastcc
2481 //  On X86_64 architecture with GOT-style position independent code only local
2482 //  (within module) calls are supported at the moment.
2483 //  To keep the stack aligned according to platform abi the function
2484 //  GetAlignedArgumentStackSize ensures that argument delta is always multiples
2485 //  of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2486 //  If a tail called function callee has more arguments than the caller the
2487 //  caller needs to make sure that there is room to move the RETADDR to. This is
2488 //  achieved by reserving an area the size of the argument delta right after the
2489 //  original REtADDR, but before the saved framepointer or the spilled registers
2490 //  e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2491 //  stack layout:
2492 //    arg1
2493 //    arg2
2494 //    RETADDR
2495 //    [ new RETADDR
2496 //      move area ]
2497 //    (possible EBP)
2498 //    ESI
2499 //    EDI
2500 //    local1 ..
2501 
2502 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2503 /// for a 16 byte align requirement.
2504 unsigned
GetAlignedArgumentStackSize(unsigned StackSize,SelectionDAG & DAG) const2505 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2506                                                SelectionDAG& DAG) const {
2507   MachineFunction &MF = DAG.getMachineFunction();
2508   const TargetMachine &TM = MF.getTarget();
2509   const TargetFrameLowering &TFI = *TM.getFrameLowering();
2510   unsigned StackAlignment = TFI.getStackAlignment();
2511   uint64_t AlignMask = StackAlignment - 1;
2512   int64_t Offset = StackSize;
2513   uint64_t SlotSize = TD->getPointerSize();
2514   if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2515     // Number smaller than 12 so just add the difference.
2516     Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2517   } else {
2518     // Mask out lower bits, add stackalignment once plus the 12 bytes.
2519     Offset = ((~AlignMask) & Offset) + StackAlignment +
2520       (StackAlignment-SlotSize);
2521   }
2522   return Offset;
2523 }
2524 
2525 /// MatchingStackOffset - Return true if the given stack call argument is
2526 /// already available in the same position (relatively) of the caller's
2527 /// incoming argument stack.
2528 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const X86InstrInfo * TII)2529 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2530                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2531                          const X86InstrInfo *TII) {
2532   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2533   int FI = INT_MAX;
2534   if (Arg.getOpcode() == ISD::CopyFromReg) {
2535     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2536     if (!TargetRegisterInfo::isVirtualRegister(VR))
2537       return false;
2538     MachineInstr *Def = MRI->getVRegDef(VR);
2539     if (!Def)
2540       return false;
2541     if (!Flags.isByVal()) {
2542       if (!TII->isLoadFromStackSlot(Def, FI))
2543         return false;
2544     } else {
2545       unsigned Opcode = Def->getOpcode();
2546       if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2547           Def->getOperand(1).isFI()) {
2548         FI = Def->getOperand(1).getIndex();
2549         Bytes = Flags.getByValSize();
2550       } else
2551         return false;
2552     }
2553   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2554     if (Flags.isByVal())
2555       // ByVal argument is passed in as a pointer but it's now being
2556       // dereferenced. e.g.
2557       // define @foo(%struct.X* %A) {
2558       //   tail call @bar(%struct.X* byval %A)
2559       // }
2560       return false;
2561     SDValue Ptr = Ld->getBasePtr();
2562     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2563     if (!FINode)
2564       return false;
2565     FI = FINode->getIndex();
2566   } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2567     FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2568     FI = FINode->getIndex();
2569     Bytes = Flags.getByValSize();
2570   } else
2571     return false;
2572 
2573   assert(FI != INT_MAX);
2574   if (!MFI->isFixedObjectIndex(FI))
2575     return false;
2576   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2577 }
2578 
2579 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2580 /// for tail call optimization. Targets which want to do tail call
2581 /// optimization should implement this function.
2582 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2583 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2584                                                      CallingConv::ID CalleeCC,
2585                                                      bool isVarArg,
2586                                                      bool isCalleeStructRet,
2587                                                      bool isCallerStructRet,
2588                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
2589                                     const SmallVectorImpl<SDValue> &OutVals,
2590                                     const SmallVectorImpl<ISD::InputArg> &Ins,
2591                                                      SelectionDAG& DAG) const {
2592   if (!IsTailCallConvention(CalleeCC) &&
2593       CalleeCC != CallingConv::C)
2594     return false;
2595 
2596   // If -tailcallopt is specified, make fastcc functions tail-callable.
2597   const MachineFunction &MF = DAG.getMachineFunction();
2598   const Function *CallerF = DAG.getMachineFunction().getFunction();
2599   CallingConv::ID CallerCC = CallerF->getCallingConv();
2600   bool CCMatch = CallerCC == CalleeCC;
2601 
2602   if (GuaranteedTailCallOpt) {
2603     if (IsTailCallConvention(CalleeCC) && CCMatch)
2604       return true;
2605     return false;
2606   }
2607 
2608   // Look for obvious safe cases to perform tail call optimization that do not
2609   // require ABI changes. This is what gcc calls sibcall.
2610 
2611   // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2612   // emit a special epilogue.
2613   if (RegInfo->needsStackRealignment(MF))
2614     return false;
2615 
2616   // Also avoid sibcall optimization if either caller or callee uses struct
2617   // return semantics.
2618   if (isCalleeStructRet || isCallerStructRet)
2619     return false;
2620 
2621   // An stdcall caller is expected to clean up its arguments; the callee
2622   // isn't going to do that.
2623   if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2624     return false;
2625 
2626   // Do not sibcall optimize vararg calls unless all arguments are passed via
2627   // registers.
2628   if (isVarArg && !Outs.empty()) {
2629 
2630     // Optimizing for varargs on Win64 is unlikely to be safe without
2631     // additional testing.
2632     if (Subtarget->isTargetWin64())
2633       return false;
2634 
2635     SmallVector<CCValAssign, 16> ArgLocs;
2636     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2637 		   getTargetMachine(), ArgLocs, *DAG.getContext());
2638 
2639     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2640     for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2641       if (!ArgLocs[i].isRegLoc())
2642         return false;
2643   }
2644 
2645   // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2646   // Therefore if it's not used by the call it is not safe to optimize this into
2647   // a sibcall.
2648   bool Unused = false;
2649   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2650     if (!Ins[i].Used) {
2651       Unused = true;
2652       break;
2653     }
2654   }
2655   if (Unused) {
2656     SmallVector<CCValAssign, 16> RVLocs;
2657     CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2658 		   getTargetMachine(), RVLocs, *DAG.getContext());
2659     CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2660     for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2661       CCValAssign &VA = RVLocs[i];
2662       if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2663         return false;
2664     }
2665   }
2666 
2667   // If the calling conventions do not match, then we'd better make sure the
2668   // results are returned in the same way as what the caller expects.
2669   if (!CCMatch) {
2670     SmallVector<CCValAssign, 16> RVLocs1;
2671     CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2672 		    getTargetMachine(), RVLocs1, *DAG.getContext());
2673     CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2674 
2675     SmallVector<CCValAssign, 16> RVLocs2;
2676     CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2677 		    getTargetMachine(), RVLocs2, *DAG.getContext());
2678     CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2679 
2680     if (RVLocs1.size() != RVLocs2.size())
2681       return false;
2682     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2683       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2684         return false;
2685       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2686         return false;
2687       if (RVLocs1[i].isRegLoc()) {
2688         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2689           return false;
2690       } else {
2691         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2692           return false;
2693       }
2694     }
2695   }
2696 
2697   // If the callee takes no arguments then go on to check the results of the
2698   // call.
2699   if (!Outs.empty()) {
2700     // Check if stack adjustment is needed. For now, do not do this if any
2701     // argument is passed on the stack.
2702     SmallVector<CCValAssign, 16> ArgLocs;
2703     CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2704 		   getTargetMachine(), ArgLocs, *DAG.getContext());
2705 
2706     // Allocate shadow area for Win64
2707     if (Subtarget->isTargetWin64()) {
2708       CCInfo.AllocateStack(32, 8);
2709     }
2710 
2711     CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2712     if (CCInfo.getNextStackOffset()) {
2713       MachineFunction &MF = DAG.getMachineFunction();
2714       if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2715         return false;
2716 
2717       // Check if the arguments are already laid out in the right way as
2718       // the caller's fixed stack objects.
2719       MachineFrameInfo *MFI = MF.getFrameInfo();
2720       const MachineRegisterInfo *MRI = &MF.getRegInfo();
2721       const X86InstrInfo *TII =
2722         ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2723       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2724         CCValAssign &VA = ArgLocs[i];
2725         SDValue Arg = OutVals[i];
2726         ISD::ArgFlagsTy Flags = Outs[i].Flags;
2727         if (VA.getLocInfo() == CCValAssign::Indirect)
2728           return false;
2729         if (!VA.isRegLoc()) {
2730           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2731                                    MFI, MRI, TII))
2732             return false;
2733         }
2734       }
2735     }
2736 
2737     // If the tailcall address may be in a register, then make sure it's
2738     // possible to register allocate for it. In 32-bit, the call address can
2739     // only target EAX, EDX, or ECX since the tail call must be scheduled after
2740     // callee-saved registers are restored. These happen to be the same
2741     // registers used to pass 'inreg' arguments so watch out for those.
2742     if (!Subtarget->is64Bit() &&
2743         !isa<GlobalAddressSDNode>(Callee) &&
2744         !isa<ExternalSymbolSDNode>(Callee)) {
2745       unsigned NumInRegs = 0;
2746       for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2747         CCValAssign &VA = ArgLocs[i];
2748         if (!VA.isRegLoc())
2749           continue;
2750         unsigned Reg = VA.getLocReg();
2751         switch (Reg) {
2752         default: break;
2753         case X86::EAX: case X86::EDX: case X86::ECX:
2754           if (++NumInRegs == 3)
2755             return false;
2756           break;
2757         }
2758       }
2759     }
2760   }
2761 
2762   return true;
2763 }
2764 
2765 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo) const2766 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2767   return X86::createFastISel(funcInfo);
2768 }
2769 
2770 
2771 //===----------------------------------------------------------------------===//
2772 //                           Other Lowering Hooks
2773 //===----------------------------------------------------------------------===//
2774 
MayFoldLoad(SDValue Op)2775 static bool MayFoldLoad(SDValue Op) {
2776   return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2777 }
2778 
MayFoldIntoStore(SDValue Op)2779 static bool MayFoldIntoStore(SDValue Op) {
2780   return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2781 }
2782 
isTargetShuffle(unsigned Opcode)2783 static bool isTargetShuffle(unsigned Opcode) {
2784   switch(Opcode) {
2785   default: return false;
2786   case X86ISD::PSHUFD:
2787   case X86ISD::PSHUFHW:
2788   case X86ISD::PSHUFLW:
2789   case X86ISD::SHUFPD:
2790   case X86ISD::PALIGN:
2791   case X86ISD::SHUFPS:
2792   case X86ISD::MOVLHPS:
2793   case X86ISD::MOVLHPD:
2794   case X86ISD::MOVHLPS:
2795   case X86ISD::MOVLPS:
2796   case X86ISD::MOVLPD:
2797   case X86ISD::MOVSHDUP:
2798   case X86ISD::MOVSLDUP:
2799   case X86ISD::MOVDDUP:
2800   case X86ISD::MOVSS:
2801   case X86ISD::MOVSD:
2802   case X86ISD::UNPCKLPS:
2803   case X86ISD::UNPCKLPD:
2804   case X86ISD::VUNPCKLPSY:
2805   case X86ISD::VUNPCKLPDY:
2806   case X86ISD::PUNPCKLWD:
2807   case X86ISD::PUNPCKLBW:
2808   case X86ISD::PUNPCKLDQ:
2809   case X86ISD::PUNPCKLQDQ:
2810   case X86ISD::UNPCKHPS:
2811   case X86ISD::UNPCKHPD:
2812   case X86ISD::VUNPCKHPSY:
2813   case X86ISD::VUNPCKHPDY:
2814   case X86ISD::PUNPCKHWD:
2815   case X86ISD::PUNPCKHBW:
2816   case X86ISD::PUNPCKHDQ:
2817   case X86ISD::PUNPCKHQDQ:
2818   case X86ISD::VPERMILPS:
2819   case X86ISD::VPERMILPSY:
2820   case X86ISD::VPERMILPD:
2821   case X86ISD::VPERMILPDY:
2822   case X86ISD::VPERM2F128:
2823     return true;
2824   }
2825   return false;
2826 }
2827 
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SelectionDAG & DAG)2828 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2829                                                SDValue V1, SelectionDAG &DAG) {
2830   switch(Opc) {
2831   default: llvm_unreachable("Unknown x86 shuffle node");
2832   case X86ISD::MOVSHDUP:
2833   case X86ISD::MOVSLDUP:
2834   case X86ISD::MOVDDUP:
2835     return DAG.getNode(Opc, dl, VT, V1);
2836   }
2837 
2838   return SDValue();
2839 }
2840 
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,unsigned TargetMask,SelectionDAG & DAG)2841 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2842                           SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2843   switch(Opc) {
2844   default: llvm_unreachable("Unknown x86 shuffle node");
2845   case X86ISD::PSHUFD:
2846   case X86ISD::PSHUFHW:
2847   case X86ISD::PSHUFLW:
2848   case X86ISD::VPERMILPS:
2849   case X86ISD::VPERMILPSY:
2850   case X86ISD::VPERMILPD:
2851   case X86ISD::VPERMILPDY:
2852     return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2853   }
2854 
2855   return SDValue();
2856 }
2857 
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SDValue V2,unsigned TargetMask,SelectionDAG & DAG)2858 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2859                SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2860   switch(Opc) {
2861   default: llvm_unreachable("Unknown x86 shuffle node");
2862   case X86ISD::PALIGN:
2863   case X86ISD::SHUFPD:
2864   case X86ISD::SHUFPS:
2865   case X86ISD::VPERM2F128:
2866     return DAG.getNode(Opc, dl, VT, V1, V2,
2867                        DAG.getConstant(TargetMask, MVT::i8));
2868   }
2869   return SDValue();
2870 }
2871 
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SDValue V2,SelectionDAG & DAG)2872 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2873                                     SDValue V1, SDValue V2, SelectionDAG &DAG) {
2874   switch(Opc) {
2875   default: llvm_unreachable("Unknown x86 shuffle node");
2876   case X86ISD::MOVLHPS:
2877   case X86ISD::MOVLHPD:
2878   case X86ISD::MOVHLPS:
2879   case X86ISD::MOVLPS:
2880   case X86ISD::MOVLPD:
2881   case X86ISD::MOVSS:
2882   case X86ISD::MOVSD:
2883   case X86ISD::UNPCKLPS:
2884   case X86ISD::UNPCKLPD:
2885   case X86ISD::VUNPCKLPSY:
2886   case X86ISD::VUNPCKLPDY:
2887   case X86ISD::PUNPCKLWD:
2888   case X86ISD::PUNPCKLBW:
2889   case X86ISD::PUNPCKLDQ:
2890   case X86ISD::PUNPCKLQDQ:
2891   case X86ISD::UNPCKHPS:
2892   case X86ISD::UNPCKHPD:
2893   case X86ISD::VUNPCKHPSY:
2894   case X86ISD::VUNPCKHPDY:
2895   case X86ISD::PUNPCKHWD:
2896   case X86ISD::PUNPCKHBW:
2897   case X86ISD::PUNPCKHDQ:
2898   case X86ISD::PUNPCKHQDQ:
2899     return DAG.getNode(Opc, dl, VT, V1, V2);
2900   }
2901   return SDValue();
2902 }
2903 
getReturnAddressFrameIndex(SelectionDAG & DAG) const2904 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2905   MachineFunction &MF = DAG.getMachineFunction();
2906   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2907   int ReturnAddrIndex = FuncInfo->getRAIndex();
2908 
2909   if (ReturnAddrIndex == 0) {
2910     // Set up a frame object for the return address.
2911     uint64_t SlotSize = TD->getPointerSize();
2912     ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2913                                                            false);
2914     FuncInfo->setRAIndex(ReturnAddrIndex);
2915   }
2916 
2917   return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2918 }
2919 
2920 
isOffsetSuitableForCodeModel(int64_t Offset,CodeModel::Model M,bool hasSymbolicDisplacement)2921 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2922                                        bool hasSymbolicDisplacement) {
2923   // Offset should fit into 32 bit immediate field.
2924   if (!isInt<32>(Offset))
2925     return false;
2926 
2927   // If we don't have a symbolic displacement - we don't have any extra
2928   // restrictions.
2929   if (!hasSymbolicDisplacement)
2930     return true;
2931 
2932   // FIXME: Some tweaks might be needed for medium code model.
2933   if (M != CodeModel::Small && M != CodeModel::Kernel)
2934     return false;
2935 
2936   // For small code model we assume that latest object is 16MB before end of 31
2937   // bits boundary. We may also accept pretty large negative constants knowing
2938   // that all objects are in the positive half of address space.
2939   if (M == CodeModel::Small && Offset < 16*1024*1024)
2940     return true;
2941 
2942   // For kernel code model we know that all object resist in the negative half
2943   // of 32bits address space. We may not accept negative offsets, since they may
2944   // be just off and we may accept pretty large positive ones.
2945   if (M == CodeModel::Kernel && Offset > 0)
2946     return true;
2947 
2948   return false;
2949 }
2950 
2951 /// isCalleePop - Determines whether the callee is required to pop its
2952 /// own arguments. Callee pop is necessary to support tail calls.
isCalleePop(CallingConv::ID CallingConv,bool is64Bit,bool IsVarArg,bool TailCallOpt)2953 bool X86::isCalleePop(CallingConv::ID CallingConv,
2954                       bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2955   if (IsVarArg)
2956     return false;
2957 
2958   switch (CallingConv) {
2959   default:
2960     return false;
2961   case CallingConv::X86_StdCall:
2962     return !is64Bit;
2963   case CallingConv::X86_FastCall:
2964     return !is64Bit;
2965   case CallingConv::X86_ThisCall:
2966     return !is64Bit;
2967   case CallingConv::Fast:
2968     return TailCallOpt;
2969   case CallingConv::GHC:
2970     return TailCallOpt;
2971   }
2972 }
2973 
2974 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2975 /// specific condition code, returning the condition code and the LHS/RHS of the
2976 /// comparison to make.
TranslateX86CC(ISD::CondCode SetCCOpcode,bool isFP,SDValue & LHS,SDValue & RHS,SelectionDAG & DAG)2977 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2978                                SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2979   if (!isFP) {
2980     if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2981       if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2982         // X > -1   -> X == 0, jump !sign.
2983         RHS = DAG.getConstant(0, RHS.getValueType());
2984         return X86::COND_NS;
2985       } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2986         // X < 0   -> X == 0, jump on sign.
2987         return X86::COND_S;
2988       } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2989         // X < 1   -> X <= 0
2990         RHS = DAG.getConstant(0, RHS.getValueType());
2991         return X86::COND_LE;
2992       }
2993     }
2994 
2995     switch (SetCCOpcode) {
2996     default: llvm_unreachable("Invalid integer condition!");
2997     case ISD::SETEQ:  return X86::COND_E;
2998     case ISD::SETGT:  return X86::COND_G;
2999     case ISD::SETGE:  return X86::COND_GE;
3000     case ISD::SETLT:  return X86::COND_L;
3001     case ISD::SETLE:  return X86::COND_LE;
3002     case ISD::SETNE:  return X86::COND_NE;
3003     case ISD::SETULT: return X86::COND_B;
3004     case ISD::SETUGT: return X86::COND_A;
3005     case ISD::SETULE: return X86::COND_BE;
3006     case ISD::SETUGE: return X86::COND_AE;
3007     }
3008   }
3009 
3010   // First determine if it is required or is profitable to flip the operands.
3011 
3012   // If LHS is a foldable load, but RHS is not, flip the condition.
3013   if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3014       !ISD::isNON_EXTLoad(RHS.getNode())) {
3015     SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3016     std::swap(LHS, RHS);
3017   }
3018 
3019   switch (SetCCOpcode) {
3020   default: break;
3021   case ISD::SETOLT:
3022   case ISD::SETOLE:
3023   case ISD::SETUGT:
3024   case ISD::SETUGE:
3025     std::swap(LHS, RHS);
3026     break;
3027   }
3028 
3029   // On a floating point condition, the flags are set as follows:
3030   // ZF  PF  CF   op
3031   //  0 | 0 | 0 | X > Y
3032   //  0 | 0 | 1 | X < Y
3033   //  1 | 0 | 0 | X == Y
3034   //  1 | 1 | 1 | unordered
3035   switch (SetCCOpcode) {
3036   default: llvm_unreachable("Condcode should be pre-legalized away");
3037   case ISD::SETUEQ:
3038   case ISD::SETEQ:   return X86::COND_E;
3039   case ISD::SETOLT:              // flipped
3040   case ISD::SETOGT:
3041   case ISD::SETGT:   return X86::COND_A;
3042   case ISD::SETOLE:              // flipped
3043   case ISD::SETOGE:
3044   case ISD::SETGE:   return X86::COND_AE;
3045   case ISD::SETUGT:              // flipped
3046   case ISD::SETULT:
3047   case ISD::SETLT:   return X86::COND_B;
3048   case ISD::SETUGE:              // flipped
3049   case ISD::SETULE:
3050   case ISD::SETLE:   return X86::COND_BE;
3051   case ISD::SETONE:
3052   case ISD::SETNE:   return X86::COND_NE;
3053   case ISD::SETUO:   return X86::COND_P;
3054   case ISD::SETO:    return X86::COND_NP;
3055   case ISD::SETOEQ:
3056   case ISD::SETUNE:  return X86::COND_INVALID;
3057   }
3058 }
3059 
3060 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3061 /// code. Current x86 isa includes the following FP cmov instructions:
3062 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
hasFPCMov(unsigned X86CC)3063 static bool hasFPCMov(unsigned X86CC) {
3064   switch (X86CC) {
3065   default:
3066     return false;
3067   case X86::COND_B:
3068   case X86::COND_BE:
3069   case X86::COND_E:
3070   case X86::COND_P:
3071   case X86::COND_A:
3072   case X86::COND_AE:
3073   case X86::COND_NE:
3074   case X86::COND_NP:
3075     return true;
3076   }
3077 }
3078 
3079 /// isFPImmLegal - Returns true if the target can instruction select the
3080 /// specified FP immediate natively. If false, the legalizer will
3081 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const3082 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3083   for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3084     if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3085       return true;
3086   }
3087   return false;
3088 }
3089 
3090 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3091 /// the specified range (L, H].
isUndefOrInRange(int Val,int Low,int Hi)3092 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3093   return (Val < 0) || (Val >= Low && Val < Hi);
3094 }
3095 
3096 /// isUndefOrInRange - Return true if every element in Mask, begining
3097 /// from position Pos and ending in Pos+Size, falls within the specified
3098 /// range (L, L+Pos]. or is undef.
isUndefOrInRange(const SmallVectorImpl<int> & Mask,int Pos,int Size,int Low,int Hi)3099 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3100                              int Pos, int Size, int Low, int Hi) {
3101   for (int i = Pos, e = Pos+Size; i != e; ++i)
3102     if (!isUndefOrInRange(Mask[i], Low, Hi))
3103       return false;
3104   return true;
3105 }
3106 
3107 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3108 /// specified value.
isUndefOrEqual(int Val,int CmpVal)3109 static bool isUndefOrEqual(int Val, int CmpVal) {
3110   if (Val < 0 || Val == CmpVal)
3111     return true;
3112   return false;
3113 }
3114 
3115 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3116 /// from position Pos and ending in Pos+Size, falls within the specified
3117 /// sequential range (L, L+Pos]. or is undef.
isSequentialOrUndefInRange(const SmallVectorImpl<int> & Mask,int Pos,int Size,int Low)3118 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3119                                        int Pos, int Size, int Low) {
3120   for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3121     if (!isUndefOrEqual(Mask[i], Low))
3122       return false;
3123   return true;
3124 }
3125 
3126 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3127 /// is suitable for input to PSHUFD or PSHUFW.  That is, it doesn't reference
3128 /// the second operand.
isPSHUFDMask(const SmallVectorImpl<int> & Mask,EVT VT)3129 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3130   if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3131     return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3132   if (VT == MVT::v2f64 || VT == MVT::v2i64)
3133     return (Mask[0] < 2 && Mask[1] < 2);
3134   return false;
3135 }
3136 
isPSHUFDMask(ShuffleVectorSDNode * N)3137 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3138   SmallVector<int, 8> M;
3139   N->getMask(M);
3140   return ::isPSHUFDMask(M, N->getValueType(0));
3141 }
3142 
3143 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3144 /// is suitable for input to PSHUFHW.
isPSHUFHWMask(const SmallVectorImpl<int> & Mask,EVT VT)3145 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3146   if (VT != MVT::v8i16)
3147     return false;
3148 
3149   // Lower quadword copied in order or undef.
3150   for (int i = 0; i != 4; ++i)
3151     if (Mask[i] >= 0 && Mask[i] != i)
3152       return false;
3153 
3154   // Upper quadword shuffled.
3155   for (int i = 4; i != 8; ++i)
3156     if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3157       return false;
3158 
3159   return true;
3160 }
3161 
isPSHUFHWMask(ShuffleVectorSDNode * N)3162 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3163   SmallVector<int, 8> M;
3164   N->getMask(M);
3165   return ::isPSHUFHWMask(M, N->getValueType(0));
3166 }
3167 
3168 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3169 /// is suitable for input to PSHUFLW.
isPSHUFLWMask(const SmallVectorImpl<int> & Mask,EVT VT)3170 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3171   if (VT != MVT::v8i16)
3172     return false;
3173 
3174   // Upper quadword copied in order.
3175   for (int i = 4; i != 8; ++i)
3176     if (Mask[i] >= 0 && Mask[i] != i)
3177       return false;
3178 
3179   // Lower quadword shuffled.
3180   for (int i = 0; i != 4; ++i)
3181     if (Mask[i] >= 4)
3182       return false;
3183 
3184   return true;
3185 }
3186 
isPSHUFLWMask(ShuffleVectorSDNode * N)3187 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3188   SmallVector<int, 8> M;
3189   N->getMask(M);
3190   return ::isPSHUFLWMask(M, N->getValueType(0));
3191 }
3192 
3193 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3194 /// is suitable for input to PALIGNR.
isPALIGNRMask(const SmallVectorImpl<int> & Mask,EVT VT,bool hasSSSE3OrAVX)3195 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3196                           bool hasSSSE3OrAVX) {
3197   int i, e = VT.getVectorNumElements();
3198   if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3199     return false;
3200 
3201   // Do not handle v2i64 / v2f64 shuffles with palignr.
3202   if (e < 4 || !hasSSSE3OrAVX)
3203     return false;
3204 
3205   for (i = 0; i != e; ++i)
3206     if (Mask[i] >= 0)
3207       break;
3208 
3209   // All undef, not a palignr.
3210   if (i == e)
3211     return false;
3212 
3213   // Make sure we're shifting in the right direction.
3214   if (Mask[i] <= i)
3215     return false;
3216 
3217   int s = Mask[i] - i;
3218 
3219   // Check the rest of the elements to see if they are consecutive.
3220   for (++i; i != e; ++i) {
3221     int m = Mask[i];
3222     if (m >= 0 && m != s+i)
3223       return false;
3224   }
3225   return true;
3226 }
3227 
3228 /// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3229 /// specifies a shuffle of elements that is suitable for input to 256-bit
3230 /// VSHUFPSY.
isVSHUFPSYMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3231 static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3232                           const X86Subtarget *Subtarget) {
3233   int NumElems = VT.getVectorNumElements();
3234 
3235   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3236     return false;
3237 
3238   if (NumElems != 8)
3239     return false;
3240 
3241   // VSHUFPSY divides the resulting vector into 4 chunks.
3242   // The sources are also splitted into 4 chunks, and each destination
3243   // chunk must come from a different source chunk.
3244   //
3245   //  SRC1 =>   X7    X6    X5    X4    X3    X2    X1    X0
3246   //  SRC2 =>   Y7    Y6    Y5    Y4    Y3    Y2    Y1    Y9
3247   //
3248   //  DST  =>  Y7..Y4,   Y7..Y4,   X7..X4,   X7..X4,
3249   //           Y3..Y0,   Y3..Y0,   X3..X0,   X3..X0
3250   //
3251   int QuarterSize = NumElems/4;
3252   int HalfSize = QuarterSize*2;
3253   for (int i = 0; i < QuarterSize; ++i)
3254     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3255       return false;
3256   for (int i = QuarterSize; i < QuarterSize*2; ++i)
3257     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3258       return false;
3259 
3260   // The mask of the second half must be the same as the first but with
3261   // the appropriate offsets. This works in the same way as VPERMILPS
3262   // works with masks.
3263   for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3264     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3265       return false;
3266     int FstHalfIdx = i-HalfSize;
3267     if (Mask[FstHalfIdx] < 0)
3268       continue;
3269     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3270       return false;
3271   }
3272   for (int i = QuarterSize*3; i < NumElems; ++i) {
3273     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3274       return false;
3275     int FstHalfIdx = i-HalfSize;
3276     if (Mask[FstHalfIdx] < 0)
3277       continue;
3278     if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3279       return false;
3280 
3281   }
3282 
3283   return true;
3284 }
3285 
3286 /// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3287 /// the specified VECTOR_MASK mask with VSHUFPSY instruction.
getShuffleVSHUFPSYImmediate(SDNode * N)3288 static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3289   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3290   EVT VT = SVOp->getValueType(0);
3291   int NumElems = VT.getVectorNumElements();
3292 
3293   assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3294          "Only supports v8i32 and v8f32 types");
3295 
3296   int HalfSize = NumElems/2;
3297   unsigned Mask = 0;
3298   for (int i = 0; i != NumElems ; ++i) {
3299     if (SVOp->getMaskElt(i) < 0)
3300       continue;
3301     // The mask of the first half must be equal to the second one.
3302     unsigned Shamt = (i%HalfSize)*2;
3303     unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3304     Mask |= Elt << Shamt;
3305   }
3306 
3307   return Mask;
3308 }
3309 
3310 /// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3311 /// specifies a shuffle of elements that is suitable for input to 256-bit
3312 /// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3313 /// version and the mask of the second half isn't binded with the first
3314 /// one.
isVSHUFPDYMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3315 static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3316                            const X86Subtarget *Subtarget) {
3317   int NumElems = VT.getVectorNumElements();
3318 
3319   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3320     return false;
3321 
3322   if (NumElems != 4)
3323     return false;
3324 
3325   // VSHUFPSY divides the resulting vector into 4 chunks.
3326   // The sources are also splitted into 4 chunks, and each destination
3327   // chunk must come from a different source chunk.
3328   //
3329   //  SRC1 =>      X3       X2       X1       X0
3330   //  SRC2 =>      Y3       Y2       Y1       Y0
3331   //
3332   //  DST  =>  Y2..Y3,  X2..X3,  Y1..Y0,  X1..X0
3333   //
3334   int QuarterSize = NumElems/4;
3335   int HalfSize = QuarterSize*2;
3336   for (int i = 0; i < QuarterSize; ++i)
3337     if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3338       return false;
3339   for (int i = QuarterSize; i < QuarterSize*2; ++i)
3340     if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3341       return false;
3342   for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3343     if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3344       return false;
3345   for (int i = QuarterSize*3; i < NumElems; ++i)
3346     if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3347       return false;
3348 
3349   return true;
3350 }
3351 
3352 /// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3353 /// the specified VECTOR_MASK mask with VSHUFPDY instruction.
getShuffleVSHUFPDYImmediate(SDNode * N)3354 static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3355   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3356   EVT VT = SVOp->getValueType(0);
3357   int NumElems = VT.getVectorNumElements();
3358 
3359   assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3360          "Only supports v4i64 and v4f64 types");
3361 
3362   int HalfSize = NumElems/2;
3363   unsigned Mask = 0;
3364   for (int i = 0; i != NumElems ; ++i) {
3365     if (SVOp->getMaskElt(i) < 0)
3366       continue;
3367     int Elt = SVOp->getMaskElt(i) % HalfSize;
3368     Mask |= Elt << i;
3369   }
3370 
3371   return Mask;
3372 }
3373 
3374 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3375 /// specifies a shuffle of elements that is suitable for input to 128-bit
3376 /// SHUFPS and SHUFPD.
isSHUFPMask(const SmallVectorImpl<int> & Mask,EVT VT)3377 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3378   int NumElems = VT.getVectorNumElements();
3379 
3380   if (VT.getSizeInBits() != 128)
3381     return false;
3382 
3383   if (NumElems != 2 && NumElems != 4)
3384     return false;
3385 
3386   int Half = NumElems / 2;
3387   for (int i = 0; i < Half; ++i)
3388     if (!isUndefOrInRange(Mask[i], 0, NumElems))
3389       return false;
3390   for (int i = Half; i < NumElems; ++i)
3391     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3392       return false;
3393 
3394   return true;
3395 }
3396 
isSHUFPMask(ShuffleVectorSDNode * N)3397 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3398   SmallVector<int, 8> M;
3399   N->getMask(M);
3400   return ::isSHUFPMask(M, N->getValueType(0));
3401 }
3402 
3403 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3404 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3405 /// half elements to come from vector 1 (which would equal the dest.) and
3406 /// the upper half to come from vector 2.
isCommutedSHUFPMask(const SmallVectorImpl<int> & Mask,EVT VT)3407 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3408   int NumElems = VT.getVectorNumElements();
3409 
3410   if (NumElems != 2 && NumElems != 4)
3411     return false;
3412 
3413   int Half = NumElems / 2;
3414   for (int i = 0; i < Half; ++i)
3415     if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3416       return false;
3417   for (int i = Half; i < NumElems; ++i)
3418     if (!isUndefOrInRange(Mask[i], 0, NumElems))
3419       return false;
3420   return true;
3421 }
3422 
isCommutedSHUFP(ShuffleVectorSDNode * N)3423 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3424   SmallVector<int, 8> M;
3425   N->getMask(M);
3426   return isCommutedSHUFPMask(M, N->getValueType(0));
3427 }
3428 
3429 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3430 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
isMOVHLPSMask(ShuffleVectorSDNode * N)3431 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3432   EVT VT = N->getValueType(0);
3433   unsigned NumElems = VT.getVectorNumElements();
3434 
3435   if (VT.getSizeInBits() != 128)
3436     return false;
3437 
3438   if (NumElems != 4)
3439     return false;
3440 
3441   // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3442   return isUndefOrEqual(N->getMaskElt(0), 6) &&
3443          isUndefOrEqual(N->getMaskElt(1), 7) &&
3444          isUndefOrEqual(N->getMaskElt(2), 2) &&
3445          isUndefOrEqual(N->getMaskElt(3), 3);
3446 }
3447 
3448 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3449 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3450 /// <2, 3, 2, 3>
isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode * N)3451 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3452   EVT VT = N->getValueType(0);
3453   unsigned NumElems = VT.getVectorNumElements();
3454 
3455   if (VT.getSizeInBits() != 128)
3456     return false;
3457 
3458   if (NumElems != 4)
3459     return false;
3460 
3461   return isUndefOrEqual(N->getMaskElt(0), 2) &&
3462          isUndefOrEqual(N->getMaskElt(1), 3) &&
3463          isUndefOrEqual(N->getMaskElt(2), 2) &&
3464          isUndefOrEqual(N->getMaskElt(3), 3);
3465 }
3466 
3467 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3468 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
isMOVLPMask(ShuffleVectorSDNode * N)3469 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3470   unsigned NumElems = N->getValueType(0).getVectorNumElements();
3471 
3472   if (NumElems != 2 && NumElems != 4)
3473     return false;
3474 
3475   for (unsigned i = 0; i < NumElems/2; ++i)
3476     if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3477       return false;
3478 
3479   for (unsigned i = NumElems/2; i < NumElems; ++i)
3480     if (!isUndefOrEqual(N->getMaskElt(i), i))
3481       return false;
3482 
3483   return true;
3484 }
3485 
3486 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3487 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
isMOVLHPSMask(ShuffleVectorSDNode * N)3488 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3489   unsigned NumElems = N->getValueType(0).getVectorNumElements();
3490 
3491   if ((NumElems != 2 && NumElems != 4)
3492       || N->getValueType(0).getSizeInBits() > 128)
3493     return false;
3494 
3495   for (unsigned i = 0; i < NumElems/2; ++i)
3496     if (!isUndefOrEqual(N->getMaskElt(i), i))
3497       return false;
3498 
3499   for (unsigned i = 0; i < NumElems/2; ++i)
3500     if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3501       return false;
3502 
3503   return true;
3504 }
3505 
3506 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3507 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
isUNPCKLMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false)3508 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3509                          bool V2IsSplat = false) {
3510   int NumElts = VT.getVectorNumElements();
3511 
3512   assert((VT.is128BitVector() || VT.is256BitVector()) &&
3513          "Unsupported vector type for unpckh");
3514 
3515   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3516     return false;
3517 
3518   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3519   // independently on 128-bit lanes.
3520   unsigned NumLanes = VT.getSizeInBits()/128;
3521   unsigned NumLaneElts = NumElts/NumLanes;
3522 
3523   unsigned Start = 0;
3524   unsigned End = NumLaneElts;
3525   for (unsigned s = 0; s < NumLanes; ++s) {
3526     for (unsigned i = Start, j = s * NumLaneElts;
3527          i != End;
3528          i += 2, ++j) {
3529       int BitI  = Mask[i];
3530       int BitI1 = Mask[i+1];
3531       if (!isUndefOrEqual(BitI, j))
3532         return false;
3533       if (V2IsSplat) {
3534         if (!isUndefOrEqual(BitI1, NumElts))
3535           return false;
3536       } else {
3537         if (!isUndefOrEqual(BitI1, j + NumElts))
3538           return false;
3539       }
3540     }
3541     // Process the next 128 bits.
3542     Start += NumLaneElts;
3543     End += NumLaneElts;
3544   }
3545 
3546   return true;
3547 }
3548 
isUNPCKLMask(ShuffleVectorSDNode * N,bool V2IsSplat)3549 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3550   SmallVector<int, 8> M;
3551   N->getMask(M);
3552   return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3553 }
3554 
3555 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3556 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
isUNPCKHMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false)3557 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3558                          bool V2IsSplat = false) {
3559   int NumElts = VT.getVectorNumElements();
3560 
3561   assert((VT.is128BitVector() || VT.is256BitVector()) &&
3562          "Unsupported vector type for unpckh");
3563 
3564   if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3565     return false;
3566 
3567   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3568   // independently on 128-bit lanes.
3569   unsigned NumLanes = VT.getSizeInBits()/128;
3570   unsigned NumLaneElts = NumElts/NumLanes;
3571 
3572   unsigned Start = 0;
3573   unsigned End = NumLaneElts;
3574   for (unsigned l = 0; l != NumLanes; ++l) {
3575     for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3576                              i != End; i += 2, ++j) {
3577       int BitI  = Mask[i];
3578       int BitI1 = Mask[i+1];
3579       if (!isUndefOrEqual(BitI, j))
3580         return false;
3581       if (V2IsSplat) {
3582         if (isUndefOrEqual(BitI1, NumElts))
3583           return false;
3584       } else {
3585         if (!isUndefOrEqual(BitI1, j+NumElts))
3586           return false;
3587       }
3588     }
3589     // Process the next 128 bits.
3590     Start += NumLaneElts;
3591     End += NumLaneElts;
3592   }
3593   return true;
3594 }
3595 
isUNPCKHMask(ShuffleVectorSDNode * N,bool V2IsSplat)3596 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3597   SmallVector<int, 8> M;
3598   N->getMask(M);
3599   return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3600 }
3601 
3602 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3603 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3604 /// <0, 0, 1, 1>
isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> & Mask,EVT VT)3605 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3606   int NumElems = VT.getVectorNumElements();
3607   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3608     return false;
3609 
3610   // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3611   // FIXME: Need a better way to get rid of this, there's no latency difference
3612   // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3613   // the former later. We should also remove the "_undef" special mask.
3614   if (NumElems == 4 && VT.getSizeInBits() == 256)
3615     return false;
3616 
3617   // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3618   // independently on 128-bit lanes.
3619   unsigned NumLanes = VT.getSizeInBits() / 128;
3620   unsigned NumLaneElts = NumElems / NumLanes;
3621 
3622   for (unsigned s = 0; s < NumLanes; ++s) {
3623     for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3624          i != NumLaneElts * (s + 1);
3625          i += 2, ++j) {
3626       int BitI  = Mask[i];
3627       int BitI1 = Mask[i+1];
3628 
3629       if (!isUndefOrEqual(BitI, j))
3630         return false;
3631       if (!isUndefOrEqual(BitI1, j))
3632         return false;
3633     }
3634   }
3635 
3636   return true;
3637 }
3638 
isUNPCKL_v_undef_Mask(ShuffleVectorSDNode * N)3639 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3640   SmallVector<int, 8> M;
3641   N->getMask(M);
3642   return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3643 }
3644 
3645 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3646 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3647 /// <2, 2, 3, 3>
isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> & Mask,EVT VT)3648 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3649   int NumElems = VT.getVectorNumElements();
3650   if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3651     return false;
3652 
3653   for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3654     int BitI  = Mask[i];
3655     int BitI1 = Mask[i+1];
3656     if (!isUndefOrEqual(BitI, j))
3657       return false;
3658     if (!isUndefOrEqual(BitI1, j))
3659       return false;
3660   }
3661   return true;
3662 }
3663 
isUNPCKH_v_undef_Mask(ShuffleVectorSDNode * N)3664 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3665   SmallVector<int, 8> M;
3666   N->getMask(M);
3667   return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3668 }
3669 
3670 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3671 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3672 /// MOVSD, and MOVD, i.e. setting the lowest element.
isMOVLMask(const SmallVectorImpl<int> & Mask,EVT VT)3673 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3674   if (VT.getVectorElementType().getSizeInBits() < 32)
3675     return false;
3676 
3677   int NumElts = VT.getVectorNumElements();
3678 
3679   if (!isUndefOrEqual(Mask[0], NumElts))
3680     return false;
3681 
3682   for (int i = 1; i < NumElts; ++i)
3683     if (!isUndefOrEqual(Mask[i], i))
3684       return false;
3685 
3686   return true;
3687 }
3688 
isMOVLMask(ShuffleVectorSDNode * N)3689 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3690   SmallVector<int, 8> M;
3691   N->getMask(M);
3692   return ::isMOVLMask(M, N->getValueType(0));
3693 }
3694 
3695 /// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3696 /// as permutations between 128-bit chunks or halves. As an example: this
3697 /// shuffle bellow:
3698 ///   vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3699 /// The first half comes from the second half of V1 and the second half from the
3700 /// the second half of V2.
isVPERM2F128Mask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3701 static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3702                              const X86Subtarget *Subtarget) {
3703   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3704     return false;
3705 
3706   // The shuffle result is divided into half A and half B. In total the two
3707   // sources have 4 halves, namely: C, D, E, F. The final values of A and
3708   // B must come from C, D, E or F.
3709   int HalfSize = VT.getVectorNumElements()/2;
3710   bool MatchA = false, MatchB = false;
3711 
3712   // Check if A comes from one of C, D, E, F.
3713   for (int Half = 0; Half < 4; ++Half) {
3714     if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3715       MatchA = true;
3716       break;
3717     }
3718   }
3719 
3720   // Check if B comes from one of C, D, E, F.
3721   for (int Half = 0; Half < 4; ++Half) {
3722     if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3723       MatchB = true;
3724       break;
3725     }
3726   }
3727 
3728   return MatchA && MatchB;
3729 }
3730 
3731 /// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3732 /// the specified VECTOR_MASK mask with VPERM2F128 instructions.
getShuffleVPERM2F128Immediate(SDNode * N)3733 static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3734   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3735   EVT VT = SVOp->getValueType(0);
3736 
3737   int HalfSize = VT.getVectorNumElements()/2;
3738 
3739   int FstHalf = 0, SndHalf = 0;
3740   for (int i = 0; i < HalfSize; ++i) {
3741     if (SVOp->getMaskElt(i) > 0) {
3742       FstHalf = SVOp->getMaskElt(i)/HalfSize;
3743       break;
3744     }
3745   }
3746   for (int i = HalfSize; i < HalfSize*2; ++i) {
3747     if (SVOp->getMaskElt(i) > 0) {
3748       SndHalf = SVOp->getMaskElt(i)/HalfSize;
3749       break;
3750     }
3751   }
3752 
3753   return (FstHalf | (SndHalf << 4));
3754 }
3755 
3756 /// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3757 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3758 /// Note that VPERMIL mask matching is different depending whether theunderlying
3759 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3760 /// to the same elements of the low, but to the higher half of the source.
3761 /// In VPERMILPD the two lanes could be shuffled independently of each other
3762 /// with the same restriction that lanes can't be crossed.
isVPERMILPDMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3763 static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3764                             const X86Subtarget *Subtarget) {
3765   int NumElts = VT.getVectorNumElements();
3766   int NumLanes = VT.getSizeInBits()/128;
3767 
3768   if (!Subtarget->hasAVX())
3769     return false;
3770 
3771   // Only match 256-bit with 64-bit types
3772   if (VT.getSizeInBits() != 256 || NumElts != 4)
3773     return false;
3774 
3775   // The mask on the high lane is independent of the low. Both can match
3776   // any element in inside its own lane, but can't cross.
3777   int LaneSize = NumElts/NumLanes;
3778   for (int l = 0; l < NumLanes; ++l)
3779     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3780       int LaneStart = l*LaneSize;
3781       if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3782         return false;
3783     }
3784 
3785   return true;
3786 }
3787 
3788 /// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3789 /// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3790 /// Note that VPERMIL mask matching is different depending whether theunderlying
3791 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3792 /// to the same elements of the low, but to the higher half of the source.
3793 /// In VPERMILPD the two lanes could be shuffled independently of each other
3794 /// with the same restriction that lanes can't be crossed.
isVPERMILPSMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3795 static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3796                             const X86Subtarget *Subtarget) {
3797   unsigned NumElts = VT.getVectorNumElements();
3798   unsigned NumLanes = VT.getSizeInBits()/128;
3799 
3800   if (!Subtarget->hasAVX())
3801     return false;
3802 
3803   // Only match 256-bit with 32-bit types
3804   if (VT.getSizeInBits() != 256 || NumElts != 8)
3805     return false;
3806 
3807   // The mask on the high lane should be the same as the low. Actually,
3808   // they can differ if any of the corresponding index in a lane is undef
3809   // and the other stays in range.
3810   int LaneSize = NumElts/NumLanes;
3811   for (int i = 0; i < LaneSize; ++i) {
3812     int HighElt = i+LaneSize;
3813     bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3814     bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3815 
3816     if (!HighValid || !LowValid)
3817       return false;
3818     if (Mask[i] < 0 || Mask[HighElt] < 0)
3819       continue;
3820     if (Mask[HighElt]-Mask[i] != LaneSize)
3821       return false;
3822   }
3823 
3824   return true;
3825 }
3826 
3827 /// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3828 /// the specified VECTOR_MASK mask with VPERMILPS* instructions.
getShuffleVPERMILPSImmediate(SDNode * N)3829 static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3830   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3831   EVT VT = SVOp->getValueType(0);
3832 
3833   int NumElts = VT.getVectorNumElements();
3834   int NumLanes = VT.getSizeInBits()/128;
3835   int LaneSize = NumElts/NumLanes;
3836 
3837   // Although the mask is equal for both lanes do it twice to get the cases
3838   // where a mask will match because the same mask element is undef on the
3839   // first half but valid on the second. This would get pathological cases
3840   // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3841   unsigned Mask = 0;
3842   for (int l = 0; l < NumLanes; ++l) {
3843     for (int i = 0; i < LaneSize; ++i) {
3844       int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3845       if (MaskElt < 0)
3846         continue;
3847       if (MaskElt >= LaneSize)
3848         MaskElt -= LaneSize;
3849       Mask |= MaskElt << (i*2);
3850     }
3851   }
3852 
3853   return Mask;
3854 }
3855 
3856 /// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3857 /// the specified VECTOR_MASK mask with VPERMILPD* instructions.
getShuffleVPERMILPDImmediate(SDNode * N)3858 static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3859   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3860   EVT VT = SVOp->getValueType(0);
3861 
3862   int NumElts = VT.getVectorNumElements();
3863   int NumLanes = VT.getSizeInBits()/128;
3864 
3865   unsigned Mask = 0;
3866   int LaneSize = NumElts/NumLanes;
3867   for (int l = 0; l < NumLanes; ++l)
3868     for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3869       int MaskElt = SVOp->getMaskElt(i);
3870       if (MaskElt < 0)
3871         continue;
3872       Mask |= (MaskElt-l*LaneSize) << i;
3873     }
3874 
3875   return Mask;
3876 }
3877 
3878 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3879 /// of what x86 movss want. X86 movs requires the lowest  element to be lowest
3880 /// element of vector 2 and the other elements to come from vector 1 in order.
isCommutedMOVLMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false,bool V2IsUndef=false)3881 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3882                                bool V2IsSplat = false, bool V2IsUndef = false) {
3883   int NumOps = VT.getVectorNumElements();
3884   if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3885     return false;
3886 
3887   if (!isUndefOrEqual(Mask[0], 0))
3888     return false;
3889 
3890   for (int i = 1; i < NumOps; ++i)
3891     if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3892           (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3893           (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3894       return false;
3895 
3896   return true;
3897 }
3898 
isCommutedMOVL(ShuffleVectorSDNode * N,bool V2IsSplat=false,bool V2IsUndef=false)3899 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3900                            bool V2IsUndef = false) {
3901   SmallVector<int, 8> M;
3902   N->getMask(M);
3903   return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3904 }
3905 
3906 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3907 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3908 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
isMOVSHDUPMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3909 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3910                          const X86Subtarget *Subtarget) {
3911   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3912     return false;
3913 
3914   // The second vector must be undef
3915   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3916     return false;
3917 
3918   EVT VT = N->getValueType(0);
3919   unsigned NumElems = VT.getVectorNumElements();
3920 
3921   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3922       (VT.getSizeInBits() == 256 && NumElems != 8))
3923     return false;
3924 
3925   // "i+1" is the value the indexed mask element must have
3926   for (unsigned i = 0; i < NumElems; i += 2)
3927     if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3928         !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3929       return false;
3930 
3931   return true;
3932 }
3933 
3934 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3935 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3936 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
isMOVSLDUPMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3937 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3938                          const X86Subtarget *Subtarget) {
3939   if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3940     return false;
3941 
3942   // The second vector must be undef
3943   if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3944     return false;
3945 
3946   EVT VT = N->getValueType(0);
3947   unsigned NumElems = VT.getVectorNumElements();
3948 
3949   if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3950       (VT.getSizeInBits() == 256 && NumElems != 8))
3951     return false;
3952 
3953   // "i" is the value the indexed mask element must have
3954   for (unsigned i = 0; i < NumElems; i += 2)
3955     if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3956         !isUndefOrEqual(N->getMaskElt(i+1), i))
3957       return false;
3958 
3959   return true;
3960 }
3961 
3962 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3963 /// specifies a shuffle of elements that is suitable for input to 256-bit
3964 /// version of MOVDDUP.
isMOVDDUPYMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3965 static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3966                            const X86Subtarget *Subtarget) {
3967   EVT VT = N->getValueType(0);
3968   int NumElts = VT.getVectorNumElements();
3969   bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3970 
3971   if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3972       !V2IsUndef || NumElts != 4)
3973     return false;
3974 
3975   for (int i = 0; i != NumElts/2; ++i)
3976     if (!isUndefOrEqual(N->getMaskElt(i), 0))
3977       return false;
3978   for (int i = NumElts/2; i != NumElts; ++i)
3979     if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3980       return false;
3981   return true;
3982 }
3983 
3984 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3985 /// specifies a shuffle of elements that is suitable for input to 128-bit
3986 /// version of MOVDDUP.
isMOVDDUPMask(ShuffleVectorSDNode * N)3987 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3988   EVT VT = N->getValueType(0);
3989 
3990   if (VT.getSizeInBits() != 128)
3991     return false;
3992 
3993   int e = VT.getVectorNumElements() / 2;
3994   for (int i = 0; i < e; ++i)
3995     if (!isUndefOrEqual(N->getMaskElt(i), i))
3996       return false;
3997   for (int i = 0; i < e; ++i)
3998     if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3999       return false;
4000   return true;
4001 }
4002 
4003 /// isVEXTRACTF128Index - Return true if the specified
4004 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4005 /// suitable for input to VEXTRACTF128.
isVEXTRACTF128Index(SDNode * N)4006 bool X86::isVEXTRACTF128Index(SDNode *N) {
4007   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4008     return false;
4009 
4010   // The index should be aligned on a 128-bit boundary.
4011   uint64_t Index =
4012     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4013 
4014   unsigned VL = N->getValueType(0).getVectorNumElements();
4015   unsigned VBits = N->getValueType(0).getSizeInBits();
4016   unsigned ElSize = VBits / VL;
4017   bool Result = (Index * ElSize) % 128 == 0;
4018 
4019   return Result;
4020 }
4021 
4022 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4023 /// operand specifies a subvector insert that is suitable for input to
4024 /// VINSERTF128.
isVINSERTF128Index(SDNode * N)4025 bool X86::isVINSERTF128Index(SDNode *N) {
4026   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4027     return false;
4028 
4029   // The index should be aligned on a 128-bit boundary.
4030   uint64_t Index =
4031     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4032 
4033   unsigned VL = N->getValueType(0).getVectorNumElements();
4034   unsigned VBits = N->getValueType(0).getSizeInBits();
4035   unsigned ElSize = VBits / VL;
4036   bool Result = (Index * ElSize) % 128 == 0;
4037 
4038   return Result;
4039 }
4040 
4041 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4042 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
getShuffleSHUFImmediate(SDNode * N)4043 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4044   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4045   int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4046 
4047   unsigned Shift = (NumOperands == 4) ? 2 : 1;
4048   unsigned Mask = 0;
4049   for (int i = 0; i < NumOperands; ++i) {
4050     int Val = SVOp->getMaskElt(NumOperands-i-1);
4051     if (Val < 0) Val = 0;
4052     if (Val >= NumOperands) Val -= NumOperands;
4053     Mask |= Val;
4054     if (i != NumOperands - 1)
4055       Mask <<= Shift;
4056   }
4057   return Mask;
4058 }
4059 
4060 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4061 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
getShufflePSHUFHWImmediate(SDNode * N)4062 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4063   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4064   unsigned Mask = 0;
4065   // 8 nodes, but we only care about the last 4.
4066   for (unsigned i = 7; i >= 4; --i) {
4067     int Val = SVOp->getMaskElt(i);
4068     if (Val >= 0)
4069       Mask |= (Val - 4);
4070     if (i != 4)
4071       Mask <<= 2;
4072   }
4073   return Mask;
4074 }
4075 
4076 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4077 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
getShufflePSHUFLWImmediate(SDNode * N)4078 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4079   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4080   unsigned Mask = 0;
4081   // 8 nodes, but we only care about the first 4.
4082   for (int i = 3; i >= 0; --i) {
4083     int Val = SVOp->getMaskElt(i);
4084     if (Val >= 0)
4085       Mask |= Val;
4086     if (i != 0)
4087       Mask <<= 2;
4088   }
4089   return Mask;
4090 }
4091 
4092 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4093 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
getShufflePALIGNRImmediate(SDNode * N)4094 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4095   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4096   EVT VVT = N->getValueType(0);
4097   unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4098   int Val = 0;
4099 
4100   unsigned i, e;
4101   for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4102     Val = SVOp->getMaskElt(i);
4103     if (Val >= 0)
4104       break;
4105   }
4106   assert(Val - i > 0 && "PALIGNR imm should be positive");
4107   return (Val - i) * EltSize;
4108 }
4109 
4110 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4111 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4112 /// instructions.
getExtractVEXTRACTF128Immediate(SDNode * N)4113 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4114   if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4115     llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4116 
4117   uint64_t Index =
4118     cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4119 
4120   EVT VecVT = N->getOperand(0).getValueType();
4121   EVT ElVT = VecVT.getVectorElementType();
4122 
4123   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4124   return Index / NumElemsPerChunk;
4125 }
4126 
4127 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4128 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4129 /// instructions.
getInsertVINSERTF128Immediate(SDNode * N)4130 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4131   if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4132     llvm_unreachable("Illegal insert subvector for VINSERTF128");
4133 
4134   uint64_t Index =
4135     cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4136 
4137   EVT VecVT = N->getValueType(0);
4138   EVT ElVT = VecVT.getVectorElementType();
4139 
4140   unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4141   return Index / NumElemsPerChunk;
4142 }
4143 
4144 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4145 /// constant +0.0.
isZeroNode(SDValue Elt)4146 bool X86::isZeroNode(SDValue Elt) {
4147   return ((isa<ConstantSDNode>(Elt) &&
4148            cast<ConstantSDNode>(Elt)->isNullValue()) ||
4149           (isa<ConstantFPSDNode>(Elt) &&
4150            cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4151 }
4152 
4153 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4154 /// their permute mask.
CommuteVectorShuffle(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)4155 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4156                                     SelectionDAG &DAG) {
4157   EVT VT = SVOp->getValueType(0);
4158   unsigned NumElems = VT.getVectorNumElements();
4159   SmallVector<int, 8> MaskVec;
4160 
4161   for (unsigned i = 0; i != NumElems; ++i) {
4162     int idx = SVOp->getMaskElt(i);
4163     if (idx < 0)
4164       MaskVec.push_back(idx);
4165     else if (idx < (int)NumElems)
4166       MaskVec.push_back(idx + NumElems);
4167     else
4168       MaskVec.push_back(idx - NumElems);
4169   }
4170   return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4171                               SVOp->getOperand(0), &MaskVec[0]);
4172 }
4173 
4174 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4175 /// the two vector operands have swapped position.
CommuteVectorShuffleMask(SmallVectorImpl<int> & Mask,EVT VT)4176 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4177   unsigned NumElems = VT.getVectorNumElements();
4178   for (unsigned i = 0; i != NumElems; ++i) {
4179     int idx = Mask[i];
4180     if (idx < 0)
4181       continue;
4182     else if (idx < (int)NumElems)
4183       Mask[i] = idx + NumElems;
4184     else
4185       Mask[i] = idx - NumElems;
4186   }
4187 }
4188 
4189 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4190 /// match movhlps. The lower half elements should come from upper half of
4191 /// V1 (and in order), and the upper half elements should come from the upper
4192 /// half of V2 (and in order).
ShouldXformToMOVHLPS(ShuffleVectorSDNode * Op)4193 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4194   EVT VT = Op->getValueType(0);
4195   if (VT.getSizeInBits() != 128)
4196     return false;
4197   if (VT.getVectorNumElements() != 4)
4198     return false;
4199   for (unsigned i = 0, e = 2; i != e; ++i)
4200     if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4201       return false;
4202   for (unsigned i = 2; i != 4; ++i)
4203     if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4204       return false;
4205   return true;
4206 }
4207 
4208 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4209 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4210 /// required.
isScalarLoadToVector(SDNode * N,LoadSDNode ** LD=NULL)4211 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4212   if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4213     return false;
4214   N = N->getOperand(0).getNode();
4215   if (!ISD::isNON_EXTLoad(N))
4216     return false;
4217   if (LD)
4218     *LD = cast<LoadSDNode>(N);
4219   return true;
4220 }
4221 
4222 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4223 /// match movlp{s|d}. The lower half elements should come from lower half of
4224 /// V1 (and in order), and the upper half elements should come from the upper
4225 /// half of V2 (and in order). And since V1 will become the source of the
4226 /// MOVLP, it must be either a vector load or a scalar load to vector.
ShouldXformToMOVLP(SDNode * V1,SDNode * V2,ShuffleVectorSDNode * Op)4227 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4228                                ShuffleVectorSDNode *Op) {
4229   EVT VT = Op->getValueType(0);
4230   if (VT.getSizeInBits() != 128)
4231     return false;
4232 
4233   if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4234     return false;
4235   // Is V2 is a vector load, don't do this transformation. We will try to use
4236   // load folding shufps op.
4237   if (ISD::isNON_EXTLoad(V2))
4238     return false;
4239 
4240   unsigned NumElems = VT.getVectorNumElements();
4241 
4242   if (NumElems != 2 && NumElems != 4)
4243     return false;
4244   for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4245     if (!isUndefOrEqual(Op->getMaskElt(i), i))
4246       return false;
4247   for (unsigned i = NumElems/2; i != NumElems; ++i)
4248     if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4249       return false;
4250   return true;
4251 }
4252 
4253 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4254 /// all the same.
isSplatVector(SDNode * N)4255 static bool isSplatVector(SDNode *N) {
4256   if (N->getOpcode() != ISD::BUILD_VECTOR)
4257     return false;
4258 
4259   SDValue SplatValue = N->getOperand(0);
4260   for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4261     if (N->getOperand(i) != SplatValue)
4262       return false;
4263   return true;
4264 }
4265 
4266 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4267 /// to an zero vector.
4268 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
isZeroShuffle(ShuffleVectorSDNode * N)4269 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4270   SDValue V1 = N->getOperand(0);
4271   SDValue V2 = N->getOperand(1);
4272   unsigned NumElems = N->getValueType(0).getVectorNumElements();
4273   for (unsigned i = 0; i != NumElems; ++i) {
4274     int Idx = N->getMaskElt(i);
4275     if (Idx >= (int)NumElems) {
4276       unsigned Opc = V2.getOpcode();
4277       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4278         continue;
4279       if (Opc != ISD::BUILD_VECTOR ||
4280           !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4281         return false;
4282     } else if (Idx >= 0) {
4283       unsigned Opc = V1.getOpcode();
4284       if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4285         continue;
4286       if (Opc != ISD::BUILD_VECTOR ||
4287           !X86::isZeroNode(V1.getOperand(Idx)))
4288         return false;
4289     }
4290   }
4291   return true;
4292 }
4293 
4294 /// getZeroVector - Returns a vector of specified type with all zero elements.
4295 ///
getZeroVector(EVT VT,bool HasXMMInt,SelectionDAG & DAG,DebugLoc dl)4296 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4297                              DebugLoc dl) {
4298   assert(VT.isVector() && "Expected a vector type");
4299 
4300   // Always build SSE zero vectors as <4 x i32> bitcasted
4301   // to their dest type. This ensures they get CSE'd.
4302   SDValue Vec;
4303   if (VT.getSizeInBits() == 128) {  // SSE
4304     if (HasXMMInt) {  // SSE2
4305       SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4306       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4307     } else { // SSE1
4308       SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4309       Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4310     }
4311   } else if (VT.getSizeInBits() == 256) { // AVX
4312     // 256-bit logic and arithmetic instructions in AVX are
4313     // all floating-point, no support for integer ops. Default
4314     // to emitting fp zeroed vectors then.
4315     SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4316     SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4317     Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4318   }
4319   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4320 }
4321 
4322 /// getOnesVector - Returns a vector of specified type with all bits set.
4323 /// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4324 /// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4325 /// original type, ensuring they get CSE'd.
getOnesVector(EVT VT,SelectionDAG & DAG,DebugLoc dl)4326 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4327   assert(VT.isVector() && "Expected a vector type");
4328   assert((VT.is128BitVector() || VT.is256BitVector())
4329          && "Expected a 128-bit or 256-bit vector type");
4330 
4331   SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4332   SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4333                             Cst, Cst, Cst, Cst);
4334 
4335   if (VT.is256BitVector()) {
4336     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4337                               Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4338     Vec = Insert128BitVector(InsV, Vec,
4339                   DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4340   }
4341 
4342   return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4343 }
4344 
4345 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4346 /// that point to V2 points to its first element.
NormalizeMask(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)4347 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4348   EVT VT = SVOp->getValueType(0);
4349   unsigned NumElems = VT.getVectorNumElements();
4350 
4351   bool Changed = false;
4352   SmallVector<int, 8> MaskVec;
4353   SVOp->getMask(MaskVec);
4354 
4355   for (unsigned i = 0; i != NumElems; ++i) {
4356     if (MaskVec[i] > (int)NumElems) {
4357       MaskVec[i] = NumElems;
4358       Changed = true;
4359     }
4360   }
4361   if (Changed)
4362     return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4363                                 SVOp->getOperand(1), &MaskVec[0]);
4364   return SDValue(SVOp, 0);
4365 }
4366 
4367 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4368 /// operation of specified width.
getMOVL(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4369 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4370                        SDValue V2) {
4371   unsigned NumElems = VT.getVectorNumElements();
4372   SmallVector<int, 8> Mask;
4373   Mask.push_back(NumElems);
4374   for (unsigned i = 1; i != NumElems; ++i)
4375     Mask.push_back(i);
4376   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4377 }
4378 
4379 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
getUnpackl(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4380 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4381                           SDValue V2) {
4382   unsigned NumElems = VT.getVectorNumElements();
4383   SmallVector<int, 8> Mask;
4384   for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4385     Mask.push_back(i);
4386     Mask.push_back(i + NumElems);
4387   }
4388   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4389 }
4390 
4391 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
getUnpackh(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4392 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4393                           SDValue V2) {
4394   unsigned NumElems = VT.getVectorNumElements();
4395   unsigned Half = NumElems/2;
4396   SmallVector<int, 8> Mask;
4397   for (unsigned i = 0; i != Half; ++i) {
4398     Mask.push_back(i + Half);
4399     Mask.push_back(i + NumElems + Half);
4400   }
4401   return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4402 }
4403 
4404 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4405 // a generic shuffle instruction because the target has no such instructions.
4406 // Generate shuffles which repeat i16 and i8 several times until they can be
4407 // represented by v4f32 and then be manipulated by target suported shuffles.
PromoteSplati8i16(SDValue V,SelectionDAG & DAG,int & EltNo)4408 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4409   EVT VT = V.getValueType();
4410   int NumElems = VT.getVectorNumElements();
4411   DebugLoc dl = V.getDebugLoc();
4412 
4413   while (NumElems > 4) {
4414     if (EltNo < NumElems/2) {
4415       V = getUnpackl(DAG, dl, VT, V, V);
4416     } else {
4417       V = getUnpackh(DAG, dl, VT, V, V);
4418       EltNo -= NumElems/2;
4419     }
4420     NumElems >>= 1;
4421   }
4422   return V;
4423 }
4424 
4425 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
getLegalSplat(SelectionDAG & DAG,SDValue V,int EltNo)4426 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4427   EVT VT = V.getValueType();
4428   DebugLoc dl = V.getDebugLoc();
4429   assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4430          && "Vector size not supported");
4431 
4432   if (VT.getSizeInBits() == 128) {
4433     V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4434     int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4435     V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4436                              &SplatMask[0]);
4437   } else {
4438     // To use VPERMILPS to splat scalars, the second half of indicies must
4439     // refer to the higher part, which is a duplication of the lower one,
4440     // because VPERMILPS can only handle in-lane permutations.
4441     int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4442                          EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4443 
4444     V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4445     V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4446                              &SplatMask[0]);
4447   }
4448 
4449   return DAG.getNode(ISD::BITCAST, dl, VT, V);
4450 }
4451 
4452 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
PromoteSplat(ShuffleVectorSDNode * SV,SelectionDAG & DAG)4453 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4454   EVT SrcVT = SV->getValueType(0);
4455   SDValue V1 = SV->getOperand(0);
4456   DebugLoc dl = SV->getDebugLoc();
4457 
4458   int EltNo = SV->getSplatIndex();
4459   int NumElems = SrcVT.getVectorNumElements();
4460   unsigned Size = SrcVT.getSizeInBits();
4461 
4462   assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4463           "Unknown how to promote splat for type");
4464 
4465   // Extract the 128-bit part containing the splat element and update
4466   // the splat element index when it refers to the higher register.
4467   if (Size == 256) {
4468     unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4469     V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4470     if (Idx > 0)
4471       EltNo -= NumElems/2;
4472   }
4473 
4474   // All i16 and i8 vector types can't be used directly by a generic shuffle
4475   // instruction because the target has no such instruction. Generate shuffles
4476   // which repeat i16 and i8 several times until they fit in i32, and then can
4477   // be manipulated by target suported shuffles.
4478   EVT EltVT = SrcVT.getVectorElementType();
4479   if (EltVT == MVT::i8 || EltVT == MVT::i16)
4480     V1 = PromoteSplati8i16(V1, DAG, EltNo);
4481 
4482   // Recreate the 256-bit vector and place the same 128-bit vector
4483   // into the low and high part. This is necessary because we want
4484   // to use VPERM* to shuffle the vectors
4485   if (Size == 256) {
4486     SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4487                          DAG.getConstant(0, MVT::i32), DAG, dl);
4488     V1 = Insert128BitVector(InsV, V1,
4489                DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4490   }
4491 
4492   return getLegalSplat(DAG, V1, EltNo);
4493 }
4494 
4495 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4496 /// vector of zero or undef vector.  This produces a shuffle where the low
4497 /// element of V2 is swizzled into the zero/undef vector, landing at element
4498 /// Idx.  This produces a shuffle mask like 4,1,2,3 (idx=0) or  0,1,2,4 (idx=3).
getShuffleVectorZeroOrUndef(SDValue V2,unsigned Idx,bool isZero,bool HasXMMInt,SelectionDAG & DAG)4499 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4500                                            bool isZero, bool HasXMMInt,
4501                                            SelectionDAG &DAG) {
4502   EVT VT = V2.getValueType();
4503   SDValue V1 = isZero
4504     ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4505   unsigned NumElems = VT.getVectorNumElements();
4506   SmallVector<int, 16> MaskVec;
4507   for (unsigned i = 0; i != NumElems; ++i)
4508     // If this is the insertion idx, put the low elt of V2 here.
4509     MaskVec.push_back(i == Idx ? NumElems : i);
4510   return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4511 }
4512 
4513 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4514 /// element of the result of the vector shuffle.
getShuffleScalarElt(SDNode * N,int Index,SelectionDAG & DAG,unsigned Depth)4515 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4516                                    unsigned Depth) {
4517   if (Depth == 6)
4518     return SDValue();  // Limit search depth.
4519 
4520   SDValue V = SDValue(N, 0);
4521   EVT VT = V.getValueType();
4522   unsigned Opcode = V.getOpcode();
4523 
4524   // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4525   if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4526     Index = SV->getMaskElt(Index);
4527 
4528     if (Index < 0)
4529       return DAG.getUNDEF(VT.getVectorElementType());
4530 
4531     int NumElems = VT.getVectorNumElements();
4532     SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4533     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4534   }
4535 
4536   // Recurse into target specific vector shuffles to find scalars.
4537   if (isTargetShuffle(Opcode)) {
4538     int NumElems = VT.getVectorNumElements();
4539     SmallVector<unsigned, 16> ShuffleMask;
4540     SDValue ImmN;
4541 
4542     switch(Opcode) {
4543     case X86ISD::SHUFPS:
4544     case X86ISD::SHUFPD:
4545       ImmN = N->getOperand(N->getNumOperands()-1);
4546       DecodeSHUFPSMask(NumElems,
4547                        cast<ConstantSDNode>(ImmN)->getZExtValue(),
4548                        ShuffleMask);
4549       break;
4550     case X86ISD::PUNPCKHBW:
4551     case X86ISD::PUNPCKHWD:
4552     case X86ISD::PUNPCKHDQ:
4553     case X86ISD::PUNPCKHQDQ:
4554       DecodePUNPCKHMask(NumElems, ShuffleMask);
4555       break;
4556     case X86ISD::UNPCKHPS:
4557     case X86ISD::UNPCKHPD:
4558     case X86ISD::VUNPCKHPSY:
4559     case X86ISD::VUNPCKHPDY:
4560       DecodeUNPCKHPMask(NumElems, ShuffleMask);
4561       break;
4562     case X86ISD::PUNPCKLBW:
4563     case X86ISD::PUNPCKLWD:
4564     case X86ISD::PUNPCKLDQ:
4565     case X86ISD::PUNPCKLQDQ:
4566       DecodePUNPCKLMask(VT, ShuffleMask);
4567       break;
4568     case X86ISD::UNPCKLPS:
4569     case X86ISD::UNPCKLPD:
4570     case X86ISD::VUNPCKLPSY:
4571     case X86ISD::VUNPCKLPDY:
4572       DecodeUNPCKLPMask(VT, ShuffleMask);
4573       break;
4574     case X86ISD::MOVHLPS:
4575       DecodeMOVHLPSMask(NumElems, ShuffleMask);
4576       break;
4577     case X86ISD::MOVLHPS:
4578       DecodeMOVLHPSMask(NumElems, ShuffleMask);
4579       break;
4580     case X86ISD::PSHUFD:
4581       ImmN = N->getOperand(N->getNumOperands()-1);
4582       DecodePSHUFMask(NumElems,
4583                       cast<ConstantSDNode>(ImmN)->getZExtValue(),
4584                       ShuffleMask);
4585       break;
4586     case X86ISD::PSHUFHW:
4587       ImmN = N->getOperand(N->getNumOperands()-1);
4588       DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4589                         ShuffleMask);
4590       break;
4591     case X86ISD::PSHUFLW:
4592       ImmN = N->getOperand(N->getNumOperands()-1);
4593       DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4594                         ShuffleMask);
4595       break;
4596     case X86ISD::MOVSS:
4597     case X86ISD::MOVSD: {
4598       // The index 0 always comes from the first element of the second source,
4599       // this is why MOVSS and MOVSD are used in the first place. The other
4600       // elements come from the other positions of the first source vector.
4601       unsigned OpNum = (Index == 0) ? 1 : 0;
4602       return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4603                                  Depth+1);
4604     }
4605     case X86ISD::VPERMILPS:
4606       ImmN = N->getOperand(N->getNumOperands()-1);
4607       DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4608                         ShuffleMask);
4609       break;
4610     case X86ISD::VPERMILPSY:
4611       ImmN = N->getOperand(N->getNumOperands()-1);
4612       DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4613                         ShuffleMask);
4614       break;
4615     case X86ISD::VPERMILPD:
4616       ImmN = N->getOperand(N->getNumOperands()-1);
4617       DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4618                         ShuffleMask);
4619       break;
4620     case X86ISD::VPERMILPDY:
4621       ImmN = N->getOperand(N->getNumOperands()-1);
4622       DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4623                         ShuffleMask);
4624       break;
4625     case X86ISD::VPERM2F128:
4626       ImmN = N->getOperand(N->getNumOperands()-1);
4627       DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4628                            ShuffleMask);
4629       break;
4630     case X86ISD::MOVDDUP:
4631     case X86ISD::MOVLHPD:
4632     case X86ISD::MOVLPD:
4633     case X86ISD::MOVLPS:
4634     case X86ISD::MOVSHDUP:
4635     case X86ISD::MOVSLDUP:
4636     case X86ISD::PALIGN:
4637       return SDValue(); // Not yet implemented.
4638     default:
4639       assert(0 && "unknown target shuffle node");
4640       return SDValue();
4641     }
4642 
4643     Index = ShuffleMask[Index];
4644     if (Index < 0)
4645       return DAG.getUNDEF(VT.getVectorElementType());
4646 
4647     SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4648     return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4649                                Depth+1);
4650   }
4651 
4652   // Actual nodes that may contain scalar elements
4653   if (Opcode == ISD::BITCAST) {
4654     V = V.getOperand(0);
4655     EVT SrcVT = V.getValueType();
4656     unsigned NumElems = VT.getVectorNumElements();
4657 
4658     if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4659       return SDValue();
4660   }
4661 
4662   if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4663     return (Index == 0) ? V.getOperand(0)
4664                           : DAG.getUNDEF(VT.getVectorElementType());
4665 
4666   if (V.getOpcode() == ISD::BUILD_VECTOR)
4667     return V.getOperand(Index);
4668 
4669   return SDValue();
4670 }
4671 
4672 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4673 /// shuffle operation which come from a consecutively from a zero. The
4674 /// search can start in two different directions, from left or right.
4675 static
getNumOfConsecutiveZeros(SDNode * N,int NumElems,bool ZerosFromLeft,SelectionDAG & DAG)4676 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4677                                   bool ZerosFromLeft, SelectionDAG &DAG) {
4678   int i = 0;
4679 
4680   while (i < NumElems) {
4681     unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4682     SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4683     if (!(Elt.getNode() &&
4684          (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4685       break;
4686     ++i;
4687   }
4688 
4689   return i;
4690 }
4691 
4692 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4693 /// MaskE correspond consecutively to elements from one of the vector operands,
4694 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4695 static
isShuffleMaskConsecutive(ShuffleVectorSDNode * SVOp,int MaskI,int MaskE,int OpIdx,int NumElems,unsigned & OpNum)4696 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4697                               int OpIdx, int NumElems, unsigned &OpNum) {
4698   bool SeenV1 = false;
4699   bool SeenV2 = false;
4700 
4701   for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4702     int Idx = SVOp->getMaskElt(i);
4703     // Ignore undef indicies
4704     if (Idx < 0)
4705       continue;
4706 
4707     if (Idx < NumElems)
4708       SeenV1 = true;
4709     else
4710       SeenV2 = true;
4711 
4712     // Only accept consecutive elements from the same vector
4713     if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4714       return false;
4715   }
4716 
4717   OpNum = SeenV1 ? 0 : 1;
4718   return true;
4719 }
4720 
4721 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4722 /// logical left shift of a vector.
isVectorShiftRight(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4723 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4724                                bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4725   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4726   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4727               false /* check zeros from right */, DAG);
4728   unsigned OpSrc;
4729 
4730   if (!NumZeros)
4731     return false;
4732 
4733   // Considering the elements in the mask that are not consecutive zeros,
4734   // check if they consecutively come from only one of the source vectors.
4735   //
4736   //               V1 = {X, A, B, C}     0
4737   //                         \  \  \    /
4738   //   vector_shuffle V1, V2 <1, 2, 3, X>
4739   //
4740   if (!isShuffleMaskConsecutive(SVOp,
4741             0,                   // Mask Start Index
4742             NumElems-NumZeros-1, // Mask End Index
4743             NumZeros,            // Where to start looking in the src vector
4744             NumElems,            // Number of elements in vector
4745             OpSrc))              // Which source operand ?
4746     return false;
4747 
4748   isLeft = false;
4749   ShAmt = NumZeros;
4750   ShVal = SVOp->getOperand(OpSrc);
4751   return true;
4752 }
4753 
4754 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4755 /// logical left shift of a vector.
isVectorShiftLeft(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4756 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4757                               bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4758   unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4759   unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4760               true /* check zeros from left */, DAG);
4761   unsigned OpSrc;
4762 
4763   if (!NumZeros)
4764     return false;
4765 
4766   // Considering the elements in the mask that are not consecutive zeros,
4767   // check if they consecutively come from only one of the source vectors.
4768   //
4769   //                           0    { A, B, X, X } = V2
4770   //                          / \    /  /
4771   //   vector_shuffle V1, V2 <X, X, 4, 5>
4772   //
4773   if (!isShuffleMaskConsecutive(SVOp,
4774             NumZeros,     // Mask Start Index
4775             NumElems-1,   // Mask End Index
4776             0,            // Where to start looking in the src vector
4777             NumElems,     // Number of elements in vector
4778             OpSrc))       // Which source operand ?
4779     return false;
4780 
4781   isLeft = true;
4782   ShAmt = NumZeros;
4783   ShVal = SVOp->getOperand(OpSrc);
4784   return true;
4785 }
4786 
4787 /// isVectorShift - Returns true if the shuffle can be implemented as a
4788 /// logical left or right shift of a vector.
isVectorShift(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4789 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4790                           bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4791   // Although the logic below support any bitwidth size, there are no
4792   // shift instructions which handle more than 128-bit vectors.
4793   if (SVOp->getValueType(0).getSizeInBits() > 128)
4794     return false;
4795 
4796   if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4797       isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4798     return true;
4799 
4800   return false;
4801 }
4802 
4803 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4804 ///
LowerBuildVectorv16i8(SDValue Op,unsigned NonZeros,unsigned NumNonZero,unsigned NumZero,SelectionDAG & DAG,const TargetLowering & TLI)4805 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4806                                        unsigned NumNonZero, unsigned NumZero,
4807                                        SelectionDAG &DAG,
4808                                        const TargetLowering &TLI) {
4809   if (NumNonZero > 8)
4810     return SDValue();
4811 
4812   DebugLoc dl = Op.getDebugLoc();
4813   SDValue V(0, 0);
4814   bool First = true;
4815   for (unsigned i = 0; i < 16; ++i) {
4816     bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4817     if (ThisIsNonZero && First) {
4818       if (NumZero)
4819         V = getZeroVector(MVT::v8i16, true, DAG, dl);
4820       else
4821         V = DAG.getUNDEF(MVT::v8i16);
4822       First = false;
4823     }
4824 
4825     if ((i & 1) != 0) {
4826       SDValue ThisElt(0, 0), LastElt(0, 0);
4827       bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4828       if (LastIsNonZero) {
4829         LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4830                               MVT::i16, Op.getOperand(i-1));
4831       }
4832       if (ThisIsNonZero) {
4833         ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4834         ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4835                               ThisElt, DAG.getConstant(8, MVT::i8));
4836         if (LastIsNonZero)
4837           ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4838       } else
4839         ThisElt = LastElt;
4840 
4841       if (ThisElt.getNode())
4842         V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4843                         DAG.getIntPtrConstant(i/2));
4844     }
4845   }
4846 
4847   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4848 }
4849 
4850 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4851 ///
LowerBuildVectorv8i16(SDValue Op,unsigned NonZeros,unsigned NumNonZero,unsigned NumZero,SelectionDAG & DAG,const TargetLowering & TLI)4852 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4853                                      unsigned NumNonZero, unsigned NumZero,
4854                                      SelectionDAG &DAG,
4855                                      const TargetLowering &TLI) {
4856   if (NumNonZero > 4)
4857     return SDValue();
4858 
4859   DebugLoc dl = Op.getDebugLoc();
4860   SDValue V(0, 0);
4861   bool First = true;
4862   for (unsigned i = 0; i < 8; ++i) {
4863     bool isNonZero = (NonZeros & (1 << i)) != 0;
4864     if (isNonZero) {
4865       if (First) {
4866         if (NumZero)
4867           V = getZeroVector(MVT::v8i16, true, DAG, dl);
4868         else
4869           V = DAG.getUNDEF(MVT::v8i16);
4870         First = false;
4871       }
4872       V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4873                       MVT::v8i16, V, Op.getOperand(i),
4874                       DAG.getIntPtrConstant(i));
4875     }
4876   }
4877 
4878   return V;
4879 }
4880 
4881 /// getVShift - Return a vector logical shift node.
4882 ///
getVShift(bool isLeft,EVT VT,SDValue SrcOp,unsigned NumBits,SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc dl)4883 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4884                          unsigned NumBits, SelectionDAG &DAG,
4885                          const TargetLowering &TLI, DebugLoc dl) {
4886   assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4887   EVT ShVT = MVT::v2i64;
4888   unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4889   SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4890   return DAG.getNode(ISD::BITCAST, dl, VT,
4891                      DAG.getNode(Opc, dl, ShVT, SrcOp,
4892                              DAG.getConstant(NumBits,
4893                                   TLI.getShiftAmountTy(SrcOp.getValueType()))));
4894 }
4895 
4896 SDValue
LowerAsSplatVectorLoad(SDValue SrcOp,EVT VT,DebugLoc dl,SelectionDAG & DAG) const4897 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4898                                           SelectionDAG &DAG) const {
4899 
4900   // Check if the scalar load can be widened into a vector load. And if
4901   // the address is "base + cst" see if the cst can be "absorbed" into
4902   // the shuffle mask.
4903   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4904     SDValue Ptr = LD->getBasePtr();
4905     if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4906       return SDValue();
4907     EVT PVT = LD->getValueType(0);
4908     if (PVT != MVT::i32 && PVT != MVT::f32)
4909       return SDValue();
4910 
4911     int FI = -1;
4912     int64_t Offset = 0;
4913     if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4914       FI = FINode->getIndex();
4915       Offset = 0;
4916     } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4917                isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4918       FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4919       Offset = Ptr.getConstantOperandVal(1);
4920       Ptr = Ptr.getOperand(0);
4921     } else {
4922       return SDValue();
4923     }
4924 
4925     // FIXME: 256-bit vector instructions don't require a strict alignment,
4926     // improve this code to support it better.
4927     unsigned RequiredAlign = VT.getSizeInBits()/8;
4928     SDValue Chain = LD->getChain();
4929     // Make sure the stack object alignment is at least 16 or 32.
4930     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4931     if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4932       if (MFI->isFixedObjectIndex(FI)) {
4933         // Can't change the alignment. FIXME: It's possible to compute
4934         // the exact stack offset and reference FI + adjust offset instead.
4935         // If someone *really* cares about this. That's the way to implement it.
4936         return SDValue();
4937       } else {
4938         MFI->setObjectAlignment(FI, RequiredAlign);
4939       }
4940     }
4941 
4942     // (Offset % 16 or 32) must be multiple of 4. Then address is then
4943     // Ptr + (Offset & ~15).
4944     if (Offset < 0)
4945       return SDValue();
4946     if ((Offset % RequiredAlign) & 3)
4947       return SDValue();
4948     int64_t StartOffset = Offset & ~(RequiredAlign-1);
4949     if (StartOffset)
4950       Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4951                         Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4952 
4953     int EltNo = (Offset - StartOffset) >> 2;
4954     int NumElems = VT.getVectorNumElements();
4955 
4956     EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4957     EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4958     SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4959                              LD->getPointerInfo().getWithOffset(StartOffset),
4960                              false, false, 0);
4961 
4962     // Canonicalize it to a v4i32 or v8i32 shuffle.
4963     SmallVector<int, 8> Mask;
4964     for (int i = 0; i < NumElems; ++i)
4965       Mask.push_back(EltNo);
4966 
4967     V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4968     return DAG.getNode(ISD::BITCAST, dl, NVT,
4969                        DAG.getVectorShuffle(CanonVT, dl, V1,
4970                                             DAG.getUNDEF(CanonVT),&Mask[0]));
4971   }
4972 
4973   return SDValue();
4974 }
4975 
4976 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4977 /// vector of type 'VT', see if the elements can be replaced by a single large
4978 /// load which has the same value as a build_vector whose operands are 'elts'.
4979 ///
4980 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4981 ///
4982 /// FIXME: we'd also like to handle the case where the last elements are zero
4983 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4984 /// There's even a handy isZeroNode for that purpose.
EltsFromConsecutiveLoads(EVT VT,SmallVectorImpl<SDValue> & Elts,DebugLoc & DL,SelectionDAG & DAG)4985 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4986                                         DebugLoc &DL, SelectionDAG &DAG) {
4987   EVT EltVT = VT.getVectorElementType();
4988   unsigned NumElems = Elts.size();
4989 
4990   LoadSDNode *LDBase = NULL;
4991   unsigned LastLoadedElt = -1U;
4992 
4993   // For each element in the initializer, see if we've found a load or an undef.
4994   // If we don't find an initial load element, or later load elements are
4995   // non-consecutive, bail out.
4996   for (unsigned i = 0; i < NumElems; ++i) {
4997     SDValue Elt = Elts[i];
4998 
4999     if (!Elt.getNode() ||
5000         (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5001       return SDValue();
5002     if (!LDBase) {
5003       if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5004         return SDValue();
5005       LDBase = cast<LoadSDNode>(Elt.getNode());
5006       LastLoadedElt = i;
5007       continue;
5008     }
5009     if (Elt.getOpcode() == ISD::UNDEF)
5010       continue;
5011 
5012     LoadSDNode *LD = cast<LoadSDNode>(Elt);
5013     if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5014       return SDValue();
5015     LastLoadedElt = i;
5016   }
5017 
5018   // If we have found an entire vector of loads and undefs, then return a large
5019   // load of the entire vector width starting at the base pointer.  If we found
5020   // consecutive loads for the low half, generate a vzext_load node.
5021   if (LastLoadedElt == NumElems - 1) {
5022     if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5023       return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5024                          LDBase->getPointerInfo(),
5025                          LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5026     return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5027                        LDBase->getPointerInfo(),
5028                        LDBase->isVolatile(), LDBase->isNonTemporal(),
5029                        LDBase->getAlignment());
5030   } else if (NumElems == 4 && LastLoadedElt == 1 &&
5031              DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5032     SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5033     SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5034     SDValue ResNode =
5035         DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5036                                 LDBase->getPointerInfo(),
5037                                 LDBase->getAlignment(),
5038                                 false/*isVolatile*/, true/*ReadMem*/,
5039                                 false/*WriteMem*/);
5040     return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5041   }
5042   return SDValue();
5043 }
5044 
5045 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5046 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5047   DebugLoc dl = Op.getDebugLoc();
5048 
5049   EVT VT = Op.getValueType();
5050   EVT ExtVT = VT.getVectorElementType();
5051   unsigned NumElems = Op.getNumOperands();
5052 
5053   // Vectors containing all zeros can be matched by pxor and xorps later
5054   if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5055     // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5056     // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5057     if (Op.getValueType() == MVT::v4i32 ||
5058         Op.getValueType() == MVT::v8i32)
5059       return Op;
5060 
5061     return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5062   }
5063 
5064   // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5065   // vectors or broken into v4i32 operations on 256-bit vectors.
5066   if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5067     if (Op.getValueType() == MVT::v4i32)
5068       return Op;
5069 
5070     return getOnesVector(Op.getValueType(), DAG, dl);
5071   }
5072 
5073   unsigned EVTBits = ExtVT.getSizeInBits();
5074 
5075   unsigned NumZero  = 0;
5076   unsigned NumNonZero = 0;
5077   unsigned NonZeros = 0;
5078   bool IsAllConstants = true;
5079   SmallSet<SDValue, 8> Values;
5080   for (unsigned i = 0; i < NumElems; ++i) {
5081     SDValue Elt = Op.getOperand(i);
5082     if (Elt.getOpcode() == ISD::UNDEF)
5083       continue;
5084     Values.insert(Elt);
5085     if (Elt.getOpcode() != ISD::Constant &&
5086         Elt.getOpcode() != ISD::ConstantFP)
5087       IsAllConstants = false;
5088     if (X86::isZeroNode(Elt))
5089       NumZero++;
5090     else {
5091       NonZeros |= (1 << i);
5092       NumNonZero++;
5093     }
5094   }
5095 
5096   // All undef vector. Return an UNDEF.  All zero vectors were handled above.
5097   if (NumNonZero == 0)
5098     return DAG.getUNDEF(VT);
5099 
5100   // Special case for single non-zero, non-undef, element.
5101   if (NumNonZero == 1) {
5102     unsigned Idx = CountTrailingZeros_32(NonZeros);
5103     SDValue Item = Op.getOperand(Idx);
5104 
5105     // If this is an insertion of an i64 value on x86-32, and if the top bits of
5106     // the value are obviously zero, truncate the value to i32 and do the
5107     // insertion that way.  Only do this if the value is non-constant or if the
5108     // value is a constant being inserted into element 0.  It is cheaper to do
5109     // a constant pool load than it is to do a movd + shuffle.
5110     if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5111         (!IsAllConstants || Idx == 0)) {
5112       if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5113         // Handle SSE only.
5114         assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5115         EVT VecVT = MVT::v4i32;
5116         unsigned VecElts = 4;
5117 
5118         // Truncate the value (which may itself be a constant) to i32, and
5119         // convert it to a vector with movd (S2V+shuffle to zero extend).
5120         Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5121         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5122         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5123                                            Subtarget->hasXMMInt(), DAG);
5124 
5125         // Now we have our 32-bit value zero extended in the low element of
5126         // a vector.  If Idx != 0, swizzle it into place.
5127         if (Idx != 0) {
5128           SmallVector<int, 4> Mask;
5129           Mask.push_back(Idx);
5130           for (unsigned i = 1; i != VecElts; ++i)
5131             Mask.push_back(i);
5132           Item = DAG.getVectorShuffle(VecVT, dl, Item,
5133                                       DAG.getUNDEF(Item.getValueType()),
5134                                       &Mask[0]);
5135         }
5136         return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5137       }
5138     }
5139 
5140     // If we have a constant or non-constant insertion into the low element of
5141     // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5142     // the rest of the elements.  This will be matched as movd/movq/movss/movsd
5143     // depending on what the source datatype is.
5144     if (Idx == 0) {
5145       if (NumZero == 0) {
5146         return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147       } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5148           (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5149         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5150         // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5151         return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5152                                            DAG);
5153       } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5154         Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5155         assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5156         EVT MiddleVT = MVT::v4i32;
5157         Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5158         Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5159                                            Subtarget->hasXMMInt(), DAG);
5160         return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5161       }
5162     }
5163 
5164     // Is it a vector logical left shift?
5165     if (NumElems == 2 && Idx == 1 &&
5166         X86::isZeroNode(Op.getOperand(0)) &&
5167         !X86::isZeroNode(Op.getOperand(1))) {
5168       unsigned NumBits = VT.getSizeInBits();
5169       return getVShift(true, VT,
5170                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5171                                    VT, Op.getOperand(1)),
5172                        NumBits/2, DAG, *this, dl);
5173     }
5174 
5175     if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5176       return SDValue();
5177 
5178     // Otherwise, if this is a vector with i32 or f32 elements, and the element
5179     // is a non-constant being inserted into an element other than the low one,
5180     // we can't use a constant pool load.  Instead, use SCALAR_TO_VECTOR (aka
5181     // movd/movss) to move this into the low element, then shuffle it into
5182     // place.
5183     if (EVTBits == 32) {
5184       Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5185 
5186       // Turn it into a shuffle of zero and zero-extended scalar to vector.
5187       Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5188                                          Subtarget->hasXMMInt(), DAG);
5189       SmallVector<int, 8> MaskVec;
5190       for (unsigned i = 0; i < NumElems; i++)
5191         MaskVec.push_back(i == Idx ? 0 : 1);
5192       return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5193     }
5194   }
5195 
5196   // Splat is obviously ok. Let legalizer expand it to a shuffle.
5197   if (Values.size() == 1) {
5198     if (EVTBits == 32) {
5199       // Instead of a shuffle like this:
5200       // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5201       // Check if it's possible to issue this instead.
5202       // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5203       unsigned Idx = CountTrailingZeros_32(NonZeros);
5204       SDValue Item = Op.getOperand(Idx);
5205       if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5206         return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5207     }
5208     return SDValue();
5209   }
5210 
5211   // A vector full of immediates; various special cases are already
5212   // handled, so this is best done with a single constant-pool load.
5213   if (IsAllConstants)
5214     return SDValue();
5215 
5216   // For AVX-length vectors, build the individual 128-bit pieces and use
5217   // shuffles to put them in place.
5218   if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5219     SmallVector<SDValue, 32> V;
5220     for (unsigned i = 0; i < NumElems; ++i)
5221       V.push_back(Op.getOperand(i));
5222 
5223     EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5224 
5225     // Build both the lower and upper subvector.
5226     SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5227     SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5228                                 NumElems/2);
5229 
5230     // Recreate the wider vector with the lower and upper part.
5231     SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5232                                 DAG.getConstant(0, MVT::i32), DAG, dl);
5233     return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5234                               DAG, dl);
5235   }
5236 
5237   // Let legalizer expand 2-wide build_vectors.
5238   if (EVTBits == 64) {
5239     if (NumNonZero == 1) {
5240       // One half is zero or undef.
5241       unsigned Idx = CountTrailingZeros_32(NonZeros);
5242       SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5243                                  Op.getOperand(Idx));
5244       return getShuffleVectorZeroOrUndef(V2, Idx, true,
5245                                          Subtarget->hasXMMInt(), DAG);
5246     }
5247     return SDValue();
5248   }
5249 
5250   // If element VT is < 32 bits, convert it to inserts into a zero vector.
5251   if (EVTBits == 8 && NumElems == 16) {
5252     SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5253                                         *this);
5254     if (V.getNode()) return V;
5255   }
5256 
5257   if (EVTBits == 16 && NumElems == 8) {
5258     SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5259                                       *this);
5260     if (V.getNode()) return V;
5261   }
5262 
5263   // If element VT is == 32 bits, turn it into a number of shuffles.
5264   SmallVector<SDValue, 8> V;
5265   V.resize(NumElems);
5266   if (NumElems == 4 && NumZero > 0) {
5267     for (unsigned i = 0; i < 4; ++i) {
5268       bool isZero = !(NonZeros & (1 << i));
5269       if (isZero)
5270         V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5271       else
5272         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5273     }
5274 
5275     for (unsigned i = 0; i < 2; ++i) {
5276       switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5277         default: break;
5278         case 0:
5279           V[i] = V[i*2];  // Must be a zero vector.
5280           break;
5281         case 1:
5282           V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5283           break;
5284         case 2:
5285           V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5286           break;
5287         case 3:
5288           V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5289           break;
5290       }
5291     }
5292 
5293     SmallVector<int, 8> MaskVec;
5294     bool Reverse = (NonZeros & 0x3) == 2;
5295     for (unsigned i = 0; i < 2; ++i)
5296       MaskVec.push_back(Reverse ? 1-i : i);
5297     Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5298     for (unsigned i = 0; i < 2; ++i)
5299       MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5300     return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5301   }
5302 
5303   if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5304     // Check for a build vector of consecutive loads.
5305     for (unsigned i = 0; i < NumElems; ++i)
5306       V[i] = Op.getOperand(i);
5307 
5308     // Check for elements which are consecutive loads.
5309     SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5310     if (LD.getNode())
5311       return LD;
5312 
5313     // For SSE 4.1, use insertps to put the high elements into the low element.
5314     if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5315       SDValue Result;
5316       if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5317         Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5318       else
5319         Result = DAG.getUNDEF(VT);
5320 
5321       for (unsigned i = 1; i < NumElems; ++i) {
5322         if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5323         Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5324                              Op.getOperand(i), DAG.getIntPtrConstant(i));
5325       }
5326       return Result;
5327     }
5328 
5329     // Otherwise, expand into a number of unpckl*, start by extending each of
5330     // our (non-undef) elements to the full vector width with the element in the
5331     // bottom slot of the vector (which generates no code for SSE).
5332     for (unsigned i = 0; i < NumElems; ++i) {
5333       if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5334         V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5335       else
5336         V[i] = DAG.getUNDEF(VT);
5337     }
5338 
5339     // Next, we iteratively mix elements, e.g. for v4f32:
5340     //   Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5341     //         : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5342     //   Step 2: unpcklps X, Y ==>    <3, 2, 1, 0>
5343     unsigned EltStride = NumElems >> 1;
5344     while (EltStride != 0) {
5345       for (unsigned i = 0; i < EltStride; ++i) {
5346         // If V[i+EltStride] is undef and this is the first round of mixing,
5347         // then it is safe to just drop this shuffle: V[i] is already in the
5348         // right place, the one element (since it's the first round) being
5349         // inserted as undef can be dropped.  This isn't safe for successive
5350         // rounds because they will permute elements within both vectors.
5351         if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5352             EltStride == NumElems/2)
5353           continue;
5354 
5355         V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5356       }
5357       EltStride >>= 1;
5358     }
5359     return V[0];
5360   }
5361   return SDValue();
5362 }
5363 
5364 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5365 // them in a MMX register.  This is better than doing a stack convert.
LowerMMXCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)5366 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5367   DebugLoc dl = Op.getDebugLoc();
5368   EVT ResVT = Op.getValueType();
5369 
5370   assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5371          ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5372   int Mask[2];
5373   SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5374   SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5375   InVec = Op.getOperand(1);
5376   if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5377     unsigned NumElts = ResVT.getVectorNumElements();
5378     VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5379     VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5380                        InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5381   } else {
5382     InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5383     SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5384     Mask[0] = 0; Mask[1] = 2;
5385     VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5386   }
5387   return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5388 }
5389 
5390 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5391 // to create 256-bit vectors from two other 128-bit ones.
LowerAVXCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)5392 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5393   DebugLoc dl = Op.getDebugLoc();
5394   EVT ResVT = Op.getValueType();
5395 
5396   assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5397 
5398   SDValue V1 = Op.getOperand(0);
5399   SDValue V2 = Op.getOperand(1);
5400   unsigned NumElems = ResVT.getVectorNumElements();
5401 
5402   SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5403                                  DAG.getConstant(0, MVT::i32), DAG, dl);
5404   return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5405                             DAG, dl);
5406 }
5407 
5408 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const5409 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5410   EVT ResVT = Op.getValueType();
5411 
5412   assert(Op.getNumOperands() == 2);
5413   assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5414          "Unsupported CONCAT_VECTORS for value type");
5415 
5416   // We support concatenate two MMX registers and place them in a MMX register.
5417   // This is better than doing a stack convert.
5418   if (ResVT.is128BitVector())
5419     return LowerMMXCONCAT_VECTORS(Op, DAG);
5420 
5421   // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5422   // from two other 128-bit ones.
5423   return LowerAVXCONCAT_VECTORS(Op, DAG);
5424 }
5425 
5426 // v8i16 shuffles - Prefer shuffles in the following order:
5427 // 1. [all]   pshuflw, pshufhw, optional move
5428 // 2. [ssse3] 1 x pshufb
5429 // 3. [ssse3] 2 x pshufb + 1 x por
5430 // 4. [all]   mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5431 SDValue
LowerVECTOR_SHUFFLEv8i16(SDValue Op,SelectionDAG & DAG) const5432 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5433                                             SelectionDAG &DAG) const {
5434   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5435   SDValue V1 = SVOp->getOperand(0);
5436   SDValue V2 = SVOp->getOperand(1);
5437   DebugLoc dl = SVOp->getDebugLoc();
5438   SmallVector<int, 8> MaskVals;
5439 
5440   // Determine if more than 1 of the words in each of the low and high quadwords
5441   // of the result come from the same quadword of one of the two inputs.  Undef
5442   // mask values count as coming from any quadword, for better codegen.
5443   SmallVector<unsigned, 4> LoQuad(4);
5444   SmallVector<unsigned, 4> HiQuad(4);
5445   BitVector InputQuads(4);
5446   for (unsigned i = 0; i < 8; ++i) {
5447     SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5448     int EltIdx = SVOp->getMaskElt(i);
5449     MaskVals.push_back(EltIdx);
5450     if (EltIdx < 0) {
5451       ++Quad[0];
5452       ++Quad[1];
5453       ++Quad[2];
5454       ++Quad[3];
5455       continue;
5456     }
5457     ++Quad[EltIdx / 4];
5458     InputQuads.set(EltIdx / 4);
5459   }
5460 
5461   int BestLoQuad = -1;
5462   unsigned MaxQuad = 1;
5463   for (unsigned i = 0; i < 4; ++i) {
5464     if (LoQuad[i] > MaxQuad) {
5465       BestLoQuad = i;
5466       MaxQuad = LoQuad[i];
5467     }
5468   }
5469 
5470   int BestHiQuad = -1;
5471   MaxQuad = 1;
5472   for (unsigned i = 0; i < 4; ++i) {
5473     if (HiQuad[i] > MaxQuad) {
5474       BestHiQuad = i;
5475       MaxQuad = HiQuad[i];
5476     }
5477   }
5478 
5479   // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5480   // of the two input vectors, shuffle them into one input vector so only a
5481   // single pshufb instruction is necessary. If There are more than 2 input
5482   // quads, disable the next transformation since it does not help SSSE3.
5483   bool V1Used = InputQuads[0] || InputQuads[1];
5484   bool V2Used = InputQuads[2] || InputQuads[3];
5485   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5486     if (InputQuads.count() == 2 && V1Used && V2Used) {
5487       BestLoQuad = InputQuads.find_first();
5488       BestHiQuad = InputQuads.find_next(BestLoQuad);
5489     }
5490     if (InputQuads.count() > 2) {
5491       BestLoQuad = -1;
5492       BestHiQuad = -1;
5493     }
5494   }
5495 
5496   // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5497   // the shuffle mask.  If a quad is scored as -1, that means that it contains
5498   // words from all 4 input quadwords.
5499   SDValue NewV;
5500   if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5501     SmallVector<int, 8> MaskV;
5502     MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5503     MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5504     NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5505                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5506                   DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5507     NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5508 
5509     // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5510     // source words for the shuffle, to aid later transformations.
5511     bool AllWordsInNewV = true;
5512     bool InOrder[2] = { true, true };
5513     for (unsigned i = 0; i != 8; ++i) {
5514       int idx = MaskVals[i];
5515       if (idx != (int)i)
5516         InOrder[i/4] = false;
5517       if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5518         continue;
5519       AllWordsInNewV = false;
5520       break;
5521     }
5522 
5523     bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5524     if (AllWordsInNewV) {
5525       for (int i = 0; i != 8; ++i) {
5526         int idx = MaskVals[i];
5527         if (idx < 0)
5528           continue;
5529         idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5530         if ((idx != i) && idx < 4)
5531           pshufhw = false;
5532         if ((idx != i) && idx > 3)
5533           pshuflw = false;
5534       }
5535       V1 = NewV;
5536       V2Used = false;
5537       BestLoQuad = 0;
5538       BestHiQuad = 1;
5539     }
5540 
5541     // If we've eliminated the use of V2, and the new mask is a pshuflw or
5542     // pshufhw, that's as cheap as it gets.  Return the new shuffle.
5543     if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5544       unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5545       unsigned TargetMask = 0;
5546       NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5547                                   DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5548       TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5549                              X86::getShufflePSHUFLWImmediate(NewV.getNode());
5550       V1 = NewV.getOperand(0);
5551       return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5552     }
5553   }
5554 
5555   // If we have SSSE3, and all words of the result are from 1 input vector,
5556   // case 2 is generated, otherwise case 3 is generated.  If no SSSE3
5557   // is present, fall back to case 4.
5558   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5559     SmallVector<SDValue,16> pshufbMask;
5560 
5561     // If we have elements from both input vectors, set the high bit of the
5562     // shuffle mask element to zero out elements that come from V2 in the V1
5563     // mask, and elements that come from V1 in the V2 mask, so that the two
5564     // results can be OR'd together.
5565     bool TwoInputs = V1Used && V2Used;
5566     for (unsigned i = 0; i != 8; ++i) {
5567       int EltIdx = MaskVals[i] * 2;
5568       if (TwoInputs && (EltIdx >= 16)) {
5569         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5570         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5571         continue;
5572       }
5573       pshufbMask.push_back(DAG.getConstant(EltIdx,   MVT::i8));
5574       pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5575     }
5576     V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5577     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5578                      DAG.getNode(ISD::BUILD_VECTOR, dl,
5579                                  MVT::v16i8, &pshufbMask[0], 16));
5580     if (!TwoInputs)
5581       return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5582 
5583     // Calculate the shuffle mask for the second input, shuffle it, and
5584     // OR it with the first shuffled input.
5585     pshufbMask.clear();
5586     for (unsigned i = 0; i != 8; ++i) {
5587       int EltIdx = MaskVals[i] * 2;
5588       if (EltIdx < 16) {
5589         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5591         continue;
5592       }
5593       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5594       pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5595     }
5596     V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5597     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5598                      DAG.getNode(ISD::BUILD_VECTOR, dl,
5599                                  MVT::v16i8, &pshufbMask[0], 16));
5600     V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5601     return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5602   }
5603 
5604   // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5605   // and update MaskVals with new element order.
5606   BitVector InOrder(8);
5607   if (BestLoQuad >= 0) {
5608     SmallVector<int, 8> MaskV;
5609     for (int i = 0; i != 4; ++i) {
5610       int idx = MaskVals[i];
5611       if (idx < 0) {
5612         MaskV.push_back(-1);
5613         InOrder.set(i);
5614       } else if ((idx / 4) == BestLoQuad) {
5615         MaskV.push_back(idx & 3);
5616         InOrder.set(i);
5617       } else {
5618         MaskV.push_back(-1);
5619       }
5620     }
5621     for (unsigned i = 4; i != 8; ++i)
5622       MaskV.push_back(i);
5623     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5624                                 &MaskV[0]);
5625 
5626     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5627         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5628       NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5629                                NewV.getOperand(0),
5630                                X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5631                                DAG);
5632   }
5633 
5634   // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5635   // and update MaskVals with the new element order.
5636   if (BestHiQuad >= 0) {
5637     SmallVector<int, 8> MaskV;
5638     for (unsigned i = 0; i != 4; ++i)
5639       MaskV.push_back(i);
5640     for (unsigned i = 4; i != 8; ++i) {
5641       int idx = MaskVals[i];
5642       if (idx < 0) {
5643         MaskV.push_back(-1);
5644         InOrder.set(i);
5645       } else if ((idx / 4) == BestHiQuad) {
5646         MaskV.push_back((idx & 3) + 4);
5647         InOrder.set(i);
5648       } else {
5649         MaskV.push_back(-1);
5650       }
5651     }
5652     NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5653                                 &MaskV[0]);
5654 
5655     if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5656         (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5657       NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5658                               NewV.getOperand(0),
5659                               X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5660                               DAG);
5661   }
5662 
5663   // In case BestHi & BestLo were both -1, which means each quadword has a word
5664   // from each of the four input quadwords, calculate the InOrder bitvector now
5665   // before falling through to the insert/extract cleanup.
5666   if (BestLoQuad == -1 && BestHiQuad == -1) {
5667     NewV = V1;
5668     for (int i = 0; i != 8; ++i)
5669       if (MaskVals[i] < 0 || MaskVals[i] == i)
5670         InOrder.set(i);
5671   }
5672 
5673   // The other elements are put in the right place using pextrw and pinsrw.
5674   for (unsigned i = 0; i != 8; ++i) {
5675     if (InOrder[i])
5676       continue;
5677     int EltIdx = MaskVals[i];
5678     if (EltIdx < 0)
5679       continue;
5680     SDValue ExtOp = (EltIdx < 8)
5681     ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5682                   DAG.getIntPtrConstant(EltIdx))
5683     : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5684                   DAG.getIntPtrConstant(EltIdx - 8));
5685     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5686                        DAG.getIntPtrConstant(i));
5687   }
5688   return NewV;
5689 }
5690 
5691 // v16i8 shuffles - Prefer shuffles in the following order:
5692 // 1. [ssse3] 1 x pshufb
5693 // 2. [ssse3] 2 x pshufb + 1 x por
5694 // 3. [all]   v8i16 shuffle + N x pextrw + rotate + pinsrw
5695 static
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,const X86TargetLowering & TLI)5696 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5697                                  SelectionDAG &DAG,
5698                                  const X86TargetLowering &TLI) {
5699   SDValue V1 = SVOp->getOperand(0);
5700   SDValue V2 = SVOp->getOperand(1);
5701   DebugLoc dl = SVOp->getDebugLoc();
5702   SmallVector<int, 16> MaskVals;
5703   SVOp->getMask(MaskVals);
5704 
5705   // If we have SSSE3, case 1 is generated when all result bytes come from
5706   // one of  the inputs.  Otherwise, case 2 is generated.  If no SSSE3 is
5707   // present, fall back to case 3.
5708   // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5709   bool V1Only = true;
5710   bool V2Only = true;
5711   for (unsigned i = 0; i < 16; ++i) {
5712     int EltIdx = MaskVals[i];
5713     if (EltIdx < 0)
5714       continue;
5715     if (EltIdx < 16)
5716       V2Only = false;
5717     else
5718       V1Only = false;
5719   }
5720 
5721   // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5722   if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5723     SmallVector<SDValue,16> pshufbMask;
5724 
5725     // If all result elements are from one input vector, then only translate
5726     // undef mask values to 0x80 (zero out result) in the pshufb mask.
5727     //
5728     // Otherwise, we have elements from both input vectors, and must zero out
5729     // elements that come from V2 in the first mask, and V1 in the second mask
5730     // so that we can OR them together.
5731     bool TwoInputs = !(V1Only || V2Only);
5732     for (unsigned i = 0; i != 16; ++i) {
5733       int EltIdx = MaskVals[i];
5734       if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5735         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5736         continue;
5737       }
5738       pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5739     }
5740     // If all the elements are from V2, assign it to V1 and return after
5741     // building the first pshufb.
5742     if (V2Only)
5743       V1 = V2;
5744     V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5745                      DAG.getNode(ISD::BUILD_VECTOR, dl,
5746                                  MVT::v16i8, &pshufbMask[0], 16));
5747     if (!TwoInputs)
5748       return V1;
5749 
5750     // Calculate the shuffle mask for the second input, shuffle it, and
5751     // OR it with the first shuffled input.
5752     pshufbMask.clear();
5753     for (unsigned i = 0; i != 16; ++i) {
5754       int EltIdx = MaskVals[i];
5755       if (EltIdx < 16) {
5756         pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5757         continue;
5758       }
5759       pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5760     }
5761     V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5762                      DAG.getNode(ISD::BUILD_VECTOR, dl,
5763                                  MVT::v16i8, &pshufbMask[0], 16));
5764     return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5765   }
5766 
5767   // No SSSE3 - Calculate in place words and then fix all out of place words
5768   // With 0-16 extracts & inserts.  Worst case is 16 bytes out of order from
5769   // the 16 different words that comprise the two doublequadword input vectors.
5770   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5771   V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5772   SDValue NewV = V2Only ? V2 : V1;
5773   for (int i = 0; i != 8; ++i) {
5774     int Elt0 = MaskVals[i*2];
5775     int Elt1 = MaskVals[i*2+1];
5776 
5777     // This word of the result is all undef, skip it.
5778     if (Elt0 < 0 && Elt1 < 0)
5779       continue;
5780 
5781     // This word of the result is already in the correct place, skip it.
5782     if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5783       continue;
5784     if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5785       continue;
5786 
5787     SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5788     SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5789     SDValue InsElt;
5790 
5791     // If Elt0 and Elt1 are defined, are consecutive, and can be load
5792     // using a single extract together, load it and store it.
5793     if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5794       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5795                            DAG.getIntPtrConstant(Elt1 / 2));
5796       NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5797                         DAG.getIntPtrConstant(i));
5798       continue;
5799     }
5800 
5801     // If Elt1 is defined, extract it from the appropriate source.  If the
5802     // source byte is not also odd, shift the extracted word left 8 bits
5803     // otherwise clear the bottom 8 bits if we need to do an or.
5804     if (Elt1 >= 0) {
5805       InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5806                            DAG.getIntPtrConstant(Elt1 / 2));
5807       if ((Elt1 & 1) == 0)
5808         InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5809                              DAG.getConstant(8,
5810                                   TLI.getShiftAmountTy(InsElt.getValueType())));
5811       else if (Elt0 >= 0)
5812         InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5813                              DAG.getConstant(0xFF00, MVT::i16));
5814     }
5815     // If Elt0 is defined, extract it from the appropriate source.  If the
5816     // source byte is not also even, shift the extracted word right 8 bits. If
5817     // Elt1 was also defined, OR the extracted values together before
5818     // inserting them in the result.
5819     if (Elt0 >= 0) {
5820       SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5821                                     Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5822       if ((Elt0 & 1) != 0)
5823         InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5824                               DAG.getConstant(8,
5825                                  TLI.getShiftAmountTy(InsElt0.getValueType())));
5826       else if (Elt1 >= 0)
5827         InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5828                              DAG.getConstant(0x00FF, MVT::i16));
5829       InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5830                          : InsElt0;
5831     }
5832     NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5833                        DAG.getIntPtrConstant(i));
5834   }
5835   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5836 }
5837 
5838 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5839 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5840 /// done when every pair / quad of shuffle mask elements point to elements in
5841 /// the right sequence. e.g.
5842 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5843 static
RewriteAsNarrowerShuffle(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,DebugLoc dl)5844 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5845                                  SelectionDAG &DAG, DebugLoc dl) {
5846   EVT VT = SVOp->getValueType(0);
5847   SDValue V1 = SVOp->getOperand(0);
5848   SDValue V2 = SVOp->getOperand(1);
5849   unsigned NumElems = VT.getVectorNumElements();
5850   unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5851   EVT NewVT;
5852   switch (VT.getSimpleVT().SimpleTy) {
5853   default: assert(false && "Unexpected!");
5854   case MVT::v4f32: NewVT = MVT::v2f64; break;
5855   case MVT::v4i32: NewVT = MVT::v2i64; break;
5856   case MVT::v8i16: NewVT = MVT::v4i32; break;
5857   case MVT::v16i8: NewVT = MVT::v4i32; break;
5858   }
5859 
5860   int Scale = NumElems / NewWidth;
5861   SmallVector<int, 8> MaskVec;
5862   for (unsigned i = 0; i < NumElems; i += Scale) {
5863     int StartIdx = -1;
5864     for (int j = 0; j < Scale; ++j) {
5865       int EltIdx = SVOp->getMaskElt(i+j);
5866       if (EltIdx < 0)
5867         continue;
5868       if (StartIdx == -1)
5869         StartIdx = EltIdx - (EltIdx % Scale);
5870       if (EltIdx != StartIdx + j)
5871         return SDValue();
5872     }
5873     if (StartIdx == -1)
5874       MaskVec.push_back(-1);
5875     else
5876       MaskVec.push_back(StartIdx / Scale);
5877   }
5878 
5879   V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5880   V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5881   return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5882 }
5883 
5884 /// getVZextMovL - Return a zero-extending vector move low node.
5885 ///
getVZextMovL(EVT VT,EVT OpVT,SDValue SrcOp,SelectionDAG & DAG,const X86Subtarget * Subtarget,DebugLoc dl)5886 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5887                             SDValue SrcOp, SelectionDAG &DAG,
5888                             const X86Subtarget *Subtarget, DebugLoc dl) {
5889   if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5890     LoadSDNode *LD = NULL;
5891     if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5892       LD = dyn_cast<LoadSDNode>(SrcOp);
5893     if (!LD) {
5894       // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5895       // instead.
5896       MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5897       if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5898           SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5899           SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5900           SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5901         // PR2108
5902         OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5903         return DAG.getNode(ISD::BITCAST, dl, VT,
5904                            DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5905                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5906                                                    OpVT,
5907                                                    SrcOp.getOperand(0)
5908                                                           .getOperand(0))));
5909       }
5910     }
5911   }
5912 
5913   return DAG.getNode(ISD::BITCAST, dl, VT,
5914                      DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5915                                  DAG.getNode(ISD::BITCAST, dl,
5916                                              OpVT, SrcOp)));
5917 }
5918 
5919 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5920 /// shuffle node referes to only one lane in the sources.
areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode * SVOp)5921 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5922   EVT VT = SVOp->getValueType(0);
5923   int NumElems = VT.getVectorNumElements();
5924   int HalfSize = NumElems/2;
5925   SmallVector<int, 16> M;
5926   SVOp->getMask(M);
5927   bool MatchA = false, MatchB = false;
5928 
5929   for (int l = 0; l < NumElems*2; l += HalfSize) {
5930     if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5931       MatchA = true;
5932       break;
5933     }
5934   }
5935 
5936   for (int l = 0; l < NumElems*2; l += HalfSize) {
5937     if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5938       MatchB = true;
5939       break;
5940     }
5941   }
5942 
5943   return MatchA && MatchB;
5944 }
5945 
5946 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5947 /// which could not be matched by any known target speficic shuffle
5948 static SDValue
LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)5949 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5950   if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5951     // If each half of a vector shuffle node referes to only one lane in the
5952     // source vectors, extract each used 128-bit lane and shuffle them using
5953     // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5954     // the work to the legalizer.
5955     DebugLoc dl = SVOp->getDebugLoc();
5956     EVT VT = SVOp->getValueType(0);
5957     int NumElems = VT.getVectorNumElements();
5958     int HalfSize = NumElems/2;
5959 
5960     // Extract the reference for each half
5961     int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5962     int FstVecOpNum = 0, SndVecOpNum = 0;
5963     for (int i = 0; i < HalfSize; ++i) {
5964       int Elt = SVOp->getMaskElt(i);
5965       if (SVOp->getMaskElt(i) < 0)
5966         continue;
5967       FstVecOpNum = Elt/NumElems;
5968       FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5969       break;
5970     }
5971     for (int i = HalfSize; i < NumElems; ++i) {
5972       int Elt = SVOp->getMaskElt(i);
5973       if (SVOp->getMaskElt(i) < 0)
5974         continue;
5975       SndVecOpNum = Elt/NumElems;
5976       SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5977       break;
5978     }
5979 
5980     // Extract the subvectors
5981     SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5982                       DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5983     SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5984                       DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5985 
5986     // Generate 128-bit shuffles
5987     SmallVector<int, 16> MaskV1, MaskV2;
5988     for (int i = 0; i < HalfSize; ++i) {
5989       int Elt = SVOp->getMaskElt(i);
5990       MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5991     }
5992     for (int i = HalfSize; i < NumElems; ++i) {
5993       int Elt = SVOp->getMaskElt(i);
5994       MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5995     }
5996 
5997     EVT NVT = V1.getValueType();
5998     V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5999     V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6000 
6001     // Concatenate the result back
6002     SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6003                                    DAG.getConstant(0, MVT::i32), DAG, dl);
6004     return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6005                               DAG, dl);
6006   }
6007 
6008   return SDValue();
6009 }
6010 
6011 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6012 /// 4 elements, and match them with several different shuffle types.
6013 static SDValue
LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)6014 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6015   SDValue V1 = SVOp->getOperand(0);
6016   SDValue V2 = SVOp->getOperand(1);
6017   DebugLoc dl = SVOp->getDebugLoc();
6018   EVT VT = SVOp->getValueType(0);
6019 
6020   assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6021 
6022   SmallVector<std::pair<int, int>, 8> Locs;
6023   Locs.resize(4);
6024   SmallVector<int, 8> Mask1(4U, -1);
6025   SmallVector<int, 8> PermMask;
6026   SVOp->getMask(PermMask);
6027 
6028   unsigned NumHi = 0;
6029   unsigned NumLo = 0;
6030   for (unsigned i = 0; i != 4; ++i) {
6031     int Idx = PermMask[i];
6032     if (Idx < 0) {
6033       Locs[i] = std::make_pair(-1, -1);
6034     } else {
6035       assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6036       if (Idx < 4) {
6037         Locs[i] = std::make_pair(0, NumLo);
6038         Mask1[NumLo] = Idx;
6039         NumLo++;
6040       } else {
6041         Locs[i] = std::make_pair(1, NumHi);
6042         if (2+NumHi < 4)
6043           Mask1[2+NumHi] = Idx;
6044         NumHi++;
6045       }
6046     }
6047   }
6048 
6049   if (NumLo <= 2 && NumHi <= 2) {
6050     // If no more than two elements come from either vector. This can be
6051     // implemented with two shuffles. First shuffle gather the elements.
6052     // The second shuffle, which takes the first shuffle as both of its
6053     // vector operands, put the elements into the right order.
6054     V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6055 
6056     SmallVector<int, 8> Mask2(4U, -1);
6057 
6058     for (unsigned i = 0; i != 4; ++i) {
6059       if (Locs[i].first == -1)
6060         continue;
6061       else {
6062         unsigned Idx = (i < 2) ? 0 : 4;
6063         Idx += Locs[i].first * 2 + Locs[i].second;
6064         Mask2[i] = Idx;
6065       }
6066     }
6067 
6068     return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6069   } else if (NumLo == 3 || NumHi == 3) {
6070     // Otherwise, we must have three elements from one vector, call it X, and
6071     // one element from the other, call it Y.  First, use a shufps to build an
6072     // intermediate vector with the one element from Y and the element from X
6073     // that will be in the same half in the final destination (the indexes don't
6074     // matter). Then, use a shufps to build the final vector, taking the half
6075     // containing the element from Y from the intermediate, and the other half
6076     // from X.
6077     if (NumHi == 3) {
6078       // Normalize it so the 3 elements come from V1.
6079       CommuteVectorShuffleMask(PermMask, VT);
6080       std::swap(V1, V2);
6081     }
6082 
6083     // Find the element from V2.
6084     unsigned HiIndex;
6085     for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6086       int Val = PermMask[HiIndex];
6087       if (Val < 0)
6088         continue;
6089       if (Val >= 4)
6090         break;
6091     }
6092 
6093     Mask1[0] = PermMask[HiIndex];
6094     Mask1[1] = -1;
6095     Mask1[2] = PermMask[HiIndex^1];
6096     Mask1[3] = -1;
6097     V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6098 
6099     if (HiIndex >= 2) {
6100       Mask1[0] = PermMask[0];
6101       Mask1[1] = PermMask[1];
6102       Mask1[2] = HiIndex & 1 ? 6 : 4;
6103       Mask1[3] = HiIndex & 1 ? 4 : 6;
6104       return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6105     } else {
6106       Mask1[0] = HiIndex & 1 ? 2 : 0;
6107       Mask1[1] = HiIndex & 1 ? 0 : 2;
6108       Mask1[2] = PermMask[2];
6109       Mask1[3] = PermMask[3];
6110       if (Mask1[2] >= 0)
6111         Mask1[2] += 4;
6112       if (Mask1[3] >= 0)
6113         Mask1[3] += 4;
6114       return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6115     }
6116   }
6117 
6118   // Break it into (shuffle shuffle_hi, shuffle_lo).
6119   Locs.clear();
6120   Locs.resize(4);
6121   SmallVector<int,8> LoMask(4U, -1);
6122   SmallVector<int,8> HiMask(4U, -1);
6123 
6124   SmallVector<int,8> *MaskPtr = &LoMask;
6125   unsigned MaskIdx = 0;
6126   unsigned LoIdx = 0;
6127   unsigned HiIdx = 2;
6128   for (unsigned i = 0; i != 4; ++i) {
6129     if (i == 2) {
6130       MaskPtr = &HiMask;
6131       MaskIdx = 1;
6132       LoIdx = 0;
6133       HiIdx = 2;
6134     }
6135     int Idx = PermMask[i];
6136     if (Idx < 0) {
6137       Locs[i] = std::make_pair(-1, -1);
6138     } else if (Idx < 4) {
6139       Locs[i] = std::make_pair(MaskIdx, LoIdx);
6140       (*MaskPtr)[LoIdx] = Idx;
6141       LoIdx++;
6142     } else {
6143       Locs[i] = std::make_pair(MaskIdx, HiIdx);
6144       (*MaskPtr)[HiIdx] = Idx;
6145       HiIdx++;
6146     }
6147   }
6148 
6149   SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6150   SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6151   SmallVector<int, 8> MaskOps;
6152   for (unsigned i = 0; i != 4; ++i) {
6153     if (Locs[i].first == -1) {
6154       MaskOps.push_back(-1);
6155     } else {
6156       unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6157       MaskOps.push_back(Idx);
6158     }
6159   }
6160   return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6161 }
6162 
MayFoldVectorLoad(SDValue V)6163 static bool MayFoldVectorLoad(SDValue V) {
6164   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6165     V = V.getOperand(0);
6166   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6167     V = V.getOperand(0);
6168   if (MayFoldLoad(V))
6169     return true;
6170   return false;
6171 }
6172 
6173 // FIXME: the version above should always be used. Since there's
6174 // a bug where several vector shuffles can't be folded because the
6175 // DAG is not updated during lowering and a node claims to have two
6176 // uses while it only has one, use this version, and let isel match
6177 // another instruction if the load really happens to have more than
6178 // one use. Remove this version after this bug get fixed.
6179 // rdar://8434668, PR8156
RelaxedMayFoldVectorLoad(SDValue V)6180 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6181   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6182     V = V.getOperand(0);
6183   if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6184     V = V.getOperand(0);
6185   if (ISD::isNormalLoad(V.getNode()))
6186     return true;
6187   return false;
6188 }
6189 
6190 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6191 /// a vector extract, and if both can be later optimized into a single load.
6192 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6193 /// here because otherwise a target specific shuffle node is going to be
6194 /// emitted for this shuffle, and the optimization not done.
6195 /// FIXME: This is probably not the best approach, but fix the problem
6196 /// until the right path is decided.
6197 static
CanXFormVExtractWithShuffleIntoLoad(SDValue V,SelectionDAG & DAG,const TargetLowering & TLI)6198 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6199                                          const TargetLowering &TLI) {
6200   EVT VT = V.getValueType();
6201   ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6202 
6203   // Be sure that the vector shuffle is present in a pattern like this:
6204   // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6205   if (!V.hasOneUse())
6206     return false;
6207 
6208   SDNode *N = *V.getNode()->use_begin();
6209   if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6210     return false;
6211 
6212   SDValue EltNo = N->getOperand(1);
6213   if (!isa<ConstantSDNode>(EltNo))
6214     return false;
6215 
6216   // If the bit convert changed the number of elements, it is unsafe
6217   // to examine the mask.
6218   bool HasShuffleIntoBitcast = false;
6219   if (V.getOpcode() == ISD::BITCAST) {
6220     EVT SrcVT = V.getOperand(0).getValueType();
6221     if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6222       return false;
6223     V = V.getOperand(0);
6224     HasShuffleIntoBitcast = true;
6225   }
6226 
6227   // Select the input vector, guarding against out of range extract vector.
6228   unsigned NumElems = VT.getVectorNumElements();
6229   unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6230   int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6231   V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6232 
6233   // Skip one more bit_convert if necessary
6234   if (V.getOpcode() == ISD::BITCAST)
6235     V = V.getOperand(0);
6236 
6237   if (ISD::isNormalLoad(V.getNode())) {
6238     // Is the original load suitable?
6239     LoadSDNode *LN0 = cast<LoadSDNode>(V);
6240 
6241     // FIXME: avoid the multi-use bug that is preventing lots of
6242     // of foldings to be detected, this is still wrong of course, but
6243     // give the temporary desired behavior, and if it happens that
6244     // the load has real more uses, during isel it will not fold, and
6245     // will generate poor code.
6246     if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6247       return false;
6248 
6249     if (!HasShuffleIntoBitcast)
6250       return true;
6251 
6252     // If there's a bitcast before the shuffle, check if the load type and
6253     // alignment is valid.
6254     unsigned Align = LN0->getAlignment();
6255     unsigned NewAlign =
6256       TLI.getTargetData()->getABITypeAlignment(
6257                                     VT.getTypeForEVT(*DAG.getContext()));
6258 
6259     if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6260       return false;
6261   }
6262 
6263   return true;
6264 }
6265 
6266 static
getMOVDDup(SDValue & Op,DebugLoc & dl,SDValue V1,SelectionDAG & DAG)6267 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6268   EVT VT = Op.getValueType();
6269 
6270   // Canonizalize to v2f64.
6271   V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6272   return DAG.getNode(ISD::BITCAST, dl, VT,
6273                      getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6274                                           V1, DAG));
6275 }
6276 
6277 static
getMOVLowToHigh(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG,bool HasXMMInt)6278 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6279                         bool HasXMMInt) {
6280   SDValue V1 = Op.getOperand(0);
6281   SDValue V2 = Op.getOperand(1);
6282   EVT VT = Op.getValueType();
6283 
6284   assert(VT != MVT::v2i64 && "unsupported shuffle type");
6285 
6286   if (HasXMMInt && VT == MVT::v2f64)
6287     return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6288 
6289   // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6290   return DAG.getNode(ISD::BITCAST, dl, VT,
6291                      getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6292                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6293                            DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6294 }
6295 
6296 static
getMOVHighToLow(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG)6297 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6298   SDValue V1 = Op.getOperand(0);
6299   SDValue V2 = Op.getOperand(1);
6300   EVT VT = Op.getValueType();
6301 
6302   assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6303          "unsupported shuffle type");
6304 
6305   if (V2.getOpcode() == ISD::UNDEF)
6306     V2 = V1;
6307 
6308   // v4i32 or v4f32
6309   return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6310 }
6311 
getSHUFPOpcode(EVT VT)6312 static inline unsigned getSHUFPOpcode(EVT VT) {
6313   switch(VT.getSimpleVT().SimpleTy) {
6314   case MVT::v8i32: // Use fp unit for int unpack.
6315   case MVT::v8f32:
6316   case MVT::v4i32: // Use fp unit for int unpack.
6317   case MVT::v4f32: return X86ISD::SHUFPS;
6318   case MVT::v4i64: // Use fp unit for int unpack.
6319   case MVT::v4f64:
6320   case MVT::v2i64: // Use fp unit for int unpack.
6321   case MVT::v2f64: return X86ISD::SHUFPD;
6322   default:
6323     llvm_unreachable("Unknown type for shufp*");
6324   }
6325   return 0;
6326 }
6327 
6328 static
getMOVLP(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG,bool HasXMMInt)6329 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6330   SDValue V1 = Op.getOperand(0);
6331   SDValue V2 = Op.getOperand(1);
6332   EVT VT = Op.getValueType();
6333   unsigned NumElems = VT.getVectorNumElements();
6334 
6335   // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6336   // operand of these instructions is only memory, so check if there's a
6337   // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6338   // same masks.
6339   bool CanFoldLoad = false;
6340 
6341   // Trivial case, when V2 comes from a load.
6342   if (MayFoldVectorLoad(V2))
6343     CanFoldLoad = true;
6344 
6345   // When V1 is a load, it can be folded later into a store in isel, example:
6346   //  (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6347   //    turns into:
6348   //  (MOVLPSmr addr:$src1, VR128:$src2)
6349   // So, recognize this potential and also use MOVLPS or MOVLPD
6350   if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6351     CanFoldLoad = true;
6352 
6353   // Both of them can't be memory operations though.
6354   if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6355     CanFoldLoad = false;
6356 
6357   if (CanFoldLoad) {
6358     if (HasXMMInt && NumElems == 2)
6359       return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6360 
6361     if (NumElems == 4)
6362       return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6363   }
6364 
6365   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6366   // movl and movlp will both match v2i64, but v2i64 is never matched by
6367   // movl earlier because we make it strict to avoid messing with the movlp load
6368   // folding logic (see the code above getMOVLP call). Match it here then,
6369   // this is horrible, but will stay like this until we move all shuffle
6370   // matching to x86 specific nodes. Note that for the 1st condition all
6371   // types are matched with movsd.
6372   if (HasXMMInt) {
6373     // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6374     // as to remove this logic from here, as much as possible
6375     if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6376       return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6377     return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6378   }
6379 
6380   assert(VT != MVT::v4i32 && "unsupported shuffle type");
6381 
6382   // Invert the operand order and use SHUFPS to match it.
6383   return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6384                               X86::getShuffleSHUFImmediate(SVOp), DAG);
6385 }
6386 
getUNPCKLOpcode(EVT VT)6387 static inline unsigned getUNPCKLOpcode(EVT VT) {
6388   switch(VT.getSimpleVT().SimpleTy) {
6389   case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6390   case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6391   case MVT::v4f32: return X86ISD::UNPCKLPS;
6392   case MVT::v2f64: return X86ISD::UNPCKLPD;
6393   case MVT::v8i32: // Use fp unit for int unpack.
6394   case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6395   case MVT::v4i64: // Use fp unit for int unpack.
6396   case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6397   case MVT::v16i8: return X86ISD::PUNPCKLBW;
6398   case MVT::v8i16: return X86ISD::PUNPCKLWD;
6399   default:
6400     llvm_unreachable("Unknown type for unpckl");
6401   }
6402   return 0;
6403 }
6404 
getUNPCKHOpcode(EVT VT)6405 static inline unsigned getUNPCKHOpcode(EVT VT) {
6406   switch(VT.getSimpleVT().SimpleTy) {
6407   case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6408   case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6409   case MVT::v4f32: return X86ISD::UNPCKHPS;
6410   case MVT::v2f64: return X86ISD::UNPCKHPD;
6411   case MVT::v8i32: // Use fp unit for int unpack.
6412   case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6413   case MVT::v4i64: // Use fp unit for int unpack.
6414   case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6415   case MVT::v16i8: return X86ISD::PUNPCKHBW;
6416   case MVT::v8i16: return X86ISD::PUNPCKHWD;
6417   default:
6418     llvm_unreachable("Unknown type for unpckh");
6419   }
6420   return 0;
6421 }
6422 
getVPERMILOpcode(EVT VT)6423 static inline unsigned getVPERMILOpcode(EVT VT) {
6424   switch(VT.getSimpleVT().SimpleTy) {
6425   case MVT::v4i32:
6426   case MVT::v4f32: return X86ISD::VPERMILPS;
6427   case MVT::v2i64:
6428   case MVT::v2f64: return X86ISD::VPERMILPD;
6429   case MVT::v8i32:
6430   case MVT::v8f32: return X86ISD::VPERMILPSY;
6431   case MVT::v4i64:
6432   case MVT::v4f64: return X86ISD::VPERMILPDY;
6433   default:
6434     llvm_unreachable("Unknown type for vpermil");
6435   }
6436   return 0;
6437 }
6438 
6439 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6440 /// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6441 /// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
isVectorBroadcast(SDValue & Op)6442 static bool isVectorBroadcast(SDValue &Op) {
6443   EVT VT = Op.getValueType();
6444   bool Is256 = VT.getSizeInBits() == 256;
6445 
6446   assert((VT.getSizeInBits() == 128 || Is256) &&
6447          "Unsupported type for vbroadcast node");
6448 
6449   SDValue V = Op;
6450   if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6451     V = V.getOperand(0);
6452 
6453   if (Is256 && !(V.hasOneUse() &&
6454                  V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6455                  V.getOperand(0).getOpcode() == ISD::UNDEF))
6456     return false;
6457 
6458   if (Is256)
6459     V = V.getOperand(1);
6460 
6461   if (!V.hasOneUse())
6462     return false;
6463 
6464   // Check the source scalar_to_vector type. 256-bit broadcasts are
6465   // supported for 32/64-bit sizes, while 128-bit ones are only supported
6466   // for 32-bit scalars.
6467   if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6468     return false;
6469 
6470   unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6471   if (ScalarSize != 32 && ScalarSize != 64)
6472     return false;
6473   if (!Is256 && ScalarSize == 64)
6474     return false;
6475 
6476   V = V.getOperand(0);
6477   if (!MayFoldLoad(V))
6478     return false;
6479 
6480   // Return the load node
6481   Op = V;
6482   return true;
6483 }
6484 
6485 static
NormalizeVectorShuffle(SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,const X86Subtarget * Subtarget)6486 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6487                                const TargetLowering &TLI,
6488                                const X86Subtarget *Subtarget) {
6489   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6490   EVT VT = Op.getValueType();
6491   DebugLoc dl = Op.getDebugLoc();
6492   SDValue V1 = Op.getOperand(0);
6493   SDValue V2 = Op.getOperand(1);
6494 
6495   if (isZeroShuffle(SVOp))
6496     return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6497 
6498   // Handle splat operations
6499   if (SVOp->isSplat()) {
6500     unsigned NumElem = VT.getVectorNumElements();
6501     int Size = VT.getSizeInBits();
6502     // Special case, this is the only place now where it's allowed to return
6503     // a vector_shuffle operation without using a target specific node, because
6504     // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6505     // this be moved to DAGCombine instead?
6506     if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6507       return Op;
6508 
6509     // Use vbroadcast whenever the splat comes from a foldable load
6510     if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6511       return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6512 
6513     // Handle splats by matching through known shuffle masks
6514     if ((Size == 128 && NumElem <= 4) ||
6515         (Size == 256 && NumElem < 8))
6516       return SDValue();
6517 
6518     // All remaning splats are promoted to target supported vector shuffles.
6519     return PromoteSplat(SVOp, DAG);
6520   }
6521 
6522   // If the shuffle can be profitably rewritten as a narrower shuffle, then
6523   // do it!
6524   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6525     SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6526     if (NewOp.getNode())
6527       return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6528   } else if ((VT == MVT::v4i32 ||
6529              (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6530     // FIXME: Figure out a cleaner way to do this.
6531     // Try to make use of movq to zero out the top part.
6532     if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6533       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6534       if (NewOp.getNode()) {
6535         if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6536           return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6537                               DAG, Subtarget, dl);
6538       }
6539     } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6540       SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6541       if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6542         return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6543                             DAG, Subtarget, dl);
6544     }
6545   }
6546   return SDValue();
6547 }
6548 
6549 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const6550 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6551   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6552   SDValue V1 = Op.getOperand(0);
6553   SDValue V2 = Op.getOperand(1);
6554   EVT VT = Op.getValueType();
6555   DebugLoc dl = Op.getDebugLoc();
6556   unsigned NumElems = VT.getVectorNumElements();
6557   bool isMMX = VT.getSizeInBits() == 64;
6558   bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6559   bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6560   bool V1IsSplat = false;
6561   bool V2IsSplat = false;
6562   bool HasXMMInt = Subtarget->hasXMMInt();
6563   MachineFunction &MF = DAG.getMachineFunction();
6564   bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6565 
6566   // Shuffle operations on MMX not supported.
6567   if (isMMX)
6568     return Op;
6569 
6570   // Vector shuffle lowering takes 3 steps:
6571   //
6572   // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6573   //    narrowing and commutation of operands should be handled.
6574   // 2) Matching of shuffles with known shuffle masks to x86 target specific
6575   //    shuffle nodes.
6576   // 3) Rewriting of unmatched masks into new generic shuffle operations,
6577   //    so the shuffle can be broken into other shuffles and the legalizer can
6578   //    try the lowering again.
6579   //
6580   // The general ideia is that no vector_shuffle operation should be left to
6581   // be matched during isel, all of them must be converted to a target specific
6582   // node here.
6583 
6584   // Normalize the input vectors. Here splats, zeroed vectors, profitable
6585   // narrowing and commutation of operands should be handled. The actual code
6586   // doesn't include all of those, work in progress...
6587   SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6588   if (NewOp.getNode())
6589     return NewOp;
6590 
6591   // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6592   // unpckh_undef). Only use pshufd if speed is more important than size.
6593   if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6594     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6595   if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6596     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6597 
6598   if (X86::isMOVDDUPMask(SVOp) &&
6599       (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6600       V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6601     return getMOVDDup(Op, dl, V1, DAG);
6602 
6603   if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6604     return getMOVHighToLow(Op, dl, DAG);
6605 
6606   // Use to match splats
6607   if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6608       (VT == MVT::v2f64 || VT == MVT::v2i64))
6609     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6610 
6611   if (X86::isPSHUFDMask(SVOp)) {
6612     // The actual implementation will match the mask in the if above and then
6613     // during isel it can match several different instructions, not only pshufd
6614     // as its name says, sad but true, emulate the behavior for now...
6615     if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6616         return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6617 
6618     unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6619 
6620     if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6621       return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6622 
6623     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6624                                 TargetMask, DAG);
6625   }
6626 
6627   // Check if this can be converted into a logical shift.
6628   bool isLeft = false;
6629   unsigned ShAmt = 0;
6630   SDValue ShVal;
6631   bool isShift = getSubtarget()->hasXMMInt() &&
6632                  isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6633   if (isShift && ShVal.hasOneUse()) {
6634     // If the shifted value has multiple uses, it may be cheaper to use
6635     // v_set0 + movlhps or movhlps, etc.
6636     EVT EltVT = VT.getVectorElementType();
6637     ShAmt *= EltVT.getSizeInBits();
6638     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6639   }
6640 
6641   if (X86::isMOVLMask(SVOp)) {
6642     if (V1IsUndef)
6643       return V2;
6644     if (ISD::isBuildVectorAllZeros(V1.getNode()))
6645       return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6646     if (!X86::isMOVLPMask(SVOp)) {
6647       if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6648         return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6649 
6650       if (VT == MVT::v4i32 || VT == MVT::v4f32)
6651         return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6652     }
6653   }
6654 
6655   // FIXME: fold these into legal mask.
6656   if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6657     return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6658 
6659   if (X86::isMOVHLPSMask(SVOp))
6660     return getMOVHighToLow(Op, dl, DAG);
6661 
6662   if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6663     return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6664 
6665   if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6666     return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6667 
6668   if (X86::isMOVLPMask(SVOp))
6669     return getMOVLP(Op, dl, DAG, HasXMMInt);
6670 
6671   if (ShouldXformToMOVHLPS(SVOp) ||
6672       ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6673     return CommuteVectorShuffle(SVOp, DAG);
6674 
6675   if (isShift) {
6676     // No better options. Use a vshl / vsrl.
6677     EVT EltVT = VT.getVectorElementType();
6678     ShAmt *= EltVT.getSizeInBits();
6679     return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6680   }
6681 
6682   bool Commuted = false;
6683   // FIXME: This should also accept a bitcast of a splat?  Be careful, not
6684   // 1,1,1,1 -> v8i16 though.
6685   V1IsSplat = isSplatVector(V1.getNode());
6686   V2IsSplat = isSplatVector(V2.getNode());
6687 
6688   // Canonicalize the splat or undef, if present, to be on the RHS.
6689   if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6690     Op = CommuteVectorShuffle(SVOp, DAG);
6691     SVOp = cast<ShuffleVectorSDNode>(Op);
6692     V1 = SVOp->getOperand(0);
6693     V2 = SVOp->getOperand(1);
6694     std::swap(V1IsSplat, V2IsSplat);
6695     std::swap(V1IsUndef, V2IsUndef);
6696     Commuted = true;
6697   }
6698 
6699   if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6700     // Shuffling low element of v1 into undef, just return v1.
6701     if (V2IsUndef)
6702       return V1;
6703     // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6704     // the instruction selector will not match, so get a canonical MOVL with
6705     // swapped operands to undo the commute.
6706     return getMOVL(DAG, dl, VT, V2, V1);
6707   }
6708 
6709   if (X86::isUNPCKLMask(SVOp))
6710     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6711 
6712   if (X86::isUNPCKHMask(SVOp))
6713     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6714 
6715   if (V2IsSplat) {
6716     // Normalize mask so all entries that point to V2 points to its first
6717     // element then try to match unpck{h|l} again. If match, return a
6718     // new vector_shuffle with the corrected mask.
6719     SDValue NewMask = NormalizeMask(SVOp, DAG);
6720     ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6721     if (NSVOp != SVOp) {
6722       if (X86::isUNPCKLMask(NSVOp, true)) {
6723         return NewMask;
6724       } else if (X86::isUNPCKHMask(NSVOp, true)) {
6725         return NewMask;
6726       }
6727     }
6728   }
6729 
6730   if (Commuted) {
6731     // Commute is back and try unpck* again.
6732     // FIXME: this seems wrong.
6733     SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6734     ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6735 
6736     if (X86::isUNPCKLMask(NewSVOp))
6737       return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6738 
6739     if (X86::isUNPCKHMask(NewSVOp))
6740       return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6741   }
6742 
6743   // Normalize the node to match x86 shuffle ops if needed
6744   if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6745     return CommuteVectorShuffle(SVOp, DAG);
6746 
6747   // The checks below are all present in isShuffleMaskLegal, but they are
6748   // inlined here right now to enable us to directly emit target specific
6749   // nodes, and remove one by one until they don't return Op anymore.
6750   SmallVector<int, 16> M;
6751   SVOp->getMask(M);
6752 
6753   if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6754     return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6755                                 X86::getShufflePALIGNRImmediate(SVOp),
6756                                 DAG);
6757 
6758   if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6759       SVOp->getSplatIndex() == 0 && V2IsUndef) {
6760     if (VT == MVT::v2f64)
6761       return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6762     if (VT == MVT::v2i64)
6763       return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6764   }
6765 
6766   if (isPSHUFHWMask(M, VT))
6767     return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6768                                 X86::getShufflePSHUFHWImmediate(SVOp),
6769                                 DAG);
6770 
6771   if (isPSHUFLWMask(M, VT))
6772     return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6773                                 X86::getShufflePSHUFLWImmediate(SVOp),
6774                                 DAG);
6775 
6776   if (isSHUFPMask(M, VT))
6777     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6778                                 X86::getShuffleSHUFImmediate(SVOp), DAG);
6779 
6780   if (X86::isUNPCKL_v_undef_Mask(SVOp))
6781     return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6782   if (X86::isUNPCKH_v_undef_Mask(SVOp))
6783     return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6784 
6785   //===--------------------------------------------------------------------===//
6786   // Generate target specific nodes for 128 or 256-bit shuffles only
6787   // supported in the AVX instruction set.
6788   //
6789 
6790   // Handle VMOVDDUPY permutations
6791   if (isMOVDDUPYMask(SVOp, Subtarget))
6792     return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6793 
6794   // Handle VPERMILPS* permutations
6795   if (isVPERMILPSMask(M, VT, Subtarget))
6796     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6797                                 getShuffleVPERMILPSImmediate(SVOp), DAG);
6798 
6799   // Handle VPERMILPD* permutations
6800   if (isVPERMILPDMask(M, VT, Subtarget))
6801     return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6802                                 getShuffleVPERMILPDImmediate(SVOp), DAG);
6803 
6804   // Handle VPERM2F128 permutations
6805   if (isVPERM2F128Mask(M, VT, Subtarget))
6806     return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6807                                 getShuffleVPERM2F128Immediate(SVOp), DAG);
6808 
6809   // Handle VSHUFPSY permutations
6810   if (isVSHUFPSYMask(M, VT, Subtarget))
6811     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6812                                 getShuffleVSHUFPSYImmediate(SVOp), DAG);
6813 
6814   // Handle VSHUFPDY permutations
6815   if (isVSHUFPDYMask(M, VT, Subtarget))
6816     return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6817                                 getShuffleVSHUFPDYImmediate(SVOp), DAG);
6818 
6819   //===--------------------------------------------------------------------===//
6820   // Since no target specific shuffle was selected for this generic one,
6821   // lower it into other known shuffles. FIXME: this isn't true yet, but
6822   // this is the plan.
6823   //
6824 
6825   // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6826   if (VT == MVT::v8i16) {
6827     SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6828     if (NewOp.getNode())
6829       return NewOp;
6830   }
6831 
6832   if (VT == MVT::v16i8) {
6833     SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6834     if (NewOp.getNode())
6835       return NewOp;
6836   }
6837 
6838   // Handle all 128-bit wide vectors with 4 elements, and match them with
6839   // several different shuffle types.
6840   if (NumElems == 4 && VT.getSizeInBits() == 128)
6841     return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6842 
6843   // Handle general 256-bit shuffles
6844   if (VT.is256BitVector())
6845     return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6846 
6847   return SDValue();
6848 }
6849 
6850 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,SelectionDAG & DAG) const6851 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6852                                                 SelectionDAG &DAG) const {
6853   EVT VT = Op.getValueType();
6854   DebugLoc dl = Op.getDebugLoc();
6855 
6856   if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6857     return SDValue();
6858 
6859   if (VT.getSizeInBits() == 8) {
6860     SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6861                                     Op.getOperand(0), Op.getOperand(1));
6862     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6863                                     DAG.getValueType(VT));
6864     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6865   } else if (VT.getSizeInBits() == 16) {
6866     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6867     // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6868     if (Idx == 0)
6869       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6870                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6871                                      DAG.getNode(ISD::BITCAST, dl,
6872                                                  MVT::v4i32,
6873                                                  Op.getOperand(0)),
6874                                      Op.getOperand(1)));
6875     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6876                                     Op.getOperand(0), Op.getOperand(1));
6877     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6878                                     DAG.getValueType(VT));
6879     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6880   } else if (VT == MVT::f32) {
6881     // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6882     // the result back to FR32 register. It's only worth matching if the
6883     // result has a single use which is a store or a bitcast to i32.  And in
6884     // the case of a store, it's not worth it if the index is a constant 0,
6885     // because a MOVSSmr can be used instead, which is smaller and faster.
6886     if (!Op.hasOneUse())
6887       return SDValue();
6888     SDNode *User = *Op.getNode()->use_begin();
6889     if ((User->getOpcode() != ISD::STORE ||
6890          (isa<ConstantSDNode>(Op.getOperand(1)) &&
6891           cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6892         (User->getOpcode() != ISD::BITCAST ||
6893          User->getValueType(0) != MVT::i32))
6894       return SDValue();
6895     SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6896                                   DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6897                                               Op.getOperand(0)),
6898                                               Op.getOperand(1));
6899     return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6900   } else if (VT == MVT::i32) {
6901     // ExtractPS works with constant index.
6902     if (isa<ConstantSDNode>(Op.getOperand(1)))
6903       return Op;
6904   }
6905   return SDValue();
6906 }
6907 
6908 
6909 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6910 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6911                                            SelectionDAG &DAG) const {
6912   if (!isa<ConstantSDNode>(Op.getOperand(1)))
6913     return SDValue();
6914 
6915   SDValue Vec = Op.getOperand(0);
6916   EVT VecVT = Vec.getValueType();
6917 
6918   // If this is a 256-bit vector result, first extract the 128-bit vector and
6919   // then extract the element from the 128-bit vector.
6920   if (VecVT.getSizeInBits() == 256) {
6921     DebugLoc dl = Op.getNode()->getDebugLoc();
6922     unsigned NumElems = VecVT.getVectorNumElements();
6923     SDValue Idx = Op.getOperand(1);
6924     unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6925 
6926     // Get the 128-bit vector.
6927     bool Upper = IdxVal >= NumElems/2;
6928     Vec = Extract128BitVector(Vec,
6929                     DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6930 
6931     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6932                     Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6933   }
6934 
6935   assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6936 
6937   if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6938     SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6939     if (Res.getNode())
6940       return Res;
6941   }
6942 
6943   EVT VT = Op.getValueType();
6944   DebugLoc dl = Op.getDebugLoc();
6945   // TODO: handle v16i8.
6946   if (VT.getSizeInBits() == 16) {
6947     SDValue Vec = Op.getOperand(0);
6948     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6949     if (Idx == 0)
6950       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6951                          DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6952                                      DAG.getNode(ISD::BITCAST, dl,
6953                                                  MVT::v4i32, Vec),
6954                                      Op.getOperand(1)));
6955     // Transform it so it match pextrw which produces a 32-bit result.
6956     EVT EltVT = MVT::i32;
6957     SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6958                                     Op.getOperand(0), Op.getOperand(1));
6959     SDValue Assert  = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6960                                     DAG.getValueType(VT));
6961     return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6962   } else if (VT.getSizeInBits() == 32) {
6963     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6964     if (Idx == 0)
6965       return Op;
6966 
6967     // SHUFPS the element to the lowest double word, then movss.
6968     int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6969     EVT VVT = Op.getOperand(0).getValueType();
6970     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6971                                        DAG.getUNDEF(VVT), Mask);
6972     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6973                        DAG.getIntPtrConstant(0));
6974   } else if (VT.getSizeInBits() == 64) {
6975     // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6976     // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6977     //        to match extract_elt for f64.
6978     unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6979     if (Idx == 0)
6980       return Op;
6981 
6982     // UNPCKHPD the element to the lowest double word, then movsd.
6983     // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6984     // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6985     int Mask[2] = { 1, -1 };
6986     EVT VVT = Op.getOperand(0).getValueType();
6987     SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6988                                        DAG.getUNDEF(VVT), Mask);
6989     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6990                        DAG.getIntPtrConstant(0));
6991   }
6992 
6993   return SDValue();
6994 }
6995 
6996 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,SelectionDAG & DAG) const6997 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6998                                                SelectionDAG &DAG) const {
6999   EVT VT = Op.getValueType();
7000   EVT EltVT = VT.getVectorElementType();
7001   DebugLoc dl = Op.getDebugLoc();
7002 
7003   SDValue N0 = Op.getOperand(0);
7004   SDValue N1 = Op.getOperand(1);
7005   SDValue N2 = Op.getOperand(2);
7006 
7007   if (VT.getSizeInBits() == 256)
7008     return SDValue();
7009 
7010   if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7011       isa<ConstantSDNode>(N2)) {
7012     unsigned Opc;
7013     if (VT == MVT::v8i16)
7014       Opc = X86ISD::PINSRW;
7015     else if (VT == MVT::v16i8)
7016       Opc = X86ISD::PINSRB;
7017     else
7018       Opc = X86ISD::PINSRB;
7019 
7020     // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7021     // argument.
7022     if (N1.getValueType() != MVT::i32)
7023       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7024     if (N2.getValueType() != MVT::i32)
7025       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7026     return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7027   } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7028     // Bits [7:6] of the constant are the source select.  This will always be
7029     //  zero here.  The DAG Combiner may combine an extract_elt index into these
7030     //  bits.  For example (insert (extract, 3), 2) could be matched by putting
7031     //  the '3' into bits [7:6] of X86ISD::INSERTPS.
7032     // Bits [5:4] of the constant are the destination select.  This is the
7033     //  value of the incoming immediate.
7034     // Bits [3:0] of the constant are the zero mask.  The DAG Combiner may
7035     //   combine either bitwise AND or insert of float 0.0 to set these bits.
7036     N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7037     // Create this as a scalar to vector..
7038     N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7039     return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7040   } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7041     // PINSR* works with constant index.
7042     return Op;
7043   }
7044   return SDValue();
7045 }
7046 
7047 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7048 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7049   EVT VT = Op.getValueType();
7050   EVT EltVT = VT.getVectorElementType();
7051 
7052   DebugLoc dl = Op.getDebugLoc();
7053   SDValue N0 = Op.getOperand(0);
7054   SDValue N1 = Op.getOperand(1);
7055   SDValue N2 = Op.getOperand(2);
7056 
7057   // If this is a 256-bit vector result, first extract the 128-bit vector,
7058   // insert the element into the extracted half and then place it back.
7059   if (VT.getSizeInBits() == 256) {
7060     if (!isa<ConstantSDNode>(N2))
7061       return SDValue();
7062 
7063     // Get the desired 128-bit vector half.
7064     unsigned NumElems = VT.getVectorNumElements();
7065     unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7066     bool Upper = IdxVal >= NumElems/2;
7067     SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7068     SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7069 
7070     // Insert the element into the desired half.
7071     V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7072                  N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7073 
7074     // Insert the changed part back to the 256-bit vector
7075     return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7076   }
7077 
7078   if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7079     return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7080 
7081   if (EltVT == MVT::i8)
7082     return SDValue();
7083 
7084   if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7085     // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7086     // as its second argument.
7087     if (N1.getValueType() != MVT::i32)
7088       N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7089     if (N2.getValueType() != MVT::i32)
7090       N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7091     return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7092   }
7093   return SDValue();
7094 }
7095 
7096 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const7097 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7098   LLVMContext *Context = DAG.getContext();
7099   DebugLoc dl = Op.getDebugLoc();
7100   EVT OpVT = Op.getValueType();
7101 
7102   // If this is a 256-bit vector result, first insert into a 128-bit
7103   // vector and then insert into the 256-bit vector.
7104   if (OpVT.getSizeInBits() > 128) {
7105     // Insert into a 128-bit vector.
7106     EVT VT128 = EVT::getVectorVT(*Context,
7107                                  OpVT.getVectorElementType(),
7108                                  OpVT.getVectorNumElements() / 2);
7109 
7110     Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7111 
7112     // Insert the 128-bit vector.
7113     return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7114                               DAG.getConstant(0, MVT::i32),
7115                               DAG, dl);
7116   }
7117 
7118   if (Op.getValueType() == MVT::v1i64 &&
7119       Op.getOperand(0).getValueType() == MVT::i64)
7120     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7121 
7122   SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7123   assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7124          "Expected an SSE type!");
7125   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7126                      DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7127 }
7128 
7129 // Lower a node with an EXTRACT_SUBVECTOR opcode.  This may result in
7130 // a simple subregister reference or explicit instructions to grab
7131 // upper bits of a vector.
7132 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7133 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7134   if (Subtarget->hasAVX()) {
7135     DebugLoc dl = Op.getNode()->getDebugLoc();
7136     SDValue Vec = Op.getNode()->getOperand(0);
7137     SDValue Idx = Op.getNode()->getOperand(1);
7138 
7139     if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7140         && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7141         return Extract128BitVector(Vec, Idx, DAG, dl);
7142     }
7143   }
7144   return SDValue();
7145 }
7146 
7147 // Lower a node with an INSERT_SUBVECTOR opcode.  This may result in a
7148 // simple superregister reference or explicit instructions to insert
7149 // the upper bits of a vector.
7150 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7151 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7152   if (Subtarget->hasAVX()) {
7153     DebugLoc dl = Op.getNode()->getDebugLoc();
7154     SDValue Vec = Op.getNode()->getOperand(0);
7155     SDValue SubVec = Op.getNode()->getOperand(1);
7156     SDValue Idx = Op.getNode()->getOperand(2);
7157 
7158     if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7159         && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7160       return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7161     }
7162   }
7163   return SDValue();
7164 }
7165 
7166 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7167 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7168 // one of the above mentioned nodes. It has to be wrapped because otherwise
7169 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7170 // be used to form addressing mode. These wrapped nodes will be selected
7171 // into MOV32ri.
7172 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const7173 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7174   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7175 
7176   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7177   // global base reg.
7178   unsigned char OpFlag = 0;
7179   unsigned WrapperKind = X86ISD::Wrapper;
7180   CodeModel::Model M = getTargetMachine().getCodeModel();
7181 
7182   if (Subtarget->isPICStyleRIPRel() &&
7183       (M == CodeModel::Small || M == CodeModel::Kernel))
7184     WrapperKind = X86ISD::WrapperRIP;
7185   else if (Subtarget->isPICStyleGOT())
7186     OpFlag = X86II::MO_GOTOFF;
7187   else if (Subtarget->isPICStyleStubPIC())
7188     OpFlag = X86II::MO_PIC_BASE_OFFSET;
7189 
7190   SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7191                                              CP->getAlignment(),
7192                                              CP->getOffset(), OpFlag);
7193   DebugLoc DL = CP->getDebugLoc();
7194   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7195   // With PIC, the address is actually $g + Offset.
7196   if (OpFlag) {
7197     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7198                          DAG.getNode(X86ISD::GlobalBaseReg,
7199                                      DebugLoc(), getPointerTy()),
7200                          Result);
7201   }
7202 
7203   return Result;
7204 }
7205 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const7206 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7207   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7208 
7209   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7210   // global base reg.
7211   unsigned char OpFlag = 0;
7212   unsigned WrapperKind = X86ISD::Wrapper;
7213   CodeModel::Model M = getTargetMachine().getCodeModel();
7214 
7215   if (Subtarget->isPICStyleRIPRel() &&
7216       (M == CodeModel::Small || M == CodeModel::Kernel))
7217     WrapperKind = X86ISD::WrapperRIP;
7218   else if (Subtarget->isPICStyleGOT())
7219     OpFlag = X86II::MO_GOTOFF;
7220   else if (Subtarget->isPICStyleStubPIC())
7221     OpFlag = X86II::MO_PIC_BASE_OFFSET;
7222 
7223   SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7224                                           OpFlag);
7225   DebugLoc DL = JT->getDebugLoc();
7226   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7227 
7228   // With PIC, the address is actually $g + Offset.
7229   if (OpFlag)
7230     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7231                          DAG.getNode(X86ISD::GlobalBaseReg,
7232                                      DebugLoc(), getPointerTy()),
7233                          Result);
7234 
7235   return Result;
7236 }
7237 
7238 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const7239 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7240   const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7241 
7242   // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7243   // global base reg.
7244   unsigned char OpFlag = 0;
7245   unsigned WrapperKind = X86ISD::Wrapper;
7246   CodeModel::Model M = getTargetMachine().getCodeModel();
7247 
7248   if (Subtarget->isPICStyleRIPRel() &&
7249       (M == CodeModel::Small || M == CodeModel::Kernel)) {
7250     if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7251       OpFlag = X86II::MO_GOTPCREL;
7252     WrapperKind = X86ISD::WrapperRIP;
7253   } else if (Subtarget->isPICStyleGOT()) {
7254     OpFlag = X86II::MO_GOT;
7255   } else if (Subtarget->isPICStyleStubPIC()) {
7256     OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7257   } else if (Subtarget->isPICStyleStubNoDynamic()) {
7258     OpFlag = X86II::MO_DARWIN_NONLAZY;
7259   }
7260 
7261   SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7262 
7263   DebugLoc DL = Op.getDebugLoc();
7264   Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7265 
7266 
7267   // With PIC, the address is actually $g + Offset.
7268   if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7269       !Subtarget->is64Bit()) {
7270     Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7271                          DAG.getNode(X86ISD::GlobalBaseReg,
7272                                      DebugLoc(), getPointerTy()),
7273                          Result);
7274   }
7275 
7276   // For symbols that require a load from a stub to get the address, emit the
7277   // load.
7278   if (isGlobalStubReference(OpFlag))
7279     Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7280                          MachinePointerInfo::getGOT(), false, false, 0);
7281 
7282   return Result;
7283 }
7284 
7285 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const7286 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7287   // Create the TargetBlockAddressAddress node.
7288   unsigned char OpFlags =
7289     Subtarget->ClassifyBlockAddressReference();
7290   CodeModel::Model M = getTargetMachine().getCodeModel();
7291   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7292   DebugLoc dl = Op.getDebugLoc();
7293   SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7294                                        /*isTarget=*/true, OpFlags);
7295 
7296   if (Subtarget->isPICStyleRIPRel() &&
7297       (M == CodeModel::Small || M == CodeModel::Kernel))
7298     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7299   else
7300     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7301 
7302   // With PIC, the address is actually $g + Offset.
7303   if (isGlobalRelativeToPICBase(OpFlags)) {
7304     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7305                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7306                          Result);
7307   }
7308 
7309   return Result;
7310 }
7311 
7312 SDValue
LowerGlobalAddress(const GlobalValue * GV,DebugLoc dl,int64_t Offset,SelectionDAG & DAG) const7313 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7314                                       int64_t Offset,
7315                                       SelectionDAG &DAG) const {
7316   // Create the TargetGlobalAddress node, folding in the constant
7317   // offset if it is legal.
7318   unsigned char OpFlags =
7319     Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7320   CodeModel::Model M = getTargetMachine().getCodeModel();
7321   SDValue Result;
7322   if (OpFlags == X86II::MO_NO_FLAG &&
7323       X86::isOffsetSuitableForCodeModel(Offset, M)) {
7324     // A direct static reference to a global.
7325     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7326     Offset = 0;
7327   } else {
7328     Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7329   }
7330 
7331   if (Subtarget->isPICStyleRIPRel() &&
7332       (M == CodeModel::Small || M == CodeModel::Kernel))
7333     Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7334   else
7335     Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7336 
7337   // With PIC, the address is actually $g + Offset.
7338   if (isGlobalRelativeToPICBase(OpFlags)) {
7339     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7340                          DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7341                          Result);
7342   }
7343 
7344   // For globals that require a load from a stub to get the address, emit the
7345   // load.
7346   if (isGlobalStubReference(OpFlags))
7347     Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7348                          MachinePointerInfo::getGOT(), false, false, 0);
7349 
7350   // If there was a non-zero offset that we didn't fold, create an explicit
7351   // addition for it.
7352   if (Offset != 0)
7353     Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7354                          DAG.getConstant(Offset, getPointerTy()));
7355 
7356   return Result;
7357 }
7358 
7359 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const7360 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7361   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7362   int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7363   return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7364 }
7365 
7366 static SDValue
GetTLSADDR(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue * InFlag,const EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags)7367 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7368            SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7369            unsigned char OperandFlags) {
7370   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7371   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7372   DebugLoc dl = GA->getDebugLoc();
7373   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7374                                            GA->getValueType(0),
7375                                            GA->getOffset(),
7376                                            OperandFlags);
7377   if (InFlag) {
7378     SDValue Ops[] = { Chain,  TGA, *InFlag };
7379     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7380   } else {
7381     SDValue Ops[]  = { Chain, TGA };
7382     Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7383   }
7384 
7385   // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7386   MFI->setAdjustsStack(true);
7387 
7388   SDValue Flag = Chain.getValue(1);
7389   return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7390 }
7391 
7392 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7393 static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT)7394 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7395                                 const EVT PtrVT) {
7396   SDValue InFlag;
7397   DebugLoc dl = GA->getDebugLoc();  // ? function entry point might be better
7398   SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7399                                      DAG.getNode(X86ISD::GlobalBaseReg,
7400                                                  DebugLoc(), PtrVT), InFlag);
7401   InFlag = Chain.getValue(1);
7402 
7403   return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7404 }
7405 
7406 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7407 static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT)7408 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7409                                 const EVT PtrVT) {
7410   return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7411                     X86::RAX, X86II::MO_TLSGD);
7412 }
7413 
7414 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7415 // "local exec" model.
LowerToTLSExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT,TLSModel::Model model,bool is64Bit)7416 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7417                                    const EVT PtrVT, TLSModel::Model model,
7418                                    bool is64Bit) {
7419   DebugLoc dl = GA->getDebugLoc();
7420 
7421   // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7422   Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7423                                                          is64Bit ? 257 : 256));
7424 
7425   SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7426                                       DAG.getIntPtrConstant(0),
7427                                       MachinePointerInfo(Ptr), false, false, 0);
7428 
7429   unsigned char OperandFlags = 0;
7430   // Most TLS accesses are not RIP relative, even on x86-64.  One exception is
7431   // initialexec.
7432   unsigned WrapperKind = X86ISD::Wrapper;
7433   if (model == TLSModel::LocalExec) {
7434     OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7435   } else if (is64Bit) {
7436     assert(model == TLSModel::InitialExec);
7437     OperandFlags = X86II::MO_GOTTPOFF;
7438     WrapperKind = X86ISD::WrapperRIP;
7439   } else {
7440     assert(model == TLSModel::InitialExec);
7441     OperandFlags = X86II::MO_INDNTPOFF;
7442   }
7443 
7444   // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7445   // exec)
7446   SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7447                                            GA->getValueType(0),
7448                                            GA->getOffset(), OperandFlags);
7449   SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7450 
7451   if (model == TLSModel::InitialExec)
7452     Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7453                          MachinePointerInfo::getGOT(), false, false, 0);
7454 
7455   // The address of the thread local variable is the add of the thread
7456   // pointer with the offset of the variable.
7457   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7458 }
7459 
7460 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const7461 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7462 
7463   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7464   const GlobalValue *GV = GA->getGlobal();
7465 
7466   if (Subtarget->isTargetELF()) {
7467     // TODO: implement the "local dynamic" model
7468     // TODO: implement the "initial exec"model for pic executables
7469 
7470     // If GV is an alias then use the aliasee for determining
7471     // thread-localness.
7472     if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7473       GV = GA->resolveAliasedGlobal(false);
7474 
7475     TLSModel::Model model
7476       = getTLSModel(GV, getTargetMachine().getRelocationModel());
7477 
7478     switch (model) {
7479       case TLSModel::GeneralDynamic:
7480       case TLSModel::LocalDynamic: // not implemented
7481         if (Subtarget->is64Bit())
7482           return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7483         return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7484 
7485       case TLSModel::InitialExec:
7486       case TLSModel::LocalExec:
7487         return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7488                                    Subtarget->is64Bit());
7489     }
7490   } else if (Subtarget->isTargetDarwin()) {
7491     // Darwin only has one model of TLS.  Lower to that.
7492     unsigned char OpFlag = 0;
7493     unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7494                            X86ISD::WrapperRIP : X86ISD::Wrapper;
7495 
7496     // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7497     // global base reg.
7498     bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7499                   !Subtarget->is64Bit();
7500     if (PIC32)
7501       OpFlag = X86II::MO_TLVP_PIC_BASE;
7502     else
7503       OpFlag = X86II::MO_TLVP;
7504     DebugLoc DL = Op.getDebugLoc();
7505     SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7506                                                 GA->getValueType(0),
7507                                                 GA->getOffset(), OpFlag);
7508     SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7509 
7510     // With PIC32, the address is actually $g + Offset.
7511     if (PIC32)
7512       Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7513                            DAG.getNode(X86ISD::GlobalBaseReg,
7514                                        DebugLoc(), getPointerTy()),
7515                            Offset);
7516 
7517     // Lowering the machine isd will make sure everything is in the right
7518     // location.
7519     SDValue Chain = DAG.getEntryNode();
7520     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7521     SDValue Args[] = { Chain, Offset };
7522     Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7523 
7524     // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7525     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7526     MFI->setAdjustsStack(true);
7527 
7528     // And our return value (tls address) is in the standard call return value
7529     // location.
7530     unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7531     return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7532                               Chain.getValue(1));
7533   }
7534 
7535   assert(false &&
7536          "TLS not implemented for this target.");
7537 
7538   llvm_unreachable("Unreachable");
7539   return SDValue();
7540 }
7541 
7542 
7543 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7544 /// take a 2 x i32 value to shift plus a shift amount.
LowerShiftParts(SDValue Op,SelectionDAG & DAG) const7545 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7546   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7547   EVT VT = Op.getValueType();
7548   unsigned VTBits = VT.getSizeInBits();
7549   DebugLoc dl = Op.getDebugLoc();
7550   bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7551   SDValue ShOpLo = Op.getOperand(0);
7552   SDValue ShOpHi = Op.getOperand(1);
7553   SDValue ShAmt  = Op.getOperand(2);
7554   SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7555                                      DAG.getConstant(VTBits - 1, MVT::i8))
7556                        : DAG.getConstant(0, VT);
7557 
7558   SDValue Tmp2, Tmp3;
7559   if (Op.getOpcode() == ISD::SHL_PARTS) {
7560     Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7561     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7562   } else {
7563     Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7564     Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7565   }
7566 
7567   SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7568                                 DAG.getConstant(VTBits, MVT::i8));
7569   SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7570                              AndNode, DAG.getConstant(0, MVT::i8));
7571 
7572   SDValue Hi, Lo;
7573   SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7574   SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7575   SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7576 
7577   if (Op.getOpcode() == ISD::SHL_PARTS) {
7578     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7579     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7580   } else {
7581     Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7582     Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7583   }
7584 
7585   SDValue Ops[2] = { Lo, Hi };
7586   return DAG.getMergeValues(Ops, 2, dl);
7587 }
7588 
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7589 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7590                                            SelectionDAG &DAG) const {
7591   EVT SrcVT = Op.getOperand(0).getValueType();
7592 
7593   if (SrcVT.isVector())
7594     return SDValue();
7595 
7596   assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7597          "Unknown SINT_TO_FP to lower!");
7598 
7599   // These are really Legal; return the operand so the caller accepts it as
7600   // Legal.
7601   if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7602     return Op;
7603   if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7604       Subtarget->is64Bit()) {
7605     return Op;
7606   }
7607 
7608   DebugLoc dl = Op.getDebugLoc();
7609   unsigned Size = SrcVT.getSizeInBits()/8;
7610   MachineFunction &MF = DAG.getMachineFunction();
7611   int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7612   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7613   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7614                                StackSlot,
7615                                MachinePointerInfo::getFixedStack(SSFI),
7616                                false, false, 0);
7617   return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7618 }
7619 
BuildFILD(SDValue Op,EVT SrcVT,SDValue Chain,SDValue StackSlot,SelectionDAG & DAG) const7620 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7621                                      SDValue StackSlot,
7622                                      SelectionDAG &DAG) const {
7623   // Build the FILD
7624   DebugLoc DL = Op.getDebugLoc();
7625   SDVTList Tys;
7626   bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7627   if (useSSE)
7628     Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7629   else
7630     Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7631 
7632   unsigned ByteSize = SrcVT.getSizeInBits()/8;
7633 
7634   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7635   MachineMemOperand *MMO;
7636   if (FI) {
7637     int SSFI = FI->getIndex();
7638     MMO =
7639       DAG.getMachineFunction()
7640       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7641                             MachineMemOperand::MOLoad, ByteSize, ByteSize);
7642   } else {
7643     MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7644     StackSlot = StackSlot.getOperand(1);
7645   }
7646   SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7647   SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7648                                            X86ISD::FILD, DL,
7649                                            Tys, Ops, array_lengthof(Ops),
7650                                            SrcVT, MMO);
7651 
7652   if (useSSE) {
7653     Chain = Result.getValue(1);
7654     SDValue InFlag = Result.getValue(2);
7655 
7656     // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7657     // shouldn't be necessary except that RFP cannot be live across
7658     // multiple blocks. When stackifier is fixed, they can be uncoupled.
7659     MachineFunction &MF = DAG.getMachineFunction();
7660     unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7661     int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7662     SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7663     Tys = DAG.getVTList(MVT::Other);
7664     SDValue Ops[] = {
7665       Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7666     };
7667     MachineMemOperand *MMO =
7668       DAG.getMachineFunction()
7669       .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7670                             MachineMemOperand::MOStore, SSFISize, SSFISize);
7671 
7672     Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7673                                     Ops, array_lengthof(Ops),
7674                                     Op.getValueType(), MMO);
7675     Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7676                          MachinePointerInfo::getFixedStack(SSFI),
7677                          false, false, 0);
7678   }
7679 
7680   return Result;
7681 }
7682 
7683 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
LowerUINT_TO_FP_i64(SDValue Op,SelectionDAG & DAG) const7684 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7685                                                SelectionDAG &DAG) const {
7686   // This algorithm is not obvious. Here it is in C code, more or less:
7687   /*
7688     double uint64_to_double( uint32_t hi, uint32_t lo ) {
7689       static const __m128i exp = { 0x4330000045300000ULL, 0 };
7690       static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7691 
7692       // Copy ints to xmm registers.
7693       __m128i xh = _mm_cvtsi32_si128( hi );
7694       __m128i xl = _mm_cvtsi32_si128( lo );
7695 
7696       // Combine into low half of a single xmm register.
7697       __m128i x = _mm_unpacklo_epi32( xh, xl );
7698       __m128d d;
7699       double sd;
7700 
7701       // Merge in appropriate exponents to give the integer bits the right
7702       // magnitude.
7703       x = _mm_unpacklo_epi32( x, exp );
7704 
7705       // Subtract away the biases to deal with the IEEE-754 double precision
7706       // implicit 1.
7707       d = _mm_sub_pd( (__m128d) x, bias );
7708 
7709       // All conversions up to here are exact. The correctly rounded result is
7710       // calculated using the current rounding mode using the following
7711       // horizontal add.
7712       d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7713       _mm_store_sd( &sd, d );   // Because we are returning doubles in XMM, this
7714                                 // store doesn't really need to be here (except
7715                                 // maybe to zero the other double)
7716       return sd;
7717     }
7718   */
7719 
7720   DebugLoc dl = Op.getDebugLoc();
7721   LLVMContext *Context = DAG.getContext();
7722 
7723   // Build some magic constants.
7724   std::vector<Constant*> CV0;
7725   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7726   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7727   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7728   CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7729   Constant *C0 = ConstantVector::get(CV0);
7730   SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7731 
7732   std::vector<Constant*> CV1;
7733   CV1.push_back(
7734     ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7735   CV1.push_back(
7736     ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7737   Constant *C1 = ConstantVector::get(CV1);
7738   SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7739 
7740   SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7741                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7742                                         Op.getOperand(0),
7743                                         DAG.getIntPtrConstant(1)));
7744   SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7745                             DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7746                                         Op.getOperand(0),
7747                                         DAG.getIntPtrConstant(0)));
7748   SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7749   SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7750                               MachinePointerInfo::getConstantPool(),
7751                               false, false, 16);
7752   SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7753   SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7754   SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7755                               MachinePointerInfo::getConstantPool(),
7756                               false, false, 16);
7757   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7758 
7759   // Add the halves; easiest way is to swap them into another reg first.
7760   int ShufMask[2] = { 1, -1 };
7761   SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7762                                       DAG.getUNDEF(MVT::v2f64), ShufMask);
7763   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7764   return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7765                      DAG.getIntPtrConstant(0));
7766 }
7767 
7768 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
LowerUINT_TO_FP_i32(SDValue Op,SelectionDAG & DAG) const7769 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7770                                                SelectionDAG &DAG) const {
7771   DebugLoc dl = Op.getDebugLoc();
7772   // FP constant to bias correct the final result.
7773   SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7774                                    MVT::f64);
7775 
7776   // Load the 32-bit value into an XMM register.
7777   SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7778                              Op.getOperand(0));
7779 
7780   // Zero out the upper parts of the register.
7781   Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7782                                      DAG);
7783 
7784   Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7785                      DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7786                      DAG.getIntPtrConstant(0));
7787 
7788   // Or the load with the bias.
7789   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7790                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7791                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7792                                                    MVT::v2f64, Load)),
7793                            DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7794                                        DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7795                                                    MVT::v2f64, Bias)));
7796   Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7797                    DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7798                    DAG.getIntPtrConstant(0));
7799 
7800   // Subtract the bias.
7801   SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7802 
7803   // Handle final rounding.
7804   EVT DestVT = Op.getValueType();
7805 
7806   if (DestVT.bitsLT(MVT::f64)) {
7807     return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7808                        DAG.getIntPtrConstant(0));
7809   } else if (DestVT.bitsGT(MVT::f64)) {
7810     return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7811   }
7812 
7813   // Handle final rounding.
7814   return Sub;
7815 }
7816 
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7817 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7818                                            SelectionDAG &DAG) const {
7819   SDValue N0 = Op.getOperand(0);
7820   DebugLoc dl = Op.getDebugLoc();
7821 
7822   // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7823   // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7824   // the optimization here.
7825   if (DAG.SignBitIsZero(N0))
7826     return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7827 
7828   EVT SrcVT = N0.getValueType();
7829   EVT DstVT = Op.getValueType();
7830   if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7831     return LowerUINT_TO_FP_i64(Op, DAG);
7832   else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7833     return LowerUINT_TO_FP_i32(Op, DAG);
7834 
7835   // Make a 64-bit buffer, and use it to build an FILD.
7836   SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7837   if (SrcVT == MVT::i32) {
7838     SDValue WordOff = DAG.getConstant(4, getPointerTy());
7839     SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7840                                      getPointerTy(), StackSlot, WordOff);
7841     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7842                                   StackSlot, MachinePointerInfo(),
7843                                   false, false, 0);
7844     SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7845                                   OffsetSlot, MachinePointerInfo(),
7846                                   false, false, 0);
7847     SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7848     return Fild;
7849   }
7850 
7851   assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7852   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7853                                 StackSlot, MachinePointerInfo(),
7854                                false, false, 0);
7855   // For i64 source, we need to add the appropriate power of 2 if the input
7856   // was negative.  This is the same as the optimization in
7857   // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7858   // we must be careful to do the computation in x87 extended precision, not
7859   // in SSE. (The generic code can't know it's OK to do this, or how to.)
7860   int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7861   MachineMemOperand *MMO =
7862     DAG.getMachineFunction()
7863     .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7864                           MachineMemOperand::MOLoad, 8, 8);
7865 
7866   SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7867   SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7868   SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7869                                          MVT::i64, MMO);
7870 
7871   APInt FF(32, 0x5F800000ULL);
7872 
7873   // Check whether the sign bit is set.
7874   SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7875                                  Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7876                                  ISD::SETLT);
7877 
7878   // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7879   SDValue FudgePtr = DAG.getConstantPool(
7880                              ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7881                                          getPointerTy());
7882 
7883   // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7884   SDValue Zero = DAG.getIntPtrConstant(0);
7885   SDValue Four = DAG.getIntPtrConstant(4);
7886   SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7887                                Zero, Four);
7888   FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7889 
7890   // Load the value out, extending it from f32 to f80.
7891   // FIXME: Avoid the extend by constructing the right constant pool?
7892   SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7893                                  FudgePtr, MachinePointerInfo::getConstantPool(),
7894                                  MVT::f32, false, false, 4);
7895   // Extend everything to 80 bits to force it to be done on x87.
7896   SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7897   return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7898 }
7899 
7900 std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_INTHelper(SDValue Op,SelectionDAG & DAG,bool IsSigned) const7901 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7902   DebugLoc DL = Op.getDebugLoc();
7903 
7904   EVT DstTy = Op.getValueType();
7905 
7906   if (!IsSigned) {
7907     assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7908     DstTy = MVT::i64;
7909   }
7910 
7911   assert(DstTy.getSimpleVT() <= MVT::i64 &&
7912          DstTy.getSimpleVT() >= MVT::i16 &&
7913          "Unknown FP_TO_SINT to lower!");
7914 
7915   // These are really Legal.
7916   if (DstTy == MVT::i32 &&
7917       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7918     return std::make_pair(SDValue(), SDValue());
7919   if (Subtarget->is64Bit() &&
7920       DstTy == MVT::i64 &&
7921       isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7922     return std::make_pair(SDValue(), SDValue());
7923 
7924   // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7925   // stack slot.
7926   MachineFunction &MF = DAG.getMachineFunction();
7927   unsigned MemSize = DstTy.getSizeInBits()/8;
7928   int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7929   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7930 
7931 
7932 
7933   unsigned Opc;
7934   switch (DstTy.getSimpleVT().SimpleTy) {
7935   default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7936   case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7937   case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7938   case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7939   }
7940 
7941   SDValue Chain = DAG.getEntryNode();
7942   SDValue Value = Op.getOperand(0);
7943   EVT TheVT = Op.getOperand(0).getValueType();
7944   if (isScalarFPTypeInSSEReg(TheVT)) {
7945     assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7946     Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7947                          MachinePointerInfo::getFixedStack(SSFI),
7948                          false, false, 0);
7949     SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7950     SDValue Ops[] = {
7951       Chain, StackSlot, DAG.getValueType(TheVT)
7952     };
7953 
7954     MachineMemOperand *MMO =
7955       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7956                               MachineMemOperand::MOLoad, MemSize, MemSize);
7957     Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7958                                     DstTy, MMO);
7959     Chain = Value.getValue(1);
7960     SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7961     StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7962   }
7963 
7964   MachineMemOperand *MMO =
7965     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7966                             MachineMemOperand::MOStore, MemSize, MemSize);
7967 
7968   // Build the FP_TO_INT*_IN_MEM
7969   SDValue Ops[] = { Chain, Value, StackSlot };
7970   SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7971                                          Ops, 3, DstTy, MMO);
7972 
7973   return std::make_pair(FIST, StackSlot);
7974 }
7975 
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const7976 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7977                                            SelectionDAG &DAG) const {
7978   if (Op.getValueType().isVector())
7979     return SDValue();
7980 
7981   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7982   SDValue FIST = Vals.first, StackSlot = Vals.second;
7983   // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7984   if (FIST.getNode() == 0) return Op;
7985 
7986   // Load the result.
7987   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7988                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7989 }
7990 
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const7991 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7992                                            SelectionDAG &DAG) const {
7993   std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7994   SDValue FIST = Vals.first, StackSlot = Vals.second;
7995   assert(FIST.getNode() && "Unexpected failure");
7996 
7997   // Load the result.
7998   return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7999                      FIST, StackSlot, MachinePointerInfo(), false, false, 0);
8000 }
8001 
LowerFABS(SDValue Op,SelectionDAG & DAG) const8002 SDValue X86TargetLowering::LowerFABS(SDValue Op,
8003                                      SelectionDAG &DAG) const {
8004   LLVMContext *Context = DAG.getContext();
8005   DebugLoc dl = Op.getDebugLoc();
8006   EVT VT = Op.getValueType();
8007   EVT EltVT = VT;
8008   if (VT.isVector())
8009     EltVT = VT.getVectorElementType();
8010   std::vector<Constant*> CV;
8011   if (EltVT == MVT::f64) {
8012     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8013     CV.push_back(C);
8014     CV.push_back(C);
8015   } else {
8016     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8017     CV.push_back(C);
8018     CV.push_back(C);
8019     CV.push_back(C);
8020     CV.push_back(C);
8021   }
8022   Constant *C = ConstantVector::get(CV);
8023   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8024   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8025                              MachinePointerInfo::getConstantPool(),
8026                              false, false, 16);
8027   return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8028 }
8029 
LowerFNEG(SDValue Op,SelectionDAG & DAG) const8030 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8031   LLVMContext *Context = DAG.getContext();
8032   DebugLoc dl = Op.getDebugLoc();
8033   EVT VT = Op.getValueType();
8034   EVT EltVT = VT;
8035   if (VT.isVector())
8036     EltVT = VT.getVectorElementType();
8037   std::vector<Constant*> CV;
8038   if (EltVT == MVT::f64) {
8039     Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8040     CV.push_back(C);
8041     CV.push_back(C);
8042   } else {
8043     Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8044     CV.push_back(C);
8045     CV.push_back(C);
8046     CV.push_back(C);
8047     CV.push_back(C);
8048   }
8049   Constant *C = ConstantVector::get(CV);
8050   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8051   SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8052                              MachinePointerInfo::getConstantPool(),
8053                              false, false, 16);
8054   if (VT.isVector()) {
8055     return DAG.getNode(ISD::BITCAST, dl, VT,
8056                        DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8057                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8058                                 Op.getOperand(0)),
8059                     DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8060   } else {
8061     return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8062   }
8063 }
8064 
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const8065 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8066   LLVMContext *Context = DAG.getContext();
8067   SDValue Op0 = Op.getOperand(0);
8068   SDValue Op1 = Op.getOperand(1);
8069   DebugLoc dl = Op.getDebugLoc();
8070   EVT VT = Op.getValueType();
8071   EVT SrcVT = Op1.getValueType();
8072 
8073   // If second operand is smaller, extend it first.
8074   if (SrcVT.bitsLT(VT)) {
8075     Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8076     SrcVT = VT;
8077   }
8078   // And if it is bigger, shrink it first.
8079   if (SrcVT.bitsGT(VT)) {
8080     Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8081     SrcVT = VT;
8082   }
8083 
8084   // At this point the operands and the result should have the same
8085   // type, and that won't be f80 since that is not custom lowered.
8086 
8087   // First get the sign bit of second operand.
8088   std::vector<Constant*> CV;
8089   if (SrcVT == MVT::f64) {
8090     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8091     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8092   } else {
8093     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8094     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8095     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8096     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8097   }
8098   Constant *C = ConstantVector::get(CV);
8099   SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8100   SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8101                               MachinePointerInfo::getConstantPool(),
8102                               false, false, 16);
8103   SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8104 
8105   // Shift sign bit right or left if the two operands have different types.
8106   if (SrcVT.bitsGT(VT)) {
8107     // Op0 is MVT::f32, Op1 is MVT::f64.
8108     SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8109     SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8110                           DAG.getConstant(32, MVT::i32));
8111     SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8112     SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8113                           DAG.getIntPtrConstant(0));
8114   }
8115 
8116   // Clear first operand sign bit.
8117   CV.clear();
8118   if (VT == MVT::f64) {
8119     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8120     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8121   } else {
8122     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8123     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8124     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8125     CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8126   }
8127   C = ConstantVector::get(CV);
8128   CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8129   SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8130                               MachinePointerInfo::getConstantPool(),
8131                               false, false, 16);
8132   SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8133 
8134   // Or the value with the sign bit.
8135   return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8136 }
8137 
LowerFGETSIGN(SDValue Op,SelectionDAG & DAG) const8138 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8139   SDValue N0 = Op.getOperand(0);
8140   DebugLoc dl = Op.getDebugLoc();
8141   EVT VT = Op.getValueType();
8142 
8143   // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8144   SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8145                                   DAG.getConstant(1, VT));
8146   return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8147 }
8148 
8149 /// Emit nodes that will be selected as "test Op0,Op0", or something
8150 /// equivalent.
EmitTest(SDValue Op,unsigned X86CC,SelectionDAG & DAG) const8151 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8152                                     SelectionDAG &DAG) const {
8153   DebugLoc dl = Op.getDebugLoc();
8154 
8155   // CF and OF aren't always set the way we want. Determine which
8156   // of these we need.
8157   bool NeedCF = false;
8158   bool NeedOF = false;
8159   switch (X86CC) {
8160   default: break;
8161   case X86::COND_A: case X86::COND_AE:
8162   case X86::COND_B: case X86::COND_BE:
8163     NeedCF = true;
8164     break;
8165   case X86::COND_G: case X86::COND_GE:
8166   case X86::COND_L: case X86::COND_LE:
8167   case X86::COND_O: case X86::COND_NO:
8168     NeedOF = true;
8169     break;
8170   }
8171 
8172   // See if we can use the EFLAGS value from the operand instead of
8173   // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8174   // we prove that the arithmetic won't overflow, we can't use OF or CF.
8175   if (Op.getResNo() != 0 || NeedOF || NeedCF)
8176     // Emit a CMP with 0, which is the TEST pattern.
8177     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8178                        DAG.getConstant(0, Op.getValueType()));
8179 
8180   unsigned Opcode = 0;
8181   unsigned NumOperands = 0;
8182   switch (Op.getNode()->getOpcode()) {
8183   case ISD::ADD:
8184     // Due to an isel shortcoming, be conservative if this add is likely to be
8185     // selected as part of a load-modify-store instruction. When the root node
8186     // in a match is a store, isel doesn't know how to remap non-chain non-flag
8187     // uses of other nodes in the match, such as the ADD in this case. This
8188     // leads to the ADD being left around and reselected, with the result being
8189     // two adds in the output.  Alas, even if none our users are stores, that
8190     // doesn't prove we're O.K.  Ergo, if we have any parents that aren't
8191     // CopyToReg or SETCC, eschew INC/DEC.  A better fix seems to require
8192     // climbing the DAG back to the root, and it doesn't seem to be worth the
8193     // effort.
8194     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8195            UE = Op.getNode()->use_end(); UI != UE; ++UI)
8196       if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8197         goto default_case;
8198 
8199     if (ConstantSDNode *C =
8200         dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8201       // An add of one will be selected as an INC.
8202       if (C->getAPIntValue() == 1) {
8203         Opcode = X86ISD::INC;
8204         NumOperands = 1;
8205         break;
8206       }
8207 
8208       // An add of negative one (subtract of one) will be selected as a DEC.
8209       if (C->getAPIntValue().isAllOnesValue()) {
8210         Opcode = X86ISD::DEC;
8211         NumOperands = 1;
8212         break;
8213       }
8214     }
8215 
8216     // Otherwise use a regular EFLAGS-setting add.
8217     Opcode = X86ISD::ADD;
8218     NumOperands = 2;
8219     break;
8220   case ISD::AND: {
8221     // If the primary and result isn't used, don't bother using X86ISD::AND,
8222     // because a TEST instruction will be better.
8223     bool NonFlagUse = false;
8224     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8225            UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8226       SDNode *User = *UI;
8227       unsigned UOpNo = UI.getOperandNo();
8228       if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8229         // Look pass truncate.
8230         UOpNo = User->use_begin().getOperandNo();
8231         User = *User->use_begin();
8232       }
8233 
8234       if (User->getOpcode() != ISD::BRCOND &&
8235           User->getOpcode() != ISD::SETCC &&
8236           (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8237         NonFlagUse = true;
8238         break;
8239       }
8240     }
8241 
8242     if (!NonFlagUse)
8243       break;
8244   }
8245     // FALL THROUGH
8246   case ISD::SUB:
8247   case ISD::OR:
8248   case ISD::XOR:
8249     // Due to the ISEL shortcoming noted above, be conservative if this op is
8250     // likely to be selected as part of a load-modify-store instruction.
8251     for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8252            UE = Op.getNode()->use_end(); UI != UE; ++UI)
8253       if (UI->getOpcode() == ISD::STORE)
8254         goto default_case;
8255 
8256     // Otherwise use a regular EFLAGS-setting instruction.
8257     switch (Op.getNode()->getOpcode()) {
8258     default: llvm_unreachable("unexpected operator!");
8259     case ISD::SUB: Opcode = X86ISD::SUB; break;
8260     case ISD::OR:  Opcode = X86ISD::OR;  break;
8261     case ISD::XOR: Opcode = X86ISD::XOR; break;
8262     case ISD::AND: Opcode = X86ISD::AND; break;
8263     }
8264 
8265     NumOperands = 2;
8266     break;
8267   case X86ISD::ADD:
8268   case X86ISD::SUB:
8269   case X86ISD::INC:
8270   case X86ISD::DEC:
8271   case X86ISD::OR:
8272   case X86ISD::XOR:
8273   case X86ISD::AND:
8274     return SDValue(Op.getNode(), 1);
8275   default:
8276   default_case:
8277     break;
8278   }
8279 
8280   if (Opcode == 0)
8281     // Emit a CMP with 0, which is the TEST pattern.
8282     return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8283                        DAG.getConstant(0, Op.getValueType()));
8284 
8285   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8286   SmallVector<SDValue, 4> Ops;
8287   for (unsigned i = 0; i != NumOperands; ++i)
8288     Ops.push_back(Op.getOperand(i));
8289 
8290   SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8291   DAG.ReplaceAllUsesWith(Op, New);
8292   return SDValue(New.getNode(), 1);
8293 }
8294 
8295 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8296 /// equivalent.
EmitCmp(SDValue Op0,SDValue Op1,unsigned X86CC,SelectionDAG & DAG) const8297 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8298                                    SelectionDAG &DAG) const {
8299   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8300     if (C->getAPIntValue() == 0)
8301       return EmitTest(Op0, X86CC, DAG);
8302 
8303   DebugLoc dl = Op0.getDebugLoc();
8304   return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8305 }
8306 
8307 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8308 /// if it's possible.
LowerToBT(SDValue And,ISD::CondCode CC,DebugLoc dl,SelectionDAG & DAG) const8309 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8310                                      DebugLoc dl, SelectionDAG &DAG) const {
8311   SDValue Op0 = And.getOperand(0);
8312   SDValue Op1 = And.getOperand(1);
8313   if (Op0.getOpcode() == ISD::TRUNCATE)
8314     Op0 = Op0.getOperand(0);
8315   if (Op1.getOpcode() == ISD::TRUNCATE)
8316     Op1 = Op1.getOperand(0);
8317 
8318   SDValue LHS, RHS;
8319   if (Op1.getOpcode() == ISD::SHL)
8320     std::swap(Op0, Op1);
8321   if (Op0.getOpcode() == ISD::SHL) {
8322     if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8323       if (And00C->getZExtValue() == 1) {
8324         // If we looked past a truncate, check that it's only truncating away
8325         // known zeros.
8326         unsigned BitWidth = Op0.getValueSizeInBits();
8327         unsigned AndBitWidth = And.getValueSizeInBits();
8328         if (BitWidth > AndBitWidth) {
8329           APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8330           DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8331           if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8332             return SDValue();
8333         }
8334         LHS = Op1;
8335         RHS = Op0.getOperand(1);
8336       }
8337   } else if (Op1.getOpcode() == ISD::Constant) {
8338     ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8339     SDValue AndLHS = Op0;
8340     if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8341       LHS = AndLHS.getOperand(0);
8342       RHS = AndLHS.getOperand(1);
8343     }
8344   }
8345 
8346   if (LHS.getNode()) {
8347     // If LHS is i8, promote it to i32 with any_extend.  There is no i8 BT
8348     // instruction.  Since the shift amount is in-range-or-undefined, we know
8349     // that doing a bittest on the i32 value is ok.  We extend to i32 because
8350     // the encoding for the i16 version is larger than the i32 version.
8351     // Also promote i16 to i32 for performance / code size reason.
8352     if (LHS.getValueType() == MVT::i8 ||
8353         LHS.getValueType() == MVT::i16)
8354       LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8355 
8356     // If the operand types disagree, extend the shift amount to match.  Since
8357     // BT ignores high bits (like shifts) we can use anyextend.
8358     if (LHS.getValueType() != RHS.getValueType())
8359       RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8360 
8361     SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8362     unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8363     return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8364                        DAG.getConstant(Cond, MVT::i8), BT);
8365   }
8366 
8367   return SDValue();
8368 }
8369 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const8370 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8371 
8372   if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8373 
8374   assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8375   SDValue Op0 = Op.getOperand(0);
8376   SDValue Op1 = Op.getOperand(1);
8377   DebugLoc dl = Op.getDebugLoc();
8378   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8379 
8380   // Optimize to BT if possible.
8381   // Lower (X & (1 << N)) == 0 to BT(X, N).
8382   // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8383   // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8384   if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8385       Op1.getOpcode() == ISD::Constant &&
8386       cast<ConstantSDNode>(Op1)->isNullValue() &&
8387       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8388     SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8389     if (NewSetCC.getNode())
8390       return NewSetCC;
8391   }
8392 
8393   // Look for X == 0, X == 1, X != 0, or X != 1.  We can simplify some forms of
8394   // these.
8395   if (Op1.getOpcode() == ISD::Constant &&
8396       (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8397        cast<ConstantSDNode>(Op1)->isNullValue()) &&
8398       (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8399 
8400     // If the input is a setcc, then reuse the input setcc or use a new one with
8401     // the inverted condition.
8402     if (Op0.getOpcode() == X86ISD::SETCC) {
8403       X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8404       bool Invert = (CC == ISD::SETNE) ^
8405         cast<ConstantSDNode>(Op1)->isNullValue();
8406       if (!Invert) return Op0;
8407 
8408       CCode = X86::GetOppositeBranchCondition(CCode);
8409       return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8410                          DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8411     }
8412   }
8413 
8414   bool isFP = Op1.getValueType().isFloatingPoint();
8415   unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8416   if (X86CC == X86::COND_INVALID)
8417     return SDValue();
8418 
8419   SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8420   return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8421                      DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8422 }
8423 
8424 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8425 // ones, and then concatenate the result back.
Lower256IntVSETCC(SDValue Op,SelectionDAG & DAG)8426 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8427   EVT VT = Op.getValueType();
8428 
8429   assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8430          "Unsupported value type for operation");
8431 
8432   int NumElems = VT.getVectorNumElements();
8433   DebugLoc dl = Op.getDebugLoc();
8434   SDValue CC = Op.getOperand(2);
8435   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8436   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8437 
8438   // Extract the LHS vectors
8439   SDValue LHS = Op.getOperand(0);
8440   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8441   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8442 
8443   // Extract the RHS vectors
8444   SDValue RHS = Op.getOperand(1);
8445   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8446   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8447 
8448   // Issue the operation on the smaller types and concatenate the result back
8449   MVT EltVT = VT.getVectorElementType().getSimpleVT();
8450   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8451   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8452                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8453                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8454 }
8455 
8456 
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const8457 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8458   SDValue Cond;
8459   SDValue Op0 = Op.getOperand(0);
8460   SDValue Op1 = Op.getOperand(1);
8461   SDValue CC = Op.getOperand(2);
8462   EVT VT = Op.getValueType();
8463   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8464   bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8465   DebugLoc dl = Op.getDebugLoc();
8466 
8467   if (isFP) {
8468     unsigned SSECC = 8;
8469     EVT EltVT = Op0.getValueType().getVectorElementType();
8470     assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8471 
8472     unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8473     bool Swap = false;
8474 
8475     // SSE Condition code mapping:
8476     //  0 - EQ
8477     //  1 - LT
8478     //  2 - LE
8479     //  3 - UNORD
8480     //  4 - NEQ
8481     //  5 - NLT
8482     //  6 - NLE
8483     //  7 - ORD
8484     switch (SetCCOpcode) {
8485     default: break;
8486     case ISD::SETOEQ:
8487     case ISD::SETEQ:  SSECC = 0; break;
8488     case ISD::SETOGT:
8489     case ISD::SETGT: Swap = true; // Fallthrough
8490     case ISD::SETLT:
8491     case ISD::SETOLT: SSECC = 1; break;
8492     case ISD::SETOGE:
8493     case ISD::SETGE: Swap = true; // Fallthrough
8494     case ISD::SETLE:
8495     case ISD::SETOLE: SSECC = 2; break;
8496     case ISD::SETUO:  SSECC = 3; break;
8497     case ISD::SETUNE:
8498     case ISD::SETNE:  SSECC = 4; break;
8499     case ISD::SETULE: Swap = true;
8500     case ISD::SETUGE: SSECC = 5; break;
8501     case ISD::SETULT: Swap = true;
8502     case ISD::SETUGT: SSECC = 6; break;
8503     case ISD::SETO:   SSECC = 7; break;
8504     }
8505     if (Swap)
8506       std::swap(Op0, Op1);
8507 
8508     // In the two special cases we can't handle, emit two comparisons.
8509     if (SSECC == 8) {
8510       if (SetCCOpcode == ISD::SETUEQ) {
8511         SDValue UNORD, EQ;
8512         UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8513         EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8514         return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8515       }
8516       else if (SetCCOpcode == ISD::SETONE) {
8517         SDValue ORD, NEQ;
8518         ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8519         NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8520         return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8521       }
8522       llvm_unreachable("Illegal FP comparison");
8523     }
8524     // Handle all other FP comparisons here.
8525     return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8526   }
8527 
8528   // Break 256-bit integer vector compare into smaller ones.
8529   if (!isFP && VT.getSizeInBits() == 256)
8530     return Lower256IntVSETCC(Op, DAG);
8531 
8532   // We are handling one of the integer comparisons here.  Since SSE only has
8533   // GT and EQ comparisons for integer, swapping operands and multiple
8534   // operations may be required for some comparisons.
8535   unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8536   bool Swap = false, Invert = false, FlipSigns = false;
8537 
8538   switch (VT.getSimpleVT().SimpleTy) {
8539   default: break;
8540   case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8541   case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8542   case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8543   case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8544   }
8545 
8546   switch (SetCCOpcode) {
8547   default: break;
8548   case ISD::SETNE:  Invert = true;
8549   case ISD::SETEQ:  Opc = EQOpc; break;
8550   case ISD::SETLT:  Swap = true;
8551   case ISD::SETGT:  Opc = GTOpc; break;
8552   case ISD::SETGE:  Swap = true;
8553   case ISD::SETLE:  Opc = GTOpc; Invert = true; break;
8554   case ISD::SETULT: Swap = true;
8555   case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8556   case ISD::SETUGE: Swap = true;
8557   case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8558   }
8559   if (Swap)
8560     std::swap(Op0, Op1);
8561 
8562   // Check that the operation in question is available (most are plain SSE2,
8563   // but PCMPGTQ and PCMPEQQ have different requirements).
8564   if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8565     return SDValue();
8566   if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8567     return SDValue();
8568 
8569   // Since SSE has no unsigned integer comparisons, we need to flip  the sign
8570   // bits of the inputs before performing those operations.
8571   if (FlipSigns) {
8572     EVT EltVT = VT.getVectorElementType();
8573     SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8574                                       EltVT);
8575     std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8576     SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8577                                     SignBits.size());
8578     Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8579     Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8580   }
8581 
8582   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8583 
8584   // If the logical-not of the result is required, perform that now.
8585   if (Invert)
8586     Result = DAG.getNOT(dl, Result, VT);
8587 
8588   return Result;
8589 }
8590 
8591 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
isX86LogicalCmp(SDValue Op)8592 static bool isX86LogicalCmp(SDValue Op) {
8593   unsigned Opc = Op.getNode()->getOpcode();
8594   if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8595     return true;
8596   if (Op.getResNo() == 1 &&
8597       (Opc == X86ISD::ADD ||
8598        Opc == X86ISD::SUB ||
8599        Opc == X86ISD::ADC ||
8600        Opc == X86ISD::SBB ||
8601        Opc == X86ISD::SMUL ||
8602        Opc == X86ISD::UMUL ||
8603        Opc == X86ISD::INC ||
8604        Opc == X86ISD::DEC ||
8605        Opc == X86ISD::OR ||
8606        Opc == X86ISD::XOR ||
8607        Opc == X86ISD::AND))
8608     return true;
8609 
8610   if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8611     return true;
8612 
8613   return false;
8614 }
8615 
isZero(SDValue V)8616 static bool isZero(SDValue V) {
8617   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8618   return C && C->isNullValue();
8619 }
8620 
isAllOnes(SDValue V)8621 static bool isAllOnes(SDValue V) {
8622   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8623   return C && C->isAllOnesValue();
8624 }
8625 
LowerSELECT(SDValue Op,SelectionDAG & DAG) const8626 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8627   bool addTest = true;
8628   SDValue Cond  = Op.getOperand(0);
8629   SDValue Op1 = Op.getOperand(1);
8630   SDValue Op2 = Op.getOperand(2);
8631   DebugLoc DL = Op.getDebugLoc();
8632   SDValue CC;
8633 
8634   if (Cond.getOpcode() == ISD::SETCC) {
8635     SDValue NewCond = LowerSETCC(Cond, DAG);
8636     if (NewCond.getNode())
8637       Cond = NewCond;
8638   }
8639 
8640   // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8641   // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8642   // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8643   // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8644   if (Cond.getOpcode() == X86ISD::SETCC &&
8645       Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8646       isZero(Cond.getOperand(1).getOperand(1))) {
8647     SDValue Cmp = Cond.getOperand(1);
8648 
8649     unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8650 
8651     if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8652         (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8653       SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8654 
8655       SDValue CmpOp0 = Cmp.getOperand(0);
8656       Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8657                         CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8658 
8659       SDValue Res =   // Res = 0 or -1.
8660         DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8661                     DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8662 
8663       if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8664         Res = DAG.getNOT(DL, Res, Res.getValueType());
8665 
8666       ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8667       if (N2C == 0 || !N2C->isNullValue())
8668         Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8669       return Res;
8670     }
8671   }
8672 
8673   // Look past (and (setcc_carry (cmp ...)), 1).
8674   if (Cond.getOpcode() == ISD::AND &&
8675       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8676     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8677     if (C && C->getAPIntValue() == 1)
8678       Cond = Cond.getOperand(0);
8679   }
8680 
8681   // If condition flag is set by a X86ISD::CMP, then use it as the condition
8682   // setting operand in place of the X86ISD::SETCC.
8683   if (Cond.getOpcode() == X86ISD::SETCC ||
8684       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8685     CC = Cond.getOperand(0);
8686 
8687     SDValue Cmp = Cond.getOperand(1);
8688     unsigned Opc = Cmp.getOpcode();
8689     EVT VT = Op.getValueType();
8690 
8691     bool IllegalFPCMov = false;
8692     if (VT.isFloatingPoint() && !VT.isVector() &&
8693         !isScalarFPTypeInSSEReg(VT))  // FPStack?
8694       IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8695 
8696     if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8697         Opc == X86ISD::BT) { // FIXME
8698       Cond = Cmp;
8699       addTest = false;
8700     }
8701   }
8702 
8703   if (addTest) {
8704     // Look pass the truncate.
8705     if (Cond.getOpcode() == ISD::TRUNCATE)
8706       Cond = Cond.getOperand(0);
8707 
8708     // We know the result of AND is compared against zero. Try to match
8709     // it to BT.
8710     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8711       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8712       if (NewSetCC.getNode()) {
8713         CC = NewSetCC.getOperand(0);
8714         Cond = NewSetCC.getOperand(1);
8715         addTest = false;
8716       }
8717     }
8718   }
8719 
8720   if (addTest) {
8721     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8722     Cond = EmitTest(Cond, X86::COND_NE, DAG);
8723   }
8724 
8725   // a <  b ? -1 :  0 -> RES = ~setcc_carry
8726   // a <  b ?  0 : -1 -> RES = setcc_carry
8727   // a >= b ? -1 :  0 -> RES = setcc_carry
8728   // a >= b ?  0 : -1 -> RES = ~setcc_carry
8729   if (Cond.getOpcode() == X86ISD::CMP) {
8730     unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8731 
8732     if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8733         (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8734       SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8735                                 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8736       if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8737         return DAG.getNOT(DL, Res, Res.getValueType());
8738       return Res;
8739     }
8740   }
8741 
8742   // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8743   // condition is true.
8744   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8745   SDValue Ops[] = { Op2, Op1, CC, Cond };
8746   return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8747 }
8748 
8749 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8750 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8751 // from the AND / OR.
isAndOrOfSetCCs(SDValue Op,unsigned & Opc)8752 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8753   Opc = Op.getOpcode();
8754   if (Opc != ISD::OR && Opc != ISD::AND)
8755     return false;
8756   return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8757           Op.getOperand(0).hasOneUse() &&
8758           Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8759           Op.getOperand(1).hasOneUse());
8760 }
8761 
8762 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8763 // 1 and that the SETCC node has a single use.
isXor1OfSetCC(SDValue Op)8764 static bool isXor1OfSetCC(SDValue Op) {
8765   if (Op.getOpcode() != ISD::XOR)
8766     return false;
8767   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8768   if (N1C && N1C->getAPIntValue() == 1) {
8769     return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8770       Op.getOperand(0).hasOneUse();
8771   }
8772   return false;
8773 }
8774 
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const8775 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8776   bool addTest = true;
8777   SDValue Chain = Op.getOperand(0);
8778   SDValue Cond  = Op.getOperand(1);
8779   SDValue Dest  = Op.getOperand(2);
8780   DebugLoc dl = Op.getDebugLoc();
8781   SDValue CC;
8782 
8783   if (Cond.getOpcode() == ISD::SETCC) {
8784     SDValue NewCond = LowerSETCC(Cond, DAG);
8785     if (NewCond.getNode())
8786       Cond = NewCond;
8787   }
8788 #if 0
8789   // FIXME: LowerXALUO doesn't handle these!!
8790   else if (Cond.getOpcode() == X86ISD::ADD  ||
8791            Cond.getOpcode() == X86ISD::SUB  ||
8792            Cond.getOpcode() == X86ISD::SMUL ||
8793            Cond.getOpcode() == X86ISD::UMUL)
8794     Cond = LowerXALUO(Cond, DAG);
8795 #endif
8796 
8797   // Look pass (and (setcc_carry (cmp ...)), 1).
8798   if (Cond.getOpcode() == ISD::AND &&
8799       Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8800     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8801     if (C && C->getAPIntValue() == 1)
8802       Cond = Cond.getOperand(0);
8803   }
8804 
8805   // If condition flag is set by a X86ISD::CMP, then use it as the condition
8806   // setting operand in place of the X86ISD::SETCC.
8807   if (Cond.getOpcode() == X86ISD::SETCC ||
8808       Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8809     CC = Cond.getOperand(0);
8810 
8811     SDValue Cmp = Cond.getOperand(1);
8812     unsigned Opc = Cmp.getOpcode();
8813     // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8814     if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8815       Cond = Cmp;
8816       addTest = false;
8817     } else {
8818       switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8819       default: break;
8820       case X86::COND_O:
8821       case X86::COND_B:
8822         // These can only come from an arithmetic instruction with overflow,
8823         // e.g. SADDO, UADDO.
8824         Cond = Cond.getNode()->getOperand(1);
8825         addTest = false;
8826         break;
8827       }
8828     }
8829   } else {
8830     unsigned CondOpc;
8831     if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8832       SDValue Cmp = Cond.getOperand(0).getOperand(1);
8833       if (CondOpc == ISD::OR) {
8834         // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8835         // two branches instead of an explicit OR instruction with a
8836         // separate test.
8837         if (Cmp == Cond.getOperand(1).getOperand(1) &&
8838             isX86LogicalCmp(Cmp)) {
8839           CC = Cond.getOperand(0).getOperand(0);
8840           Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8841                               Chain, Dest, CC, Cmp);
8842           CC = Cond.getOperand(1).getOperand(0);
8843           Cond = Cmp;
8844           addTest = false;
8845         }
8846       } else { // ISD::AND
8847         // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8848         // two branches instead of an explicit AND instruction with a
8849         // separate test. However, we only do this if this block doesn't
8850         // have a fall-through edge, because this requires an explicit
8851         // jmp when the condition is false.
8852         if (Cmp == Cond.getOperand(1).getOperand(1) &&
8853             isX86LogicalCmp(Cmp) &&
8854             Op.getNode()->hasOneUse()) {
8855           X86::CondCode CCode =
8856             (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8857           CCode = X86::GetOppositeBranchCondition(CCode);
8858           CC = DAG.getConstant(CCode, MVT::i8);
8859           SDNode *User = *Op.getNode()->use_begin();
8860           // Look for an unconditional branch following this conditional branch.
8861           // We need this because we need to reverse the successors in order
8862           // to implement FCMP_OEQ.
8863           if (User->getOpcode() == ISD::BR) {
8864             SDValue FalseBB = User->getOperand(1);
8865             SDNode *NewBR =
8866               DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8867             assert(NewBR == User);
8868             (void)NewBR;
8869             Dest = FalseBB;
8870 
8871             Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8872                                 Chain, Dest, CC, Cmp);
8873             X86::CondCode CCode =
8874               (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8875             CCode = X86::GetOppositeBranchCondition(CCode);
8876             CC = DAG.getConstant(CCode, MVT::i8);
8877             Cond = Cmp;
8878             addTest = false;
8879           }
8880         }
8881       }
8882     } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8883       // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8884       // It should be transformed during dag combiner except when the condition
8885       // is set by a arithmetics with overflow node.
8886       X86::CondCode CCode =
8887         (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8888       CCode = X86::GetOppositeBranchCondition(CCode);
8889       CC = DAG.getConstant(CCode, MVT::i8);
8890       Cond = Cond.getOperand(0).getOperand(1);
8891       addTest = false;
8892     }
8893   }
8894 
8895   if (addTest) {
8896     // Look pass the truncate.
8897     if (Cond.getOpcode() == ISD::TRUNCATE)
8898       Cond = Cond.getOperand(0);
8899 
8900     // We know the result of AND is compared against zero. Try to match
8901     // it to BT.
8902     if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8903       SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8904       if (NewSetCC.getNode()) {
8905         CC = NewSetCC.getOperand(0);
8906         Cond = NewSetCC.getOperand(1);
8907         addTest = false;
8908       }
8909     }
8910   }
8911 
8912   if (addTest) {
8913     CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8914     Cond = EmitTest(Cond, X86::COND_NE, DAG);
8915   }
8916   return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8917                      Chain, Dest, CC, Cond);
8918 }
8919 
8920 
8921 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8922 // Calls to _alloca is needed to probe the stack when allocating more than 4k
8923 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
8924 // that the guard pages used by the OS virtual memory manager are allocated in
8925 // correct sequence.
8926 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const8927 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8928                                            SelectionDAG &DAG) const {
8929   assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8930           EnableSegmentedStacks) &&
8931          "This should be used only on Windows targets or when segmented stacks "
8932          "are being used");
8933   assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8934   DebugLoc dl = Op.getDebugLoc();
8935 
8936   // Get the inputs.
8937   SDValue Chain = Op.getOperand(0);
8938   SDValue Size  = Op.getOperand(1);
8939   // FIXME: Ensure alignment here
8940 
8941   bool Is64Bit = Subtarget->is64Bit();
8942   EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8943 
8944   if (EnableSegmentedStacks) {
8945     MachineFunction &MF = DAG.getMachineFunction();
8946     MachineRegisterInfo &MRI = MF.getRegInfo();
8947 
8948     if (Is64Bit) {
8949       // The 64 bit implementation of segmented stacks needs to clobber both r10
8950       // r11. This makes it impossible to use it along with nested parameters.
8951       const Function *F = MF.getFunction();
8952 
8953       for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8954            I != E; I++)
8955         if (I->hasNestAttr())
8956           report_fatal_error("Cannot use segmented stacks with functions that "
8957                              "have nested arguments.");
8958     }
8959 
8960     const TargetRegisterClass *AddrRegClass =
8961       getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8962     unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8963     Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8964     SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8965                                 DAG.getRegister(Vreg, SPTy));
8966     SDValue Ops1[2] = { Value, Chain };
8967     return DAG.getMergeValues(Ops1, 2, dl);
8968   } else {
8969     SDValue Flag;
8970     unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8971 
8972     Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8973     Flag = Chain.getValue(1);
8974     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8975 
8976     Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8977     Flag = Chain.getValue(1);
8978 
8979     Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8980 
8981     SDValue Ops1[2] = { Chain.getValue(0), Chain };
8982     return DAG.getMergeValues(Ops1, 2, dl);
8983   }
8984 }
8985 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const8986 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8987   MachineFunction &MF = DAG.getMachineFunction();
8988   X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8989 
8990   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8991   DebugLoc DL = Op.getDebugLoc();
8992 
8993   if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8994     // vastart just stores the address of the VarArgsFrameIndex slot into the
8995     // memory location argument.
8996     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8997                                    getPointerTy());
8998     return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8999                         MachinePointerInfo(SV), false, false, 0);
9000   }
9001 
9002   // __va_list_tag:
9003   //   gp_offset         (0 - 6 * 8)
9004   //   fp_offset         (48 - 48 + 8 * 16)
9005   //   overflow_arg_area (point to parameters coming in memory).
9006   //   reg_save_area
9007   SmallVector<SDValue, 8> MemOps;
9008   SDValue FIN = Op.getOperand(1);
9009   // Store gp_offset
9010   SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9011                                DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9012                                                MVT::i32),
9013                                FIN, MachinePointerInfo(SV), false, false, 0);
9014   MemOps.push_back(Store);
9015 
9016   // Store fp_offset
9017   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9018                     FIN, DAG.getIntPtrConstant(4));
9019   Store = DAG.getStore(Op.getOperand(0), DL,
9020                        DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9021                                        MVT::i32),
9022                        FIN, MachinePointerInfo(SV, 4), false, false, 0);
9023   MemOps.push_back(Store);
9024 
9025   // Store ptr to overflow_arg_area
9026   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9027                     FIN, DAG.getIntPtrConstant(4));
9028   SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9029                                     getPointerTy());
9030   Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9031                        MachinePointerInfo(SV, 8),
9032                        false, false, 0);
9033   MemOps.push_back(Store);
9034 
9035   // Store ptr to reg_save_area.
9036   FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9037                     FIN, DAG.getIntPtrConstant(8));
9038   SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9039                                     getPointerTy());
9040   Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9041                        MachinePointerInfo(SV, 16), false, false, 0);
9042   MemOps.push_back(Store);
9043   return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9044                      &MemOps[0], MemOps.size());
9045 }
9046 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const9047 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9048   assert(Subtarget->is64Bit() &&
9049          "LowerVAARG only handles 64-bit va_arg!");
9050   assert((Subtarget->isTargetLinux() ||
9051           Subtarget->isTargetDarwin()) &&
9052           "Unhandled target in LowerVAARG");
9053   assert(Op.getNode()->getNumOperands() == 4);
9054   SDValue Chain = Op.getOperand(0);
9055   SDValue SrcPtr = Op.getOperand(1);
9056   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9057   unsigned Align = Op.getConstantOperandVal(3);
9058   DebugLoc dl = Op.getDebugLoc();
9059 
9060   EVT ArgVT = Op.getNode()->getValueType(0);
9061   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9062   uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9063   uint8_t ArgMode;
9064 
9065   // Decide which area this value should be read from.
9066   // TODO: Implement the AMD64 ABI in its entirety. This simple
9067   // selection mechanism works only for the basic types.
9068   if (ArgVT == MVT::f80) {
9069     llvm_unreachable("va_arg for f80 not yet implemented");
9070   } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9071     ArgMode = 2;  // Argument passed in XMM register. Use fp_offset.
9072   } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9073     ArgMode = 1;  // Argument passed in GPR64 register(s). Use gp_offset.
9074   } else {
9075     llvm_unreachable("Unhandled argument type in LowerVAARG");
9076   }
9077 
9078   if (ArgMode == 2) {
9079     // Sanity Check: Make sure using fp_offset makes sense.
9080     assert(!UseSoftFloat &&
9081            !(DAG.getMachineFunction()
9082                 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9083            Subtarget->hasXMM());
9084   }
9085 
9086   // Insert VAARG_64 node into the DAG
9087   // VAARG_64 returns two values: Variable Argument Address, Chain
9088   SmallVector<SDValue, 11> InstOps;
9089   InstOps.push_back(Chain);
9090   InstOps.push_back(SrcPtr);
9091   InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9092   InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9093   InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9094   SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9095   SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9096                                           VTs, &InstOps[0], InstOps.size(),
9097                                           MVT::i64,
9098                                           MachinePointerInfo(SV),
9099                                           /*Align=*/0,
9100                                           /*Volatile=*/false,
9101                                           /*ReadMem=*/true,
9102                                           /*WriteMem=*/true);
9103   Chain = VAARG.getValue(1);
9104 
9105   // Load the next argument and return it
9106   return DAG.getLoad(ArgVT, dl,
9107                      Chain,
9108                      VAARG,
9109                      MachinePointerInfo(),
9110                      false, false, 0);
9111 }
9112 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const9113 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9114   // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9115   assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9116   SDValue Chain = Op.getOperand(0);
9117   SDValue DstPtr = Op.getOperand(1);
9118   SDValue SrcPtr = Op.getOperand(2);
9119   const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9120   const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9121   DebugLoc DL = Op.getDebugLoc();
9122 
9123   return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9124                        DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9125                        false,
9126                        MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9127 }
9128 
9129 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const9130 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9131   DebugLoc dl = Op.getDebugLoc();
9132   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9133   switch (IntNo) {
9134   default: return SDValue();    // Don't custom lower most intrinsics.
9135   // Comparison intrinsics.
9136   case Intrinsic::x86_sse_comieq_ss:
9137   case Intrinsic::x86_sse_comilt_ss:
9138   case Intrinsic::x86_sse_comile_ss:
9139   case Intrinsic::x86_sse_comigt_ss:
9140   case Intrinsic::x86_sse_comige_ss:
9141   case Intrinsic::x86_sse_comineq_ss:
9142   case Intrinsic::x86_sse_ucomieq_ss:
9143   case Intrinsic::x86_sse_ucomilt_ss:
9144   case Intrinsic::x86_sse_ucomile_ss:
9145   case Intrinsic::x86_sse_ucomigt_ss:
9146   case Intrinsic::x86_sse_ucomige_ss:
9147   case Intrinsic::x86_sse_ucomineq_ss:
9148   case Intrinsic::x86_sse2_comieq_sd:
9149   case Intrinsic::x86_sse2_comilt_sd:
9150   case Intrinsic::x86_sse2_comile_sd:
9151   case Intrinsic::x86_sse2_comigt_sd:
9152   case Intrinsic::x86_sse2_comige_sd:
9153   case Intrinsic::x86_sse2_comineq_sd:
9154   case Intrinsic::x86_sse2_ucomieq_sd:
9155   case Intrinsic::x86_sse2_ucomilt_sd:
9156   case Intrinsic::x86_sse2_ucomile_sd:
9157   case Intrinsic::x86_sse2_ucomigt_sd:
9158   case Intrinsic::x86_sse2_ucomige_sd:
9159   case Intrinsic::x86_sse2_ucomineq_sd: {
9160     unsigned Opc = 0;
9161     ISD::CondCode CC = ISD::SETCC_INVALID;
9162     switch (IntNo) {
9163     default: break;
9164     case Intrinsic::x86_sse_comieq_ss:
9165     case Intrinsic::x86_sse2_comieq_sd:
9166       Opc = X86ISD::COMI;
9167       CC = ISD::SETEQ;
9168       break;
9169     case Intrinsic::x86_sse_comilt_ss:
9170     case Intrinsic::x86_sse2_comilt_sd:
9171       Opc = X86ISD::COMI;
9172       CC = ISD::SETLT;
9173       break;
9174     case Intrinsic::x86_sse_comile_ss:
9175     case Intrinsic::x86_sse2_comile_sd:
9176       Opc = X86ISD::COMI;
9177       CC = ISD::SETLE;
9178       break;
9179     case Intrinsic::x86_sse_comigt_ss:
9180     case Intrinsic::x86_sse2_comigt_sd:
9181       Opc = X86ISD::COMI;
9182       CC = ISD::SETGT;
9183       break;
9184     case Intrinsic::x86_sse_comige_ss:
9185     case Intrinsic::x86_sse2_comige_sd:
9186       Opc = X86ISD::COMI;
9187       CC = ISD::SETGE;
9188       break;
9189     case Intrinsic::x86_sse_comineq_ss:
9190     case Intrinsic::x86_sse2_comineq_sd:
9191       Opc = X86ISD::COMI;
9192       CC = ISD::SETNE;
9193       break;
9194     case Intrinsic::x86_sse_ucomieq_ss:
9195     case Intrinsic::x86_sse2_ucomieq_sd:
9196       Opc = X86ISD::UCOMI;
9197       CC = ISD::SETEQ;
9198       break;
9199     case Intrinsic::x86_sse_ucomilt_ss:
9200     case Intrinsic::x86_sse2_ucomilt_sd:
9201       Opc = X86ISD::UCOMI;
9202       CC = ISD::SETLT;
9203       break;
9204     case Intrinsic::x86_sse_ucomile_ss:
9205     case Intrinsic::x86_sse2_ucomile_sd:
9206       Opc = X86ISD::UCOMI;
9207       CC = ISD::SETLE;
9208       break;
9209     case Intrinsic::x86_sse_ucomigt_ss:
9210     case Intrinsic::x86_sse2_ucomigt_sd:
9211       Opc = X86ISD::UCOMI;
9212       CC = ISD::SETGT;
9213       break;
9214     case Intrinsic::x86_sse_ucomige_ss:
9215     case Intrinsic::x86_sse2_ucomige_sd:
9216       Opc = X86ISD::UCOMI;
9217       CC = ISD::SETGE;
9218       break;
9219     case Intrinsic::x86_sse_ucomineq_ss:
9220     case Intrinsic::x86_sse2_ucomineq_sd:
9221       Opc = X86ISD::UCOMI;
9222       CC = ISD::SETNE;
9223       break;
9224     }
9225 
9226     SDValue LHS = Op.getOperand(1);
9227     SDValue RHS = Op.getOperand(2);
9228     unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9229     assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9230     SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9231     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9232                                 DAG.getConstant(X86CC, MVT::i8), Cond);
9233     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9234   }
9235   // Arithmetic intrinsics.
9236   case Intrinsic::x86_sse3_hadd_ps:
9237   case Intrinsic::x86_sse3_hadd_pd:
9238   case Intrinsic::x86_avx_hadd_ps_256:
9239   case Intrinsic::x86_avx_hadd_pd_256:
9240     return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9241                        Op.getOperand(1), Op.getOperand(2));
9242   case Intrinsic::x86_sse3_hsub_ps:
9243   case Intrinsic::x86_sse3_hsub_pd:
9244   case Intrinsic::x86_avx_hsub_ps_256:
9245   case Intrinsic::x86_avx_hsub_pd_256:
9246     return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9247                        Op.getOperand(1), Op.getOperand(2));
9248   // ptest and testp intrinsics. The intrinsic these come from are designed to
9249   // return an integer value, not just an instruction so lower it to the ptest
9250   // or testp pattern and a setcc for the result.
9251   case Intrinsic::x86_sse41_ptestz:
9252   case Intrinsic::x86_sse41_ptestc:
9253   case Intrinsic::x86_sse41_ptestnzc:
9254   case Intrinsic::x86_avx_ptestz_256:
9255   case Intrinsic::x86_avx_ptestc_256:
9256   case Intrinsic::x86_avx_ptestnzc_256:
9257   case Intrinsic::x86_avx_vtestz_ps:
9258   case Intrinsic::x86_avx_vtestc_ps:
9259   case Intrinsic::x86_avx_vtestnzc_ps:
9260   case Intrinsic::x86_avx_vtestz_pd:
9261   case Intrinsic::x86_avx_vtestc_pd:
9262   case Intrinsic::x86_avx_vtestnzc_pd:
9263   case Intrinsic::x86_avx_vtestz_ps_256:
9264   case Intrinsic::x86_avx_vtestc_ps_256:
9265   case Intrinsic::x86_avx_vtestnzc_ps_256:
9266   case Intrinsic::x86_avx_vtestz_pd_256:
9267   case Intrinsic::x86_avx_vtestc_pd_256:
9268   case Intrinsic::x86_avx_vtestnzc_pd_256: {
9269     bool IsTestPacked = false;
9270     unsigned X86CC = 0;
9271     switch (IntNo) {
9272     default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9273     case Intrinsic::x86_avx_vtestz_ps:
9274     case Intrinsic::x86_avx_vtestz_pd:
9275     case Intrinsic::x86_avx_vtestz_ps_256:
9276     case Intrinsic::x86_avx_vtestz_pd_256:
9277       IsTestPacked = true; // Fallthrough
9278     case Intrinsic::x86_sse41_ptestz:
9279     case Intrinsic::x86_avx_ptestz_256:
9280       // ZF = 1
9281       X86CC = X86::COND_E;
9282       break;
9283     case Intrinsic::x86_avx_vtestc_ps:
9284     case Intrinsic::x86_avx_vtestc_pd:
9285     case Intrinsic::x86_avx_vtestc_ps_256:
9286     case Intrinsic::x86_avx_vtestc_pd_256:
9287       IsTestPacked = true; // Fallthrough
9288     case Intrinsic::x86_sse41_ptestc:
9289     case Intrinsic::x86_avx_ptestc_256:
9290       // CF = 1
9291       X86CC = X86::COND_B;
9292       break;
9293     case Intrinsic::x86_avx_vtestnzc_ps:
9294     case Intrinsic::x86_avx_vtestnzc_pd:
9295     case Intrinsic::x86_avx_vtestnzc_ps_256:
9296     case Intrinsic::x86_avx_vtestnzc_pd_256:
9297       IsTestPacked = true; // Fallthrough
9298     case Intrinsic::x86_sse41_ptestnzc:
9299     case Intrinsic::x86_avx_ptestnzc_256:
9300       // ZF and CF = 0
9301       X86CC = X86::COND_A;
9302       break;
9303     }
9304 
9305     SDValue LHS = Op.getOperand(1);
9306     SDValue RHS = Op.getOperand(2);
9307     unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9308     SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9309     SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9310     SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9311     return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9312   }
9313 
9314   // Fix vector shift instructions where the last operand is a non-immediate
9315   // i32 value.
9316   case Intrinsic::x86_sse2_pslli_w:
9317   case Intrinsic::x86_sse2_pslli_d:
9318   case Intrinsic::x86_sse2_pslli_q:
9319   case Intrinsic::x86_sse2_psrli_w:
9320   case Intrinsic::x86_sse2_psrli_d:
9321   case Intrinsic::x86_sse2_psrli_q:
9322   case Intrinsic::x86_sse2_psrai_w:
9323   case Intrinsic::x86_sse2_psrai_d:
9324   case Intrinsic::x86_mmx_pslli_w:
9325   case Intrinsic::x86_mmx_pslli_d:
9326   case Intrinsic::x86_mmx_pslli_q:
9327   case Intrinsic::x86_mmx_psrli_w:
9328   case Intrinsic::x86_mmx_psrli_d:
9329   case Intrinsic::x86_mmx_psrli_q:
9330   case Intrinsic::x86_mmx_psrai_w:
9331   case Intrinsic::x86_mmx_psrai_d: {
9332     SDValue ShAmt = Op.getOperand(2);
9333     if (isa<ConstantSDNode>(ShAmt))
9334       return SDValue();
9335 
9336     unsigned NewIntNo = 0;
9337     EVT ShAmtVT = MVT::v4i32;
9338     switch (IntNo) {
9339     case Intrinsic::x86_sse2_pslli_w:
9340       NewIntNo = Intrinsic::x86_sse2_psll_w;
9341       break;
9342     case Intrinsic::x86_sse2_pslli_d:
9343       NewIntNo = Intrinsic::x86_sse2_psll_d;
9344       break;
9345     case Intrinsic::x86_sse2_pslli_q:
9346       NewIntNo = Intrinsic::x86_sse2_psll_q;
9347       break;
9348     case Intrinsic::x86_sse2_psrli_w:
9349       NewIntNo = Intrinsic::x86_sse2_psrl_w;
9350       break;
9351     case Intrinsic::x86_sse2_psrli_d:
9352       NewIntNo = Intrinsic::x86_sse2_psrl_d;
9353       break;
9354     case Intrinsic::x86_sse2_psrli_q:
9355       NewIntNo = Intrinsic::x86_sse2_psrl_q;
9356       break;
9357     case Intrinsic::x86_sse2_psrai_w:
9358       NewIntNo = Intrinsic::x86_sse2_psra_w;
9359       break;
9360     case Intrinsic::x86_sse2_psrai_d:
9361       NewIntNo = Intrinsic::x86_sse2_psra_d;
9362       break;
9363     default: {
9364       ShAmtVT = MVT::v2i32;
9365       switch (IntNo) {
9366       case Intrinsic::x86_mmx_pslli_w:
9367         NewIntNo = Intrinsic::x86_mmx_psll_w;
9368         break;
9369       case Intrinsic::x86_mmx_pslli_d:
9370         NewIntNo = Intrinsic::x86_mmx_psll_d;
9371         break;
9372       case Intrinsic::x86_mmx_pslli_q:
9373         NewIntNo = Intrinsic::x86_mmx_psll_q;
9374         break;
9375       case Intrinsic::x86_mmx_psrli_w:
9376         NewIntNo = Intrinsic::x86_mmx_psrl_w;
9377         break;
9378       case Intrinsic::x86_mmx_psrli_d:
9379         NewIntNo = Intrinsic::x86_mmx_psrl_d;
9380         break;
9381       case Intrinsic::x86_mmx_psrli_q:
9382         NewIntNo = Intrinsic::x86_mmx_psrl_q;
9383         break;
9384       case Intrinsic::x86_mmx_psrai_w:
9385         NewIntNo = Intrinsic::x86_mmx_psra_w;
9386         break;
9387       case Intrinsic::x86_mmx_psrai_d:
9388         NewIntNo = Intrinsic::x86_mmx_psra_d;
9389         break;
9390       default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
9391       }
9392       break;
9393     }
9394     }
9395 
9396     // The vector shift intrinsics with scalars uses 32b shift amounts but
9397     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9398     // to be zero.
9399     SDValue ShOps[4];
9400     ShOps[0] = ShAmt;
9401     ShOps[1] = DAG.getConstant(0, MVT::i32);
9402     if (ShAmtVT == MVT::v4i32) {
9403       ShOps[2] = DAG.getUNDEF(MVT::i32);
9404       ShOps[3] = DAG.getUNDEF(MVT::i32);
9405       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9406     } else {
9407       ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9408 // FIXME this must be lowered to get rid of the invalid type.
9409     }
9410 
9411     EVT VT = Op.getValueType();
9412     ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9413     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9414                        DAG.getConstant(NewIntNo, MVT::i32),
9415                        Op.getOperand(1), ShAmt);
9416   }
9417   }
9418 }
9419 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const9420 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9421                                            SelectionDAG &DAG) const {
9422   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9423   MFI->setReturnAddressIsTaken(true);
9424 
9425   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9426   DebugLoc dl = Op.getDebugLoc();
9427 
9428   if (Depth > 0) {
9429     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9430     SDValue Offset =
9431       DAG.getConstant(TD->getPointerSize(),
9432                       Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9433     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9434                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
9435                                    FrameAddr, Offset),
9436                        MachinePointerInfo(), false, false, 0);
9437   }
9438 
9439   // Just load the return address.
9440   SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9441   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9442                      RetAddrFI, MachinePointerInfo(), false, false, 0);
9443 }
9444 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const9445 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9446   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9447   MFI->setFrameAddressIsTaken(true);
9448 
9449   EVT VT = Op.getValueType();
9450   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful
9451   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9452   unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9453   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9454   while (Depth--)
9455     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9456                             MachinePointerInfo(),
9457                             false, false, 0);
9458   return FrameAddr;
9459 }
9460 
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const9461 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9462                                                      SelectionDAG &DAG) const {
9463   return DAG.getIntPtrConstant(2*TD->getPointerSize());
9464 }
9465 
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const9466 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9467   MachineFunction &MF = DAG.getMachineFunction();
9468   SDValue Chain     = Op.getOperand(0);
9469   SDValue Offset    = Op.getOperand(1);
9470   SDValue Handler   = Op.getOperand(2);
9471   DebugLoc dl       = Op.getDebugLoc();
9472 
9473   SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9474                                      Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9475                                      getPointerTy());
9476   unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9477 
9478   SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9479                                   DAG.getIntPtrConstant(TD->getPointerSize()));
9480   StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9481   Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9482                        false, false, 0);
9483   Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9484   MF.getRegInfo().addLiveOut(StoreAddrReg);
9485 
9486   return DAG.getNode(X86ISD::EH_RETURN, dl,
9487                      MVT::Other,
9488                      Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9489 }
9490 
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const9491 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9492                                                   SelectionDAG &DAG) const {
9493   return Op.getOperand(0);
9494 }
9495 
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const9496 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9497                                                 SelectionDAG &DAG) const {
9498   SDValue Root = Op.getOperand(0);
9499   SDValue Trmp = Op.getOperand(1); // trampoline
9500   SDValue FPtr = Op.getOperand(2); // nested function
9501   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9502   DebugLoc dl  = Op.getDebugLoc();
9503 
9504   const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9505 
9506   if (Subtarget->is64Bit()) {
9507     SDValue OutChains[6];
9508 
9509     // Large code-model.
9510     const unsigned char JMP64r  = 0xFF; // 64-bit jmp through register opcode.
9511     const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9512 
9513     const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9514     const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9515 
9516     const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9517 
9518     // Load the pointer to the nested function into R11.
9519     unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9520     SDValue Addr = Trmp;
9521     OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9522                                 Addr, MachinePointerInfo(TrmpAddr),
9523                                 false, false, 0);
9524 
9525     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9526                        DAG.getConstant(2, MVT::i64));
9527     OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9528                                 MachinePointerInfo(TrmpAddr, 2),
9529                                 false, false, 2);
9530 
9531     // Load the 'nest' parameter value into R10.
9532     // R10 is specified in X86CallingConv.td
9533     OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9534     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9535                        DAG.getConstant(10, MVT::i64));
9536     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9537                                 Addr, MachinePointerInfo(TrmpAddr, 10),
9538                                 false, false, 0);
9539 
9540     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9541                        DAG.getConstant(12, MVT::i64));
9542     OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9543                                 MachinePointerInfo(TrmpAddr, 12),
9544                                 false, false, 2);
9545 
9546     // Jump to the nested function.
9547     OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9548     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9549                        DAG.getConstant(20, MVT::i64));
9550     OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9551                                 Addr, MachinePointerInfo(TrmpAddr, 20),
9552                                 false, false, 0);
9553 
9554     unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9555     Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9556                        DAG.getConstant(22, MVT::i64));
9557     OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9558                                 MachinePointerInfo(TrmpAddr, 22),
9559                                 false, false, 0);
9560 
9561     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9562   } else {
9563     const Function *Func =
9564       cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9565     CallingConv::ID CC = Func->getCallingConv();
9566     unsigned NestReg;
9567 
9568     switch (CC) {
9569     default:
9570       llvm_unreachable("Unsupported calling convention");
9571     case CallingConv::C:
9572     case CallingConv::X86_StdCall: {
9573       // Pass 'nest' parameter in ECX.
9574       // Must be kept in sync with X86CallingConv.td
9575       NestReg = X86::ECX;
9576 
9577       // Check that ECX wasn't needed by an 'inreg' parameter.
9578       FunctionType *FTy = Func->getFunctionType();
9579       const AttrListPtr &Attrs = Func->getAttributes();
9580 
9581       if (!Attrs.isEmpty() && !Func->isVarArg()) {
9582         unsigned InRegCount = 0;
9583         unsigned Idx = 1;
9584 
9585         for (FunctionType::param_iterator I = FTy->param_begin(),
9586              E = FTy->param_end(); I != E; ++I, ++Idx)
9587           if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9588             // FIXME: should only count parameters that are lowered to integers.
9589             InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9590 
9591         if (InRegCount > 2) {
9592           report_fatal_error("Nest register in use - reduce number of inreg"
9593                              " parameters!");
9594         }
9595       }
9596       break;
9597     }
9598     case CallingConv::X86_FastCall:
9599     case CallingConv::X86_ThisCall:
9600     case CallingConv::Fast:
9601       // Pass 'nest' parameter in EAX.
9602       // Must be kept in sync with X86CallingConv.td
9603       NestReg = X86::EAX;
9604       break;
9605     }
9606 
9607     SDValue OutChains[4];
9608     SDValue Addr, Disp;
9609 
9610     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9611                        DAG.getConstant(10, MVT::i32));
9612     Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9613 
9614     // This is storing the opcode for MOV32ri.
9615     const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9616     const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9617     OutChains[0] = DAG.getStore(Root, dl,
9618                                 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9619                                 Trmp, MachinePointerInfo(TrmpAddr),
9620                                 false, false, 0);
9621 
9622     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9623                        DAG.getConstant(1, MVT::i32));
9624     OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9625                                 MachinePointerInfo(TrmpAddr, 1),
9626                                 false, false, 1);
9627 
9628     const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9629     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9630                        DAG.getConstant(5, MVT::i32));
9631     OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9632                                 MachinePointerInfo(TrmpAddr, 5),
9633                                 false, false, 1);
9634 
9635     Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9636                        DAG.getConstant(6, MVT::i32));
9637     OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9638                                 MachinePointerInfo(TrmpAddr, 6),
9639                                 false, false, 1);
9640 
9641     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9642   }
9643 }
9644 
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const9645 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9646                                             SelectionDAG &DAG) const {
9647   /*
9648    The rounding mode is in bits 11:10 of FPSR, and has the following
9649    settings:
9650      00 Round to nearest
9651      01 Round to -inf
9652      10 Round to +inf
9653      11 Round to 0
9654 
9655   FLT_ROUNDS, on the other hand, expects the following:
9656     -1 Undefined
9657      0 Round to 0
9658      1 Round to nearest
9659      2 Round to +inf
9660      3 Round to -inf
9661 
9662   To perform the conversion, we do:
9663     (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9664   */
9665 
9666   MachineFunction &MF = DAG.getMachineFunction();
9667   const TargetMachine &TM = MF.getTarget();
9668   const TargetFrameLowering &TFI = *TM.getFrameLowering();
9669   unsigned StackAlignment = TFI.getStackAlignment();
9670   EVT VT = Op.getValueType();
9671   DebugLoc DL = Op.getDebugLoc();
9672 
9673   // Save FP Control Word to stack slot
9674   int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9675   SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9676 
9677 
9678   MachineMemOperand *MMO =
9679    MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9680                            MachineMemOperand::MOStore, 2, 2);
9681 
9682   SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9683   SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9684                                           DAG.getVTList(MVT::Other),
9685                                           Ops, 2, MVT::i16, MMO);
9686 
9687   // Load FP Control Word from stack slot
9688   SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9689                             MachinePointerInfo(), false, false, 0);
9690 
9691   // Transform as necessary
9692   SDValue CWD1 =
9693     DAG.getNode(ISD::SRL, DL, MVT::i16,
9694                 DAG.getNode(ISD::AND, DL, MVT::i16,
9695                             CWD, DAG.getConstant(0x800, MVT::i16)),
9696                 DAG.getConstant(11, MVT::i8));
9697   SDValue CWD2 =
9698     DAG.getNode(ISD::SRL, DL, MVT::i16,
9699                 DAG.getNode(ISD::AND, DL, MVT::i16,
9700                             CWD, DAG.getConstant(0x400, MVT::i16)),
9701                 DAG.getConstant(9, MVT::i8));
9702 
9703   SDValue RetVal =
9704     DAG.getNode(ISD::AND, DL, MVT::i16,
9705                 DAG.getNode(ISD::ADD, DL, MVT::i16,
9706                             DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9707                             DAG.getConstant(1, MVT::i16)),
9708                 DAG.getConstant(3, MVT::i16));
9709 
9710 
9711   return DAG.getNode((VT.getSizeInBits() < 16 ?
9712                       ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9713 }
9714 
LowerCTLZ(SDValue Op,SelectionDAG & DAG) const9715 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9716   EVT VT = Op.getValueType();
9717   EVT OpVT = VT;
9718   unsigned NumBits = VT.getSizeInBits();
9719   DebugLoc dl = Op.getDebugLoc();
9720 
9721   Op = Op.getOperand(0);
9722   if (VT == MVT::i8) {
9723     // Zero extend to i32 since there is not an i8 bsr.
9724     OpVT = MVT::i32;
9725     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9726   }
9727 
9728   // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9729   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9730   Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9731 
9732   // If src is zero (i.e. bsr sets ZF), returns NumBits.
9733   SDValue Ops[] = {
9734     Op,
9735     DAG.getConstant(NumBits+NumBits-1, OpVT),
9736     DAG.getConstant(X86::COND_E, MVT::i8),
9737     Op.getValue(1)
9738   };
9739   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9740 
9741   // Finally xor with NumBits-1.
9742   Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9743 
9744   if (VT == MVT::i8)
9745     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9746   return Op;
9747 }
9748 
LowerCTTZ(SDValue Op,SelectionDAG & DAG) const9749 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9750   EVT VT = Op.getValueType();
9751   EVT OpVT = VT;
9752   unsigned NumBits = VT.getSizeInBits();
9753   DebugLoc dl = Op.getDebugLoc();
9754 
9755   Op = Op.getOperand(0);
9756   if (VT == MVT::i8) {
9757     OpVT = MVT::i32;
9758     Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9759   }
9760 
9761   // Issue a bsf (scan bits forward) which also sets EFLAGS.
9762   SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9763   Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9764 
9765   // If src is zero (i.e. bsf sets ZF), returns NumBits.
9766   SDValue Ops[] = {
9767     Op,
9768     DAG.getConstant(NumBits, OpVT),
9769     DAG.getConstant(X86::COND_E, MVT::i8),
9770     Op.getValue(1)
9771   };
9772   Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9773 
9774   if (VT == MVT::i8)
9775     Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9776   return Op;
9777 }
9778 
9779 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9780 // ones, and then concatenate the result back.
Lower256IntArith(SDValue Op,SelectionDAG & DAG)9781 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9782   EVT VT = Op.getValueType();
9783 
9784   assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9785          "Unsupported value type for operation");
9786 
9787   int NumElems = VT.getVectorNumElements();
9788   DebugLoc dl = Op.getDebugLoc();
9789   SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9790   SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9791 
9792   // Extract the LHS vectors
9793   SDValue LHS = Op.getOperand(0);
9794   SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9795   SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9796 
9797   // Extract the RHS vectors
9798   SDValue RHS = Op.getOperand(1);
9799   SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9800   SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9801 
9802   MVT EltVT = VT.getVectorElementType().getSimpleVT();
9803   EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9804 
9805   return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9806                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9807                      DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9808 }
9809 
LowerADD(SDValue Op,SelectionDAG & DAG) const9810 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9811   assert(Op.getValueType().getSizeInBits() == 256 &&
9812          Op.getValueType().isInteger() &&
9813          "Only handle AVX 256-bit vector integer operation");
9814   return Lower256IntArith(Op, DAG);
9815 }
9816 
LowerSUB(SDValue Op,SelectionDAG & DAG) const9817 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9818   assert(Op.getValueType().getSizeInBits() == 256 &&
9819          Op.getValueType().isInteger() &&
9820          "Only handle AVX 256-bit vector integer operation");
9821   return Lower256IntArith(Op, DAG);
9822 }
9823 
LowerMUL(SDValue Op,SelectionDAG & DAG) const9824 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9825   EVT VT = Op.getValueType();
9826 
9827   // Decompose 256-bit ops into smaller 128-bit ops.
9828   if (VT.getSizeInBits() == 256)
9829     return Lower256IntArith(Op, DAG);
9830 
9831   assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9832   DebugLoc dl = Op.getDebugLoc();
9833 
9834   //  ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9835   //  ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9836   //  ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9837   //  ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9838   //  ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9839   //
9840   //  AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9841   //  AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9842   //  return AloBlo + AloBhi + AhiBlo;
9843 
9844   SDValue A = Op.getOperand(0);
9845   SDValue B = Op.getOperand(1);
9846 
9847   SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9848                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9849                        A, DAG.getConstant(32, MVT::i32));
9850   SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9851                        DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9852                        B, DAG.getConstant(32, MVT::i32));
9853   SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9854                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9855                        A, B);
9856   SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9857                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9858                        A, Bhi);
9859   SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9860                        DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9861                        Ahi, B);
9862   AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9863                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9864                        AloBhi, DAG.getConstant(32, MVT::i32));
9865   AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9866                        DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9867                        AhiBlo, DAG.getConstant(32, MVT::i32));
9868   SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9869   Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9870   return Res;
9871 }
9872 
LowerShift(SDValue Op,SelectionDAG & DAG) const9873 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9874 
9875   EVT VT = Op.getValueType();
9876   DebugLoc dl = Op.getDebugLoc();
9877   SDValue R = Op.getOperand(0);
9878   SDValue Amt = Op.getOperand(1);
9879   LLVMContext *Context = DAG.getContext();
9880 
9881   if (!Subtarget->hasXMMInt())
9882     return SDValue();
9883 
9884   // Decompose 256-bit shifts into smaller 128-bit shifts.
9885   if (VT.getSizeInBits() == 256) {
9886     int NumElems = VT.getVectorNumElements();
9887     MVT EltVT = VT.getVectorElementType().getSimpleVT();
9888     EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9889 
9890     // Extract the two vectors
9891     SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9892     SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9893                                      DAG, dl);
9894 
9895     // Recreate the shift amount vectors
9896     SDValue Amt1, Amt2;
9897     if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9898       // Constant shift amount
9899       SmallVector<SDValue, 4> Amt1Csts;
9900       SmallVector<SDValue, 4> Amt2Csts;
9901       for (int i = 0; i < NumElems/2; ++i)
9902         Amt1Csts.push_back(Amt->getOperand(i));
9903       for (int i = NumElems/2; i < NumElems; ++i)
9904         Amt2Csts.push_back(Amt->getOperand(i));
9905 
9906       Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9907                                  &Amt1Csts[0], NumElems/2);
9908       Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9909                                  &Amt2Csts[0], NumElems/2);
9910     } else {
9911       // Variable shift amount
9912       Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9913       Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9914                                  DAG, dl);
9915     }
9916 
9917     // Issue new vector shifts for the smaller types
9918     V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9919     V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9920 
9921     // Concatenate the result back
9922     return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9923   }
9924 
9925   // Optimize shl/srl/sra with constant shift amount.
9926   if (isSplatVector(Amt.getNode())) {
9927     SDValue SclrAmt = Amt->getOperand(0);
9928     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9929       uint64_t ShiftAmt = C->getZExtValue();
9930 
9931       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9932        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9933                      DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9934                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9935 
9936       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9937        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9938                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9939                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9940 
9941       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9942        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9943                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9944                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9945 
9946       if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9947        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9948                      DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9949                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9950 
9951       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9952        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9953                      DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9954                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9955 
9956       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9957        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9958                      DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9959                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9960 
9961       if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9962        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9963                      DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9964                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9965 
9966       if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9967        return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9968                      DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9969                      R, DAG.getConstant(ShiftAmt, MVT::i32));
9970     }
9971   }
9972 
9973   // Lower SHL with variable shift amount.
9974   if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9975     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9976                      DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9977                      Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9978 
9979     ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9980 
9981     std::vector<Constant*> CV(4, CI);
9982     Constant *C = ConstantVector::get(CV);
9983     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9984     SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9985                                  MachinePointerInfo::getConstantPool(),
9986                                  false, false, 16);
9987 
9988     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9989     Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9990     Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9991     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9992   }
9993   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9994     // a = a << 5;
9995     Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9996                      DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9997                      Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9998 
9999     ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10000     ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10001 
10002     std::vector<Constant*> CVM1(16, CM1);
10003     std::vector<Constant*> CVM2(16, CM2);
10004     Constant *C = ConstantVector::get(CVM1);
10005     SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10006     SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10007                             MachinePointerInfo::getConstantPool(),
10008                             false, false, 16);
10009 
10010     // r = pblendv(r, psllw(r & (char16)15, 4), a);
10011     M = DAG.getNode(ISD::AND, dl, VT, R, M);
10012     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10013                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10014                     DAG.getConstant(4, MVT::i32));
10015     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10016     // a += a
10017     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10018 
10019     C = ConstantVector::get(CVM2);
10020     CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10021     M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10022                     MachinePointerInfo::getConstantPool(),
10023                     false, false, 16);
10024 
10025     // r = pblendv(r, psllw(r & (char16)63, 2), a);
10026     M = DAG.getNode(ISD::AND, dl, VT, R, M);
10027     M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10028                     DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10029                     DAG.getConstant(2, MVT::i32));
10030     R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10031     // a += a
10032     Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10033 
10034     // return pblendv(r, r+r, a);
10035     R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10036                     R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10037     return R;
10038   }
10039   return SDValue();
10040 }
10041 
LowerXALUO(SDValue Op,SelectionDAG & DAG) const10042 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10043   // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10044   // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10045   // looks for this combo and may remove the "setcc" instruction if the "setcc"
10046   // has only one use.
10047   SDNode *N = Op.getNode();
10048   SDValue LHS = N->getOperand(0);
10049   SDValue RHS = N->getOperand(1);
10050   unsigned BaseOp = 0;
10051   unsigned Cond = 0;
10052   DebugLoc DL = Op.getDebugLoc();
10053   switch (Op.getOpcode()) {
10054   default: llvm_unreachable("Unknown ovf instruction!");
10055   case ISD::SADDO:
10056     // A subtract of one will be selected as a INC. Note that INC doesn't
10057     // set CF, so we can't do this for UADDO.
10058     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10059       if (C->isOne()) {
10060         BaseOp = X86ISD::INC;
10061         Cond = X86::COND_O;
10062         break;
10063       }
10064     BaseOp = X86ISD::ADD;
10065     Cond = X86::COND_O;
10066     break;
10067   case ISD::UADDO:
10068     BaseOp = X86ISD::ADD;
10069     Cond = X86::COND_B;
10070     break;
10071   case ISD::SSUBO:
10072     // A subtract of one will be selected as a DEC. Note that DEC doesn't
10073     // set CF, so we can't do this for USUBO.
10074     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10075       if (C->isOne()) {
10076         BaseOp = X86ISD::DEC;
10077         Cond = X86::COND_O;
10078         break;
10079       }
10080     BaseOp = X86ISD::SUB;
10081     Cond = X86::COND_O;
10082     break;
10083   case ISD::USUBO:
10084     BaseOp = X86ISD::SUB;
10085     Cond = X86::COND_B;
10086     break;
10087   case ISD::SMULO:
10088     BaseOp = X86ISD::SMUL;
10089     Cond = X86::COND_O;
10090     break;
10091   case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10092     SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10093                                  MVT::i32);
10094     SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10095 
10096     SDValue SetCC =
10097       DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10098                   DAG.getConstant(X86::COND_O, MVT::i32),
10099                   SDValue(Sum.getNode(), 2));
10100 
10101     return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10102   }
10103   }
10104 
10105   // Also sets EFLAGS.
10106   SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10107   SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10108 
10109   SDValue SetCC =
10110     DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10111                 DAG.getConstant(Cond, MVT::i32),
10112                 SDValue(Sum.getNode(), 1));
10113 
10114   return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10115 }
10116 
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const10117 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10118   DebugLoc dl = Op.getDebugLoc();
10119   SDNode* Node = Op.getNode();
10120   EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10121   EVT VT = Node->getValueType(0);
10122   if (Subtarget->hasXMMInt() && VT.isVector()) {
10123     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10124                         ExtraVT.getScalarType().getSizeInBits();
10125     SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10126 
10127     unsigned SHLIntrinsicsID = 0;
10128     unsigned SRAIntrinsicsID = 0;
10129     switch (VT.getSimpleVT().SimpleTy) {
10130       default:
10131         return SDValue();
10132       case MVT::v4i32: {
10133         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10134         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10135         break;
10136       }
10137       case MVT::v8i16: {
10138         SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10139         SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10140         break;
10141       }
10142     }
10143 
10144     SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10145                          DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10146                          Node->getOperand(0), ShAmt);
10147 
10148     // In case of 1 bit sext, no need to shr
10149     if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10150 
10151     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10152                        DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10153                        Tmp1, ShAmt);
10154   }
10155 
10156   return SDValue();
10157 }
10158 
10159 
LowerMEMBARRIER(SDValue Op,SelectionDAG & DAG) const10160 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10161   DebugLoc dl = Op.getDebugLoc();
10162 
10163   // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10164   // There isn't any reason to disable it if the target processor supports it.
10165   if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10166     SDValue Chain = Op.getOperand(0);
10167     SDValue Zero = DAG.getConstant(0, MVT::i32);
10168     SDValue Ops[] = {
10169       DAG.getRegister(X86::ESP, MVT::i32), // Base
10170       DAG.getTargetConstant(1, MVT::i8),   // Scale
10171       DAG.getRegister(0, MVT::i32),        // Index
10172       DAG.getTargetConstant(0, MVT::i32),  // Disp
10173       DAG.getRegister(0, MVT::i32),        // Segment.
10174       Zero,
10175       Chain
10176     };
10177     SDNode *Res =
10178       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10179                           array_lengthof(Ops));
10180     return SDValue(Res, 0);
10181   }
10182 
10183   unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10184   if (!isDev)
10185     return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10186 
10187   unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10188   unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10189   unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10190   unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10191 
10192   // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10193   if (!Op1 && !Op2 && !Op3 && Op4)
10194     return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10195 
10196   // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10197   if (Op1 && !Op2 && !Op3 && !Op4)
10198     return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10199 
10200   // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10201   //           (MFENCE)>;
10202   return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10203 }
10204 
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const10205 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10206                                              SelectionDAG &DAG) const {
10207   DebugLoc dl = Op.getDebugLoc();
10208   AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10209     cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10210   SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10211     cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10212 
10213   // The only fence that needs an instruction is a sequentially-consistent
10214   // cross-thread fence.
10215   if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10216     // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10217     // no-sse2). There isn't any reason to disable it if the target processor
10218     // supports it.
10219     if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10220       return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10221 
10222     SDValue Chain = Op.getOperand(0);
10223     SDValue Zero = DAG.getConstant(0, MVT::i32);
10224     SDValue Ops[] = {
10225       DAG.getRegister(X86::ESP, MVT::i32), // Base
10226       DAG.getTargetConstant(1, MVT::i8),   // Scale
10227       DAG.getRegister(0, MVT::i32),        // Index
10228       DAG.getTargetConstant(0, MVT::i32),  // Disp
10229       DAG.getRegister(0, MVT::i32),        // Segment.
10230       Zero,
10231       Chain
10232     };
10233     SDNode *Res =
10234       DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10235                          array_lengthof(Ops));
10236     return SDValue(Res, 0);
10237   }
10238 
10239   // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10240   return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10241 }
10242 
10243 
LowerCMP_SWAP(SDValue Op,SelectionDAG & DAG) const10244 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10245   EVT T = Op.getValueType();
10246   DebugLoc DL = Op.getDebugLoc();
10247   unsigned Reg = 0;
10248   unsigned size = 0;
10249   switch(T.getSimpleVT().SimpleTy) {
10250   default:
10251     assert(false && "Invalid value type!");
10252   case MVT::i8:  Reg = X86::AL;  size = 1; break;
10253   case MVT::i16: Reg = X86::AX;  size = 2; break;
10254   case MVT::i32: Reg = X86::EAX; size = 4; break;
10255   case MVT::i64:
10256     assert(Subtarget->is64Bit() && "Node not type legal!");
10257     Reg = X86::RAX; size = 8;
10258     break;
10259   }
10260   SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10261                                     Op.getOperand(2), SDValue());
10262   SDValue Ops[] = { cpIn.getValue(0),
10263                     Op.getOperand(1),
10264                     Op.getOperand(3),
10265                     DAG.getTargetConstant(size, MVT::i8),
10266                     cpIn.getValue(1) };
10267   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10268   MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10269   SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10270                                            Ops, 5, T, MMO);
10271   SDValue cpOut =
10272     DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10273   return cpOut;
10274 }
10275 
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const10276 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10277                                                  SelectionDAG &DAG) const {
10278   assert(Subtarget->is64Bit() && "Result not type legalized?");
10279   SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10280   SDValue TheChain = Op.getOperand(0);
10281   DebugLoc dl = Op.getDebugLoc();
10282   SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10283   SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10284   SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10285                                    rax.getValue(2));
10286   SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10287                             DAG.getConstant(32, MVT::i8));
10288   SDValue Ops[] = {
10289     DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10290     rdx.getValue(1)
10291   };
10292   return DAG.getMergeValues(Ops, 2, dl);
10293 }
10294 
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const10295 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10296                                             SelectionDAG &DAG) const {
10297   EVT SrcVT = Op.getOperand(0).getValueType();
10298   EVT DstVT = Op.getValueType();
10299   assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10300          Subtarget->hasMMX() && "Unexpected custom BITCAST");
10301   assert((DstVT == MVT::i64 ||
10302           (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10303          "Unexpected custom BITCAST");
10304   // i64 <=> MMX conversions are Legal.
10305   if (SrcVT==MVT::i64 && DstVT.isVector())
10306     return Op;
10307   if (DstVT==MVT::i64 && SrcVT.isVector())
10308     return Op;
10309   // MMX <=> MMX conversions are Legal.
10310   if (SrcVT.isVector() && DstVT.isVector())
10311     return Op;
10312   // All other conversions need to be expanded.
10313   return SDValue();
10314 }
10315 
LowerLOAD_SUB(SDValue Op,SelectionDAG & DAG) const10316 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10317   SDNode *Node = Op.getNode();
10318   DebugLoc dl = Node->getDebugLoc();
10319   EVT T = Node->getValueType(0);
10320   SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10321                               DAG.getConstant(0, T), Node->getOperand(2));
10322   return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10323                        cast<AtomicSDNode>(Node)->getMemoryVT(),
10324                        Node->getOperand(0),
10325                        Node->getOperand(1), negOp,
10326                        cast<AtomicSDNode>(Node)->getSrcValue(),
10327                        cast<AtomicSDNode>(Node)->getAlignment(),
10328                        cast<AtomicSDNode>(Node)->getOrdering(),
10329                        cast<AtomicSDNode>(Node)->getSynchScope());
10330 }
10331 
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG)10332 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10333   SDNode *Node = Op.getNode();
10334   DebugLoc dl = Node->getDebugLoc();
10335   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10336 
10337   // Convert seq_cst store -> xchg
10338   // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10339   // FIXME: On 32-bit, store -> fist or movq would be more efficient
10340   //        (The only way to get a 16-byte store is cmpxchg16b)
10341   // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10342   if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10343       !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10344     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10345                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
10346                                  Node->getOperand(0),
10347                                  Node->getOperand(1), Node->getOperand(2),
10348                                  cast<AtomicSDNode>(Node)->getMemOperand(),
10349                                  cast<AtomicSDNode>(Node)->getOrdering(),
10350                                  cast<AtomicSDNode>(Node)->getSynchScope());
10351     return Swap.getValue(1);
10352   }
10353   // Other atomic stores have a simple pattern.
10354   return Op;
10355 }
10356 
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)10357 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10358   EVT VT = Op.getNode()->getValueType(0);
10359 
10360   // Let legalize expand this if it isn't a legal type yet.
10361   if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10362     return SDValue();
10363 
10364   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10365 
10366   unsigned Opc;
10367   bool ExtraOp = false;
10368   switch (Op.getOpcode()) {
10369   default: assert(0 && "Invalid code");
10370   case ISD::ADDC: Opc = X86ISD::ADD; break;
10371   case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10372   case ISD::SUBC: Opc = X86ISD::SUB; break;
10373   case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10374   }
10375 
10376   if (!ExtraOp)
10377     return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10378                        Op.getOperand(1));
10379   return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10380                      Op.getOperand(1), Op.getOperand(2));
10381 }
10382 
10383 /// LowerOperation - Provide custom lowering hooks for some operations.
10384 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const10385 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10386   switch (Op.getOpcode()) {
10387   default: llvm_unreachable("Should not custom lower this!");
10388   case ISD::SIGN_EXTEND_INREG:  return LowerSIGN_EXTEND_INREG(Op,DAG);
10389   case ISD::MEMBARRIER:         return LowerMEMBARRIER(Op,DAG);
10390   case ISD::ATOMIC_FENCE:       return LowerATOMIC_FENCE(Op,DAG);
10391   case ISD::ATOMIC_CMP_SWAP:    return LowerCMP_SWAP(Op,DAG);
10392   case ISD::ATOMIC_LOAD_SUB:    return LowerLOAD_SUB(Op,DAG);
10393   case ISD::ATOMIC_STORE:       return LowerATOMIC_STORE(Op,DAG);
10394   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
10395   case ISD::CONCAT_VECTORS:     return LowerCONCAT_VECTORS(Op, DAG);
10396   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
10397   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10398   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
10399   case ISD::EXTRACT_SUBVECTOR:  return LowerEXTRACT_SUBVECTOR(Op, DAG);
10400   case ISD::INSERT_SUBVECTOR:   return LowerINSERT_SUBVECTOR(Op, DAG);
10401   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
10402   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
10403   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
10404   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
10405   case ISD::ExternalSymbol:     return LowerExternalSymbol(Op, DAG);
10406   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
10407   case ISD::SHL_PARTS:
10408   case ISD::SRA_PARTS:
10409   case ISD::SRL_PARTS:          return LowerShiftParts(Op, DAG);
10410   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
10411   case ISD::UINT_TO_FP:         return LowerUINT_TO_FP(Op, DAG);
10412   case ISD::FP_TO_SINT:         return LowerFP_TO_SINT(Op, DAG);
10413   case ISD::FP_TO_UINT:         return LowerFP_TO_UINT(Op, DAG);
10414   case ISD::FABS:               return LowerFABS(Op, DAG);
10415   case ISD::FNEG:               return LowerFNEG(Op, DAG);
10416   case ISD::FCOPYSIGN:          return LowerFCOPYSIGN(Op, DAG);
10417   case ISD::FGETSIGN:           return LowerFGETSIGN(Op, DAG);
10418   case ISD::SETCC:              return LowerSETCC(Op, DAG);
10419   case ISD::SELECT:             return LowerSELECT(Op, DAG);
10420   case ISD::BRCOND:             return LowerBRCOND(Op, DAG);
10421   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
10422   case ISD::VASTART:            return LowerVASTART(Op, DAG);
10423   case ISD::VAARG:              return LowerVAARG(Op, DAG);
10424   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
10425   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10426   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
10427   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
10428   case ISD::FRAME_TO_ARGS_OFFSET:
10429                                 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10430   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10431   case ISD::EH_RETURN:          return LowerEH_RETURN(Op, DAG);
10432   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
10433   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
10434   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
10435   case ISD::CTLZ:               return LowerCTLZ(Op, DAG);
10436   case ISD::CTTZ:               return LowerCTTZ(Op, DAG);
10437   case ISD::MUL:                return LowerMUL(Op, DAG);
10438   case ISD::SRA:
10439   case ISD::SRL:
10440   case ISD::SHL:                return LowerShift(Op, DAG);
10441   case ISD::SADDO:
10442   case ISD::UADDO:
10443   case ISD::SSUBO:
10444   case ISD::USUBO:
10445   case ISD::SMULO:
10446   case ISD::UMULO:              return LowerXALUO(Op, DAG);
10447   case ISD::READCYCLECOUNTER:   return LowerREADCYCLECOUNTER(Op, DAG);
10448   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
10449   case ISD::ADDC:
10450   case ISD::ADDE:
10451   case ISD::SUBC:
10452   case ISD::SUBE:               return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10453   case ISD::ADD:                return LowerADD(Op, DAG);
10454   case ISD::SUB:                return LowerSUB(Op, DAG);
10455   }
10456 }
10457 
ReplaceATOMIC_LOAD(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10458 static void ReplaceATOMIC_LOAD(SDNode *Node,
10459                                   SmallVectorImpl<SDValue> &Results,
10460                                   SelectionDAG &DAG) {
10461   DebugLoc dl = Node->getDebugLoc();
10462   EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10463 
10464   // Convert wide load -> cmpxchg8b/cmpxchg16b
10465   // FIXME: On 32-bit, load -> fild or movq would be more efficient
10466   //        (The only way to get a 16-byte load is cmpxchg16b)
10467   // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10468   SDValue Zero = DAG.getConstant(0, VT);
10469   SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10470                                Node->getOperand(0),
10471                                Node->getOperand(1), Zero, Zero,
10472                                cast<AtomicSDNode>(Node)->getMemOperand(),
10473                                cast<AtomicSDNode>(Node)->getOrdering(),
10474                                cast<AtomicSDNode>(Node)->getSynchScope());
10475   Results.push_back(Swap.getValue(0));
10476   Results.push_back(Swap.getValue(1));
10477 }
10478 
10479 void X86TargetLowering::
ReplaceATOMIC_BINARY_64(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned NewOp) const10480 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10481                         SelectionDAG &DAG, unsigned NewOp) const {
10482   DebugLoc dl = Node->getDebugLoc();
10483   assert (Node->getValueType(0) == MVT::i64 &&
10484           "Only know how to expand i64 atomics");
10485 
10486   SDValue Chain = Node->getOperand(0);
10487   SDValue In1 = Node->getOperand(1);
10488   SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10489                              Node->getOperand(2), DAG.getIntPtrConstant(0));
10490   SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10491                              Node->getOperand(2), DAG.getIntPtrConstant(1));
10492   SDValue Ops[] = { Chain, In1, In2L, In2H };
10493   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10494   SDValue Result =
10495     DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10496                             cast<MemSDNode>(Node)->getMemOperand());
10497   SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10498   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10499   Results.push_back(Result.getValue(2));
10500 }
10501 
10502 /// ReplaceNodeResults - Replace a node with an illegal result type
10503 /// with a new node built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const10504 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10505                                            SmallVectorImpl<SDValue>&Results,
10506                                            SelectionDAG &DAG) const {
10507   DebugLoc dl = N->getDebugLoc();
10508   switch (N->getOpcode()) {
10509   default:
10510     assert(false && "Do not know how to custom type legalize this operation!");
10511     return;
10512   case ISD::SIGN_EXTEND_INREG:
10513   case ISD::ADDC:
10514   case ISD::ADDE:
10515   case ISD::SUBC:
10516   case ISD::SUBE:
10517     // We don't want to expand or promote these.
10518     return;
10519   case ISD::FP_TO_SINT: {
10520     std::pair<SDValue,SDValue> Vals =
10521         FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10522     SDValue FIST = Vals.first, StackSlot = Vals.second;
10523     if (FIST.getNode() != 0) {
10524       EVT VT = N->getValueType(0);
10525       // Return a load from the stack slot.
10526       Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10527                                     MachinePointerInfo(), false, false, 0));
10528     }
10529     return;
10530   }
10531   case ISD::READCYCLECOUNTER: {
10532     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10533     SDValue TheChain = N->getOperand(0);
10534     SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10535     SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10536                                      rd.getValue(1));
10537     SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10538                                      eax.getValue(2));
10539     // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10540     SDValue Ops[] = { eax, edx };
10541     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10542     Results.push_back(edx.getValue(1));
10543     return;
10544   }
10545   case ISD::ATOMIC_CMP_SWAP: {
10546     EVT T = N->getValueType(0);
10547     assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10548     bool Regs64bit = T == MVT::i128;
10549     EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10550     SDValue cpInL, cpInH;
10551     cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10552                         DAG.getConstant(0, HalfT));
10553     cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10554                         DAG.getConstant(1, HalfT));
10555     cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10556                              Regs64bit ? X86::RAX : X86::EAX,
10557                              cpInL, SDValue());
10558     cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10559                              Regs64bit ? X86::RDX : X86::EDX,
10560                              cpInH, cpInL.getValue(1));
10561     SDValue swapInL, swapInH;
10562     swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10563                           DAG.getConstant(0, HalfT));
10564     swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10565                           DAG.getConstant(1, HalfT));
10566     swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10567                                Regs64bit ? X86::RBX : X86::EBX,
10568                                swapInL, cpInH.getValue(1));
10569     swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10570                                Regs64bit ? X86::RCX : X86::ECX,
10571                                swapInH, swapInL.getValue(1));
10572     SDValue Ops[] = { swapInH.getValue(0),
10573                       N->getOperand(1),
10574                       swapInH.getValue(1) };
10575     SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10576     MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10577     unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10578                                   X86ISD::LCMPXCHG8_DAG;
10579     SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10580                                              Ops, 3, T, MMO);
10581     SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10582                                         Regs64bit ? X86::RAX : X86::EAX,
10583                                         HalfT, Result.getValue(1));
10584     SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10585                                         Regs64bit ? X86::RDX : X86::EDX,
10586                                         HalfT, cpOutL.getValue(2));
10587     SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10588     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10589     Results.push_back(cpOutH.getValue(1));
10590     return;
10591   }
10592   case ISD::ATOMIC_LOAD_ADD:
10593     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10594     return;
10595   case ISD::ATOMIC_LOAD_AND:
10596     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10597     return;
10598   case ISD::ATOMIC_LOAD_NAND:
10599     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10600     return;
10601   case ISD::ATOMIC_LOAD_OR:
10602     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10603     return;
10604   case ISD::ATOMIC_LOAD_SUB:
10605     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10606     return;
10607   case ISD::ATOMIC_LOAD_XOR:
10608     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10609     return;
10610   case ISD::ATOMIC_SWAP:
10611     ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10612     return;
10613   case ISD::ATOMIC_LOAD:
10614     ReplaceATOMIC_LOAD(N, Results, DAG);
10615   }
10616 }
10617 
getTargetNodeName(unsigned Opcode) const10618 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10619   switch (Opcode) {
10620   default: return NULL;
10621   case X86ISD::BSF:                return "X86ISD::BSF";
10622   case X86ISD::BSR:                return "X86ISD::BSR";
10623   case X86ISD::SHLD:               return "X86ISD::SHLD";
10624   case X86ISD::SHRD:               return "X86ISD::SHRD";
10625   case X86ISD::FAND:               return "X86ISD::FAND";
10626   case X86ISD::FOR:                return "X86ISD::FOR";
10627   case X86ISD::FXOR:               return "X86ISD::FXOR";
10628   case X86ISD::FSRL:               return "X86ISD::FSRL";
10629   case X86ISD::FILD:               return "X86ISD::FILD";
10630   case X86ISD::FILD_FLAG:          return "X86ISD::FILD_FLAG";
10631   case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10632   case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10633   case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10634   case X86ISD::FLD:                return "X86ISD::FLD";
10635   case X86ISD::FST:                return "X86ISD::FST";
10636   case X86ISD::CALL:               return "X86ISD::CALL";
10637   case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG";
10638   case X86ISD::BT:                 return "X86ISD::BT";
10639   case X86ISD::CMP:                return "X86ISD::CMP";
10640   case X86ISD::COMI:               return "X86ISD::COMI";
10641   case X86ISD::UCOMI:              return "X86ISD::UCOMI";
10642   case X86ISD::SETCC:              return "X86ISD::SETCC";
10643   case X86ISD::SETCC_CARRY:        return "X86ISD::SETCC_CARRY";
10644   case X86ISD::FSETCCsd:           return "X86ISD::FSETCCsd";
10645   case X86ISD::FSETCCss:           return "X86ISD::FSETCCss";
10646   case X86ISD::CMOV:               return "X86ISD::CMOV";
10647   case X86ISD::BRCOND:             return "X86ISD::BRCOND";
10648   case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG";
10649   case X86ISD::REP_STOS:           return "X86ISD::REP_STOS";
10650   case X86ISD::REP_MOVS:           return "X86ISD::REP_MOVS";
10651   case X86ISD::GlobalBaseReg:      return "X86ISD::GlobalBaseReg";
10652   case X86ISD::Wrapper:            return "X86ISD::Wrapper";
10653   case X86ISD::WrapperRIP:         return "X86ISD::WrapperRIP";
10654   case X86ISD::PEXTRB:             return "X86ISD::PEXTRB";
10655   case X86ISD::PEXTRW:             return "X86ISD::PEXTRW";
10656   case X86ISD::INSERTPS:           return "X86ISD::INSERTPS";
10657   case X86ISD::PINSRB:             return "X86ISD::PINSRB";
10658   case X86ISD::PINSRW:             return "X86ISD::PINSRW";
10659   case X86ISD::PSHUFB:             return "X86ISD::PSHUFB";
10660   case X86ISD::ANDNP:              return "X86ISD::ANDNP";
10661   case X86ISD::PSIGNB:             return "X86ISD::PSIGNB";
10662   case X86ISD::PSIGNW:             return "X86ISD::PSIGNW";
10663   case X86ISD::PSIGND:             return "X86ISD::PSIGND";
10664   case X86ISD::FMAX:               return "X86ISD::FMAX";
10665   case X86ISD::FMIN:               return "X86ISD::FMIN";
10666   case X86ISD::FRSQRT:             return "X86ISD::FRSQRT";
10667   case X86ISD::FRCP:               return "X86ISD::FRCP";
10668   case X86ISD::FHADD:              return "X86ISD::FHADD";
10669   case X86ISD::FHSUB:              return "X86ISD::FHSUB";
10670   case X86ISD::TLSADDR:            return "X86ISD::TLSADDR";
10671   case X86ISD::TLSCALL:            return "X86ISD::TLSCALL";
10672   case X86ISD::EH_RETURN:          return "X86ISD::EH_RETURN";
10673   case X86ISD::TC_RETURN:          return "X86ISD::TC_RETURN";
10674   case X86ISD::FNSTCW16m:          return "X86ISD::FNSTCW16m";
10675   case X86ISD::LCMPXCHG_DAG:       return "X86ISD::LCMPXCHG_DAG";
10676   case X86ISD::LCMPXCHG8_DAG:      return "X86ISD::LCMPXCHG8_DAG";
10677   case X86ISD::ATOMADD64_DAG:      return "X86ISD::ATOMADD64_DAG";
10678   case X86ISD::ATOMSUB64_DAG:      return "X86ISD::ATOMSUB64_DAG";
10679   case X86ISD::ATOMOR64_DAG:       return "X86ISD::ATOMOR64_DAG";
10680   case X86ISD::ATOMXOR64_DAG:      return "X86ISD::ATOMXOR64_DAG";
10681   case X86ISD::ATOMAND64_DAG:      return "X86ISD::ATOMAND64_DAG";
10682   case X86ISD::ATOMNAND64_DAG:     return "X86ISD::ATOMNAND64_DAG";
10683   case X86ISD::VZEXT_MOVL:         return "X86ISD::VZEXT_MOVL";
10684   case X86ISD::VZEXT_LOAD:         return "X86ISD::VZEXT_LOAD";
10685   case X86ISD::VSHL:               return "X86ISD::VSHL";
10686   case X86ISD::VSRL:               return "X86ISD::VSRL";
10687   case X86ISD::CMPPD:              return "X86ISD::CMPPD";
10688   case X86ISD::CMPPS:              return "X86ISD::CMPPS";
10689   case X86ISD::PCMPEQB:            return "X86ISD::PCMPEQB";
10690   case X86ISD::PCMPEQW:            return "X86ISD::PCMPEQW";
10691   case X86ISD::PCMPEQD:            return "X86ISD::PCMPEQD";
10692   case X86ISD::PCMPEQQ:            return "X86ISD::PCMPEQQ";
10693   case X86ISD::PCMPGTB:            return "X86ISD::PCMPGTB";
10694   case X86ISD::PCMPGTW:            return "X86ISD::PCMPGTW";
10695   case X86ISD::PCMPGTD:            return "X86ISD::PCMPGTD";
10696   case X86ISD::PCMPGTQ:            return "X86ISD::PCMPGTQ";
10697   case X86ISD::ADD:                return "X86ISD::ADD";
10698   case X86ISD::SUB:                return "X86ISD::SUB";
10699   case X86ISD::ADC:                return "X86ISD::ADC";
10700   case X86ISD::SBB:                return "X86ISD::SBB";
10701   case X86ISD::SMUL:               return "X86ISD::SMUL";
10702   case X86ISD::UMUL:               return "X86ISD::UMUL";
10703   case X86ISD::INC:                return "X86ISD::INC";
10704   case X86ISD::DEC:                return "X86ISD::DEC";
10705   case X86ISD::OR:                 return "X86ISD::OR";
10706   case X86ISD::XOR:                return "X86ISD::XOR";
10707   case X86ISD::AND:                return "X86ISD::AND";
10708   case X86ISD::ANDN:               return "X86ISD::ANDN";
10709   case X86ISD::MUL_IMM:            return "X86ISD::MUL_IMM";
10710   case X86ISD::PTEST:              return "X86ISD::PTEST";
10711   case X86ISD::TESTP:              return "X86ISD::TESTP";
10712   case X86ISD::PALIGN:             return "X86ISD::PALIGN";
10713   case X86ISD::PSHUFD:             return "X86ISD::PSHUFD";
10714   case X86ISD::PSHUFHW:            return "X86ISD::PSHUFHW";
10715   case X86ISD::PSHUFHW_LD:         return "X86ISD::PSHUFHW_LD";
10716   case X86ISD::PSHUFLW:            return "X86ISD::PSHUFLW";
10717   case X86ISD::PSHUFLW_LD:         return "X86ISD::PSHUFLW_LD";
10718   case X86ISD::SHUFPS:             return "X86ISD::SHUFPS";
10719   case X86ISD::SHUFPD:             return "X86ISD::SHUFPD";
10720   case X86ISD::MOVLHPS:            return "X86ISD::MOVLHPS";
10721   case X86ISD::MOVLHPD:            return "X86ISD::MOVLHPD";
10722   case X86ISD::MOVHLPS:            return "X86ISD::MOVHLPS";
10723   case X86ISD::MOVHLPD:            return "X86ISD::MOVHLPD";
10724   case X86ISD::MOVLPS:             return "X86ISD::MOVLPS";
10725   case X86ISD::MOVLPD:             return "X86ISD::MOVLPD";
10726   case X86ISD::MOVDDUP:            return "X86ISD::MOVDDUP";
10727   case X86ISD::MOVSHDUP:           return "X86ISD::MOVSHDUP";
10728   case X86ISD::MOVSLDUP:           return "X86ISD::MOVSLDUP";
10729   case X86ISD::MOVSHDUP_LD:        return "X86ISD::MOVSHDUP_LD";
10730   case X86ISD::MOVSLDUP_LD:        return "X86ISD::MOVSLDUP_LD";
10731   case X86ISD::MOVSD:              return "X86ISD::MOVSD";
10732   case X86ISD::MOVSS:              return "X86ISD::MOVSS";
10733   case X86ISD::UNPCKLPS:           return "X86ISD::UNPCKLPS";
10734   case X86ISD::UNPCKLPD:           return "X86ISD::UNPCKLPD";
10735   case X86ISD::VUNPCKLPDY:         return "X86ISD::VUNPCKLPDY";
10736   case X86ISD::UNPCKHPS:           return "X86ISD::UNPCKHPS";
10737   case X86ISD::UNPCKHPD:           return "X86ISD::UNPCKHPD";
10738   case X86ISD::PUNPCKLBW:          return "X86ISD::PUNPCKLBW";
10739   case X86ISD::PUNPCKLWD:          return "X86ISD::PUNPCKLWD";
10740   case X86ISD::PUNPCKLDQ:          return "X86ISD::PUNPCKLDQ";
10741   case X86ISD::PUNPCKLQDQ:         return "X86ISD::PUNPCKLQDQ";
10742   case X86ISD::PUNPCKHBW:          return "X86ISD::PUNPCKHBW";
10743   case X86ISD::PUNPCKHWD:          return "X86ISD::PUNPCKHWD";
10744   case X86ISD::PUNPCKHDQ:          return "X86ISD::PUNPCKHDQ";
10745   case X86ISD::PUNPCKHQDQ:         return "X86ISD::PUNPCKHQDQ";
10746   case X86ISD::VBROADCAST:         return "X86ISD::VBROADCAST";
10747   case X86ISD::VPERMILPS:          return "X86ISD::VPERMILPS";
10748   case X86ISD::VPERMILPSY:         return "X86ISD::VPERMILPSY";
10749   case X86ISD::VPERMILPD:          return "X86ISD::VPERMILPD";
10750   case X86ISD::VPERMILPDY:         return "X86ISD::VPERMILPDY";
10751   case X86ISD::VPERM2F128:         return "X86ISD::VPERM2F128";
10752   case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10753   case X86ISD::VAARG_64:           return "X86ISD::VAARG_64";
10754   case X86ISD::WIN_ALLOCA:         return "X86ISD::WIN_ALLOCA";
10755   case X86ISD::MEMBARRIER:         return "X86ISD::MEMBARRIER";
10756   case X86ISD::SEG_ALLOCA:         return "X86ISD::SEG_ALLOCA";
10757   }
10758 }
10759 
10760 // isLegalAddressingMode - Return true if the addressing mode represented
10761 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const10762 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10763                                               Type *Ty) const {
10764   // X86 supports extremely general addressing modes.
10765   CodeModel::Model M = getTargetMachine().getCodeModel();
10766   Reloc::Model R = getTargetMachine().getRelocationModel();
10767 
10768   // X86 allows a sign-extended 32-bit immediate field as a displacement.
10769   if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10770     return false;
10771 
10772   if (AM.BaseGV) {
10773     unsigned GVFlags =
10774       Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10775 
10776     // If a reference to this global requires an extra load, we can't fold it.
10777     if (isGlobalStubReference(GVFlags))
10778       return false;
10779 
10780     // If BaseGV requires a register for the PIC base, we cannot also have a
10781     // BaseReg specified.
10782     if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10783       return false;
10784 
10785     // If lower 4G is not available, then we must use rip-relative addressing.
10786     if ((M != CodeModel::Small || R != Reloc::Static) &&
10787         Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10788       return false;
10789   }
10790 
10791   switch (AM.Scale) {
10792   case 0:
10793   case 1:
10794   case 2:
10795   case 4:
10796   case 8:
10797     // These scales always work.
10798     break;
10799   case 3:
10800   case 5:
10801   case 9:
10802     // These scales are formed with basereg+scalereg.  Only accept if there is
10803     // no basereg yet.
10804     if (AM.HasBaseReg)
10805       return false;
10806     break;
10807   default:  // Other stuff never works.
10808     return false;
10809   }
10810 
10811   return true;
10812 }
10813 
10814 
isTruncateFree(Type * Ty1,Type * Ty2) const10815 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10816   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10817     return false;
10818   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10819   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10820   if (NumBits1 <= NumBits2)
10821     return false;
10822   return true;
10823 }
10824 
isTruncateFree(EVT VT1,EVT VT2) const10825 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10826   if (!VT1.isInteger() || !VT2.isInteger())
10827     return false;
10828   unsigned NumBits1 = VT1.getSizeInBits();
10829   unsigned NumBits2 = VT2.getSizeInBits();
10830   if (NumBits1 <= NumBits2)
10831     return false;
10832   return true;
10833 }
10834 
isZExtFree(Type * Ty1,Type * Ty2) const10835 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10836   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10837   return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10838 }
10839 
isZExtFree(EVT VT1,EVT VT2) const10840 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10841   // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10842   return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10843 }
10844 
isNarrowingProfitable(EVT VT1,EVT VT2) const10845 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10846   // i16 instructions are longer (0x66 prefix) and potentially slower.
10847   return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10848 }
10849 
10850 /// isShuffleMaskLegal - Targets can use this to indicate that they only
10851 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10852 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10853 /// are assumed to be legal.
10854 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const10855 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10856                                       EVT VT) const {
10857   // Very little shuffling can be done for 64-bit vectors right now.
10858   if (VT.getSizeInBits() == 64)
10859     return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10860 
10861   // FIXME: pshufb, blends, shifts.
10862   return (VT.getVectorNumElements() == 2 ||
10863           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10864           isMOVLMask(M, VT) ||
10865           isSHUFPMask(M, VT) ||
10866           isPSHUFDMask(M, VT) ||
10867           isPSHUFHWMask(M, VT) ||
10868           isPSHUFLWMask(M, VT) ||
10869           isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10870           isUNPCKLMask(M, VT) ||
10871           isUNPCKHMask(M, VT) ||
10872           isUNPCKL_v_undef_Mask(M, VT) ||
10873           isUNPCKH_v_undef_Mask(M, VT));
10874 }
10875 
10876 bool
isVectorClearMaskLegal(const SmallVectorImpl<int> & Mask,EVT VT) const10877 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10878                                           EVT VT) const {
10879   unsigned NumElts = VT.getVectorNumElements();
10880   // FIXME: This collection of masks seems suspect.
10881   if (NumElts == 2)
10882     return true;
10883   if (NumElts == 4 && VT.getSizeInBits() == 128) {
10884     return (isMOVLMask(Mask, VT)  ||
10885             isCommutedMOVLMask(Mask, VT, true) ||
10886             isSHUFPMask(Mask, VT) ||
10887             isCommutedSHUFPMask(Mask, VT));
10888   }
10889   return false;
10890 }
10891 
10892 //===----------------------------------------------------------------------===//
10893 //                           X86 Scheduler Hooks
10894 //===----------------------------------------------------------------------===//
10895 
10896 // private utility function
10897 MachineBasicBlock *
EmitAtomicBitwiseWithCustomInserter(MachineInstr * bInstr,MachineBasicBlock * MBB,unsigned regOpc,unsigned immOpc,unsigned LoadOpc,unsigned CXchgOpc,unsigned notOpc,unsigned EAXreg,TargetRegisterClass * RC,bool invSrc) const10898 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10899                                                        MachineBasicBlock *MBB,
10900                                                        unsigned regOpc,
10901                                                        unsigned immOpc,
10902                                                        unsigned LoadOpc,
10903                                                        unsigned CXchgOpc,
10904                                                        unsigned notOpc,
10905                                                        unsigned EAXreg,
10906                                                        TargetRegisterClass *RC,
10907                                                        bool invSrc) const {
10908   // For the atomic bitwise operator, we generate
10909   //   thisMBB:
10910   //   newMBB:
10911   //     ld  t1 = [bitinstr.addr]
10912   //     op  t2 = t1, [bitinstr.val]
10913   //     mov EAX = t1
10914   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
10915   //     bz  newMBB
10916   //     fallthrough -->nextMBB
10917   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10918   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10919   MachineFunction::iterator MBBIter = MBB;
10920   ++MBBIter;
10921 
10922   /// First build the CFG
10923   MachineFunction *F = MBB->getParent();
10924   MachineBasicBlock *thisMBB = MBB;
10925   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10926   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10927   F->insert(MBBIter, newMBB);
10928   F->insert(MBBIter, nextMBB);
10929 
10930   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10931   nextMBB->splice(nextMBB->begin(), thisMBB,
10932                   llvm::next(MachineBasicBlock::iterator(bInstr)),
10933                   thisMBB->end());
10934   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10935 
10936   // Update thisMBB to fall through to newMBB
10937   thisMBB->addSuccessor(newMBB);
10938 
10939   // newMBB jumps to itself and fall through to nextMBB
10940   newMBB->addSuccessor(nextMBB);
10941   newMBB->addSuccessor(newMBB);
10942 
10943   // Insert instructions into newMBB based on incoming instruction
10944   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10945          "unexpected number of operands");
10946   DebugLoc dl = bInstr->getDebugLoc();
10947   MachineOperand& destOper = bInstr->getOperand(0);
10948   MachineOperand* argOpers[2 + X86::AddrNumOperands];
10949   int numArgs = bInstr->getNumOperands() - 1;
10950   for (int i=0; i < numArgs; ++i)
10951     argOpers[i] = &bInstr->getOperand(i+1);
10952 
10953   // x86 address has 4 operands: base, index, scale, and displacement
10954   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10955   int valArgIndx = lastAddrIndx + 1;
10956 
10957   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10958   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10959   for (int i=0; i <= lastAddrIndx; ++i)
10960     (*MIB).addOperand(*argOpers[i]);
10961 
10962   unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10963   if (invSrc) {
10964     MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10965   }
10966   else
10967     tt = t1;
10968 
10969   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10970   assert((argOpers[valArgIndx]->isReg() ||
10971           argOpers[valArgIndx]->isImm()) &&
10972          "invalid operand");
10973   if (argOpers[valArgIndx]->isReg())
10974     MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10975   else
10976     MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10977   MIB.addReg(tt);
10978   (*MIB).addOperand(*argOpers[valArgIndx]);
10979 
10980   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10981   MIB.addReg(t1);
10982 
10983   MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10984   for (int i=0; i <= lastAddrIndx; ++i)
10985     (*MIB).addOperand(*argOpers[i]);
10986   MIB.addReg(t2);
10987   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10988   (*MIB).setMemRefs(bInstr->memoperands_begin(),
10989                     bInstr->memoperands_end());
10990 
10991   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10992   MIB.addReg(EAXreg);
10993 
10994   // insert branch
10995   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10996 
10997   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
10998   return nextMBB;
10999 }
11000 
11001 // private utility function:  64 bit atomics on 32 bit host.
11002 MachineBasicBlock *
EmitAtomicBit6432WithCustomInserter(MachineInstr * bInstr,MachineBasicBlock * MBB,unsigned regOpcL,unsigned regOpcH,unsigned immOpcL,unsigned immOpcH,bool invSrc) const11003 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11004                                                        MachineBasicBlock *MBB,
11005                                                        unsigned regOpcL,
11006                                                        unsigned regOpcH,
11007                                                        unsigned immOpcL,
11008                                                        unsigned immOpcH,
11009                                                        bool invSrc) const {
11010   // For the atomic bitwise operator, we generate
11011   //   thisMBB (instructions are in pairs, except cmpxchg8b)
11012   //     ld t1,t2 = [bitinstr.addr]
11013   //   newMBB:
11014   //     out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11015   //     op  t5, t6 <- out1, out2, [bitinstr.val]
11016   //      (for SWAP, substitute:  mov t5, t6 <- [bitinstr.val])
11017   //     mov ECX, EBX <- t5, t6
11018   //     mov EAX, EDX <- t1, t2
11019   //     cmpxchg8b [bitinstr.addr]  [EAX, EDX, EBX, ECX implicit]
11020   //     mov t3, t4 <- EAX, EDX
11021   //     bz  newMBB
11022   //     result in out1, out2
11023   //     fallthrough -->nextMBB
11024 
11025   const TargetRegisterClass *RC = X86::GR32RegisterClass;
11026   const unsigned LoadOpc = X86::MOV32rm;
11027   const unsigned NotOpc = X86::NOT32r;
11028   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11029   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11030   MachineFunction::iterator MBBIter = MBB;
11031   ++MBBIter;
11032 
11033   /// First build the CFG
11034   MachineFunction *F = MBB->getParent();
11035   MachineBasicBlock *thisMBB = MBB;
11036   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11037   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11038   F->insert(MBBIter, newMBB);
11039   F->insert(MBBIter, nextMBB);
11040 
11041   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11042   nextMBB->splice(nextMBB->begin(), thisMBB,
11043                   llvm::next(MachineBasicBlock::iterator(bInstr)),
11044                   thisMBB->end());
11045   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11046 
11047   // Update thisMBB to fall through to newMBB
11048   thisMBB->addSuccessor(newMBB);
11049 
11050   // newMBB jumps to itself and fall through to nextMBB
11051   newMBB->addSuccessor(nextMBB);
11052   newMBB->addSuccessor(newMBB);
11053 
11054   DebugLoc dl = bInstr->getDebugLoc();
11055   // Insert instructions into newMBB based on incoming instruction
11056   // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11057   assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11058          "unexpected number of operands");
11059   MachineOperand& dest1Oper = bInstr->getOperand(0);
11060   MachineOperand& dest2Oper = bInstr->getOperand(1);
11061   MachineOperand* argOpers[2 + X86::AddrNumOperands];
11062   for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11063     argOpers[i] = &bInstr->getOperand(i+2);
11064 
11065     // We use some of the operands multiple times, so conservatively just
11066     // clear any kill flags that might be present.
11067     if (argOpers[i]->isReg() && argOpers[i]->isUse())
11068       argOpers[i]->setIsKill(false);
11069   }
11070 
11071   // x86 address has 5 operands: base, index, scale, displacement, and segment.
11072   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11073 
11074   unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11075   MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11076   for (int i=0; i <= lastAddrIndx; ++i)
11077     (*MIB).addOperand(*argOpers[i]);
11078   unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11079   MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11080   // add 4 to displacement.
11081   for (int i=0; i <= lastAddrIndx-2; ++i)
11082     (*MIB).addOperand(*argOpers[i]);
11083   MachineOperand newOp3 = *(argOpers[3]);
11084   if (newOp3.isImm())
11085     newOp3.setImm(newOp3.getImm()+4);
11086   else
11087     newOp3.setOffset(newOp3.getOffset()+4);
11088   (*MIB).addOperand(newOp3);
11089   (*MIB).addOperand(*argOpers[lastAddrIndx]);
11090 
11091   // t3/4 are defined later, at the bottom of the loop
11092   unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11093   unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11094   BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11095     .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11096   BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11097     .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11098 
11099   // The subsequent operations should be using the destination registers of
11100   //the PHI instructions.
11101   if (invSrc) {
11102     t1 = F->getRegInfo().createVirtualRegister(RC);
11103     t2 = F->getRegInfo().createVirtualRegister(RC);
11104     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11105     MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11106   } else {
11107     t1 = dest1Oper.getReg();
11108     t2 = dest2Oper.getReg();
11109   }
11110 
11111   int valArgIndx = lastAddrIndx + 1;
11112   assert((argOpers[valArgIndx]->isReg() ||
11113           argOpers[valArgIndx]->isImm()) &&
11114          "invalid operand");
11115   unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11116   unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11117   if (argOpers[valArgIndx]->isReg())
11118     MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11119   else
11120     MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11121   if (regOpcL != X86::MOV32rr)
11122     MIB.addReg(t1);
11123   (*MIB).addOperand(*argOpers[valArgIndx]);
11124   assert(argOpers[valArgIndx + 1]->isReg() ==
11125          argOpers[valArgIndx]->isReg());
11126   assert(argOpers[valArgIndx + 1]->isImm() ==
11127          argOpers[valArgIndx]->isImm());
11128   if (argOpers[valArgIndx + 1]->isReg())
11129     MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11130   else
11131     MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11132   if (regOpcH != X86::MOV32rr)
11133     MIB.addReg(t2);
11134   (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11135 
11136   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11137   MIB.addReg(t1);
11138   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11139   MIB.addReg(t2);
11140 
11141   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11142   MIB.addReg(t5);
11143   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11144   MIB.addReg(t6);
11145 
11146   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11147   for (int i=0; i <= lastAddrIndx; ++i)
11148     (*MIB).addOperand(*argOpers[i]);
11149 
11150   assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11151   (*MIB).setMemRefs(bInstr->memoperands_begin(),
11152                     bInstr->memoperands_end());
11153 
11154   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11155   MIB.addReg(X86::EAX);
11156   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11157   MIB.addReg(X86::EDX);
11158 
11159   // insert branch
11160   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11161 
11162   bInstr->eraseFromParent();   // The pseudo instruction is gone now.
11163   return nextMBB;
11164 }
11165 
11166 // private utility function
11167 MachineBasicBlock *
EmitAtomicMinMaxWithCustomInserter(MachineInstr * mInstr,MachineBasicBlock * MBB,unsigned cmovOpc) const11168 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11169                                                       MachineBasicBlock *MBB,
11170                                                       unsigned cmovOpc) const {
11171   // For the atomic min/max operator, we generate
11172   //   thisMBB:
11173   //   newMBB:
11174   //     ld t1 = [min/max.addr]
11175   //     mov t2 = [min/max.val]
11176   //     cmp  t1, t2
11177   //     cmov[cond] t2 = t1
11178   //     mov EAX = t1
11179   //     lcs dest = [bitinstr.addr], t2  [EAX is implicit]
11180   //     bz   newMBB
11181   //     fallthrough -->nextMBB
11182   //
11183   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11184   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11185   MachineFunction::iterator MBBIter = MBB;
11186   ++MBBIter;
11187 
11188   /// First build the CFG
11189   MachineFunction *F = MBB->getParent();
11190   MachineBasicBlock *thisMBB = MBB;
11191   MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11192   MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11193   F->insert(MBBIter, newMBB);
11194   F->insert(MBBIter, nextMBB);
11195 
11196   // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11197   nextMBB->splice(nextMBB->begin(), thisMBB,
11198                   llvm::next(MachineBasicBlock::iterator(mInstr)),
11199                   thisMBB->end());
11200   nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11201 
11202   // Update thisMBB to fall through to newMBB
11203   thisMBB->addSuccessor(newMBB);
11204 
11205   // newMBB jumps to newMBB and fall through to nextMBB
11206   newMBB->addSuccessor(nextMBB);
11207   newMBB->addSuccessor(newMBB);
11208 
11209   DebugLoc dl = mInstr->getDebugLoc();
11210   // Insert instructions into newMBB based on incoming instruction
11211   assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11212          "unexpected number of operands");
11213   MachineOperand& destOper = mInstr->getOperand(0);
11214   MachineOperand* argOpers[2 + X86::AddrNumOperands];
11215   int numArgs = mInstr->getNumOperands() - 1;
11216   for (int i=0; i < numArgs; ++i)
11217     argOpers[i] = &mInstr->getOperand(i+1);
11218 
11219   // x86 address has 4 operands: base, index, scale, and displacement
11220   int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11221   int valArgIndx = lastAddrIndx + 1;
11222 
11223   unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11224   MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11225   for (int i=0; i <= lastAddrIndx; ++i)
11226     (*MIB).addOperand(*argOpers[i]);
11227 
11228   // We only support register and immediate values
11229   assert((argOpers[valArgIndx]->isReg() ||
11230           argOpers[valArgIndx]->isImm()) &&
11231          "invalid operand");
11232 
11233   unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11234   if (argOpers[valArgIndx]->isReg())
11235     MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11236   else
11237     MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11238   (*MIB).addOperand(*argOpers[valArgIndx]);
11239 
11240   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11241   MIB.addReg(t1);
11242 
11243   MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11244   MIB.addReg(t1);
11245   MIB.addReg(t2);
11246 
11247   // Generate movc
11248   unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11249   MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11250   MIB.addReg(t2);
11251   MIB.addReg(t1);
11252 
11253   // Cmp and exchange if none has modified the memory location
11254   MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11255   for (int i=0; i <= lastAddrIndx; ++i)
11256     (*MIB).addOperand(*argOpers[i]);
11257   MIB.addReg(t3);
11258   assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11259   (*MIB).setMemRefs(mInstr->memoperands_begin(),
11260                     mInstr->memoperands_end());
11261 
11262   MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11263   MIB.addReg(X86::EAX);
11264 
11265   // insert branch
11266   BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11267 
11268   mInstr->eraseFromParent();   // The pseudo instruction is gone now.
11269   return nextMBB;
11270 }
11271 
11272 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11273 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11274 // in the .td file.
11275 MachineBasicBlock *
EmitPCMP(MachineInstr * MI,MachineBasicBlock * BB,unsigned numArgs,bool memArg) const11276 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11277                             unsigned numArgs, bool memArg) const {
11278   assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11279          "Target must have SSE4.2 or AVX features enabled");
11280 
11281   DebugLoc dl = MI->getDebugLoc();
11282   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11283   unsigned Opc;
11284   if (!Subtarget->hasAVX()) {
11285     if (memArg)
11286       Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11287     else
11288       Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11289   } else {
11290     if (memArg)
11291       Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11292     else
11293       Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11294   }
11295 
11296   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11297   for (unsigned i = 0; i < numArgs; ++i) {
11298     MachineOperand &Op = MI->getOperand(i+1);
11299     if (!(Op.isReg() && Op.isImplicit()))
11300       MIB.addOperand(Op);
11301   }
11302   BuildMI(*BB, MI, dl,
11303     TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11304              MI->getOperand(0).getReg())
11305     .addReg(X86::XMM0);
11306 
11307   MI->eraseFromParent();
11308   return BB;
11309 }
11310 
11311 MachineBasicBlock *
EmitMonitor(MachineInstr * MI,MachineBasicBlock * BB) const11312 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11313   DebugLoc dl = MI->getDebugLoc();
11314   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11315 
11316   // Address into RAX/EAX, other two args into ECX, EDX.
11317   unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11318   unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11319   MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11320   for (int i = 0; i < X86::AddrNumOperands; ++i)
11321     MIB.addOperand(MI->getOperand(i));
11322 
11323   unsigned ValOps = X86::AddrNumOperands;
11324   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11325     .addReg(MI->getOperand(ValOps).getReg());
11326   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11327     .addReg(MI->getOperand(ValOps+1).getReg());
11328 
11329   // The instruction doesn't actually take any operands though.
11330   BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11331 
11332   MI->eraseFromParent(); // The pseudo is gone now.
11333   return BB;
11334 }
11335 
11336 MachineBasicBlock *
EmitMwait(MachineInstr * MI,MachineBasicBlock * BB) const11337 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11338   DebugLoc dl = MI->getDebugLoc();
11339   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11340 
11341   // First arg in ECX, the second in EAX.
11342   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11343     .addReg(MI->getOperand(0).getReg());
11344   BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11345     .addReg(MI->getOperand(1).getReg());
11346 
11347   // The instruction doesn't actually take any operands though.
11348   BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11349 
11350   MI->eraseFromParent(); // The pseudo is gone now.
11351   return BB;
11352 }
11353 
11354 MachineBasicBlock *
EmitVAARG64WithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const11355 X86TargetLowering::EmitVAARG64WithCustomInserter(
11356                    MachineInstr *MI,
11357                    MachineBasicBlock *MBB) const {
11358   // Emit va_arg instruction on X86-64.
11359 
11360   // Operands to this pseudo-instruction:
11361   // 0  ) Output        : destination address (reg)
11362   // 1-5) Input         : va_list address (addr, i64mem)
11363   // 6  ) ArgSize       : Size (in bytes) of vararg type
11364   // 7  ) ArgMode       : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11365   // 8  ) Align         : Alignment of type
11366   // 9  ) EFLAGS (implicit-def)
11367 
11368   assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11369   assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11370 
11371   unsigned DestReg = MI->getOperand(0).getReg();
11372   MachineOperand &Base = MI->getOperand(1);
11373   MachineOperand &Scale = MI->getOperand(2);
11374   MachineOperand &Index = MI->getOperand(3);
11375   MachineOperand &Disp = MI->getOperand(4);
11376   MachineOperand &Segment = MI->getOperand(5);
11377   unsigned ArgSize = MI->getOperand(6).getImm();
11378   unsigned ArgMode = MI->getOperand(7).getImm();
11379   unsigned Align = MI->getOperand(8).getImm();
11380 
11381   // Memory Reference
11382   assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11383   MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11384   MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11385 
11386   // Machine Information
11387   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11388   MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11389   const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11390   const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11391   DebugLoc DL = MI->getDebugLoc();
11392 
11393   // struct va_list {
11394   //   i32   gp_offset
11395   //   i32   fp_offset
11396   //   i64   overflow_area (address)
11397   //   i64   reg_save_area (address)
11398   // }
11399   // sizeof(va_list) = 24
11400   // alignment(va_list) = 8
11401 
11402   unsigned TotalNumIntRegs = 6;
11403   unsigned TotalNumXMMRegs = 8;
11404   bool UseGPOffset = (ArgMode == 1);
11405   bool UseFPOffset = (ArgMode == 2);
11406   unsigned MaxOffset = TotalNumIntRegs * 8 +
11407                        (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11408 
11409   /* Align ArgSize to a multiple of 8 */
11410   unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11411   bool NeedsAlign = (Align > 8);
11412 
11413   MachineBasicBlock *thisMBB = MBB;
11414   MachineBasicBlock *overflowMBB;
11415   MachineBasicBlock *offsetMBB;
11416   MachineBasicBlock *endMBB;
11417 
11418   unsigned OffsetDestReg = 0;    // Argument address computed by offsetMBB
11419   unsigned OverflowDestReg = 0;  // Argument address computed by overflowMBB
11420   unsigned OffsetReg = 0;
11421 
11422   if (!UseGPOffset && !UseFPOffset) {
11423     // If we only pull from the overflow region, we don't create a branch.
11424     // We don't need to alter control flow.
11425     OffsetDestReg = 0; // unused
11426     OverflowDestReg = DestReg;
11427 
11428     offsetMBB = NULL;
11429     overflowMBB = thisMBB;
11430     endMBB = thisMBB;
11431   } else {
11432     // First emit code to check if gp_offset (or fp_offset) is below the bound.
11433     // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11434     // If not, pull from overflow_area. (branch to overflowMBB)
11435     //
11436     //       thisMBB
11437     //         |     .
11438     //         |        .
11439     //     offsetMBB   overflowMBB
11440     //         |        .
11441     //         |     .
11442     //        endMBB
11443 
11444     // Registers for the PHI in endMBB
11445     OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11446     OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11447 
11448     const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11449     MachineFunction *MF = MBB->getParent();
11450     overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11451     offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11452     endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11453 
11454     MachineFunction::iterator MBBIter = MBB;
11455     ++MBBIter;
11456 
11457     // Insert the new basic blocks
11458     MF->insert(MBBIter, offsetMBB);
11459     MF->insert(MBBIter, overflowMBB);
11460     MF->insert(MBBIter, endMBB);
11461 
11462     // Transfer the remainder of MBB and its successor edges to endMBB.
11463     endMBB->splice(endMBB->begin(), thisMBB,
11464                     llvm::next(MachineBasicBlock::iterator(MI)),
11465                     thisMBB->end());
11466     endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11467 
11468     // Make offsetMBB and overflowMBB successors of thisMBB
11469     thisMBB->addSuccessor(offsetMBB);
11470     thisMBB->addSuccessor(overflowMBB);
11471 
11472     // endMBB is a successor of both offsetMBB and overflowMBB
11473     offsetMBB->addSuccessor(endMBB);
11474     overflowMBB->addSuccessor(endMBB);
11475 
11476     // Load the offset value into a register
11477     OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11478     BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11479       .addOperand(Base)
11480       .addOperand(Scale)
11481       .addOperand(Index)
11482       .addDisp(Disp, UseFPOffset ? 4 : 0)
11483       .addOperand(Segment)
11484       .setMemRefs(MMOBegin, MMOEnd);
11485 
11486     // Check if there is enough room left to pull this argument.
11487     BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11488       .addReg(OffsetReg)
11489       .addImm(MaxOffset + 8 - ArgSizeA8);
11490 
11491     // Branch to "overflowMBB" if offset >= max
11492     // Fall through to "offsetMBB" otherwise
11493     BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11494       .addMBB(overflowMBB);
11495   }
11496 
11497   // In offsetMBB, emit code to use the reg_save_area.
11498   if (offsetMBB) {
11499     assert(OffsetReg != 0);
11500 
11501     // Read the reg_save_area address.
11502     unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11503     BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11504       .addOperand(Base)
11505       .addOperand(Scale)
11506       .addOperand(Index)
11507       .addDisp(Disp, 16)
11508       .addOperand(Segment)
11509       .setMemRefs(MMOBegin, MMOEnd);
11510 
11511     // Zero-extend the offset
11512     unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11513       BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11514         .addImm(0)
11515         .addReg(OffsetReg)
11516         .addImm(X86::sub_32bit);
11517 
11518     // Add the offset to the reg_save_area to get the final address.
11519     BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11520       .addReg(OffsetReg64)
11521       .addReg(RegSaveReg);
11522 
11523     // Compute the offset for the next argument
11524     unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11525     BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11526       .addReg(OffsetReg)
11527       .addImm(UseFPOffset ? 16 : 8);
11528 
11529     // Store it back into the va_list.
11530     BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11531       .addOperand(Base)
11532       .addOperand(Scale)
11533       .addOperand(Index)
11534       .addDisp(Disp, UseFPOffset ? 4 : 0)
11535       .addOperand(Segment)
11536       .addReg(NextOffsetReg)
11537       .setMemRefs(MMOBegin, MMOEnd);
11538 
11539     // Jump to endMBB
11540     BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11541       .addMBB(endMBB);
11542   }
11543 
11544   //
11545   // Emit code to use overflow area
11546   //
11547 
11548   // Load the overflow_area address into a register.
11549   unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11550   BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11551     .addOperand(Base)
11552     .addOperand(Scale)
11553     .addOperand(Index)
11554     .addDisp(Disp, 8)
11555     .addOperand(Segment)
11556     .setMemRefs(MMOBegin, MMOEnd);
11557 
11558   // If we need to align it, do so. Otherwise, just copy the address
11559   // to OverflowDestReg.
11560   if (NeedsAlign) {
11561     // Align the overflow address
11562     assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11563     unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11564 
11565     // aligned_addr = (addr + (align-1)) & ~(align-1)
11566     BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11567       .addReg(OverflowAddrReg)
11568       .addImm(Align-1);
11569 
11570     BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11571       .addReg(TmpReg)
11572       .addImm(~(uint64_t)(Align-1));
11573   } else {
11574     BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11575       .addReg(OverflowAddrReg);
11576   }
11577 
11578   // Compute the next overflow address after this argument.
11579   // (the overflow address should be kept 8-byte aligned)
11580   unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11581   BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11582     .addReg(OverflowDestReg)
11583     .addImm(ArgSizeA8);
11584 
11585   // Store the new overflow address.
11586   BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11587     .addOperand(Base)
11588     .addOperand(Scale)
11589     .addOperand(Index)
11590     .addDisp(Disp, 8)
11591     .addOperand(Segment)
11592     .addReg(NextAddrReg)
11593     .setMemRefs(MMOBegin, MMOEnd);
11594 
11595   // If we branched, emit the PHI to the front of endMBB.
11596   if (offsetMBB) {
11597     BuildMI(*endMBB, endMBB->begin(), DL,
11598             TII->get(X86::PHI), DestReg)
11599       .addReg(OffsetDestReg).addMBB(offsetMBB)
11600       .addReg(OverflowDestReg).addMBB(overflowMBB);
11601   }
11602 
11603   // Erase the pseudo instruction
11604   MI->eraseFromParent();
11605 
11606   return endMBB;
11607 }
11608 
11609 MachineBasicBlock *
EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const11610 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11611                                                  MachineInstr *MI,
11612                                                  MachineBasicBlock *MBB) const {
11613   // Emit code to save XMM registers to the stack. The ABI says that the
11614   // number of registers to save is given in %al, so it's theoretically
11615   // possible to do an indirect jump trick to avoid saving all of them,
11616   // however this code takes a simpler approach and just executes all
11617   // of the stores if %al is non-zero. It's less code, and it's probably
11618   // easier on the hardware branch predictor, and stores aren't all that
11619   // expensive anyway.
11620 
11621   // Create the new basic blocks. One block contains all the XMM stores,
11622   // and one block is the final destination regardless of whether any
11623   // stores were performed.
11624   const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11625   MachineFunction *F = MBB->getParent();
11626   MachineFunction::iterator MBBIter = MBB;
11627   ++MBBIter;
11628   MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11629   MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11630   F->insert(MBBIter, XMMSaveMBB);
11631   F->insert(MBBIter, EndMBB);
11632 
11633   // Transfer the remainder of MBB and its successor edges to EndMBB.
11634   EndMBB->splice(EndMBB->begin(), MBB,
11635                  llvm::next(MachineBasicBlock::iterator(MI)),
11636                  MBB->end());
11637   EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11638 
11639   // The original block will now fall through to the XMM save block.
11640   MBB->addSuccessor(XMMSaveMBB);
11641   // The XMMSaveMBB will fall through to the end block.
11642   XMMSaveMBB->addSuccessor(EndMBB);
11643 
11644   // Now add the instructions.
11645   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11646   DebugLoc DL = MI->getDebugLoc();
11647 
11648   unsigned CountReg = MI->getOperand(0).getReg();
11649   int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11650   int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11651 
11652   if (!Subtarget->isTargetWin64()) {
11653     // If %al is 0, branch around the XMM save block.
11654     BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11655     BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11656     MBB->addSuccessor(EndMBB);
11657   }
11658 
11659   unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11660   // In the XMM save block, save all the XMM argument registers.
11661   for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11662     int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11663     MachineMemOperand *MMO =
11664       F->getMachineMemOperand(
11665           MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11666         MachineMemOperand::MOStore,
11667         /*Size=*/16, /*Align=*/16);
11668     BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11669       .addFrameIndex(RegSaveFrameIndex)
11670       .addImm(/*Scale=*/1)
11671       .addReg(/*IndexReg=*/0)
11672       .addImm(/*Disp=*/Offset)
11673       .addReg(/*Segment=*/0)
11674       .addReg(MI->getOperand(i).getReg())
11675       .addMemOperand(MMO);
11676   }
11677 
11678   MI->eraseFromParent();   // The pseudo instruction is gone now.
11679 
11680   return EndMBB;
11681 }
11682 
11683 MachineBasicBlock *
EmitLoweredSelect(MachineInstr * MI,MachineBasicBlock * BB) const11684 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11685                                      MachineBasicBlock *BB) const {
11686   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11687   DebugLoc DL = MI->getDebugLoc();
11688 
11689   // To "insert" a SELECT_CC instruction, we actually have to insert the
11690   // diamond control-flow pattern.  The incoming instruction knows the
11691   // destination vreg to set, the condition code register to branch on, the
11692   // true/false values to select between, and a branch opcode to use.
11693   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11694   MachineFunction::iterator It = BB;
11695   ++It;
11696 
11697   //  thisMBB:
11698   //  ...
11699   //   TrueVal = ...
11700   //   cmpTY ccX, r1, r2
11701   //   bCC copy1MBB
11702   //   fallthrough --> copy0MBB
11703   MachineBasicBlock *thisMBB = BB;
11704   MachineFunction *F = BB->getParent();
11705   MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11706   MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11707   F->insert(It, copy0MBB);
11708   F->insert(It, sinkMBB);
11709 
11710   // If the EFLAGS register isn't dead in the terminator, then claim that it's
11711   // live into the sink and copy blocks.
11712   if (!MI->killsRegister(X86::EFLAGS)) {
11713     copy0MBB->addLiveIn(X86::EFLAGS);
11714     sinkMBB->addLiveIn(X86::EFLAGS);
11715   }
11716 
11717   // Transfer the remainder of BB and its successor edges to sinkMBB.
11718   sinkMBB->splice(sinkMBB->begin(), BB,
11719                   llvm::next(MachineBasicBlock::iterator(MI)),
11720                   BB->end());
11721   sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11722 
11723   // Add the true and fallthrough blocks as its successors.
11724   BB->addSuccessor(copy0MBB);
11725   BB->addSuccessor(sinkMBB);
11726 
11727   // Create the conditional branch instruction.
11728   unsigned Opc =
11729     X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11730   BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11731 
11732   //  copy0MBB:
11733   //   %FalseValue = ...
11734   //   # fallthrough to sinkMBB
11735   copy0MBB->addSuccessor(sinkMBB);
11736 
11737   //  sinkMBB:
11738   //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11739   //  ...
11740   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11741           TII->get(X86::PHI), MI->getOperand(0).getReg())
11742     .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11743     .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11744 
11745   MI->eraseFromParent();   // The pseudo instruction is gone now.
11746   return sinkMBB;
11747 }
11748 
11749 MachineBasicBlock *
EmitLoweredSegAlloca(MachineInstr * MI,MachineBasicBlock * BB,bool Is64Bit) const11750 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11751                                         bool Is64Bit) const {
11752   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11753   DebugLoc DL = MI->getDebugLoc();
11754   MachineFunction *MF = BB->getParent();
11755   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11756 
11757   assert(EnableSegmentedStacks);
11758 
11759   unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11760   unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11761 
11762   // BB:
11763   //  ... [Till the alloca]
11764   // If stacklet is not large enough, jump to mallocMBB
11765   //
11766   // bumpMBB:
11767   //  Allocate by subtracting from RSP
11768   //  Jump to continueMBB
11769   //
11770   // mallocMBB:
11771   //  Allocate by call to runtime
11772   //
11773   // continueMBB:
11774   //  ...
11775   //  [rest of original BB]
11776   //
11777 
11778   MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11779   MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11780   MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11781 
11782   MachineRegisterInfo &MRI = MF->getRegInfo();
11783   const TargetRegisterClass *AddrRegClass =
11784     getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11785 
11786   unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11787     bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11788     tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11789     sizeVReg = MI->getOperand(1).getReg(),
11790     physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11791 
11792   MachineFunction::iterator MBBIter = BB;
11793   ++MBBIter;
11794 
11795   MF->insert(MBBIter, bumpMBB);
11796   MF->insert(MBBIter, mallocMBB);
11797   MF->insert(MBBIter, continueMBB);
11798 
11799   continueMBB->splice(continueMBB->begin(), BB, llvm::next
11800                       (MachineBasicBlock::iterator(MI)), BB->end());
11801   continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11802 
11803   // Add code to the main basic block to check if the stack limit has been hit,
11804   // and if so, jump to mallocMBB otherwise to bumpMBB.
11805   BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11806   BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11807     .addReg(tmpSPVReg).addReg(sizeVReg);
11808   BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11809     .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11810     .addReg(tmpSPVReg);
11811   BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11812 
11813   // bumpMBB simply decreases the stack pointer, since we know the current
11814   // stacklet has enough space.
11815   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11816     .addReg(tmpSPVReg);
11817   BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11818     .addReg(tmpSPVReg);
11819   BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11820 
11821   // Calls into a routine in libgcc to allocate more space from the heap.
11822   if (Is64Bit) {
11823     BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11824       .addReg(sizeVReg);
11825     BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11826     .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11827   } else {
11828     BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11829       .addImm(12);
11830     BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11831     BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11832       .addExternalSymbol("__morestack_allocate_stack_space");
11833   }
11834 
11835   if (!Is64Bit)
11836     BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11837       .addImm(16);
11838 
11839   BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11840     .addReg(Is64Bit ? X86::RAX : X86::EAX);
11841   BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11842 
11843   // Set up the CFG correctly.
11844   BB->addSuccessor(bumpMBB);
11845   BB->addSuccessor(mallocMBB);
11846   mallocMBB->addSuccessor(continueMBB);
11847   bumpMBB->addSuccessor(continueMBB);
11848 
11849   // Take care of the PHI nodes.
11850   BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11851           MI->getOperand(0).getReg())
11852     .addReg(mallocPtrVReg).addMBB(mallocMBB)
11853     .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11854 
11855   // Delete the original pseudo instruction.
11856   MI->eraseFromParent();
11857 
11858   // And we're done.
11859   return continueMBB;
11860 }
11861 
11862 MachineBasicBlock *
EmitLoweredWinAlloca(MachineInstr * MI,MachineBasicBlock * BB) const11863 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11864                                           MachineBasicBlock *BB) const {
11865   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11866   DebugLoc DL = MI->getDebugLoc();
11867 
11868   assert(!Subtarget->isTargetEnvMacho());
11869 
11870   // The lowering is pretty easy: we're just emitting the call to _alloca.  The
11871   // non-trivial part is impdef of ESP.
11872 
11873   if (Subtarget->isTargetWin64()) {
11874     if (Subtarget->isTargetCygMing()) {
11875       // ___chkstk(Mingw64):
11876       // Clobbers R10, R11, RAX and EFLAGS.
11877       // Updates RSP.
11878       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11879         .addExternalSymbol("___chkstk")
11880         .addReg(X86::RAX, RegState::Implicit)
11881         .addReg(X86::RSP, RegState::Implicit)
11882         .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11883         .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11884         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11885     } else {
11886       // __chkstk(MSVCRT): does not update stack pointer.
11887       // Clobbers R10, R11 and EFLAGS.
11888       // FIXME: RAX(allocated size) might be reused and not killed.
11889       BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11890         .addExternalSymbol("__chkstk")
11891         .addReg(X86::RAX, RegState::Implicit)
11892         .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11893       // RAX has the offset to subtracted from RSP.
11894       BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11895         .addReg(X86::RSP)
11896         .addReg(X86::RAX);
11897     }
11898   } else {
11899     const char *StackProbeSymbol =
11900       Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11901 
11902     BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11903       .addExternalSymbol(StackProbeSymbol)
11904       .addReg(X86::EAX, RegState::Implicit)
11905       .addReg(X86::ESP, RegState::Implicit)
11906       .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11907       .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11908       .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11909   }
11910 
11911   MI->eraseFromParent();   // The pseudo instruction is gone now.
11912   return BB;
11913 }
11914 
11915 MachineBasicBlock *
EmitLoweredTLSCall(MachineInstr * MI,MachineBasicBlock * BB) const11916 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11917                                       MachineBasicBlock *BB) const {
11918   // This is pretty easy.  We're taking the value that we received from
11919   // our load from the relocation, sticking it in either RDI (x86-64)
11920   // or EAX and doing an indirect call.  The return value will then
11921   // be in the normal return register.
11922   const X86InstrInfo *TII
11923     = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11924   DebugLoc DL = MI->getDebugLoc();
11925   MachineFunction *F = BB->getParent();
11926 
11927   assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11928   assert(MI->getOperand(3).isGlobal() && "This should be a global");
11929 
11930   if (Subtarget->is64Bit()) {
11931     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11932                                       TII->get(X86::MOV64rm), X86::RDI)
11933     .addReg(X86::RIP)
11934     .addImm(0).addReg(0)
11935     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11936                       MI->getOperand(3).getTargetFlags())
11937     .addReg(0);
11938     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11939     addDirectMem(MIB, X86::RDI);
11940   } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11941     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11942                                       TII->get(X86::MOV32rm), X86::EAX)
11943     .addReg(0)
11944     .addImm(0).addReg(0)
11945     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11946                       MI->getOperand(3).getTargetFlags())
11947     .addReg(0);
11948     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11949     addDirectMem(MIB, X86::EAX);
11950   } else {
11951     MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11952                                       TII->get(X86::MOV32rm), X86::EAX)
11953     .addReg(TII->getGlobalBaseReg(F))
11954     .addImm(0).addReg(0)
11955     .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11956                       MI->getOperand(3).getTargetFlags())
11957     .addReg(0);
11958     MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11959     addDirectMem(MIB, X86::EAX);
11960   }
11961 
11962   MI->eraseFromParent(); // The pseudo instruction is gone now.
11963   return BB;
11964 }
11965 
11966 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const11967 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11968                                                MachineBasicBlock *BB) const {
11969   switch (MI->getOpcode()) {
11970   default: assert(0 && "Unexpected instr type to insert");
11971   case X86::TAILJMPd64:
11972   case X86::TAILJMPr64:
11973   case X86::TAILJMPm64:
11974     assert(0 && "TAILJMP64 would not be touched here.");
11975   case X86::TCRETURNdi64:
11976   case X86::TCRETURNri64:
11977   case X86::TCRETURNmi64:
11978     // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11979     // On AMD64, additional defs should be added before register allocation.
11980     if (!Subtarget->isTargetWin64()) {
11981       MI->addRegisterDefined(X86::RSI);
11982       MI->addRegisterDefined(X86::RDI);
11983       MI->addRegisterDefined(X86::XMM6);
11984       MI->addRegisterDefined(X86::XMM7);
11985       MI->addRegisterDefined(X86::XMM8);
11986       MI->addRegisterDefined(X86::XMM9);
11987       MI->addRegisterDefined(X86::XMM10);
11988       MI->addRegisterDefined(X86::XMM11);
11989       MI->addRegisterDefined(X86::XMM12);
11990       MI->addRegisterDefined(X86::XMM13);
11991       MI->addRegisterDefined(X86::XMM14);
11992       MI->addRegisterDefined(X86::XMM15);
11993     }
11994     return BB;
11995   case X86::WIN_ALLOCA:
11996     return EmitLoweredWinAlloca(MI, BB);
11997   case X86::SEG_ALLOCA_32:
11998     return EmitLoweredSegAlloca(MI, BB, false);
11999   case X86::SEG_ALLOCA_64:
12000     return EmitLoweredSegAlloca(MI, BB, true);
12001   case X86::TLSCall_32:
12002   case X86::TLSCall_64:
12003     return EmitLoweredTLSCall(MI, BB);
12004   case X86::CMOV_GR8:
12005   case X86::CMOV_FR32:
12006   case X86::CMOV_FR64:
12007   case X86::CMOV_V4F32:
12008   case X86::CMOV_V2F64:
12009   case X86::CMOV_V2I64:
12010   case X86::CMOV_V8F32:
12011   case X86::CMOV_V4F64:
12012   case X86::CMOV_V4I64:
12013   case X86::CMOV_GR16:
12014   case X86::CMOV_GR32:
12015   case X86::CMOV_RFP32:
12016   case X86::CMOV_RFP64:
12017   case X86::CMOV_RFP80:
12018     return EmitLoweredSelect(MI, BB);
12019 
12020   case X86::FP32_TO_INT16_IN_MEM:
12021   case X86::FP32_TO_INT32_IN_MEM:
12022   case X86::FP32_TO_INT64_IN_MEM:
12023   case X86::FP64_TO_INT16_IN_MEM:
12024   case X86::FP64_TO_INT32_IN_MEM:
12025   case X86::FP64_TO_INT64_IN_MEM:
12026   case X86::FP80_TO_INT16_IN_MEM:
12027   case X86::FP80_TO_INT32_IN_MEM:
12028   case X86::FP80_TO_INT64_IN_MEM: {
12029     const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12030     DebugLoc DL = MI->getDebugLoc();
12031 
12032     // Change the floating point control register to use "round towards zero"
12033     // mode when truncating to an integer value.
12034     MachineFunction *F = BB->getParent();
12035     int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12036     addFrameReference(BuildMI(*BB, MI, DL,
12037                               TII->get(X86::FNSTCW16m)), CWFrameIdx);
12038 
12039     // Load the old value of the high byte of the control word...
12040     unsigned OldCW =
12041       F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12042     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12043                       CWFrameIdx);
12044 
12045     // Set the high part to be round to zero...
12046     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12047       .addImm(0xC7F);
12048 
12049     // Reload the modified control word now...
12050     addFrameReference(BuildMI(*BB, MI, DL,
12051                               TII->get(X86::FLDCW16m)), CWFrameIdx);
12052 
12053     // Restore the memory image of control word to original value
12054     addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12055       .addReg(OldCW);
12056 
12057     // Get the X86 opcode to use.
12058     unsigned Opc;
12059     switch (MI->getOpcode()) {
12060     default: llvm_unreachable("illegal opcode!");
12061     case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12062     case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12063     case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12064     case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12065     case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12066     case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12067     case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12068     case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12069     case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12070     }
12071 
12072     X86AddressMode AM;
12073     MachineOperand &Op = MI->getOperand(0);
12074     if (Op.isReg()) {
12075       AM.BaseType = X86AddressMode::RegBase;
12076       AM.Base.Reg = Op.getReg();
12077     } else {
12078       AM.BaseType = X86AddressMode::FrameIndexBase;
12079       AM.Base.FrameIndex = Op.getIndex();
12080     }
12081     Op = MI->getOperand(1);
12082     if (Op.isImm())
12083       AM.Scale = Op.getImm();
12084     Op = MI->getOperand(2);
12085     if (Op.isImm())
12086       AM.IndexReg = Op.getImm();
12087     Op = MI->getOperand(3);
12088     if (Op.isGlobal()) {
12089       AM.GV = Op.getGlobal();
12090     } else {
12091       AM.Disp = Op.getImm();
12092     }
12093     addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12094                       .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12095 
12096     // Reload the original control word now.
12097     addFrameReference(BuildMI(*BB, MI, DL,
12098                               TII->get(X86::FLDCW16m)), CWFrameIdx);
12099 
12100     MI->eraseFromParent();   // The pseudo instruction is gone now.
12101     return BB;
12102   }
12103     // String/text processing lowering.
12104   case X86::PCMPISTRM128REG:
12105   case X86::VPCMPISTRM128REG:
12106     return EmitPCMP(MI, BB, 3, false /* in-mem */);
12107   case X86::PCMPISTRM128MEM:
12108   case X86::VPCMPISTRM128MEM:
12109     return EmitPCMP(MI, BB, 3, true /* in-mem */);
12110   case X86::PCMPESTRM128REG:
12111   case X86::VPCMPESTRM128REG:
12112     return EmitPCMP(MI, BB, 5, false /* in mem */);
12113   case X86::PCMPESTRM128MEM:
12114   case X86::VPCMPESTRM128MEM:
12115     return EmitPCMP(MI, BB, 5, true /* in mem */);
12116 
12117     // Thread synchronization.
12118   case X86::MONITOR:
12119     return EmitMonitor(MI, BB);
12120   case X86::MWAIT:
12121     return EmitMwait(MI, BB);
12122 
12123     // Atomic Lowering.
12124   case X86::ATOMAND32:
12125     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12126                                                X86::AND32ri, X86::MOV32rm,
12127                                                X86::LCMPXCHG32,
12128                                                X86::NOT32r, X86::EAX,
12129                                                X86::GR32RegisterClass);
12130   case X86::ATOMOR32:
12131     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12132                                                X86::OR32ri, X86::MOV32rm,
12133                                                X86::LCMPXCHG32,
12134                                                X86::NOT32r, X86::EAX,
12135                                                X86::GR32RegisterClass);
12136   case X86::ATOMXOR32:
12137     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12138                                                X86::XOR32ri, X86::MOV32rm,
12139                                                X86::LCMPXCHG32,
12140                                                X86::NOT32r, X86::EAX,
12141                                                X86::GR32RegisterClass);
12142   case X86::ATOMNAND32:
12143     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12144                                                X86::AND32ri, X86::MOV32rm,
12145                                                X86::LCMPXCHG32,
12146                                                X86::NOT32r, X86::EAX,
12147                                                X86::GR32RegisterClass, true);
12148   case X86::ATOMMIN32:
12149     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12150   case X86::ATOMMAX32:
12151     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12152   case X86::ATOMUMIN32:
12153     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12154   case X86::ATOMUMAX32:
12155     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12156 
12157   case X86::ATOMAND16:
12158     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12159                                                X86::AND16ri, X86::MOV16rm,
12160                                                X86::LCMPXCHG16,
12161                                                X86::NOT16r, X86::AX,
12162                                                X86::GR16RegisterClass);
12163   case X86::ATOMOR16:
12164     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12165                                                X86::OR16ri, X86::MOV16rm,
12166                                                X86::LCMPXCHG16,
12167                                                X86::NOT16r, X86::AX,
12168                                                X86::GR16RegisterClass);
12169   case X86::ATOMXOR16:
12170     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12171                                                X86::XOR16ri, X86::MOV16rm,
12172                                                X86::LCMPXCHG16,
12173                                                X86::NOT16r, X86::AX,
12174                                                X86::GR16RegisterClass);
12175   case X86::ATOMNAND16:
12176     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12177                                                X86::AND16ri, X86::MOV16rm,
12178                                                X86::LCMPXCHG16,
12179                                                X86::NOT16r, X86::AX,
12180                                                X86::GR16RegisterClass, true);
12181   case X86::ATOMMIN16:
12182     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12183   case X86::ATOMMAX16:
12184     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12185   case X86::ATOMUMIN16:
12186     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12187   case X86::ATOMUMAX16:
12188     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12189 
12190   case X86::ATOMAND8:
12191     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12192                                                X86::AND8ri, X86::MOV8rm,
12193                                                X86::LCMPXCHG8,
12194                                                X86::NOT8r, X86::AL,
12195                                                X86::GR8RegisterClass);
12196   case X86::ATOMOR8:
12197     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12198                                                X86::OR8ri, X86::MOV8rm,
12199                                                X86::LCMPXCHG8,
12200                                                X86::NOT8r, X86::AL,
12201                                                X86::GR8RegisterClass);
12202   case X86::ATOMXOR8:
12203     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12204                                                X86::XOR8ri, X86::MOV8rm,
12205                                                X86::LCMPXCHG8,
12206                                                X86::NOT8r, X86::AL,
12207                                                X86::GR8RegisterClass);
12208   case X86::ATOMNAND8:
12209     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12210                                                X86::AND8ri, X86::MOV8rm,
12211                                                X86::LCMPXCHG8,
12212                                                X86::NOT8r, X86::AL,
12213                                                X86::GR8RegisterClass, true);
12214   // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12215   // This group is for 64-bit host.
12216   case X86::ATOMAND64:
12217     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12218                                                X86::AND64ri32, X86::MOV64rm,
12219                                                X86::LCMPXCHG64,
12220                                                X86::NOT64r, X86::RAX,
12221                                                X86::GR64RegisterClass);
12222   case X86::ATOMOR64:
12223     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12224                                                X86::OR64ri32, X86::MOV64rm,
12225                                                X86::LCMPXCHG64,
12226                                                X86::NOT64r, X86::RAX,
12227                                                X86::GR64RegisterClass);
12228   case X86::ATOMXOR64:
12229     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12230                                                X86::XOR64ri32, X86::MOV64rm,
12231                                                X86::LCMPXCHG64,
12232                                                X86::NOT64r, X86::RAX,
12233                                                X86::GR64RegisterClass);
12234   case X86::ATOMNAND64:
12235     return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12236                                                X86::AND64ri32, X86::MOV64rm,
12237                                                X86::LCMPXCHG64,
12238                                                X86::NOT64r, X86::RAX,
12239                                                X86::GR64RegisterClass, true);
12240   case X86::ATOMMIN64:
12241     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12242   case X86::ATOMMAX64:
12243     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12244   case X86::ATOMUMIN64:
12245     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12246   case X86::ATOMUMAX64:
12247     return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12248 
12249   // This group does 64-bit operations on a 32-bit host.
12250   case X86::ATOMAND6432:
12251     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12252                                                X86::AND32rr, X86::AND32rr,
12253                                                X86::AND32ri, X86::AND32ri,
12254                                                false);
12255   case X86::ATOMOR6432:
12256     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12257                                                X86::OR32rr, X86::OR32rr,
12258                                                X86::OR32ri, X86::OR32ri,
12259                                                false);
12260   case X86::ATOMXOR6432:
12261     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12262                                                X86::XOR32rr, X86::XOR32rr,
12263                                                X86::XOR32ri, X86::XOR32ri,
12264                                                false);
12265   case X86::ATOMNAND6432:
12266     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12267                                                X86::AND32rr, X86::AND32rr,
12268                                                X86::AND32ri, X86::AND32ri,
12269                                                true);
12270   case X86::ATOMADD6432:
12271     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12272                                                X86::ADD32rr, X86::ADC32rr,
12273                                                X86::ADD32ri, X86::ADC32ri,
12274                                                false);
12275   case X86::ATOMSUB6432:
12276     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12277                                                X86::SUB32rr, X86::SBB32rr,
12278                                                X86::SUB32ri, X86::SBB32ri,
12279                                                false);
12280   case X86::ATOMSWAP6432:
12281     return EmitAtomicBit6432WithCustomInserter(MI, BB,
12282                                                X86::MOV32rr, X86::MOV32rr,
12283                                                X86::MOV32ri, X86::MOV32ri,
12284                                                false);
12285   case X86::VASTART_SAVE_XMM_REGS:
12286     return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12287 
12288   case X86::VAARG_64:
12289     return EmitVAARG64WithCustomInserter(MI, BB);
12290   }
12291 }
12292 
12293 //===----------------------------------------------------------------------===//
12294 //                           X86 Optimization Hooks
12295 //===----------------------------------------------------------------------===//
12296 
computeMaskedBitsForTargetNode(const SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const12297 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12298                                                        const APInt &Mask,
12299                                                        APInt &KnownZero,
12300                                                        APInt &KnownOne,
12301                                                        const SelectionDAG &DAG,
12302                                                        unsigned Depth) const {
12303   unsigned Opc = Op.getOpcode();
12304   assert((Opc >= ISD::BUILTIN_OP_END ||
12305           Opc == ISD::INTRINSIC_WO_CHAIN ||
12306           Opc == ISD::INTRINSIC_W_CHAIN ||
12307           Opc == ISD::INTRINSIC_VOID) &&
12308          "Should use MaskedValueIsZero if you don't know whether Op"
12309          " is a target node!");
12310 
12311   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);   // Don't know anything.
12312   switch (Opc) {
12313   default: break;
12314   case X86ISD::ADD:
12315   case X86ISD::SUB:
12316   case X86ISD::ADC:
12317   case X86ISD::SBB:
12318   case X86ISD::SMUL:
12319   case X86ISD::UMUL:
12320   case X86ISD::INC:
12321   case X86ISD::DEC:
12322   case X86ISD::OR:
12323   case X86ISD::XOR:
12324   case X86ISD::AND:
12325     // These nodes' second result is a boolean.
12326     if (Op.getResNo() == 0)
12327       break;
12328     // Fallthrough
12329   case X86ISD::SETCC:
12330     KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12331                                        Mask.getBitWidth() - 1);
12332     break;
12333   case ISD::INTRINSIC_WO_CHAIN: {
12334     unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12335     unsigned NumLoBits = 0;
12336     switch (IntId) {
12337     default: break;
12338     case Intrinsic::x86_sse_movmsk_ps:
12339     case Intrinsic::x86_avx_movmsk_ps_256:
12340     case Intrinsic::x86_sse2_movmsk_pd:
12341     case Intrinsic::x86_avx_movmsk_pd_256:
12342     case Intrinsic::x86_mmx_pmovmskb:
12343     case Intrinsic::x86_sse2_pmovmskb_128: {
12344       // High bits of movmskp{s|d}, pmovmskb are known zero.
12345       switch (IntId) {
12346         case Intrinsic::x86_sse_movmsk_ps:      NumLoBits = 4; break;
12347         case Intrinsic::x86_avx_movmsk_ps_256:  NumLoBits = 8; break;
12348         case Intrinsic::x86_sse2_movmsk_pd:     NumLoBits = 2; break;
12349         case Intrinsic::x86_avx_movmsk_pd_256:  NumLoBits = 4; break;
12350         case Intrinsic::x86_mmx_pmovmskb:       NumLoBits = 8; break;
12351         case Intrinsic::x86_sse2_pmovmskb_128:  NumLoBits = 16; break;
12352       }
12353       KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12354                                         Mask.getBitWidth() - NumLoBits);
12355       break;
12356     }
12357     }
12358     break;
12359   }
12360   }
12361 }
12362 
ComputeNumSignBitsForTargetNode(SDValue Op,unsigned Depth) const12363 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12364                                                          unsigned Depth) const {
12365   // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12366   if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12367     return Op.getValueType().getScalarType().getSizeInBits();
12368 
12369   // Fallback case.
12370   return 1;
12371 }
12372 
12373 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12374 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const12375 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12376                                        const GlobalValue* &GA,
12377                                        int64_t &Offset) const {
12378   if (N->getOpcode() == X86ISD::Wrapper) {
12379     if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12380       GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12381       Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12382       return true;
12383     }
12384   }
12385   return TargetLowering::isGAPlusOffset(N, GA, Offset);
12386 }
12387 
12388 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12389 /// same as extracting the high 128-bit part of 256-bit vector and then
12390 /// inserting the result into the low part of a new 256-bit vector
isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode * SVOp)12391 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12392   EVT VT = SVOp->getValueType(0);
12393   int NumElems = VT.getVectorNumElements();
12394 
12395   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12396   for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12397     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12398         SVOp->getMaskElt(j) >= 0)
12399       return false;
12400 
12401   return true;
12402 }
12403 
12404 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12405 /// same as extracting the low 128-bit part of 256-bit vector and then
12406 /// inserting the result into the high part of a new 256-bit vector
isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode * SVOp)12407 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12408   EVT VT = SVOp->getValueType(0);
12409   int NumElems = VT.getVectorNumElements();
12410 
12411   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12412   for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12413     if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12414         SVOp->getMaskElt(j) >= 0)
12415       return false;
12416 
12417   return true;
12418 }
12419 
12420 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
PerformShuffleCombine256(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)12421 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12422                                         TargetLowering::DAGCombinerInfo &DCI) {
12423   DebugLoc dl = N->getDebugLoc();
12424   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12425   SDValue V1 = SVOp->getOperand(0);
12426   SDValue V2 = SVOp->getOperand(1);
12427   EVT VT = SVOp->getValueType(0);
12428   int NumElems = VT.getVectorNumElements();
12429 
12430   if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12431       V2.getOpcode() == ISD::CONCAT_VECTORS) {
12432     //
12433     //                   0,0,0,...
12434     //                      |
12435     //    V      UNDEF    BUILD_VECTOR    UNDEF
12436     //     \      /           \           /
12437     //  CONCAT_VECTOR         CONCAT_VECTOR
12438     //         \                  /
12439     //          \                /
12440     //          RESULT: V + zero extended
12441     //
12442     if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12443         V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12444         V1.getOperand(1).getOpcode() != ISD::UNDEF)
12445       return SDValue();
12446 
12447     if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12448       return SDValue();
12449 
12450     // To match the shuffle mask, the first half of the mask should
12451     // be exactly the first vector, and all the rest a splat with the
12452     // first element of the second one.
12453     for (int i = 0; i < NumElems/2; ++i)
12454       if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12455           !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12456         return SDValue();
12457 
12458     // Emit a zeroed vector and insert the desired subvector on its
12459     // first half.
12460     SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12461     SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12462                          DAG.getConstant(0, MVT::i32), DAG, dl);
12463     return DCI.CombineTo(N, InsV);
12464   }
12465 
12466   //===--------------------------------------------------------------------===//
12467   // Combine some shuffles into subvector extracts and inserts:
12468   //
12469 
12470   // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12471   if (isShuffleHigh128VectorInsertLow(SVOp)) {
12472     SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12473                                     DAG, dl);
12474     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12475                                       V, DAG.getConstant(0, MVT::i32), DAG, dl);
12476     return DCI.CombineTo(N, InsV);
12477   }
12478 
12479   // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12480   if (isShuffleLow128VectorInsertHigh(SVOp)) {
12481     SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12482     SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12483                              V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12484     return DCI.CombineTo(N, InsV);
12485   }
12486 
12487   return SDValue();
12488 }
12489 
12490 /// PerformShuffleCombine - Performs several different shuffle combines.
PerformShuffleCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)12491 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12492                                      TargetLowering::DAGCombinerInfo &DCI,
12493                                      const X86Subtarget *Subtarget) {
12494   DebugLoc dl = N->getDebugLoc();
12495   EVT VT = N->getValueType(0);
12496 
12497   // Don't create instructions with illegal types after legalize types has run.
12498   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12499   if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12500     return SDValue();
12501 
12502   // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12503   if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12504       N->getOpcode() == ISD::VECTOR_SHUFFLE)
12505     return PerformShuffleCombine256(N, DAG, DCI);
12506 
12507   // Only handle 128 wide vector from here on.
12508   if (VT.getSizeInBits() != 128)
12509     return SDValue();
12510 
12511   // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12512   // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12513   // consecutive, non-overlapping, and in the right order.
12514   SmallVector<SDValue, 16> Elts;
12515   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12516     Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12517 
12518   return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12519 }
12520 
12521 /// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are
12522 /// special and don't usually play with other vector types, it's better to
12523 /// handle them early to be sure we emit efficient code by avoiding
12524 /// store-load conversions.
PerformBITCASTCombine(SDNode * N,SelectionDAG & DAG)12525 static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
12526   if (N->getValueType(0) != MVT::x86mmx ||
12527       N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR ||
12528       N->getOperand(0)->getValueType(0) != MVT::v2i32)
12529     return SDValue();
12530 
12531   SDValue V = N->getOperand(0);
12532   ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
12533   if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32)
12534     return DAG.getNode(X86ISD::MMX_MOVW2D, V.getOperand(0).getDebugLoc(),
12535                        N->getValueType(0), V.getOperand(0));
12536 
12537   return SDValue();
12538 }
12539 
12540 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12541 /// generation and convert it from being a bunch of shuffles and extracts
12542 /// to a simple store and scalar loads to extract the elements.
PerformEXTRACT_VECTOR_ELTCombine(SDNode * N,SelectionDAG & DAG,const TargetLowering & TLI)12543 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12544                                                 const TargetLowering &TLI) {
12545   SDValue InputVector = N->getOperand(0);
12546   // Detect whether we are trying to convert from mmx to i32 and the bitcast
12547   // from mmx to v2i32 has a single usage.
12548   if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
12549       InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
12550       InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
12551     return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
12552                        N->getValueType(0),
12553                        InputVector.getNode()->getOperand(0));
12554 
12555   // Only operate on vectors of 4 elements, where the alternative shuffling
12556   // gets to be more expensive.
12557   if (InputVector.getValueType() != MVT::v4i32)
12558     return SDValue();
12559 
12560   // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12561   // single use which is a sign-extend or zero-extend, and all elements are
12562   // used.
12563   SmallVector<SDNode *, 4> Uses;
12564   unsigned ExtractedElements = 0;
12565   for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12566        UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12567     if (UI.getUse().getResNo() != InputVector.getResNo())
12568       return SDValue();
12569 
12570     SDNode *Extract = *UI;
12571     if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12572       return SDValue();
12573 
12574     if (Extract->getValueType(0) != MVT::i32)
12575       return SDValue();
12576     if (!Extract->hasOneUse())
12577       return SDValue();
12578     if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12579         Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12580       return SDValue();
12581     if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12582       return SDValue();
12583 
12584     // Record which element was extracted.
12585     ExtractedElements |=
12586       1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12587 
12588     Uses.push_back(Extract);
12589   }
12590 
12591   // If not all the elements were used, this may not be worthwhile.
12592   if (ExtractedElements != 15)
12593     return SDValue();
12594 
12595   // Ok, we've now decided to do the transformation.
12596   DebugLoc dl = InputVector.getDebugLoc();
12597 
12598   // Store the value to a temporary stack slot.
12599   SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12600   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12601                             MachinePointerInfo(), false, false, 0);
12602 
12603   // Replace each use (extract) with a load of the appropriate element.
12604   for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12605        UE = Uses.end(); UI != UE; ++UI) {
12606     SDNode *Extract = *UI;
12607 
12608     // cOMpute the element's address.
12609     SDValue Idx = Extract->getOperand(1);
12610     unsigned EltSize =
12611         InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12612     uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12613     SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12614 
12615     SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12616                                      StackPtr, OffsetVal);
12617 
12618     // Load the scalar.
12619     SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12620                                      ScalarAddr, MachinePointerInfo(),
12621                                      false, false, 0);
12622 
12623     // Replace the exact with the load.
12624     DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12625   }
12626 
12627   // The replacement was made in place; don't return anything.
12628   return SDValue();
12629 }
12630 
12631 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12632 /// nodes.
PerformSELECTCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)12633 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12634                                     const X86Subtarget *Subtarget) {
12635   DebugLoc DL = N->getDebugLoc();
12636   SDValue Cond = N->getOperand(0);
12637   // Get the LHS/RHS of the select.
12638   SDValue LHS = N->getOperand(1);
12639   SDValue RHS = N->getOperand(2);
12640   EVT VT = LHS.getValueType();
12641 
12642   // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12643   // instructions match the semantics of the common C idiom x<y?x:y but not
12644   // x<=y?x:y, because of how they handle negative zero (which can be
12645   // ignored in unsafe-math mode).
12646   if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12647       VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12648       (Subtarget->hasXMMInt() ||
12649        (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12650     ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12651 
12652     unsigned Opcode = 0;
12653     // Check for x CC y ? x : y.
12654     if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12655         DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12656       switch (CC) {
12657       default: break;
12658       case ISD::SETULT:
12659         // Converting this to a min would handle NaNs incorrectly, and swapping
12660         // the operands would cause it to handle comparisons between positive
12661         // and negative zero incorrectly.
12662         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12663           if (!UnsafeFPMath &&
12664               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12665             break;
12666           std::swap(LHS, RHS);
12667         }
12668         Opcode = X86ISD::FMIN;
12669         break;
12670       case ISD::SETOLE:
12671         // Converting this to a min would handle comparisons between positive
12672         // and negative zero incorrectly.
12673         if (!UnsafeFPMath &&
12674             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12675           break;
12676         Opcode = X86ISD::FMIN;
12677         break;
12678       case ISD::SETULE:
12679         // Converting this to a min would handle both negative zeros and NaNs
12680         // incorrectly, but we can swap the operands to fix both.
12681         std::swap(LHS, RHS);
12682       case ISD::SETOLT:
12683       case ISD::SETLT:
12684       case ISD::SETLE:
12685         Opcode = X86ISD::FMIN;
12686         break;
12687 
12688       case ISD::SETOGE:
12689         // Converting this to a max would handle comparisons between positive
12690         // and negative zero incorrectly.
12691         if (!UnsafeFPMath &&
12692             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12693           break;
12694         Opcode = X86ISD::FMAX;
12695         break;
12696       case ISD::SETUGT:
12697         // Converting this to a max would handle NaNs incorrectly, and swapping
12698         // the operands would cause it to handle comparisons between positive
12699         // and negative zero incorrectly.
12700         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12701           if (!UnsafeFPMath &&
12702               !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12703             break;
12704           std::swap(LHS, RHS);
12705         }
12706         Opcode = X86ISD::FMAX;
12707         break;
12708       case ISD::SETUGE:
12709         // Converting this to a max would handle both negative zeros and NaNs
12710         // incorrectly, but we can swap the operands to fix both.
12711         std::swap(LHS, RHS);
12712       case ISD::SETOGT:
12713       case ISD::SETGT:
12714       case ISD::SETGE:
12715         Opcode = X86ISD::FMAX;
12716         break;
12717       }
12718     // Check for x CC y ? y : x -- a min/max with reversed arms.
12719     } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12720                DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12721       switch (CC) {
12722       default: break;
12723       case ISD::SETOGE:
12724         // Converting this to a min would handle comparisons between positive
12725         // and negative zero incorrectly, and swapping the operands would
12726         // cause it to handle NaNs incorrectly.
12727         if (!UnsafeFPMath &&
12728             !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12729           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12730             break;
12731           std::swap(LHS, RHS);
12732         }
12733         Opcode = X86ISD::FMIN;
12734         break;
12735       case ISD::SETUGT:
12736         // Converting this to a min would handle NaNs incorrectly.
12737         if (!UnsafeFPMath &&
12738             (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12739           break;
12740         Opcode = X86ISD::FMIN;
12741         break;
12742       case ISD::SETUGE:
12743         // Converting this to a min would handle both negative zeros and NaNs
12744         // incorrectly, but we can swap the operands to fix both.
12745         std::swap(LHS, RHS);
12746       case ISD::SETOGT:
12747       case ISD::SETGT:
12748       case ISD::SETGE:
12749         Opcode = X86ISD::FMIN;
12750         break;
12751 
12752       case ISD::SETULT:
12753         // Converting this to a max would handle NaNs incorrectly.
12754         if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12755           break;
12756         Opcode = X86ISD::FMAX;
12757         break;
12758       case ISD::SETOLE:
12759         // Converting this to a max would handle comparisons between positive
12760         // and negative zero incorrectly, and swapping the operands would
12761         // cause it to handle NaNs incorrectly.
12762         if (!UnsafeFPMath &&
12763             !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12764           if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12765             break;
12766           std::swap(LHS, RHS);
12767         }
12768         Opcode = X86ISD::FMAX;
12769         break;
12770       case ISD::SETULE:
12771         // Converting this to a max would handle both negative zeros and NaNs
12772         // incorrectly, but we can swap the operands to fix both.
12773         std::swap(LHS, RHS);
12774       case ISD::SETOLT:
12775       case ISD::SETLT:
12776       case ISD::SETLE:
12777         Opcode = X86ISD::FMAX;
12778         break;
12779       }
12780     }
12781 
12782     if (Opcode)
12783       return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12784   }
12785 
12786   // If this is a select between two integer constants, try to do some
12787   // optimizations.
12788   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12789     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12790       // Don't do this for crazy integer types.
12791       if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12792         // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12793         // so that TrueC (the true value) is larger than FalseC.
12794         bool NeedsCondInvert = false;
12795 
12796         if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12797             // Efficiently invertible.
12798             (Cond.getOpcode() == ISD::SETCC ||  // setcc -> invertible.
12799              (Cond.getOpcode() == ISD::XOR &&   // xor(X, C) -> invertible.
12800               isa<ConstantSDNode>(Cond.getOperand(1))))) {
12801           NeedsCondInvert = true;
12802           std::swap(TrueC, FalseC);
12803         }
12804 
12805         // Optimize C ? 8 : 0 -> zext(C) << 3.  Likewise for any pow2/0.
12806         if (FalseC->getAPIntValue() == 0 &&
12807             TrueC->getAPIntValue().isPowerOf2()) {
12808           if (NeedsCondInvert) // Invert the condition if needed.
12809             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12810                                DAG.getConstant(1, Cond.getValueType()));
12811 
12812           // Zero extend the condition if needed.
12813           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12814 
12815           unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12816           return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12817                              DAG.getConstant(ShAmt, MVT::i8));
12818         }
12819 
12820         // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12821         if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12822           if (NeedsCondInvert) // Invert the condition if needed.
12823             Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12824                                DAG.getConstant(1, Cond.getValueType()));
12825 
12826           // Zero extend the condition if needed.
12827           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12828                              FalseC->getValueType(0), Cond);
12829           return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12830                              SDValue(FalseC, 0));
12831         }
12832 
12833         // Optimize cases that will turn into an LEA instruction.  This requires
12834         // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12835         if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12836           uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12837           if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12838 
12839           bool isFastMultiplier = false;
12840           if (Diff < 10) {
12841             switch ((unsigned char)Diff) {
12842               default: break;
12843               case 1:  // result = add base, cond
12844               case 2:  // result = lea base(    , cond*2)
12845               case 3:  // result = lea base(cond, cond*2)
12846               case 4:  // result = lea base(    , cond*4)
12847               case 5:  // result = lea base(cond, cond*4)
12848               case 8:  // result = lea base(    , cond*8)
12849               case 9:  // result = lea base(cond, cond*8)
12850                 isFastMultiplier = true;
12851                 break;
12852             }
12853           }
12854 
12855           if (isFastMultiplier) {
12856             APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12857             if (NeedsCondInvert) // Invert the condition if needed.
12858               Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12859                                  DAG.getConstant(1, Cond.getValueType()));
12860 
12861             // Zero extend the condition if needed.
12862             Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12863                                Cond);
12864             // Scale the condition by the difference.
12865             if (Diff != 1)
12866               Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12867                                  DAG.getConstant(Diff, Cond.getValueType()));
12868 
12869             // Add the base if non-zero.
12870             if (FalseC->getAPIntValue() != 0)
12871               Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12872                                  SDValue(FalseC, 0));
12873             return Cond;
12874           }
12875         }
12876       }
12877   }
12878 
12879   return SDValue();
12880 }
12881 
12882 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)12883 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12884                                   TargetLowering::DAGCombinerInfo &DCI) {
12885   DebugLoc DL = N->getDebugLoc();
12886 
12887   // If the flag operand isn't dead, don't touch this CMOV.
12888   if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12889     return SDValue();
12890 
12891   SDValue FalseOp = N->getOperand(0);
12892   SDValue TrueOp = N->getOperand(1);
12893   X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12894   SDValue Cond = N->getOperand(3);
12895   if (CC == X86::COND_E || CC == X86::COND_NE) {
12896     switch (Cond.getOpcode()) {
12897     default: break;
12898     case X86ISD::BSR:
12899     case X86ISD::BSF:
12900       // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12901       if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12902         return (CC == X86::COND_E) ? FalseOp : TrueOp;
12903     }
12904   }
12905 
12906   // If this is a select between two integer constants, try to do some
12907   // optimizations.  Note that the operands are ordered the opposite of SELECT
12908   // operands.
12909   if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12910     if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12911       // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12912       // larger than FalseC (the false value).
12913       if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12914         CC = X86::GetOppositeBranchCondition(CC);
12915         std::swap(TrueC, FalseC);
12916       }
12917 
12918       // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3.  Likewise for any pow2/0.
12919       // This is efficient for any integer data type (including i8/i16) and
12920       // shift amount.
12921       if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12922         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12923                            DAG.getConstant(CC, MVT::i8), Cond);
12924 
12925         // Zero extend the condition if needed.
12926         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12927 
12928         unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12929         Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12930                            DAG.getConstant(ShAmt, MVT::i8));
12931         if (N->getNumValues() == 2)  // Dead flag value?
12932           return DCI.CombineTo(N, Cond, SDValue());
12933         return Cond;
12934       }
12935 
12936       // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.  This is efficient
12937       // for any integer data type, including i8/i16.
12938       if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12939         Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12940                            DAG.getConstant(CC, MVT::i8), Cond);
12941 
12942         // Zero extend the condition if needed.
12943         Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12944                            FalseC->getValueType(0), Cond);
12945         Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12946                            SDValue(FalseC, 0));
12947 
12948         if (N->getNumValues() == 2)  // Dead flag value?
12949           return DCI.CombineTo(N, Cond, SDValue());
12950         return Cond;
12951       }
12952 
12953       // Optimize cases that will turn into an LEA instruction.  This requires
12954       // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12955       if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12956         uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12957         if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12958 
12959         bool isFastMultiplier = false;
12960         if (Diff < 10) {
12961           switch ((unsigned char)Diff) {
12962           default: break;
12963           case 1:  // result = add base, cond
12964           case 2:  // result = lea base(    , cond*2)
12965           case 3:  // result = lea base(cond, cond*2)
12966           case 4:  // result = lea base(    , cond*4)
12967           case 5:  // result = lea base(cond, cond*4)
12968           case 8:  // result = lea base(    , cond*8)
12969           case 9:  // result = lea base(cond, cond*8)
12970             isFastMultiplier = true;
12971             break;
12972           }
12973         }
12974 
12975         if (isFastMultiplier) {
12976           APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12977           Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12978                              DAG.getConstant(CC, MVT::i8), Cond);
12979           // Zero extend the condition if needed.
12980           Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12981                              Cond);
12982           // Scale the condition by the difference.
12983           if (Diff != 1)
12984             Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12985                                DAG.getConstant(Diff, Cond.getValueType()));
12986 
12987           // Add the base if non-zero.
12988           if (FalseC->getAPIntValue() != 0)
12989             Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12990                                SDValue(FalseC, 0));
12991           if (N->getNumValues() == 2)  // Dead flag value?
12992             return DCI.CombineTo(N, Cond, SDValue());
12993           return Cond;
12994         }
12995       }
12996     }
12997   }
12998   return SDValue();
12999 }
13000 
13001 
13002 /// PerformMulCombine - Optimize a single multiply with constant into two
13003 /// in order to implement it with two cheaper instructions, e.g.
13004 /// LEA + SHL, LEA + LEA.
PerformMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)13005 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13006                                  TargetLowering::DAGCombinerInfo &DCI) {
13007   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13008     return SDValue();
13009 
13010   EVT VT = N->getValueType(0);
13011   if (VT != MVT::i64)
13012     return SDValue();
13013 
13014   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13015   if (!C)
13016     return SDValue();
13017   uint64_t MulAmt = C->getZExtValue();
13018   if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13019     return SDValue();
13020 
13021   uint64_t MulAmt1 = 0;
13022   uint64_t MulAmt2 = 0;
13023   if ((MulAmt % 9) == 0) {
13024     MulAmt1 = 9;
13025     MulAmt2 = MulAmt / 9;
13026   } else if ((MulAmt % 5) == 0) {
13027     MulAmt1 = 5;
13028     MulAmt2 = MulAmt / 5;
13029   } else if ((MulAmt % 3) == 0) {
13030     MulAmt1 = 3;
13031     MulAmt2 = MulAmt / 3;
13032   }
13033   if (MulAmt2 &&
13034       (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13035     DebugLoc DL = N->getDebugLoc();
13036 
13037     if (isPowerOf2_64(MulAmt2) &&
13038         !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13039       // If second multiplifer is pow2, issue it first. We want the multiply by
13040       // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13041       // is an add.
13042       std::swap(MulAmt1, MulAmt2);
13043 
13044     SDValue NewMul;
13045     if (isPowerOf2_64(MulAmt1))
13046       NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13047                            DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13048     else
13049       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13050                            DAG.getConstant(MulAmt1, VT));
13051 
13052     if (isPowerOf2_64(MulAmt2))
13053       NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13054                            DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13055     else
13056       NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13057                            DAG.getConstant(MulAmt2, VT));
13058 
13059     // Do not add new nodes to DAG combiner worklist.
13060     DCI.CombineTo(N, NewMul, false);
13061   }
13062   return SDValue();
13063 }
13064 
PerformSHLCombine(SDNode * N,SelectionDAG & DAG)13065 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13066   SDValue N0 = N->getOperand(0);
13067   SDValue N1 = N->getOperand(1);
13068   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13069   EVT VT = N0.getValueType();
13070 
13071   // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13072   // since the result of setcc_c is all zero's or all ones.
13073   if (N1C && N0.getOpcode() == ISD::AND &&
13074       N0.getOperand(1).getOpcode() == ISD::Constant) {
13075     SDValue N00 = N0.getOperand(0);
13076     if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13077         ((N00.getOpcode() == ISD::ANY_EXTEND ||
13078           N00.getOpcode() == ISD::ZERO_EXTEND) &&
13079          N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13080       APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13081       APInt ShAmt = N1C->getAPIntValue();
13082       Mask = Mask.shl(ShAmt);
13083       if (Mask != 0)
13084         return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13085                            N00, DAG.getConstant(Mask, VT));
13086     }
13087   }
13088 
13089   return SDValue();
13090 }
13091 
13092 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13093 ///                       when possible.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13094 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13095                                    const X86Subtarget *Subtarget) {
13096   EVT VT = N->getValueType(0);
13097   if (!VT.isVector() && VT.isInteger() &&
13098       N->getOpcode() == ISD::SHL)
13099     return PerformSHLCombine(N, DAG);
13100 
13101   // On X86 with SSE2 support, we can transform this to a vector shift if
13102   // all elements are shifted by the same amount.  We can't do this in legalize
13103   // because the a constant vector is typically transformed to a constant pool
13104   // so we have no knowledge of the shift amount.
13105   if (!Subtarget->hasXMMInt())
13106     return SDValue();
13107 
13108   if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13109     return SDValue();
13110 
13111   SDValue ShAmtOp = N->getOperand(1);
13112   EVT EltVT = VT.getVectorElementType();
13113   DebugLoc DL = N->getDebugLoc();
13114   SDValue BaseShAmt = SDValue();
13115   if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13116     unsigned NumElts = VT.getVectorNumElements();
13117     unsigned i = 0;
13118     for (; i != NumElts; ++i) {
13119       SDValue Arg = ShAmtOp.getOperand(i);
13120       if (Arg.getOpcode() == ISD::UNDEF) continue;
13121       BaseShAmt = Arg;
13122       break;
13123     }
13124     for (; i != NumElts; ++i) {
13125       SDValue Arg = ShAmtOp.getOperand(i);
13126       if (Arg.getOpcode() == ISD::UNDEF) continue;
13127       if (Arg != BaseShAmt) {
13128         return SDValue();
13129       }
13130     }
13131   } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13132              cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13133     SDValue InVec = ShAmtOp.getOperand(0);
13134     if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13135       unsigned NumElts = InVec.getValueType().getVectorNumElements();
13136       unsigned i = 0;
13137       for (; i != NumElts; ++i) {
13138         SDValue Arg = InVec.getOperand(i);
13139         if (Arg.getOpcode() == ISD::UNDEF) continue;
13140         BaseShAmt = Arg;
13141         break;
13142       }
13143     } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13144        if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13145          unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13146          if (C->getZExtValue() == SplatIdx)
13147            BaseShAmt = InVec.getOperand(1);
13148        }
13149     }
13150     if (BaseShAmt.getNode() == 0)
13151       BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13152                               DAG.getIntPtrConstant(0));
13153   } else
13154     return SDValue();
13155 
13156   // The shift amount is an i32.
13157   if (EltVT.bitsGT(MVT::i32))
13158     BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13159   else if (EltVT.bitsLT(MVT::i32))
13160     BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13161 
13162   // The shift amount is identical so we can do a vector shift.
13163   SDValue  ValOp = N->getOperand(0);
13164   switch (N->getOpcode()) {
13165   default:
13166     llvm_unreachable("Unknown shift opcode!");
13167     break;
13168   case ISD::SHL:
13169     if (VT == MVT::v2i64)
13170       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13171                          DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13172                          ValOp, BaseShAmt);
13173     if (VT == MVT::v4i32)
13174       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13175                          DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13176                          ValOp, BaseShAmt);
13177     if (VT == MVT::v8i16)
13178       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13179                          DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13180                          ValOp, BaseShAmt);
13181     break;
13182   case ISD::SRA:
13183     if (VT == MVT::v4i32)
13184       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13185                          DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13186                          ValOp, BaseShAmt);
13187     if (VT == MVT::v8i16)
13188       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13189                          DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13190                          ValOp, BaseShAmt);
13191     break;
13192   case ISD::SRL:
13193     if (VT == MVT::v2i64)
13194       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13195                          DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13196                          ValOp, BaseShAmt);
13197     if (VT == MVT::v4i32)
13198       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13199                          DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13200                          ValOp, BaseShAmt);
13201     if (VT ==  MVT::v8i16)
13202       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13203                          DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13204                          ValOp, BaseShAmt);
13205     break;
13206   }
13207   return SDValue();
13208 }
13209 
13210 
13211 // CMPEQCombine - Recognize the distinctive  (AND (setcc ...) (setcc ..))
13212 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13213 // and friends.  Likewise for OR -> CMPNEQSS.
CMPEQCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13214 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13215                             TargetLowering::DAGCombinerInfo &DCI,
13216                             const X86Subtarget *Subtarget) {
13217   unsigned opcode;
13218 
13219   // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13220   // we're requiring SSE2 for both.
13221   if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13222     SDValue N0 = N->getOperand(0);
13223     SDValue N1 = N->getOperand(1);
13224     SDValue CMP0 = N0->getOperand(1);
13225     SDValue CMP1 = N1->getOperand(1);
13226     DebugLoc DL = N->getDebugLoc();
13227 
13228     // The SETCCs should both refer to the same CMP.
13229     if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13230       return SDValue();
13231 
13232     SDValue CMP00 = CMP0->getOperand(0);
13233     SDValue CMP01 = CMP0->getOperand(1);
13234     EVT     VT    = CMP00.getValueType();
13235 
13236     if (VT == MVT::f32 || VT == MVT::f64) {
13237       bool ExpectingFlags = false;
13238       // Check for any users that want flags:
13239       for (SDNode::use_iterator UI = N->use_begin(),
13240              UE = N->use_end();
13241            !ExpectingFlags && UI != UE; ++UI)
13242         switch (UI->getOpcode()) {
13243         default:
13244         case ISD::BR_CC:
13245         case ISD::BRCOND:
13246         case ISD::SELECT:
13247           ExpectingFlags = true;
13248           break;
13249         case ISD::CopyToReg:
13250         case ISD::SIGN_EXTEND:
13251         case ISD::ZERO_EXTEND:
13252         case ISD::ANY_EXTEND:
13253           break;
13254         }
13255 
13256       if (!ExpectingFlags) {
13257         enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13258         enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13259 
13260         if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13261           X86::CondCode tmp = cc0;
13262           cc0 = cc1;
13263           cc1 = tmp;
13264         }
13265 
13266         if ((cc0 == X86::COND_E  && cc1 == X86::COND_NP) ||
13267             (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13268           bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13269           X86ISD::NodeType NTOperator = is64BitFP ?
13270             X86ISD::FSETCCsd : X86ISD::FSETCCss;
13271           // FIXME: need symbolic constants for these magic numbers.
13272           // See X86ATTInstPrinter.cpp:printSSECC().
13273           unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13274           SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13275                                               DAG.getConstant(x86cc, MVT::i8));
13276           SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13277                                               OnesOrZeroesF);
13278           SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13279                                       DAG.getConstant(1, MVT::i32));
13280           SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13281           return OneBitOfTruth;
13282         }
13283       }
13284     }
13285   }
13286   return SDValue();
13287 }
13288 
13289 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13290 /// so it can be folded inside ANDNP.
CanFoldXORWithAllOnes(const SDNode * N)13291 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13292   EVT VT = N->getValueType(0);
13293 
13294   // Match direct AllOnes for 128 and 256-bit vectors
13295   if (ISD::isBuildVectorAllOnes(N))
13296     return true;
13297 
13298   // Look through a bit convert.
13299   if (N->getOpcode() == ISD::BITCAST)
13300     N = N->getOperand(0).getNode();
13301 
13302   // Sometimes the operand may come from a insert_subvector building a 256-bit
13303   // allones vector
13304   if (VT.getSizeInBits() == 256 &&
13305       N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13306     SDValue V1 = N->getOperand(0);
13307     SDValue V2 = N->getOperand(1);
13308 
13309     if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13310         V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13311         ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13312         ISD::isBuildVectorAllOnes(V2.getNode()))
13313       return true;
13314   }
13315 
13316   return false;
13317 }
13318 
PerformAndCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13319 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13320                                  TargetLowering::DAGCombinerInfo &DCI,
13321                                  const X86Subtarget *Subtarget) {
13322   if (DCI.isBeforeLegalizeOps())
13323     return SDValue();
13324 
13325   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13326   if (R.getNode())
13327     return R;
13328 
13329   EVT VT = N->getValueType(0);
13330 
13331   // Create ANDN instructions
13332   if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13333     SDValue N0 = N->getOperand(0);
13334     SDValue N1 = N->getOperand(1);
13335     DebugLoc DL = N->getDebugLoc();
13336 
13337     // Check LHS for not
13338     if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13339       return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13340     // Check RHS for not
13341     if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13342       return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13343 
13344     return SDValue();
13345   }
13346 
13347   // Want to form ANDNP nodes:
13348   // 1) In the hopes of then easily combining them with OR and AND nodes
13349   //    to form PBLEND/PSIGN.
13350   // 2) To match ANDN packed intrinsics
13351   if (VT != MVT::v2i64 && VT != MVT::v4i64)
13352     return SDValue();
13353 
13354   SDValue N0 = N->getOperand(0);
13355   SDValue N1 = N->getOperand(1);
13356   DebugLoc DL = N->getDebugLoc();
13357 
13358   // Check LHS for vnot
13359   if (N0.getOpcode() == ISD::XOR &&
13360       //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13361       CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13362     return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13363 
13364   // Check RHS for vnot
13365   if (N1.getOpcode() == ISD::XOR &&
13366       //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13367       CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13368     return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13369 
13370   return SDValue();
13371 }
13372 
PerformOrCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13373 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13374                                 TargetLowering::DAGCombinerInfo &DCI,
13375                                 const X86Subtarget *Subtarget) {
13376   if (DCI.isBeforeLegalizeOps())
13377     return SDValue();
13378 
13379   SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13380   if (R.getNode())
13381     return R;
13382 
13383   EVT VT = N->getValueType(0);
13384   if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13385     return SDValue();
13386 
13387   SDValue N0 = N->getOperand(0);
13388   SDValue N1 = N->getOperand(1);
13389 
13390   // look for psign/blend
13391   if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13392     if (VT == MVT::v2i64) {
13393       // Canonicalize pandn to RHS
13394       if (N0.getOpcode() == X86ISD::ANDNP)
13395         std::swap(N0, N1);
13396       // or (and (m, x), (pandn m, y))
13397       if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13398         SDValue Mask = N1.getOperand(0);
13399         SDValue X    = N1.getOperand(1);
13400         SDValue Y;
13401         if (N0.getOperand(0) == Mask)
13402           Y = N0.getOperand(1);
13403         if (N0.getOperand(1) == Mask)
13404           Y = N0.getOperand(0);
13405 
13406         // Check to see if the mask appeared in both the AND and ANDNP and
13407         if (!Y.getNode())
13408           return SDValue();
13409 
13410         // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13411         if (Mask.getOpcode() != ISD::BITCAST ||
13412             X.getOpcode() != ISD::BITCAST ||
13413             Y.getOpcode() != ISD::BITCAST)
13414           return SDValue();
13415 
13416         // Look through mask bitcast.
13417         Mask = Mask.getOperand(0);
13418         EVT MaskVT = Mask.getValueType();
13419 
13420         // Validate that the Mask operand is a vector sra node.  The sra node
13421         // will be an intrinsic.
13422         if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13423           return SDValue();
13424 
13425         // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13426         // there is no psrai.b
13427         switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13428         case Intrinsic::x86_sse2_psrai_w:
13429         case Intrinsic::x86_sse2_psrai_d:
13430           break;
13431         default: return SDValue();
13432         }
13433 
13434         // Check that the SRA is all signbits.
13435         SDValue SraC = Mask.getOperand(2);
13436         unsigned SraAmt  = cast<ConstantSDNode>(SraC)->getZExtValue();
13437         unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13438         if ((SraAmt + 1) != EltBits)
13439           return SDValue();
13440 
13441         DebugLoc DL = N->getDebugLoc();
13442 
13443         // Now we know we at least have a plendvb with the mask val.  See if
13444         // we can form a psignb/w/d.
13445         // psign = x.type == y.type == mask.type && y = sub(0, x);
13446         X = X.getOperand(0);
13447         Y = Y.getOperand(0);
13448         if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13449             ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13450             X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13451           unsigned Opc = 0;
13452           switch (EltBits) {
13453           case 8: Opc = X86ISD::PSIGNB; break;
13454           case 16: Opc = X86ISD::PSIGNW; break;
13455           case 32: Opc = X86ISD::PSIGND; break;
13456           default: break;
13457           }
13458           if (Opc) {
13459             SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13460             return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13461           }
13462         }
13463         // PBLENDVB only available on SSE 4.1
13464         if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13465           return SDValue();
13466 
13467         X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13468         Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13469         Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13470         Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13471         return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13472       }
13473     }
13474   }
13475 
13476   // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13477   if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13478     std::swap(N0, N1);
13479   if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13480     return SDValue();
13481   if (!N0.hasOneUse() || !N1.hasOneUse())
13482     return SDValue();
13483 
13484   SDValue ShAmt0 = N0.getOperand(1);
13485   if (ShAmt0.getValueType() != MVT::i8)
13486     return SDValue();
13487   SDValue ShAmt1 = N1.getOperand(1);
13488   if (ShAmt1.getValueType() != MVT::i8)
13489     return SDValue();
13490   if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13491     ShAmt0 = ShAmt0.getOperand(0);
13492   if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13493     ShAmt1 = ShAmt1.getOperand(0);
13494 
13495   DebugLoc DL = N->getDebugLoc();
13496   unsigned Opc = X86ISD::SHLD;
13497   SDValue Op0 = N0.getOperand(0);
13498   SDValue Op1 = N1.getOperand(0);
13499   if (ShAmt0.getOpcode() == ISD::SUB) {
13500     Opc = X86ISD::SHRD;
13501     std::swap(Op0, Op1);
13502     std::swap(ShAmt0, ShAmt1);
13503   }
13504 
13505   unsigned Bits = VT.getSizeInBits();
13506   if (ShAmt1.getOpcode() == ISD::SUB) {
13507     SDValue Sum = ShAmt1.getOperand(0);
13508     if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13509       SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13510       if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13511         ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13512       if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13513         return DAG.getNode(Opc, DL, VT,
13514                            Op0, Op1,
13515                            DAG.getNode(ISD::TRUNCATE, DL,
13516                                        MVT::i8, ShAmt0));
13517     }
13518   } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13519     ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13520     if (ShAmt0C &&
13521         ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13522       return DAG.getNode(Opc, DL, VT,
13523                          N0.getOperand(0), N1.getOperand(0),
13524                          DAG.getNode(ISD::TRUNCATE, DL,
13525                                        MVT::i8, ShAmt0));
13526   }
13527 
13528   return SDValue();
13529 }
13530 
13531 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
PerformLOADCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13532 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13533                                    const X86Subtarget *Subtarget) {
13534   LoadSDNode *Ld = cast<LoadSDNode>(N);
13535   EVT RegVT = Ld->getValueType(0);
13536   EVT MemVT = Ld->getMemoryVT();
13537   DebugLoc dl = Ld->getDebugLoc();
13538   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13539 
13540   ISD::LoadExtType Ext = Ld->getExtensionType();
13541 
13542   // If this is a vector EXT Load then attempt to optimize it using a
13543   // shuffle. We need SSE4 for the shuffles.
13544   // TODO: It is possible to support ZExt by zeroing the undef values
13545   // during the shuffle phase or after the shuffle.
13546   if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13547     assert(MemVT != RegVT && "Cannot extend to the same type");
13548     assert(MemVT.isVector() && "Must load a vector from memory");
13549 
13550     unsigned NumElems = RegVT.getVectorNumElements();
13551     unsigned RegSz = RegVT.getSizeInBits();
13552     unsigned MemSz = MemVT.getSizeInBits();
13553     assert(RegSz > MemSz && "Register size must be greater than the mem size");
13554     // All sizes must be a power of two
13555     if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13556 
13557     // Attempt to load the original value using a single load op.
13558     // Find a scalar type which is equal to the loaded word size.
13559     MVT SclrLoadTy = MVT::i8;
13560     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13561          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13562       MVT Tp = (MVT::SimpleValueType)tp;
13563       if (TLI.isTypeLegal(Tp) &&  Tp.getSizeInBits() == MemSz) {
13564         SclrLoadTy = Tp;
13565         break;
13566       }
13567     }
13568 
13569     // Proceed if a load word is found.
13570     if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13571 
13572     EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13573       RegSz/SclrLoadTy.getSizeInBits());
13574 
13575     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13576                                   RegSz/MemVT.getScalarType().getSizeInBits());
13577     // Can't shuffle using an illegal type.
13578     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13579 
13580     // Perform a single load.
13581     SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13582                                   Ld->getBasePtr(),
13583                                   Ld->getPointerInfo(), Ld->isVolatile(),
13584                                   Ld->isNonTemporal(), Ld->getAlignment());
13585 
13586     // Insert the word loaded into a vector.
13587     SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13588       LoadUnitVecVT, ScalarLoad);
13589 
13590     // Bitcast the loaded value to a vector of the original element type, in
13591     // the size of the target vector type.
13592     SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13593     unsigned SizeRatio = RegSz/MemSz;
13594 
13595     // Redistribute the loaded elements into the different locations.
13596     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13597     for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13598 
13599     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13600                                 DAG.getUNDEF(SlicedVec.getValueType()),
13601                                 ShuffleVec.data());
13602 
13603     // Bitcast to the requested type.
13604     Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13605     // Replace the original load with the new sequence
13606     // and return the new chain.
13607     DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13608     return SDValue(ScalarLoad.getNode(), 1);
13609   }
13610 
13611   return SDValue();
13612 }
13613 
13614 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
PerformSTORECombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13615 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13616                                    const X86Subtarget *Subtarget) {
13617   StoreSDNode *St = cast<StoreSDNode>(N);
13618   EVT VT = St->getValue().getValueType();
13619   EVT StVT = St->getMemoryVT();
13620   DebugLoc dl = St->getDebugLoc();
13621   SDValue StoredVal = St->getOperand(1);
13622   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13623 
13624   // If we are saving a concatination of two XMM registers, perform two stores.
13625   // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13626   // 128-bit ones. If in the future the cost becomes only one memory access the
13627   // first version would be better.
13628   if (VT.getSizeInBits() == 256 &&
13629     StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13630     StoredVal.getNumOperands() == 2) {
13631 
13632     SDValue Value0 = StoredVal.getOperand(0);
13633     SDValue Value1 = StoredVal.getOperand(1);
13634 
13635     SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13636     SDValue Ptr0 = St->getBasePtr();
13637     SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13638 
13639     SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13640                                 St->getPointerInfo(), St->isVolatile(),
13641                                 St->isNonTemporal(), St->getAlignment());
13642     SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13643                                 St->getPointerInfo(), St->isVolatile(),
13644                                 St->isNonTemporal(), St->getAlignment());
13645     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13646   }
13647 
13648   // Optimize trunc store (of multiple scalars) to shuffle and store.
13649   // First, pack all of the elements in one place. Next, store to memory
13650   // in fewer chunks.
13651   if (St->isTruncatingStore() && VT.isVector()) {
13652     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13653     unsigned NumElems = VT.getVectorNumElements();
13654     assert(StVT != VT && "Cannot truncate to the same type");
13655     unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13656     unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13657 
13658     // From, To sizes and ElemCount must be pow of two
13659     if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13660     // We are going to use the original vector elt for storing.
13661     // Accumulated smaller vector elements must be a multiple of the store size.
13662     if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13663 
13664     unsigned SizeRatio  = FromSz / ToSz;
13665 
13666     assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13667 
13668     // Create a type on which we perform the shuffle
13669     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13670             StVT.getScalarType(), NumElems*SizeRatio);
13671 
13672     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13673 
13674     SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13675     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13676     for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13677 
13678     // Can't shuffle using an illegal type
13679     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13680 
13681     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13682                                 DAG.getUNDEF(WideVec.getValueType()),
13683                                 ShuffleVec.data());
13684     // At this point all of the data is stored at the bottom of the
13685     // register. We now need to save it to mem.
13686 
13687     // Find the largest store unit
13688     MVT StoreType = MVT::i8;
13689     for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13690          tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13691       MVT Tp = (MVT::SimpleValueType)tp;
13692       if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13693         StoreType = Tp;
13694     }
13695 
13696     // Bitcast the original vector into a vector of store-size units
13697     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13698             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13699     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13700     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13701     SmallVector<SDValue, 8> Chains;
13702     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13703                                         TLI.getPointerTy());
13704     SDValue Ptr = St->getBasePtr();
13705 
13706     // Perform one or more big stores into memory.
13707     for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13708       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13709                                    StoreType, ShuffWide,
13710                                    DAG.getIntPtrConstant(i));
13711       SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13712                                 St->getPointerInfo(), St->isVolatile(),
13713                                 St->isNonTemporal(), St->getAlignment());
13714       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13715       Chains.push_back(Ch);
13716     }
13717 
13718     return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13719                                Chains.size());
13720   }
13721 
13722 
13723   // Turn load->store of MMX types into GPR load/stores.  This avoids clobbering
13724   // the FP state in cases where an emms may be missing.
13725   // A preferable solution to the general problem is to figure out the right
13726   // places to insert EMMS.  This qualifies as a quick hack.
13727 
13728   // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13729   if (VT.getSizeInBits() != 64)
13730     return SDValue();
13731 
13732   const Function *F = DAG.getMachineFunction().getFunction();
13733   bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13734   bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13735                      && Subtarget->hasXMMInt();
13736   if ((VT.isVector() ||
13737        (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13738       isa<LoadSDNode>(St->getValue()) &&
13739       !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13740       St->getChain().hasOneUse() && !St->isVolatile()) {
13741     SDNode* LdVal = St->getValue().getNode();
13742     LoadSDNode *Ld = 0;
13743     int TokenFactorIndex = -1;
13744     SmallVector<SDValue, 8> Ops;
13745     SDNode* ChainVal = St->getChain().getNode();
13746     // Must be a store of a load.  We currently handle two cases:  the load
13747     // is a direct child, and it's under an intervening TokenFactor.  It is
13748     // possible to dig deeper under nested TokenFactors.
13749     if (ChainVal == LdVal)
13750       Ld = cast<LoadSDNode>(St->getChain());
13751     else if (St->getValue().hasOneUse() &&
13752              ChainVal->getOpcode() == ISD::TokenFactor) {
13753       for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13754         if (ChainVal->getOperand(i).getNode() == LdVal) {
13755           TokenFactorIndex = i;
13756           Ld = cast<LoadSDNode>(St->getValue());
13757         } else
13758           Ops.push_back(ChainVal->getOperand(i));
13759       }
13760     }
13761 
13762     if (!Ld || !ISD::isNormalLoad(Ld))
13763       return SDValue();
13764 
13765     // If this is not the MMX case, i.e. we are just turning i64 load/store
13766     // into f64 load/store, avoid the transformation if there are multiple
13767     // uses of the loaded value.
13768     if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13769       return SDValue();
13770 
13771     DebugLoc LdDL = Ld->getDebugLoc();
13772     DebugLoc StDL = N->getDebugLoc();
13773     // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13774     // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13775     // pair instead.
13776     if (Subtarget->is64Bit() || F64IsLegal) {
13777       EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13778       SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13779                                   Ld->getPointerInfo(), Ld->isVolatile(),
13780                                   Ld->isNonTemporal(), Ld->getAlignment());
13781       SDValue NewChain = NewLd.getValue(1);
13782       if (TokenFactorIndex != -1) {
13783         Ops.push_back(NewChain);
13784         NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13785                                Ops.size());
13786       }
13787       return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13788                           St->getPointerInfo(),
13789                           St->isVolatile(), St->isNonTemporal(),
13790                           St->getAlignment());
13791     }
13792 
13793     // Otherwise, lower to two pairs of 32-bit loads / stores.
13794     SDValue LoAddr = Ld->getBasePtr();
13795     SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13796                                  DAG.getConstant(4, MVT::i32));
13797 
13798     SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13799                                Ld->getPointerInfo(),
13800                                Ld->isVolatile(), Ld->isNonTemporal(),
13801                                Ld->getAlignment());
13802     SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13803                                Ld->getPointerInfo().getWithOffset(4),
13804                                Ld->isVolatile(), Ld->isNonTemporal(),
13805                                MinAlign(Ld->getAlignment(), 4));
13806 
13807     SDValue NewChain = LoLd.getValue(1);
13808     if (TokenFactorIndex != -1) {
13809       Ops.push_back(LoLd);
13810       Ops.push_back(HiLd);
13811       NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13812                              Ops.size());
13813     }
13814 
13815     LoAddr = St->getBasePtr();
13816     HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13817                          DAG.getConstant(4, MVT::i32));
13818 
13819     SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13820                                 St->getPointerInfo(),
13821                                 St->isVolatile(), St->isNonTemporal(),
13822                                 St->getAlignment());
13823     SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13824                                 St->getPointerInfo().getWithOffset(4),
13825                                 St->isVolatile(),
13826                                 St->isNonTemporal(),
13827                                 MinAlign(St->getAlignment(), 4));
13828     return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13829   }
13830   return SDValue();
13831 }
13832 
13833 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
13834 /// and return the operands for the horizontal operation in LHS and RHS.  A
13835 /// horizontal operation performs the binary operation on successive elements
13836 /// of its first operand, then on successive elements of its second operand,
13837 /// returning the resulting values in a vector.  For example, if
13838 ///   A = < float a0, float a1, float a2, float a3 >
13839 /// and
13840 ///   B = < float b0, float b1, float b2, float b3 >
13841 /// then the result of doing a horizontal operation on A and B is
13842 ///   A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
13843 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
13844 /// A horizontal-op B, for some already available A and B, and if so then LHS is
13845 /// set to A, RHS to B, and the routine returns 'true'.
13846 /// Note that the binary operation should have the property that if one of the
13847 /// operands is UNDEF then the result is UNDEF.
isHorizontalBinOp(SDValue & LHS,SDValue & RHS,bool isCommutative)13848 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
13849   // Look for the following pattern: if
13850   //   A = < float a0, float a1, float a2, float a3 >
13851   //   B = < float b0, float b1, float b2, float b3 >
13852   // and
13853   //   LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
13854   //   RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
13855   // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
13856   // which is A horizontal-op B.
13857 
13858   // At least one of the operands should be a vector shuffle.
13859   if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13860       RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
13861     return false;
13862 
13863   EVT VT = LHS.getValueType();
13864   unsigned N = VT.getVectorNumElements();
13865 
13866   // View LHS in the form
13867   //   LHS = VECTOR_SHUFFLE A, B, LMask
13868   // If LHS is not a shuffle then pretend it is the shuffle
13869   //   LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
13870   // NOTE: in what follows a default initialized SDValue represents an UNDEF of
13871   // type VT.
13872   SDValue A, B;
13873   SmallVector<int, 8> LMask(N);
13874   if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13875     if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
13876       A = LHS.getOperand(0);
13877     if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
13878       B = LHS.getOperand(1);
13879     cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
13880   } else {
13881     if (LHS.getOpcode() != ISD::UNDEF)
13882       A = LHS;
13883     for (unsigned i = 0; i != N; ++i)
13884       LMask[i] = i;
13885   }
13886 
13887   // Likewise, view RHS in the form
13888   //   RHS = VECTOR_SHUFFLE C, D, RMask
13889   SDValue C, D;
13890   SmallVector<int, 8> RMask(N);
13891   if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13892     if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
13893       C = RHS.getOperand(0);
13894     if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
13895       D = RHS.getOperand(1);
13896     cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
13897   } else {
13898     if (RHS.getOpcode() != ISD::UNDEF)
13899       C = RHS;
13900     for (unsigned i = 0; i != N; ++i)
13901       RMask[i] = i;
13902   }
13903 
13904   // Check that the shuffles are both shuffling the same vectors.
13905   if (!(A == C && B == D) && !(A == D && B == C))
13906     return false;
13907 
13908   // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
13909   if (!A.getNode() && !B.getNode())
13910     return false;
13911 
13912   // If A and B occur in reverse order in RHS, then "swap" them (which means
13913   // rewriting the mask).
13914   if (A != C)
13915     for (unsigned i = 0; i != N; ++i) {
13916       unsigned Idx = RMask[i];
13917       if (Idx < N)
13918         RMask[i] += N;
13919       else if (Idx < 2*N)
13920         RMask[i] -= N;
13921     }
13922 
13923   // At this point LHS and RHS are equivalent to
13924   //   LHS = VECTOR_SHUFFLE A, B, LMask
13925   //   RHS = VECTOR_SHUFFLE A, B, RMask
13926   // Check that the masks correspond to performing a horizontal operation.
13927   for (unsigned i = 0; i != N; ++i) {
13928     unsigned LIdx = LMask[i], RIdx = RMask[i];
13929 
13930     // Ignore any UNDEF components.
13931     if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
13932         || (!B.getNode() && (LIdx >= N || RIdx >= N)))
13933       continue;
13934 
13935     // Check that successive elements are being operated on.  If not, this is
13936     // not a horizontal operation.
13937     if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
13938         !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
13939       return false;
13940   }
13941 
13942   LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
13943   RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
13944   return true;
13945 }
13946 
13947 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
PerformFADDCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13948 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
13949                                   const X86Subtarget *Subtarget) {
13950   EVT VT = N->getValueType(0);
13951   SDValue LHS = N->getOperand(0);
13952   SDValue RHS = N->getOperand(1);
13953 
13954   // Try to synthesize horizontal adds from adds of shuffles.
13955   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13956       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13957       isHorizontalBinOp(LHS, RHS, true))
13958     return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
13959   return SDValue();
13960 }
13961 
13962 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
PerformFSUBCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13963 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
13964                                   const X86Subtarget *Subtarget) {
13965   EVT VT = N->getValueType(0);
13966   SDValue LHS = N->getOperand(0);
13967   SDValue RHS = N->getOperand(1);
13968 
13969   // Try to synthesize horizontal subs from subs of shuffles.
13970   if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13971       (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13972       isHorizontalBinOp(LHS, RHS, false))
13973     return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
13974   return SDValue();
13975 }
13976 
13977 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13978 /// X86ISD::FXOR nodes.
PerformFORCombine(SDNode * N,SelectionDAG & DAG)13979 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13980   assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13981   // F[X]OR(0.0, x) -> x
13982   // F[X]OR(x, 0.0) -> x
13983   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13984     if (C->getValueAPF().isPosZero())
13985       return N->getOperand(1);
13986   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13987     if (C->getValueAPF().isPosZero())
13988       return N->getOperand(0);
13989   return SDValue();
13990 }
13991 
13992 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
PerformFANDCombine(SDNode * N,SelectionDAG & DAG)13993 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13994   // FAND(0.0, x) -> 0.0
13995   // FAND(x, 0.0) -> 0.0
13996   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13997     if (C->getValueAPF().isPosZero())
13998       return N->getOperand(0);
13999   if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14000     if (C->getValueAPF().isPosZero())
14001       return N->getOperand(1);
14002   return SDValue();
14003 }
14004 
PerformBTCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)14005 static SDValue PerformBTCombine(SDNode *N,
14006                                 SelectionDAG &DAG,
14007                                 TargetLowering::DAGCombinerInfo &DCI) {
14008   // BT ignores high bits in the bit index operand.
14009   SDValue Op1 = N->getOperand(1);
14010   if (Op1.hasOneUse()) {
14011     unsigned BitWidth = Op1.getValueSizeInBits();
14012     APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14013     APInt KnownZero, KnownOne;
14014     TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14015                                           !DCI.isBeforeLegalizeOps());
14016     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14017     if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14018         TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14019       DCI.CommitTargetLoweringOpt(TLO);
14020   }
14021   return SDValue();
14022 }
14023 
PerformVZEXT_MOVLCombine(SDNode * N,SelectionDAG & DAG)14024 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14025   SDValue Op = N->getOperand(0);
14026   if (Op.getOpcode() == ISD::BITCAST)
14027     Op = Op.getOperand(0);
14028   EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14029   if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14030       VT.getVectorElementType().getSizeInBits() ==
14031       OpVT.getVectorElementType().getSizeInBits()) {
14032     return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14033   }
14034   return SDValue();
14035 }
14036 
PerformZExtCombine(SDNode * N,SelectionDAG & DAG)14037 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14038   // (i32 zext (and (i8  x86isd::setcc_carry), 1)) ->
14039   //           (and (i32 x86isd::setcc_carry), 1)
14040   // This eliminates the zext. This transformation is necessary because
14041   // ISD::SETCC is always legalized to i8.
14042   DebugLoc dl = N->getDebugLoc();
14043   SDValue N0 = N->getOperand(0);
14044   EVT VT = N->getValueType(0);
14045   if (N0.getOpcode() == ISD::AND &&
14046       N0.hasOneUse() &&
14047       N0.getOperand(0).hasOneUse()) {
14048     SDValue N00 = N0.getOperand(0);
14049     if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14050       return SDValue();
14051     ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14052     if (!C || C->getZExtValue() != 1)
14053       return SDValue();
14054     return DAG.getNode(ISD::AND, dl, VT,
14055                        DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14056                                    N00.getOperand(0), N00.getOperand(1)),
14057                        DAG.getConstant(1, VT));
14058   }
14059 
14060   return SDValue();
14061 }
14062 
14063 // Optimize  RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
PerformSETCCCombine(SDNode * N,SelectionDAG & DAG)14064 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14065   unsigned X86CC = N->getConstantOperandVal(0);
14066   SDValue EFLAG = N->getOperand(1);
14067   DebugLoc DL = N->getDebugLoc();
14068 
14069   // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14070   // a zext and produces an all-ones bit which is more useful than 0/1 in some
14071   // cases.
14072   if (X86CC == X86::COND_B)
14073     return DAG.getNode(ISD::AND, DL, MVT::i8,
14074                        DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14075                                    DAG.getConstant(X86CC, MVT::i8), EFLAG),
14076                        DAG.getConstant(1, MVT::i8));
14077 
14078   return SDValue();
14079 }
14080 
PerformSINT_TO_FPCombine(SDNode * N,SelectionDAG & DAG,const X86TargetLowering * XTLI)14081 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14082                                         const X86TargetLowering *XTLI) {
14083   SDValue Op0 = N->getOperand(0);
14084   // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14085   // a 32-bit target where SSE doesn't support i64->FP operations.
14086   if (Op0.getOpcode() == ISD::LOAD) {
14087     LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14088     EVT VT = Ld->getValueType(0);
14089     if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14090         ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14091         !XTLI->getSubtarget()->is64Bit() &&
14092         !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14093       SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14094                                           Ld->getChain(), Op0, DAG);
14095       DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14096       return FILDChain;
14097     }
14098   }
14099   return SDValue();
14100 }
14101 
14102 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
PerformADCCombine(SDNode * N,SelectionDAG & DAG,X86TargetLowering::DAGCombinerInfo & DCI)14103 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14104                                  X86TargetLowering::DAGCombinerInfo &DCI) {
14105   // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14106   // the result is either zero or one (depending on the input carry bit).
14107   // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14108   if (X86::isZeroNode(N->getOperand(0)) &&
14109       X86::isZeroNode(N->getOperand(1)) &&
14110       // We don't have a good way to replace an EFLAGS use, so only do this when
14111       // dead right now.
14112       SDValue(N, 1).use_empty()) {
14113     DebugLoc DL = N->getDebugLoc();
14114     EVT VT = N->getValueType(0);
14115     SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14116     SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14117                                DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14118                                            DAG.getConstant(X86::COND_B,MVT::i8),
14119                                            N->getOperand(2)),
14120                                DAG.getConstant(1, VT));
14121     return DCI.CombineTo(N, Res1, CarryOut);
14122   }
14123 
14124   return SDValue();
14125 }
14126 
14127 // fold (add Y, (sete  X, 0)) -> adc  0, Y
14128 //      (add Y, (setne X, 0)) -> sbb -1, Y
14129 //      (sub (sete  X, 0), Y) -> sbb  0, Y
14130 //      (sub (setne X, 0), Y) -> adc -1, Y
OptimizeConditionalInDecrement(SDNode * N,SelectionDAG & DAG)14131 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14132   DebugLoc DL = N->getDebugLoc();
14133 
14134   // Look through ZExts.
14135   SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14136   if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14137     return SDValue();
14138 
14139   SDValue SetCC = Ext.getOperand(0);
14140   if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14141     return SDValue();
14142 
14143   X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14144   if (CC != X86::COND_E && CC != X86::COND_NE)
14145     return SDValue();
14146 
14147   SDValue Cmp = SetCC.getOperand(1);
14148   if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14149       !X86::isZeroNode(Cmp.getOperand(1)) ||
14150       !Cmp.getOperand(0).getValueType().isInteger())
14151     return SDValue();
14152 
14153   SDValue CmpOp0 = Cmp.getOperand(0);
14154   SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14155                                DAG.getConstant(1, CmpOp0.getValueType()));
14156 
14157   SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14158   if (CC == X86::COND_NE)
14159     return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14160                        DL, OtherVal.getValueType(), OtherVal,
14161                        DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14162   return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14163                      DL, OtherVal.getValueType(), OtherVal,
14164                      DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14165 }
14166 
PerformSubCombine(SDNode * N,SelectionDAG & DAG)14167 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14168   SDValue Op0 = N->getOperand(0);
14169   SDValue Op1 = N->getOperand(1);
14170 
14171   // X86 can't encode an immediate LHS of a sub. See if we can push the
14172   // negation into a preceding instruction.
14173   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14174     // If the RHS of the sub is a XOR with one use and a constant, invert the
14175     // immediate. Then add one to the LHS of the sub so we can turn
14176     // X-Y -> X+~Y+1, saving one register.
14177     if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14178         isa<ConstantSDNode>(Op1.getOperand(1))) {
14179       APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14180       EVT VT = Op0.getValueType();
14181       SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14182                                    Op1.getOperand(0),
14183                                    DAG.getConstant(~XorC, VT));
14184       return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14185                          DAG.getConstant(C->getAPIntValue()+1, VT));
14186     }
14187   }
14188 
14189   return OptimizeConditionalInDecrement(N, DAG);
14190 }
14191 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const14192 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14193                                              DAGCombinerInfo &DCI) const {
14194   SelectionDAG &DAG = DCI.DAG;
14195   switch (N->getOpcode()) {
14196   default: break;
14197   case ISD::EXTRACT_VECTOR_ELT:
14198     return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14199   case ISD::VSELECT:
14200   case ISD::SELECT:         return PerformSELECTCombine(N, DAG, Subtarget);
14201   case ISD::BITCAST:        return PerformBITCASTCombine(N, DAG);
14202   case X86ISD::CMOV:        return PerformCMOVCombine(N, DAG, DCI);
14203   case ISD::ADD:            return OptimizeConditionalInDecrement(N, DAG);
14204   case ISD::SUB:            return PerformSubCombine(N, DAG);
14205   case X86ISD::ADC:         return PerformADCCombine(N, DAG, DCI);
14206   case ISD::MUL:            return PerformMulCombine(N, DAG, DCI);
14207   case ISD::SHL:
14208   case ISD::SRA:
14209   case ISD::SRL:            return PerformShiftCombine(N, DAG, Subtarget);
14210   case ISD::AND:            return PerformAndCombine(N, DAG, DCI, Subtarget);
14211   case ISD::OR:             return PerformOrCombine(N, DAG, DCI, Subtarget);
14212   case ISD::LOAD:           return PerformLOADCombine(N, DAG, Subtarget);
14213   case ISD::STORE:          return PerformSTORECombine(N, DAG, Subtarget);
14214   case ISD::SINT_TO_FP:     return PerformSINT_TO_FPCombine(N, DAG, this);
14215   case ISD::FADD:           return PerformFADDCombine(N, DAG, Subtarget);
14216   case ISD::FSUB:           return PerformFSUBCombine(N, DAG, Subtarget);
14217   case X86ISD::FXOR:
14218   case X86ISD::FOR:         return PerformFORCombine(N, DAG);
14219   case X86ISD::FAND:        return PerformFANDCombine(N, DAG);
14220   case X86ISD::BT:          return PerformBTCombine(N, DAG, DCI);
14221   case X86ISD::VZEXT_MOVL:  return PerformVZEXT_MOVLCombine(N, DAG);
14222   case ISD::ZERO_EXTEND:    return PerformZExtCombine(N, DAG);
14223   case X86ISD::SETCC:       return PerformSETCCCombine(N, DAG);
14224   case X86ISD::SHUFPS:      // Handle all target specific shuffles
14225   case X86ISD::SHUFPD:
14226   case X86ISD::PALIGN:
14227   case X86ISD::PUNPCKHBW:
14228   case X86ISD::PUNPCKHWD:
14229   case X86ISD::PUNPCKHDQ:
14230   case X86ISD::PUNPCKHQDQ:
14231   case X86ISD::UNPCKHPS:
14232   case X86ISD::UNPCKHPD:
14233   case X86ISD::VUNPCKHPSY:
14234   case X86ISD::VUNPCKHPDY:
14235   case X86ISD::PUNPCKLBW:
14236   case X86ISD::PUNPCKLWD:
14237   case X86ISD::PUNPCKLDQ:
14238   case X86ISD::PUNPCKLQDQ:
14239   case X86ISD::UNPCKLPS:
14240   case X86ISD::UNPCKLPD:
14241   case X86ISD::VUNPCKLPSY:
14242   case X86ISD::VUNPCKLPDY:
14243   case X86ISD::MOVHLPS:
14244   case X86ISD::MOVLHPS:
14245   case X86ISD::PSHUFD:
14246   case X86ISD::PSHUFHW:
14247   case X86ISD::PSHUFLW:
14248   case X86ISD::MOVSS:
14249   case X86ISD::MOVSD:
14250   case X86ISD::VPERMILPS:
14251   case X86ISD::VPERMILPSY:
14252   case X86ISD::VPERMILPD:
14253   case X86ISD::VPERMILPDY:
14254   case X86ISD::VPERM2F128:
14255   case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14256   }
14257 
14258   return SDValue();
14259 }
14260 
14261 /// isTypeDesirableForOp - Return true if the target has native support for
14262 /// the specified value type and it is 'desirable' to use the type for the
14263 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14264 /// instruction encodings are longer and some i16 instructions are slow.
isTypeDesirableForOp(unsigned Opc,EVT VT) const14265 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14266   if (!isTypeLegal(VT))
14267     return false;
14268   if (VT != MVT::i16)
14269     return true;
14270 
14271   switch (Opc) {
14272   default:
14273     return true;
14274   case ISD::LOAD:
14275   case ISD::SIGN_EXTEND:
14276   case ISD::ZERO_EXTEND:
14277   case ISD::ANY_EXTEND:
14278   case ISD::SHL:
14279   case ISD::SRL:
14280   case ISD::SUB:
14281   case ISD::ADD:
14282   case ISD::MUL:
14283   case ISD::AND:
14284   case ISD::OR:
14285   case ISD::XOR:
14286     return false;
14287   }
14288 }
14289 
14290 /// IsDesirableToPromoteOp - This method query the target whether it is
14291 /// beneficial for dag combiner to promote the specified node. If true, it
14292 /// should return the desired promotion type by reference.
IsDesirableToPromoteOp(SDValue Op,EVT & PVT) const14293 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14294   EVT VT = Op.getValueType();
14295   if (VT != MVT::i16)
14296     return false;
14297 
14298   bool Promote = false;
14299   bool Commute = false;
14300   switch (Op.getOpcode()) {
14301   default: break;
14302   case ISD::LOAD: {
14303     LoadSDNode *LD = cast<LoadSDNode>(Op);
14304     // If the non-extending load has a single use and it's not live out, then it
14305     // might be folded.
14306     if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14307                                                      Op.hasOneUse()*/) {
14308       for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14309              UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14310         // The only case where we'd want to promote LOAD (rather then it being
14311         // promoted as an operand is when it's only use is liveout.
14312         if (UI->getOpcode() != ISD::CopyToReg)
14313           return false;
14314       }
14315     }
14316     Promote = true;
14317     break;
14318   }
14319   case ISD::SIGN_EXTEND:
14320   case ISD::ZERO_EXTEND:
14321   case ISD::ANY_EXTEND:
14322     Promote = true;
14323     break;
14324   case ISD::SHL:
14325   case ISD::SRL: {
14326     SDValue N0 = Op.getOperand(0);
14327     // Look out for (store (shl (load), x)).
14328     if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14329       return false;
14330     Promote = true;
14331     break;
14332   }
14333   case ISD::ADD:
14334   case ISD::MUL:
14335   case ISD::AND:
14336   case ISD::OR:
14337   case ISD::XOR:
14338     Commute = true;
14339     // fallthrough
14340   case ISD::SUB: {
14341     SDValue N0 = Op.getOperand(0);
14342     SDValue N1 = Op.getOperand(1);
14343     if (!Commute && MayFoldLoad(N1))
14344       return false;
14345     // Avoid disabling potential load folding opportunities.
14346     if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14347       return false;
14348     if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14349       return false;
14350     Promote = true;
14351   }
14352   }
14353 
14354   PVT = MVT::i32;
14355   return Promote;
14356 }
14357 
14358 //===----------------------------------------------------------------------===//
14359 //                           X86 Inline Assembly Support
14360 //===----------------------------------------------------------------------===//
14361 
ExpandInlineAsm(CallInst * CI) const14362 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14363   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14364 
14365   std::string AsmStr = IA->getAsmString();
14366 
14367   // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14368   SmallVector<StringRef, 4> AsmPieces;
14369   SplitString(AsmStr, AsmPieces, ";\n");
14370 
14371   switch (AsmPieces.size()) {
14372   default: return false;
14373   case 1:
14374     AsmStr = AsmPieces[0];
14375     AsmPieces.clear();
14376     SplitString(AsmStr, AsmPieces, " \t");  // Split with whitespace.
14377 
14378     // FIXME: this should verify that we are targeting a 486 or better.  If not,
14379     // we will turn this bswap into something that will be lowered to logical ops
14380     // instead of emitting the bswap asm.  For now, we don't support 486 or lower
14381     // so don't worry about this.
14382     // bswap $0
14383     if (AsmPieces.size() == 2 &&
14384         (AsmPieces[0] == "bswap" ||
14385          AsmPieces[0] == "bswapq" ||
14386          AsmPieces[0] == "bswapl") &&
14387         (AsmPieces[1] == "$0" ||
14388          AsmPieces[1] == "${0:q}")) {
14389       // No need to check constraints, nothing other than the equivalent of
14390       // "=r,0" would be valid here.
14391       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14392       if (!Ty || Ty->getBitWidth() % 16 != 0)
14393         return false;
14394       return IntrinsicLowering::LowerToByteSwap(CI);
14395     }
14396     // rorw $$8, ${0:w}  -->  llvm.bswap.i16
14397     if (CI->getType()->isIntegerTy(16) &&
14398         AsmPieces.size() == 3 &&
14399         (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14400         AsmPieces[1] == "$$8," &&
14401         AsmPieces[2] == "${0:w}" &&
14402         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14403       AsmPieces.clear();
14404       const std::string &ConstraintsStr = IA->getConstraintString();
14405       SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14406       std::sort(AsmPieces.begin(), AsmPieces.end());
14407       if (AsmPieces.size() == 4 &&
14408           AsmPieces[0] == "~{cc}" &&
14409           AsmPieces[1] == "~{dirflag}" &&
14410           AsmPieces[2] == "~{flags}" &&
14411           AsmPieces[3] == "~{fpsr}") {
14412         IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14413         if (!Ty || Ty->getBitWidth() % 16 != 0)
14414           return false;
14415         return IntrinsicLowering::LowerToByteSwap(CI);
14416       }
14417     }
14418     break;
14419   case 3:
14420     if (CI->getType()->isIntegerTy(32) &&
14421         IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14422       SmallVector<StringRef, 4> Words;
14423       SplitString(AsmPieces[0], Words, " \t,");
14424       if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14425           Words[2] == "${0:w}") {
14426         Words.clear();
14427         SplitString(AsmPieces[1], Words, " \t,");
14428         if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14429             Words[2] == "$0") {
14430           Words.clear();
14431           SplitString(AsmPieces[2], Words, " \t,");
14432           if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14433               Words[2] == "${0:w}") {
14434             AsmPieces.clear();
14435             const std::string &ConstraintsStr = IA->getConstraintString();
14436             SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14437             std::sort(AsmPieces.begin(), AsmPieces.end());
14438             if (AsmPieces.size() == 4 &&
14439                 AsmPieces[0] == "~{cc}" &&
14440                 AsmPieces[1] == "~{dirflag}" &&
14441                 AsmPieces[2] == "~{flags}" &&
14442                 AsmPieces[3] == "~{fpsr}") {
14443               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14444               if (!Ty || Ty->getBitWidth() % 16 != 0)
14445                 return false;
14446               return IntrinsicLowering::LowerToByteSwap(CI);
14447             }
14448           }
14449         }
14450       }
14451     }
14452 
14453     if (CI->getType()->isIntegerTy(64)) {
14454       InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14455       if (Constraints.size() >= 2 &&
14456           Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14457           Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14458         // bswap %eax / bswap %edx / xchgl %eax, %edx  -> llvm.bswap.i64
14459         SmallVector<StringRef, 4> Words;
14460         SplitString(AsmPieces[0], Words, " \t");
14461         if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14462           Words.clear();
14463           SplitString(AsmPieces[1], Words, " \t");
14464           if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14465             Words.clear();
14466             SplitString(AsmPieces[2], Words, " \t,");
14467             if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14468                 Words[2] == "%edx") {
14469               IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14470               if (!Ty || Ty->getBitWidth() % 16 != 0)
14471                 return false;
14472               return IntrinsicLowering::LowerToByteSwap(CI);
14473             }
14474           }
14475         }
14476       }
14477     }
14478     break;
14479   }
14480   return false;
14481 }
14482 
14483 
14484 
14485 /// getConstraintType - Given a constraint letter, return the type of
14486 /// constraint it is for this target.
14487 X86TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const14488 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14489   if (Constraint.size() == 1) {
14490     switch (Constraint[0]) {
14491     case 'R':
14492     case 'q':
14493     case 'Q':
14494     case 'f':
14495     case 't':
14496     case 'u':
14497     case 'y':
14498     case 'x':
14499     case 'Y':
14500     case 'l':
14501       return C_RegisterClass;
14502     case 'a':
14503     case 'b':
14504     case 'c':
14505     case 'd':
14506     case 'S':
14507     case 'D':
14508     case 'A':
14509       return C_Register;
14510     case 'I':
14511     case 'J':
14512     case 'K':
14513     case 'L':
14514     case 'M':
14515     case 'N':
14516     case 'G':
14517     case 'C':
14518     case 'e':
14519     case 'Z':
14520       return C_Other;
14521     default:
14522       break;
14523     }
14524   }
14525   return TargetLowering::getConstraintType(Constraint);
14526 }
14527 
14528 /// Examine constraint type and operand type and determine a weight value.
14529 /// This object must already have been set up with the operand type
14530 /// and the current alternative constraint selected.
14531 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const14532   X86TargetLowering::getSingleConstraintMatchWeight(
14533     AsmOperandInfo &info, const char *constraint) const {
14534   ConstraintWeight weight = CW_Invalid;
14535   Value *CallOperandVal = info.CallOperandVal;
14536     // If we don't have a value, we can't do a match,
14537     // but allow it at the lowest weight.
14538   if (CallOperandVal == NULL)
14539     return CW_Default;
14540   Type *type = CallOperandVal->getType();
14541   // Look at the constraint type.
14542   switch (*constraint) {
14543   default:
14544     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14545   case 'R':
14546   case 'q':
14547   case 'Q':
14548   case 'a':
14549   case 'b':
14550   case 'c':
14551   case 'd':
14552   case 'S':
14553   case 'D':
14554   case 'A':
14555     if (CallOperandVal->getType()->isIntegerTy())
14556       weight = CW_SpecificReg;
14557     break;
14558   case 'f':
14559   case 't':
14560   case 'u':
14561       if (type->isFloatingPointTy())
14562         weight = CW_SpecificReg;
14563       break;
14564   case 'y':
14565       if (type->isX86_MMXTy() && Subtarget->hasMMX())
14566         weight = CW_SpecificReg;
14567       break;
14568   case 'x':
14569   case 'Y':
14570     if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14571       weight = CW_Register;
14572     break;
14573   case 'I':
14574     if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14575       if (C->getZExtValue() <= 31)
14576         weight = CW_Constant;
14577     }
14578     break;
14579   case 'J':
14580     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14581       if (C->getZExtValue() <= 63)
14582         weight = CW_Constant;
14583     }
14584     break;
14585   case 'K':
14586     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14587       if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14588         weight = CW_Constant;
14589     }
14590     break;
14591   case 'L':
14592     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14593       if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14594         weight = CW_Constant;
14595     }
14596     break;
14597   case 'M':
14598     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14599       if (C->getZExtValue() <= 3)
14600         weight = CW_Constant;
14601     }
14602     break;
14603   case 'N':
14604     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14605       if (C->getZExtValue() <= 0xff)
14606         weight = CW_Constant;
14607     }
14608     break;
14609   case 'G':
14610   case 'C':
14611     if (dyn_cast<ConstantFP>(CallOperandVal)) {
14612       weight = CW_Constant;
14613     }
14614     break;
14615   case 'e':
14616     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14617       if ((C->getSExtValue() >= -0x80000000LL) &&
14618           (C->getSExtValue() <= 0x7fffffffLL))
14619         weight = CW_Constant;
14620     }
14621     break;
14622   case 'Z':
14623     if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14624       if (C->getZExtValue() <= 0xffffffff)
14625         weight = CW_Constant;
14626     }
14627     break;
14628   }
14629   return weight;
14630 }
14631 
14632 /// LowerXConstraint - try to replace an X constraint, which matches anything,
14633 /// with another that has more specific requirements based on the type of the
14634 /// corresponding operand.
14635 const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const14636 LowerXConstraint(EVT ConstraintVT) const {
14637   // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14638   // 'f' like normal targets.
14639   if (ConstraintVT.isFloatingPoint()) {
14640     if (Subtarget->hasXMMInt())
14641       return "Y";
14642     if (Subtarget->hasXMM())
14643       return "x";
14644   }
14645 
14646   return TargetLowering::LowerXConstraint(ConstraintVT);
14647 }
14648 
14649 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14650 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const14651 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14652                                                      std::string &Constraint,
14653                                                      std::vector<SDValue>&Ops,
14654                                                      SelectionDAG &DAG) const {
14655   SDValue Result(0, 0);
14656 
14657   // Only support length 1 constraints for now.
14658   if (Constraint.length() > 1) return;
14659 
14660   char ConstraintLetter = Constraint[0];
14661   switch (ConstraintLetter) {
14662   default: break;
14663   case 'I':
14664     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14665       if (C->getZExtValue() <= 31) {
14666         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14667         break;
14668       }
14669     }
14670     return;
14671   case 'J':
14672     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14673       if (C->getZExtValue() <= 63) {
14674         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14675         break;
14676       }
14677     }
14678     return;
14679   case 'K':
14680     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14681       if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14682         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14683         break;
14684       }
14685     }
14686     return;
14687   case 'N':
14688     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14689       if (C->getZExtValue() <= 255) {
14690         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14691         break;
14692       }
14693     }
14694     return;
14695   case 'e': {
14696     // 32-bit signed value
14697     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14698       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14699                                            C->getSExtValue())) {
14700         // Widen to 64 bits here to get it sign extended.
14701         Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14702         break;
14703       }
14704     // FIXME gcc accepts some relocatable values here too, but only in certain
14705     // memory models; it's complicated.
14706     }
14707     return;
14708   }
14709   case 'Z': {
14710     // 32-bit unsigned value
14711     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14712       if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14713                                            C->getZExtValue())) {
14714         Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14715         break;
14716       }
14717     }
14718     // FIXME gcc accepts some relocatable values here too, but only in certain
14719     // memory models; it's complicated.
14720     return;
14721   }
14722   case 'i': {
14723     // Literal immediates are always ok.
14724     if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14725       // Widen to 64 bits here to get it sign extended.
14726       Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14727       break;
14728     }
14729 
14730     // In any sort of PIC mode addresses need to be computed at runtime by
14731     // adding in a register or some sort of table lookup.  These can't
14732     // be used as immediates.
14733     if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14734       return;
14735 
14736     // If we are in non-pic codegen mode, we allow the address of a global (with
14737     // an optional displacement) to be used with 'i'.
14738     GlobalAddressSDNode *GA = 0;
14739     int64_t Offset = 0;
14740 
14741     // Match either (GA), (GA+C), (GA+C1+C2), etc.
14742     while (1) {
14743       if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14744         Offset += GA->getOffset();
14745         break;
14746       } else if (Op.getOpcode() == ISD::ADD) {
14747         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14748           Offset += C->getZExtValue();
14749           Op = Op.getOperand(0);
14750           continue;
14751         }
14752       } else if (Op.getOpcode() == ISD::SUB) {
14753         if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14754           Offset += -C->getZExtValue();
14755           Op = Op.getOperand(0);
14756           continue;
14757         }
14758       }
14759 
14760       // Otherwise, this isn't something we can handle, reject it.
14761       return;
14762     }
14763 
14764     const GlobalValue *GV = GA->getGlobal();
14765     // If we require an extra load to get this address, as in PIC mode, we
14766     // can't accept it.
14767     if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14768                                                         getTargetMachine())))
14769       return;
14770 
14771     Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14772                                         GA->getValueType(0), Offset);
14773     break;
14774   }
14775   }
14776 
14777   if (Result.getNode()) {
14778     Ops.push_back(Result);
14779     return;
14780   }
14781   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14782 }
14783 
14784 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const14785 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14786                                                 EVT VT) const {
14787   // First, see if this is a constraint that directly corresponds to an LLVM
14788   // register class.
14789   if (Constraint.size() == 1) {
14790     // GCC Constraint Letters
14791     switch (Constraint[0]) {
14792     default: break;
14793       // TODO: Slight differences here in allocation order and leaving
14794       // RIP in the class. Do they matter any more here than they do
14795       // in the normal allocation?
14796     case 'q':   // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14797       if (Subtarget->is64Bit()) {
14798 	if (VT == MVT::i32 || VT == MVT::f32)
14799 	  return std::make_pair(0U, X86::GR32RegisterClass);
14800 	else if (VT == MVT::i16)
14801 	  return std::make_pair(0U, X86::GR16RegisterClass);
14802 	else if (VT == MVT::i8 || VT == MVT::i1)
14803 	  return std::make_pair(0U, X86::GR8RegisterClass);
14804 	else if (VT == MVT::i64 || VT == MVT::f64)
14805 	  return std::make_pair(0U, X86::GR64RegisterClass);
14806 	break;
14807       }
14808       // 32-bit fallthrough
14809     case 'Q':   // Q_REGS
14810       if (VT == MVT::i32 || VT == MVT::f32)
14811 	return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14812       else if (VT == MVT::i16)
14813 	return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14814       else if (VT == MVT::i8 || VT == MVT::i1)
14815 	return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14816       else if (VT == MVT::i64)
14817 	return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14818       break;
14819     case 'r':   // GENERAL_REGS
14820     case 'l':   // INDEX_REGS
14821       if (VT == MVT::i8 || VT == MVT::i1)
14822         return std::make_pair(0U, X86::GR8RegisterClass);
14823       if (VT == MVT::i16)
14824         return std::make_pair(0U, X86::GR16RegisterClass);
14825       if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14826         return std::make_pair(0U, X86::GR32RegisterClass);
14827       return std::make_pair(0U, X86::GR64RegisterClass);
14828     case 'R':   // LEGACY_REGS
14829       if (VT == MVT::i8 || VT == MVT::i1)
14830         return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14831       if (VT == MVT::i16)
14832         return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14833       if (VT == MVT::i32 || !Subtarget->is64Bit())
14834         return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14835       return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14836     case 'f':  // FP Stack registers.
14837       // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14838       // value to the correct fpstack register class.
14839       if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14840         return std::make_pair(0U, X86::RFP32RegisterClass);
14841       if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14842         return std::make_pair(0U, X86::RFP64RegisterClass);
14843       return std::make_pair(0U, X86::RFP80RegisterClass);
14844     case 'y':   // MMX_REGS if MMX allowed.
14845       if (!Subtarget->hasMMX()) break;
14846       return std::make_pair(0U, X86::VR64RegisterClass);
14847     case 'Y':   // SSE_REGS if SSE2 allowed
14848       if (!Subtarget->hasXMMInt()) break;
14849       // FALL THROUGH.
14850     case 'x':   // SSE_REGS if SSE1 allowed
14851       if (!Subtarget->hasXMM()) break;
14852 
14853       switch (VT.getSimpleVT().SimpleTy) {
14854       default: break;
14855       // Scalar SSE types.
14856       case MVT::f32:
14857       case MVT::i32:
14858         return std::make_pair(0U, X86::FR32RegisterClass);
14859       case MVT::f64:
14860       case MVT::i64:
14861         return std::make_pair(0U, X86::FR64RegisterClass);
14862       // Vector types.
14863       case MVT::v16i8:
14864       case MVT::v8i16:
14865       case MVT::v4i32:
14866       case MVT::v2i64:
14867       case MVT::v4f32:
14868       case MVT::v2f64:
14869         return std::make_pair(0U, X86::VR128RegisterClass);
14870       }
14871       break;
14872     }
14873   }
14874 
14875   // Use the default implementation in TargetLowering to convert the register
14876   // constraint into a member of a register class.
14877   std::pair<unsigned, const TargetRegisterClass*> Res;
14878   Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14879 
14880   // Not found as a standard register?
14881   if (Res.second == 0) {
14882     // Map st(0) -> st(7) -> ST0
14883     if (Constraint.size() == 7 && Constraint[0] == '{' &&
14884         tolower(Constraint[1]) == 's' &&
14885         tolower(Constraint[2]) == 't' &&
14886         Constraint[3] == '(' &&
14887         (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14888         Constraint[5] == ')' &&
14889         Constraint[6] == '}') {
14890 
14891       Res.first = X86::ST0+Constraint[4]-'0';
14892       Res.second = X86::RFP80RegisterClass;
14893       return Res;
14894     }
14895 
14896     // GCC allows "st(0)" to be called just plain "st".
14897     if (StringRef("{st}").equals_lower(Constraint)) {
14898       Res.first = X86::ST0;
14899       Res.second = X86::RFP80RegisterClass;
14900       return Res;
14901     }
14902 
14903     // flags -> EFLAGS
14904     if (StringRef("{flags}").equals_lower(Constraint)) {
14905       Res.first = X86::EFLAGS;
14906       Res.second = X86::CCRRegisterClass;
14907       return Res;
14908     }
14909 
14910     // 'A' means EAX + EDX.
14911     if (Constraint == "A") {
14912       Res.first = X86::EAX;
14913       Res.second = X86::GR32_ADRegisterClass;
14914       return Res;
14915     }
14916     return Res;
14917   }
14918 
14919   // Otherwise, check to see if this is a register class of the wrong value
14920   // type.  For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14921   // turn into {ax},{dx}.
14922   if (Res.second->hasType(VT))
14923     return Res;   // Correct type already, nothing to do.
14924 
14925   // All of the single-register GCC register classes map their values onto
14926   // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp".  If we
14927   // really want an 8-bit or 32-bit register, map to the appropriate register
14928   // class and return the appropriate register.
14929   if (Res.second == X86::GR16RegisterClass) {
14930     if (VT == MVT::i8) {
14931       unsigned DestReg = 0;
14932       switch (Res.first) {
14933       default: break;
14934       case X86::AX: DestReg = X86::AL; break;
14935       case X86::DX: DestReg = X86::DL; break;
14936       case X86::CX: DestReg = X86::CL; break;
14937       case X86::BX: DestReg = X86::BL; break;
14938       }
14939       if (DestReg) {
14940         Res.first = DestReg;
14941         Res.second = X86::GR8RegisterClass;
14942       }
14943     } else if (VT == MVT::i32) {
14944       unsigned DestReg = 0;
14945       switch (Res.first) {
14946       default: break;
14947       case X86::AX: DestReg = X86::EAX; break;
14948       case X86::DX: DestReg = X86::EDX; break;
14949       case X86::CX: DestReg = X86::ECX; break;
14950       case X86::BX: DestReg = X86::EBX; break;
14951       case X86::SI: DestReg = X86::ESI; break;
14952       case X86::DI: DestReg = X86::EDI; break;
14953       case X86::BP: DestReg = X86::EBP; break;
14954       case X86::SP: DestReg = X86::ESP; break;
14955       }
14956       if (DestReg) {
14957         Res.first = DestReg;
14958         Res.second = X86::GR32RegisterClass;
14959       }
14960     } else if (VT == MVT::i64) {
14961       unsigned DestReg = 0;
14962       switch (Res.first) {
14963       default: break;
14964       case X86::AX: DestReg = X86::RAX; break;
14965       case X86::DX: DestReg = X86::RDX; break;
14966       case X86::CX: DestReg = X86::RCX; break;
14967       case X86::BX: DestReg = X86::RBX; break;
14968       case X86::SI: DestReg = X86::RSI; break;
14969       case X86::DI: DestReg = X86::RDI; break;
14970       case X86::BP: DestReg = X86::RBP; break;
14971       case X86::SP: DestReg = X86::RSP; break;
14972       }
14973       if (DestReg) {
14974         Res.first = DestReg;
14975         Res.second = X86::GR64RegisterClass;
14976       }
14977     }
14978   } else if (Res.second == X86::FR32RegisterClass ||
14979              Res.second == X86::FR64RegisterClass ||
14980              Res.second == X86::VR128RegisterClass) {
14981     // Handle references to XMM physical registers that got mapped into the
14982     // wrong class.  This can happen with constraints like {xmm0} where the
14983     // target independent register mapper will just pick the first match it can
14984     // find, ignoring the required type.
14985     if (VT == MVT::f32)
14986       Res.second = X86::FR32RegisterClass;
14987     else if (VT == MVT::f64)
14988       Res.second = X86::FR64RegisterClass;
14989     else if (X86::VR128RegisterClass->hasType(VT))
14990       Res.second = X86::VR128RegisterClass;
14991   }
14992 
14993   return Res;
14994 }
14995