1 //===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the interfaces that X86 uses to lower LLVM code into a
11 // selection DAG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "x86-isel"
16 #include "X86.h"
17 #include "X86InstrBuilder.h"
18 #include "X86ISelLowering.h"
19 #include "X86TargetMachine.h"
20 #include "X86TargetObjectFile.h"
21 #include "Utils/X86ShuffleDecode.h"
22 #include "llvm/CallingConv.h"
23 #include "llvm/Constants.h"
24 #include "llvm/DerivedTypes.h"
25 #include "llvm/GlobalAlias.h"
26 #include "llvm/GlobalVariable.h"
27 #include "llvm/Function.h"
28 #include "llvm/Instructions.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/LLVMContext.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/PseudoSourceValue.h"
39 #include "llvm/MC/MCAsmInfo.h"
40 #include "llvm/MC/MCContext.h"
41 #include "llvm/MC/MCExpr.h"
42 #include "llvm/MC/MCSymbol.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/SmallSet.h"
45 #include "llvm/ADT/Statistic.h"
46 #include "llvm/ADT/StringExtras.h"
47 #include "llvm/ADT/VectorExtras.h"
48 #include "llvm/Support/CallSite.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/Dwarf.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetOptions.h"
55 using namespace llvm;
56 using namespace dwarf;
57
58 STATISTIC(NumTailCalls, "Number of tail calls");
59
60 // Forward declarations.
61 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
62 SDValue V2);
63
64 static SDValue Insert128BitVector(SDValue Result,
65 SDValue Vec,
66 SDValue Idx,
67 SelectionDAG &DAG,
68 DebugLoc dl);
69
70 static SDValue Extract128BitVector(SDValue Vec,
71 SDValue Idx,
72 SelectionDAG &DAG,
73 DebugLoc dl);
74
75 /// Generate a DAG to grab 128-bits from a vector > 128 bits. This
76 /// sets things up to match to an AVX VEXTRACTF128 instruction or a
77 /// simple subregister reference. Idx is an index in the 128 bits we
78 /// want. It need not be aligned to a 128-bit bounday. That makes
79 /// lowering EXTRACT_VECTOR_ELT operations easier.
Extract128BitVector(SDValue Vec,SDValue Idx,SelectionDAG & DAG,DebugLoc dl)80 static SDValue Extract128BitVector(SDValue Vec,
81 SDValue Idx,
82 SelectionDAG &DAG,
83 DebugLoc dl) {
84 EVT VT = Vec.getValueType();
85 assert(VT.getSizeInBits() == 256 && "Unexpected vector size!");
86 EVT ElVT = VT.getVectorElementType();
87 int Factor = VT.getSizeInBits()/128;
88 EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
89 VT.getVectorNumElements()/Factor);
90
91 // Extract from UNDEF is UNDEF.
92 if (Vec.getOpcode() == ISD::UNDEF)
93 return DAG.getNode(ISD::UNDEF, dl, ResultVT);
94
95 if (isa<ConstantSDNode>(Idx)) {
96 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
97
98 // Extract the relevant 128 bits. Generate an EXTRACT_SUBVECTOR
99 // we can match to VEXTRACTF128.
100 unsigned ElemsPerChunk = 128 / ElVT.getSizeInBits();
101
102 // This is the index of the first element of the 128-bit chunk
103 // we want.
104 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits()) / 128)
105 * ElemsPerChunk);
106
107 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
108 SDValue Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec,
109 VecIdx);
110
111 return Result;
112 }
113
114 return SDValue();
115 }
116
117 /// Generate a DAG to put 128-bits into a vector > 128 bits. This
118 /// sets things up to match to an AVX VINSERTF128 instruction or a
119 /// simple superregister reference. Idx is an index in the 128 bits
120 /// we want. It need not be aligned to a 128-bit bounday. That makes
121 /// lowering INSERT_VECTOR_ELT operations easier.
Insert128BitVector(SDValue Result,SDValue Vec,SDValue Idx,SelectionDAG & DAG,DebugLoc dl)122 static SDValue Insert128BitVector(SDValue Result,
123 SDValue Vec,
124 SDValue Idx,
125 SelectionDAG &DAG,
126 DebugLoc dl) {
127 if (isa<ConstantSDNode>(Idx)) {
128 EVT VT = Vec.getValueType();
129 assert(VT.getSizeInBits() == 128 && "Unexpected vector size!");
130
131 EVT ElVT = VT.getVectorElementType();
132 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
133 EVT ResultVT = Result.getValueType();
134
135 // Insert the relevant 128 bits.
136 unsigned ElemsPerChunk = 128/ElVT.getSizeInBits();
137
138 // This is the index of the first element of the 128-bit chunk
139 // we want.
140 unsigned NormalizedIdxVal = (((IdxVal * ElVT.getSizeInBits())/128)
141 * ElemsPerChunk);
142
143 SDValue VecIdx = DAG.getConstant(NormalizedIdxVal, MVT::i32);
144 Result = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec,
145 VecIdx);
146 return Result;
147 }
148
149 return SDValue();
150 }
151
createTLOF(X86TargetMachine & TM)152 static TargetLoweringObjectFile *createTLOF(X86TargetMachine &TM) {
153 const X86Subtarget *Subtarget = &TM.getSubtarget<X86Subtarget>();
154 bool is64Bit = Subtarget->is64Bit();
155
156 if (Subtarget->isTargetEnvMacho()) {
157 if (is64Bit)
158 return new X8664_MachoTargetObjectFile();
159 return new TargetLoweringObjectFileMachO();
160 }
161
162 if (Subtarget->isTargetELF())
163 return new TargetLoweringObjectFileELF();
164 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
165 return new TargetLoweringObjectFileCOFF();
166 llvm_unreachable("unknown subtarget type");
167 }
168
X86TargetLowering(X86TargetMachine & TM)169 X86TargetLowering::X86TargetLowering(X86TargetMachine &TM)
170 : TargetLowering(TM, createTLOF(TM)) {
171 Subtarget = &TM.getSubtarget<X86Subtarget>();
172 X86ScalarSSEf64 = Subtarget->hasXMMInt();
173 X86ScalarSSEf32 = Subtarget->hasXMM();
174 X86StackPtr = Subtarget->is64Bit() ? X86::RSP : X86::ESP;
175
176 RegInfo = TM.getRegisterInfo();
177 TD = getTargetData();
178
179 // Set up the TargetLowering object.
180 static MVT IntVTs[] = { MVT::i8, MVT::i16, MVT::i32, MVT::i64 };
181
182 // X86 is weird, it always uses i8 for shift amounts and setcc results.
183 setBooleanContents(ZeroOrOneBooleanContent);
184 // X86-SSE is even stranger. It uses -1 or 0 for vector masks.
185 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
186
187 // For 64-bit since we have so many registers use the ILP scheduler, for
188 // 32-bit code use the register pressure specific scheduling.
189 if (Subtarget->is64Bit())
190 setSchedulingPreference(Sched::ILP);
191 else
192 setSchedulingPreference(Sched::RegPressure);
193 setStackPointerRegisterToSaveRestore(X86StackPtr);
194
195 if (Subtarget->isTargetWindows() && !Subtarget->isTargetCygMing()) {
196 // Setup Windows compiler runtime calls.
197 setLibcallName(RTLIB::SDIV_I64, "_alldiv");
198 setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
199 setLibcallName(RTLIB::SREM_I64, "_allrem");
200 setLibcallName(RTLIB::UREM_I64, "_aullrem");
201 setLibcallName(RTLIB::MUL_I64, "_allmul");
202 setLibcallName(RTLIB::FPTOUINT_F64_I64, "_ftol2");
203 setLibcallName(RTLIB::FPTOUINT_F32_I64, "_ftol2");
204 setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
205 setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
206 setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
207 setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
208 setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
209 setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::C);
210 setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::C);
211 }
212
213 if (Subtarget->isTargetDarwin()) {
214 // Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
215 setUseUnderscoreSetJmp(false);
216 setUseUnderscoreLongJmp(false);
217 } else if (Subtarget->isTargetMingw()) {
218 // MS runtime is weird: it exports _setjmp, but longjmp!
219 setUseUnderscoreSetJmp(true);
220 setUseUnderscoreLongJmp(false);
221 } else {
222 setUseUnderscoreSetJmp(true);
223 setUseUnderscoreLongJmp(true);
224 }
225
226 // Set up the register classes.
227 addRegisterClass(MVT::i8, X86::GR8RegisterClass);
228 addRegisterClass(MVT::i16, X86::GR16RegisterClass);
229 addRegisterClass(MVT::i32, X86::GR32RegisterClass);
230 if (Subtarget->is64Bit())
231 addRegisterClass(MVT::i64, X86::GR64RegisterClass);
232
233 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
234
235 // We don't accept any truncstore of integer registers.
236 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
237 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
238 setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
239 setTruncStoreAction(MVT::i32, MVT::i16, Expand);
240 setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
241 setTruncStoreAction(MVT::i16, MVT::i8, Expand);
242
243 // SETOEQ and SETUNE require checking two conditions.
244 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
245 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
246 setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
247 setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
248 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
249 setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
250
251 // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
252 // operation.
253 setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
254 setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
255 setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
256
257 if (Subtarget->is64Bit()) {
258 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
259 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Expand);
260 } else if (!UseSoftFloat) {
261 // We have an algorithm for SSE2->double, and we turn this into a
262 // 64-bit FILD followed by conditional FADD for other targets.
263 setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
264 // We have an algorithm for SSE2, and we turn this into a 64-bit
265 // FILD for other targets.
266 setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
267 }
268
269 // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
270 // this operation.
271 setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
272 setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
273
274 if (!UseSoftFloat) {
275 // SSE has no i16 to fp conversion, only i32
276 if (X86ScalarSSEf32) {
277 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
278 // f32 and f64 cases are Legal, f80 case is not
279 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
280 } else {
281 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
282 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
283 }
284 } else {
285 setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
286 setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
287 }
288
289 // In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
290 // are Legal, f80 is custom lowered.
291 setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
292 setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
293
294 // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
295 // this operation.
296 setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
297 setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
298
299 if (X86ScalarSSEf32) {
300 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
301 // f32 and f64 cases are Legal, f80 case is not
302 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
303 } else {
304 setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
305 setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
306 }
307
308 // Handle FP_TO_UINT by promoting the destination to a larger signed
309 // conversion.
310 setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
311 setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
312 setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
313
314 if (Subtarget->is64Bit()) {
315 setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
316 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
317 } else if (!UseSoftFloat) {
318 // Since AVX is a superset of SSE3, only check for SSE here.
319 if (Subtarget->hasSSE1() && !Subtarget->hasSSE3())
320 // Expand FP_TO_UINT into a select.
321 // FIXME: We would like to use a Custom expander here eventually to do
322 // the optimal thing for SSE vs. the default expansion in the legalizer.
323 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
324 else
325 // With SSE3 we can use fisttpll to convert to a signed i64; without
326 // SSE, we're stuck with a fistpll.
327 setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
328 }
329
330 // TODO: when we have SSE, these could be more efficient, by using movd/movq.
331 if (!X86ScalarSSEf64) {
332 setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
333 setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
334 if (Subtarget->is64Bit()) {
335 setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
336 // Without SSE, i64->f64 goes through memory.
337 setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
338 }
339 }
340
341 // Scalar integer divide and remainder are lowered to use operations that
342 // produce two results, to match the available instructions. This exposes
343 // the two-result form to trivial CSE, which is able to combine x/y and x%y
344 // into a single instruction.
345 //
346 // Scalar integer multiply-high is also lowered to use two-result
347 // operations, to match the available instructions. However, plain multiply
348 // (low) operations are left as Legal, as there are single-result
349 // instructions for this in x86. Using the two-result multiply instructions
350 // when both high and low results are needed must be arranged by dagcombine.
351 for (unsigned i = 0, e = 4; i != e; ++i) {
352 MVT VT = IntVTs[i];
353 setOperationAction(ISD::MULHS, VT, Expand);
354 setOperationAction(ISD::MULHU, VT, Expand);
355 setOperationAction(ISD::SDIV, VT, Expand);
356 setOperationAction(ISD::UDIV, VT, Expand);
357 setOperationAction(ISD::SREM, VT, Expand);
358 setOperationAction(ISD::UREM, VT, Expand);
359
360 // Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
361 setOperationAction(ISD::ADDC, VT, Custom);
362 setOperationAction(ISD::ADDE, VT, Custom);
363 setOperationAction(ISD::SUBC, VT, Custom);
364 setOperationAction(ISD::SUBE, VT, Custom);
365 }
366
367 setOperationAction(ISD::BR_JT , MVT::Other, Expand);
368 setOperationAction(ISD::BRCOND , MVT::Other, Custom);
369 setOperationAction(ISD::BR_CC , MVT::Other, Expand);
370 setOperationAction(ISD::SELECT_CC , MVT::Other, Expand);
371 if (Subtarget->is64Bit())
372 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
373 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
374 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
375 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
376 setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
377 setOperationAction(ISD::FREM , MVT::f32 , Expand);
378 setOperationAction(ISD::FREM , MVT::f64 , Expand);
379 setOperationAction(ISD::FREM , MVT::f80 , Expand);
380 setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
381
382 if (Subtarget->hasBMI()) {
383 setOperationAction(ISD::CTTZ , MVT::i8 , Promote);
384 } else {
385 setOperationAction(ISD::CTTZ , MVT::i8 , Custom);
386 setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
387 setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
388 if (Subtarget->is64Bit())
389 setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
390 }
391
392 if (Subtarget->hasLZCNT()) {
393 setOperationAction(ISD::CTLZ , MVT::i8 , Promote);
394 } else {
395 setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
396 setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
397 setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
398 if (Subtarget->is64Bit())
399 setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
400 }
401
402 if (Subtarget->hasPOPCNT()) {
403 setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
404 } else {
405 setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
406 setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
407 setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
408 if (Subtarget->is64Bit())
409 setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
410 }
411
412 setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
413 setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
414
415 // These should be promoted to a larger select which is supported.
416 setOperationAction(ISD::SELECT , MVT::i1 , Promote);
417 // X86 wants to expand cmov itself.
418 setOperationAction(ISD::SELECT , MVT::i8 , Custom);
419 setOperationAction(ISD::SELECT , MVT::i16 , Custom);
420 setOperationAction(ISD::SELECT , MVT::i32 , Custom);
421 setOperationAction(ISD::SELECT , MVT::f32 , Custom);
422 setOperationAction(ISD::SELECT , MVT::f64 , Custom);
423 setOperationAction(ISD::SELECT , MVT::f80 , Custom);
424 setOperationAction(ISD::SETCC , MVT::i8 , Custom);
425 setOperationAction(ISD::SETCC , MVT::i16 , Custom);
426 setOperationAction(ISD::SETCC , MVT::i32 , Custom);
427 setOperationAction(ISD::SETCC , MVT::f32 , Custom);
428 setOperationAction(ISD::SETCC , MVT::f64 , Custom);
429 setOperationAction(ISD::SETCC , MVT::f80 , Custom);
430 if (Subtarget->is64Bit()) {
431 setOperationAction(ISD::SELECT , MVT::i64 , Custom);
432 setOperationAction(ISD::SETCC , MVT::i64 , Custom);
433 }
434 setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
435
436 // Darwin ABI issue.
437 setOperationAction(ISD::ConstantPool , MVT::i32 , Custom);
438 setOperationAction(ISD::JumpTable , MVT::i32 , Custom);
439 setOperationAction(ISD::GlobalAddress , MVT::i32 , Custom);
440 setOperationAction(ISD::GlobalTLSAddress, MVT::i32 , Custom);
441 if (Subtarget->is64Bit())
442 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
443 setOperationAction(ISD::ExternalSymbol , MVT::i32 , Custom);
444 setOperationAction(ISD::BlockAddress , MVT::i32 , Custom);
445 if (Subtarget->is64Bit()) {
446 setOperationAction(ISD::ConstantPool , MVT::i64 , Custom);
447 setOperationAction(ISD::JumpTable , MVT::i64 , Custom);
448 setOperationAction(ISD::GlobalAddress , MVT::i64 , Custom);
449 setOperationAction(ISD::ExternalSymbol, MVT::i64 , Custom);
450 setOperationAction(ISD::BlockAddress , MVT::i64 , Custom);
451 }
452 // 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
453 setOperationAction(ISD::SHL_PARTS , MVT::i32 , Custom);
454 setOperationAction(ISD::SRA_PARTS , MVT::i32 , Custom);
455 setOperationAction(ISD::SRL_PARTS , MVT::i32 , Custom);
456 if (Subtarget->is64Bit()) {
457 setOperationAction(ISD::SHL_PARTS , MVT::i64 , Custom);
458 setOperationAction(ISD::SRA_PARTS , MVT::i64 , Custom);
459 setOperationAction(ISD::SRL_PARTS , MVT::i64 , Custom);
460 }
461
462 if (Subtarget->hasXMM())
463 setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
464
465 setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
466 setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
467
468 // On X86 and X86-64, atomic operations are lowered to locked instructions.
469 // Locked instructions, in turn, have implicit fence semantics (all memory
470 // operations are flushed before issuing the locked instruction, and they
471 // are not buffered), so we can fold away the common pattern of
472 // fence-atomic-fence.
473 setShouldFoldAtomicFences(true);
474
475 // Expand certain atomics
476 for (unsigned i = 0, e = 4; i != e; ++i) {
477 MVT VT = IntVTs[i];
478 setOperationAction(ISD::ATOMIC_CMP_SWAP, VT, Custom);
479 setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
480 setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
481 }
482
483 if (!Subtarget->is64Bit()) {
484 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Custom);
485 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
486 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
487 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
488 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
489 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
490 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i64, Custom);
491 setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
492 }
493
494 if (Subtarget->hasCmpxchg16b()) {
495 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i128, Custom);
496 }
497
498 // FIXME - use subtarget debug flags
499 if (!Subtarget->isTargetDarwin() &&
500 !Subtarget->isTargetELF() &&
501 !Subtarget->isTargetCygMing()) {
502 setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
503 }
504
505 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
506 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
507 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
508 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
509 if (Subtarget->is64Bit()) {
510 setExceptionPointerRegister(X86::RAX);
511 setExceptionSelectorRegister(X86::RDX);
512 } else {
513 setExceptionPointerRegister(X86::EAX);
514 setExceptionSelectorRegister(X86::EDX);
515 }
516 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
517 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
518
519 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
520 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
521
522 setOperationAction(ISD::TRAP, MVT::Other, Legal);
523
524 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
525 setOperationAction(ISD::VASTART , MVT::Other, Custom);
526 setOperationAction(ISD::VAEND , MVT::Other, Expand);
527 if (Subtarget->is64Bit()) {
528 setOperationAction(ISD::VAARG , MVT::Other, Custom);
529 setOperationAction(ISD::VACOPY , MVT::Other, Custom);
530 } else {
531 setOperationAction(ISD::VAARG , MVT::Other, Expand);
532 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
533 }
534
535 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
536 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
537
538 if (Subtarget->isTargetCOFF() && !Subtarget->isTargetEnvMacho())
539 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
540 MVT::i64 : MVT::i32, Custom);
541 else if (EnableSegmentedStacks)
542 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
543 MVT::i64 : MVT::i32, Custom);
544 else
545 setOperationAction(ISD::DYNAMIC_STACKALLOC, Subtarget->is64Bit() ?
546 MVT::i64 : MVT::i32, Expand);
547
548 if (!UseSoftFloat && X86ScalarSSEf64) {
549 // f32 and f64 use SSE.
550 // Set up the FP register classes.
551 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
552 addRegisterClass(MVT::f64, X86::FR64RegisterClass);
553
554 // Use ANDPD to simulate FABS.
555 setOperationAction(ISD::FABS , MVT::f64, Custom);
556 setOperationAction(ISD::FABS , MVT::f32, Custom);
557
558 // Use XORP to simulate FNEG.
559 setOperationAction(ISD::FNEG , MVT::f64, Custom);
560 setOperationAction(ISD::FNEG , MVT::f32, Custom);
561
562 // Use ANDPD and ORPD to simulate FCOPYSIGN.
563 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
564 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
565
566 // Lower this to FGETSIGNx86 plus an AND.
567 setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
568 setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
569
570 // We don't support sin/cos/fmod
571 setOperationAction(ISD::FSIN , MVT::f64, Expand);
572 setOperationAction(ISD::FCOS , MVT::f64, Expand);
573 setOperationAction(ISD::FSIN , MVT::f32, Expand);
574 setOperationAction(ISD::FCOS , MVT::f32, Expand);
575
576 // Expand FP immediates into loads from the stack, except for the special
577 // cases we handle.
578 addLegalFPImmediate(APFloat(+0.0)); // xorpd
579 addLegalFPImmediate(APFloat(+0.0f)); // xorps
580 } else if (!UseSoftFloat && X86ScalarSSEf32) {
581 // Use SSE for f32, x87 for f64.
582 // Set up the FP register classes.
583 addRegisterClass(MVT::f32, X86::FR32RegisterClass);
584 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
585
586 // Use ANDPS to simulate FABS.
587 setOperationAction(ISD::FABS , MVT::f32, Custom);
588
589 // Use XORP to simulate FNEG.
590 setOperationAction(ISD::FNEG , MVT::f32, Custom);
591
592 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
593
594 // Use ANDPS and ORPS to simulate FCOPYSIGN.
595 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
596 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
597
598 // We don't support sin/cos/fmod
599 setOperationAction(ISD::FSIN , MVT::f32, Expand);
600 setOperationAction(ISD::FCOS , MVT::f32, Expand);
601
602 // Special cases we handle for FP constants.
603 addLegalFPImmediate(APFloat(+0.0f)); // xorps
604 addLegalFPImmediate(APFloat(+0.0)); // FLD0
605 addLegalFPImmediate(APFloat(+1.0)); // FLD1
606 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
607 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
608
609 if (!UnsafeFPMath) {
610 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
611 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
612 }
613 } else if (!UseSoftFloat) {
614 // f32 and f64 in x87.
615 // Set up the FP register classes.
616 addRegisterClass(MVT::f64, X86::RFP64RegisterClass);
617 addRegisterClass(MVT::f32, X86::RFP32RegisterClass);
618
619 setOperationAction(ISD::UNDEF, MVT::f64, Expand);
620 setOperationAction(ISD::UNDEF, MVT::f32, Expand);
621 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
622 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
623
624 if (!UnsafeFPMath) {
625 setOperationAction(ISD::FSIN , MVT::f64 , Expand);
626 setOperationAction(ISD::FCOS , MVT::f64 , Expand);
627 }
628 addLegalFPImmediate(APFloat(+0.0)); // FLD0
629 addLegalFPImmediate(APFloat(+1.0)); // FLD1
630 addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
631 addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
632 addLegalFPImmediate(APFloat(+0.0f)); // FLD0
633 addLegalFPImmediate(APFloat(+1.0f)); // FLD1
634 addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
635 addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
636 }
637
638 // We don't support FMA.
639 setOperationAction(ISD::FMA, MVT::f64, Expand);
640 setOperationAction(ISD::FMA, MVT::f32, Expand);
641
642 // Long double always uses X87.
643 if (!UseSoftFloat) {
644 addRegisterClass(MVT::f80, X86::RFP80RegisterClass);
645 setOperationAction(ISD::UNDEF, MVT::f80, Expand);
646 setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
647 {
648 APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
649 addLegalFPImmediate(TmpFlt); // FLD0
650 TmpFlt.changeSign();
651 addLegalFPImmediate(TmpFlt); // FLD0/FCHS
652
653 bool ignored;
654 APFloat TmpFlt2(+1.0);
655 TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
656 &ignored);
657 addLegalFPImmediate(TmpFlt2); // FLD1
658 TmpFlt2.changeSign();
659 addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
660 }
661
662 if (!UnsafeFPMath) {
663 setOperationAction(ISD::FSIN , MVT::f80 , Expand);
664 setOperationAction(ISD::FCOS , MVT::f80 , Expand);
665 }
666
667 setOperationAction(ISD::FMA, MVT::f80, Expand);
668 }
669
670 // Always use a library call for pow.
671 setOperationAction(ISD::FPOW , MVT::f32 , Expand);
672 setOperationAction(ISD::FPOW , MVT::f64 , Expand);
673 setOperationAction(ISD::FPOW , MVT::f80 , Expand);
674
675 setOperationAction(ISD::FLOG, MVT::f80, Expand);
676 setOperationAction(ISD::FLOG2, MVT::f80, Expand);
677 setOperationAction(ISD::FLOG10, MVT::f80, Expand);
678 setOperationAction(ISD::FEXP, MVT::f80, Expand);
679 setOperationAction(ISD::FEXP2, MVT::f80, Expand);
680
681 // First set operation action for all vector types to either promote
682 // (for widening) or expand (for scalarization). Then we will selectively
683 // turn on ones that can be effectively codegen'd.
684 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
685 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
686 setOperationAction(ISD::ADD , (MVT::SimpleValueType)VT, Expand);
687 setOperationAction(ISD::SUB , (MVT::SimpleValueType)VT, Expand);
688 setOperationAction(ISD::FADD, (MVT::SimpleValueType)VT, Expand);
689 setOperationAction(ISD::FNEG, (MVT::SimpleValueType)VT, Expand);
690 setOperationAction(ISD::FSUB, (MVT::SimpleValueType)VT, Expand);
691 setOperationAction(ISD::MUL , (MVT::SimpleValueType)VT, Expand);
692 setOperationAction(ISD::FMUL, (MVT::SimpleValueType)VT, Expand);
693 setOperationAction(ISD::SDIV, (MVT::SimpleValueType)VT, Expand);
694 setOperationAction(ISD::UDIV, (MVT::SimpleValueType)VT, Expand);
695 setOperationAction(ISD::FDIV, (MVT::SimpleValueType)VT, Expand);
696 setOperationAction(ISD::SREM, (MVT::SimpleValueType)VT, Expand);
697 setOperationAction(ISD::UREM, (MVT::SimpleValueType)VT, Expand);
698 setOperationAction(ISD::LOAD, (MVT::SimpleValueType)VT, Expand);
699 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::SimpleValueType)VT, Expand);
700 setOperationAction(ISD::EXTRACT_VECTOR_ELT,(MVT::SimpleValueType)VT,Expand);
701 setOperationAction(ISD::INSERT_VECTOR_ELT,(MVT::SimpleValueType)VT, Expand);
702 setOperationAction(ISD::EXTRACT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
703 setOperationAction(ISD::INSERT_SUBVECTOR,(MVT::SimpleValueType)VT,Expand);
704 setOperationAction(ISD::FABS, (MVT::SimpleValueType)VT, Expand);
705 setOperationAction(ISD::FSIN, (MVT::SimpleValueType)VT, Expand);
706 setOperationAction(ISD::FCOS, (MVT::SimpleValueType)VT, Expand);
707 setOperationAction(ISD::FREM, (MVT::SimpleValueType)VT, Expand);
708 setOperationAction(ISD::FPOWI, (MVT::SimpleValueType)VT, Expand);
709 setOperationAction(ISD::FSQRT, (MVT::SimpleValueType)VT, Expand);
710 setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
711 setOperationAction(ISD::SMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
712 setOperationAction(ISD::UMUL_LOHI, (MVT::SimpleValueType)VT, Expand);
713 setOperationAction(ISD::SDIVREM, (MVT::SimpleValueType)VT, Expand);
714 setOperationAction(ISD::UDIVREM, (MVT::SimpleValueType)VT, Expand);
715 setOperationAction(ISD::FPOW, (MVT::SimpleValueType)VT, Expand);
716 setOperationAction(ISD::CTPOP, (MVT::SimpleValueType)VT, Expand);
717 setOperationAction(ISD::CTTZ, (MVT::SimpleValueType)VT, Expand);
718 setOperationAction(ISD::CTLZ, (MVT::SimpleValueType)VT, Expand);
719 setOperationAction(ISD::SHL, (MVT::SimpleValueType)VT, Expand);
720 setOperationAction(ISD::SRA, (MVT::SimpleValueType)VT, Expand);
721 setOperationAction(ISD::SRL, (MVT::SimpleValueType)VT, Expand);
722 setOperationAction(ISD::ROTL, (MVT::SimpleValueType)VT, Expand);
723 setOperationAction(ISD::ROTR, (MVT::SimpleValueType)VT, Expand);
724 setOperationAction(ISD::BSWAP, (MVT::SimpleValueType)VT, Expand);
725 setOperationAction(ISD::SETCC, (MVT::SimpleValueType)VT, Expand);
726 setOperationAction(ISD::FLOG, (MVT::SimpleValueType)VT, Expand);
727 setOperationAction(ISD::FLOG2, (MVT::SimpleValueType)VT, Expand);
728 setOperationAction(ISD::FLOG10, (MVT::SimpleValueType)VT, Expand);
729 setOperationAction(ISD::FEXP, (MVT::SimpleValueType)VT, Expand);
730 setOperationAction(ISD::FEXP2, (MVT::SimpleValueType)VT, Expand);
731 setOperationAction(ISD::FP_TO_UINT, (MVT::SimpleValueType)VT, Expand);
732 setOperationAction(ISD::FP_TO_SINT, (MVT::SimpleValueType)VT, Expand);
733 setOperationAction(ISD::UINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
734 setOperationAction(ISD::SINT_TO_FP, (MVT::SimpleValueType)VT, Expand);
735 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT,Expand);
736 setOperationAction(ISD::TRUNCATE, (MVT::SimpleValueType)VT, Expand);
737 setOperationAction(ISD::SIGN_EXTEND, (MVT::SimpleValueType)VT, Expand);
738 setOperationAction(ISD::ZERO_EXTEND, (MVT::SimpleValueType)VT, Expand);
739 setOperationAction(ISD::ANY_EXTEND, (MVT::SimpleValueType)VT, Expand);
740 setOperationAction(ISD::VSELECT, (MVT::SimpleValueType)VT, Expand);
741 for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
742 InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
743 setTruncStoreAction((MVT::SimpleValueType)VT,
744 (MVT::SimpleValueType)InnerVT, Expand);
745 setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
746 setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
747 setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
748 }
749
750 // FIXME: In order to prevent SSE instructions being expanded to MMX ones
751 // with -msoft-float, disable use of MMX as well.
752 if (!UseSoftFloat && Subtarget->hasMMX()) {
753 addRegisterClass(MVT::x86mmx, X86::VR64RegisterClass);
754 // No operations on x86mmx supported, everything uses intrinsics.
755 }
756
757 // MMX-sized vectors (other than x86mmx) are expected to be expanded
758 // into smaller operations.
759 setOperationAction(ISD::MULHS, MVT::v8i8, Expand);
760 setOperationAction(ISD::MULHS, MVT::v4i16, Expand);
761 setOperationAction(ISD::MULHS, MVT::v2i32, Expand);
762 setOperationAction(ISD::MULHS, MVT::v1i64, Expand);
763 setOperationAction(ISD::AND, MVT::v8i8, Expand);
764 setOperationAction(ISD::AND, MVT::v4i16, Expand);
765 setOperationAction(ISD::AND, MVT::v2i32, Expand);
766 setOperationAction(ISD::AND, MVT::v1i64, Expand);
767 setOperationAction(ISD::OR, MVT::v8i8, Expand);
768 setOperationAction(ISD::OR, MVT::v4i16, Expand);
769 setOperationAction(ISD::OR, MVT::v2i32, Expand);
770 setOperationAction(ISD::OR, MVT::v1i64, Expand);
771 setOperationAction(ISD::XOR, MVT::v8i8, Expand);
772 setOperationAction(ISD::XOR, MVT::v4i16, Expand);
773 setOperationAction(ISD::XOR, MVT::v2i32, Expand);
774 setOperationAction(ISD::XOR, MVT::v1i64, Expand);
775 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i8, Expand);
776 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i16, Expand);
777 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i32, Expand);
778 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v1i64, Expand);
779 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v1i64, Expand);
780 setOperationAction(ISD::SELECT, MVT::v8i8, Expand);
781 setOperationAction(ISD::SELECT, MVT::v4i16, Expand);
782 setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
783 setOperationAction(ISD::SELECT, MVT::v1i64, Expand);
784 setOperationAction(ISD::BITCAST, MVT::v8i8, Expand);
785 setOperationAction(ISD::BITCAST, MVT::v4i16, Expand);
786 setOperationAction(ISD::BITCAST, MVT::v2i32, Expand);
787 setOperationAction(ISD::BITCAST, MVT::v1i64, Expand);
788
789 if (!UseSoftFloat && Subtarget->hasXMM()) {
790 addRegisterClass(MVT::v4f32, X86::VR128RegisterClass);
791
792 setOperationAction(ISD::FADD, MVT::v4f32, Legal);
793 setOperationAction(ISD::FSUB, MVT::v4f32, Legal);
794 setOperationAction(ISD::FMUL, MVT::v4f32, Legal);
795 setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
796 setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
797 setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
798 setOperationAction(ISD::LOAD, MVT::v4f32, Legal);
799 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
800 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
801 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
802 setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
803 setOperationAction(ISD::SETCC, MVT::v4f32, Custom);
804 }
805
806 if (!UseSoftFloat && Subtarget->hasXMMInt()) {
807 addRegisterClass(MVT::v2f64, X86::VR128RegisterClass);
808
809 // FIXME: Unfortunately -soft-float and -no-implicit-float means XMM
810 // registers cannot be used even for integer operations.
811 addRegisterClass(MVT::v16i8, X86::VR128RegisterClass);
812 addRegisterClass(MVT::v8i16, X86::VR128RegisterClass);
813 addRegisterClass(MVT::v4i32, X86::VR128RegisterClass);
814 addRegisterClass(MVT::v2i64, X86::VR128RegisterClass);
815
816 setOperationAction(ISD::ADD, MVT::v16i8, Legal);
817 setOperationAction(ISD::ADD, MVT::v8i16, Legal);
818 setOperationAction(ISD::ADD, MVT::v4i32, Legal);
819 setOperationAction(ISD::ADD, MVT::v2i64, Legal);
820 setOperationAction(ISD::MUL, MVT::v2i64, Custom);
821 setOperationAction(ISD::SUB, MVT::v16i8, Legal);
822 setOperationAction(ISD::SUB, MVT::v8i16, Legal);
823 setOperationAction(ISD::SUB, MVT::v4i32, Legal);
824 setOperationAction(ISD::SUB, MVT::v2i64, Legal);
825 setOperationAction(ISD::MUL, MVT::v8i16, Legal);
826 setOperationAction(ISD::FADD, MVT::v2f64, Legal);
827 setOperationAction(ISD::FSUB, MVT::v2f64, Legal);
828 setOperationAction(ISD::FMUL, MVT::v2f64, Legal);
829 setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
830 setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
831 setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
832
833 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
834 setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
835 setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
836 setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
837
838 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
839 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
840 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
841 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
842 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
843
844 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2f64, Custom);
845 setOperationAction(ISD::CONCAT_VECTORS, MVT::v2i64, Custom);
846 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i8, Custom);
847 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i16, Custom);
848 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
849
850 // Custom lower build_vector, vector_shuffle, and extract_vector_elt.
851 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; ++i) {
852 EVT VT = (MVT::SimpleValueType)i;
853 // Do not attempt to custom lower non-power-of-2 vectors
854 if (!isPowerOf2_32(VT.getVectorNumElements()))
855 continue;
856 // Do not attempt to custom lower non-128-bit vectors
857 if (!VT.is128BitVector())
858 continue;
859 setOperationAction(ISD::BUILD_VECTOR,
860 VT.getSimpleVT().SimpleTy, Custom);
861 setOperationAction(ISD::VECTOR_SHUFFLE,
862 VT.getSimpleVT().SimpleTy, Custom);
863 setOperationAction(ISD::EXTRACT_VECTOR_ELT,
864 VT.getSimpleVT().SimpleTy, Custom);
865 }
866
867 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
868 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
869 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
870 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
871 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
872 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Custom);
873
874 if (Subtarget->is64Bit()) {
875 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Custom);
876 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Custom);
877 }
878
879 // Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
880 for (unsigned i = (unsigned)MVT::v16i8; i != (unsigned)MVT::v2i64; i++) {
881 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
882 EVT VT = SVT;
883
884 // Do not attempt to promote non-128-bit vectors
885 if (!VT.is128BitVector())
886 continue;
887
888 setOperationAction(ISD::AND, SVT, Promote);
889 AddPromotedToType (ISD::AND, SVT, MVT::v2i64);
890 setOperationAction(ISD::OR, SVT, Promote);
891 AddPromotedToType (ISD::OR, SVT, MVT::v2i64);
892 setOperationAction(ISD::XOR, SVT, Promote);
893 AddPromotedToType (ISD::XOR, SVT, MVT::v2i64);
894 setOperationAction(ISD::LOAD, SVT, Promote);
895 AddPromotedToType (ISD::LOAD, SVT, MVT::v2i64);
896 setOperationAction(ISD::SELECT, SVT, Promote);
897 AddPromotedToType (ISD::SELECT, SVT, MVT::v2i64);
898 }
899
900 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
901
902 // Custom lower v2i64 and v2f64 selects.
903 setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
904 setOperationAction(ISD::LOAD, MVT::v2i64, Legal);
905 setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
906 setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
907
908 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
909 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
910 }
911
912 if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
913 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
914 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
915 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
916 setOperationAction(ISD::FRINT, MVT::f32, Legal);
917 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
918 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
919 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
920 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
921 setOperationAction(ISD::FRINT, MVT::f64, Legal);
922 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
923
924 // FIXME: Do we need to handle scalar-to-vector here?
925 setOperationAction(ISD::MUL, MVT::v4i32, Legal);
926
927 // Can turn SHL into an integer multiply.
928 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
929 setOperationAction(ISD::SHL, MVT::v16i8, Custom);
930
931 setOperationAction(ISD::VSELECT, MVT::v2f64, Legal);
932 setOperationAction(ISD::VSELECT, MVT::v2i64, Legal);
933 setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
934 setOperationAction(ISD::VSELECT, MVT::v4i32, Legal);
935 setOperationAction(ISD::VSELECT, MVT::v4f32, Legal);
936
937 // i8 and i16 vectors are custom , because the source register and source
938 // source memory operand types are not the same width. f32 vectors are
939 // custom since the immediate controlling the insert encodes additional
940 // information.
941 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
942 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
943 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
944 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
945
946 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Custom);
947 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Custom);
948 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
949 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
950
951 if (Subtarget->is64Bit()) {
952 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
953 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
954 }
955 }
956
957 if (Subtarget->hasXMMInt()) {
958 setOperationAction(ISD::SRL, MVT::v2i64, Custom);
959 setOperationAction(ISD::SRL, MVT::v4i32, Custom);
960 setOperationAction(ISD::SRL, MVT::v16i8, Custom);
961 setOperationAction(ISD::SRL, MVT::v8i16, Custom);
962
963 setOperationAction(ISD::SHL, MVT::v2i64, Custom);
964 setOperationAction(ISD::SHL, MVT::v4i32, Custom);
965 setOperationAction(ISD::SHL, MVT::v8i16, Custom);
966
967 setOperationAction(ISD::SRA, MVT::v4i32, Custom);
968 setOperationAction(ISD::SRA, MVT::v8i16, Custom);
969 }
970
971 if (Subtarget->hasSSE42() || Subtarget->hasAVX())
972 setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
973
974 if (!UseSoftFloat && Subtarget->hasAVX()) {
975 addRegisterClass(MVT::v32i8, X86::VR256RegisterClass);
976 addRegisterClass(MVT::v16i16, X86::VR256RegisterClass);
977 addRegisterClass(MVT::v8i32, X86::VR256RegisterClass);
978 addRegisterClass(MVT::v8f32, X86::VR256RegisterClass);
979 addRegisterClass(MVT::v4i64, X86::VR256RegisterClass);
980 addRegisterClass(MVT::v4f64, X86::VR256RegisterClass);
981
982 setOperationAction(ISD::LOAD, MVT::v8f32, Legal);
983 setOperationAction(ISD::LOAD, MVT::v4f64, Legal);
984 setOperationAction(ISD::LOAD, MVT::v4i64, Legal);
985
986 setOperationAction(ISD::FADD, MVT::v8f32, Legal);
987 setOperationAction(ISD::FSUB, MVT::v8f32, Legal);
988 setOperationAction(ISD::FMUL, MVT::v8f32, Legal);
989 setOperationAction(ISD::FDIV, MVT::v8f32, Legal);
990 setOperationAction(ISD::FSQRT, MVT::v8f32, Legal);
991 setOperationAction(ISD::FNEG, MVT::v8f32, Custom);
992
993 setOperationAction(ISD::FADD, MVT::v4f64, Legal);
994 setOperationAction(ISD::FSUB, MVT::v4f64, Legal);
995 setOperationAction(ISD::FMUL, MVT::v4f64, Legal);
996 setOperationAction(ISD::FDIV, MVT::v4f64, Legal);
997 setOperationAction(ISD::FSQRT, MVT::v4f64, Legal);
998 setOperationAction(ISD::FNEG, MVT::v4f64, Custom);
999
1000 setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
1001 setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
1002 setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
1003
1004 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f64, Custom);
1005 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i64, Custom);
1006 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
1007 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
1008 setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i8, Custom);
1009 setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i16, Custom);
1010
1011 setOperationAction(ISD::SRL, MVT::v4i64, Custom);
1012 setOperationAction(ISD::SRL, MVT::v8i32, Custom);
1013 setOperationAction(ISD::SRL, MVT::v16i16, Custom);
1014 setOperationAction(ISD::SRL, MVT::v32i8, Custom);
1015
1016 setOperationAction(ISD::SHL, MVT::v4i64, Custom);
1017 setOperationAction(ISD::SHL, MVT::v8i32, Custom);
1018 setOperationAction(ISD::SHL, MVT::v16i16, Custom);
1019 setOperationAction(ISD::SHL, MVT::v32i8, Custom);
1020
1021 setOperationAction(ISD::SRA, MVT::v8i32, Custom);
1022 setOperationAction(ISD::SRA, MVT::v16i16, Custom);
1023
1024 setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
1025 setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
1026 setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
1027 setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
1028
1029 setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
1030 setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
1031 setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
1032
1033 setOperationAction(ISD::VSELECT, MVT::v4f64, Legal);
1034 setOperationAction(ISD::VSELECT, MVT::v4i64, Legal);
1035 setOperationAction(ISD::VSELECT, MVT::v8i32, Legal);
1036 setOperationAction(ISD::VSELECT, MVT::v8f32, Legal);
1037
1038 setOperationAction(ISD::ADD, MVT::v4i64, Custom);
1039 setOperationAction(ISD::ADD, MVT::v8i32, Custom);
1040 setOperationAction(ISD::ADD, MVT::v16i16, Custom);
1041 setOperationAction(ISD::ADD, MVT::v32i8, Custom);
1042
1043 setOperationAction(ISD::SUB, MVT::v4i64, Custom);
1044 setOperationAction(ISD::SUB, MVT::v8i32, Custom);
1045 setOperationAction(ISD::SUB, MVT::v16i16, Custom);
1046 setOperationAction(ISD::SUB, MVT::v32i8, Custom);
1047
1048 setOperationAction(ISD::MUL, MVT::v4i64, Custom);
1049 setOperationAction(ISD::MUL, MVT::v8i32, Custom);
1050 setOperationAction(ISD::MUL, MVT::v16i16, Custom);
1051 // Don't lower v32i8 because there is no 128-bit byte mul
1052
1053 // Custom lower several nodes for 256-bit types.
1054 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1055 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1056 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1057 EVT VT = SVT;
1058
1059 // Extract subvector is special because the value type
1060 // (result) is 128-bit but the source is 256-bit wide.
1061 if (VT.is128BitVector())
1062 setOperationAction(ISD::EXTRACT_SUBVECTOR, SVT, Custom);
1063
1064 // Do not attempt to custom lower other non-256-bit vectors
1065 if (!VT.is256BitVector())
1066 continue;
1067
1068 setOperationAction(ISD::BUILD_VECTOR, SVT, Custom);
1069 setOperationAction(ISD::VECTOR_SHUFFLE, SVT, Custom);
1070 setOperationAction(ISD::INSERT_VECTOR_ELT, SVT, Custom);
1071 setOperationAction(ISD::EXTRACT_VECTOR_ELT, SVT, Custom);
1072 setOperationAction(ISD::SCALAR_TO_VECTOR, SVT, Custom);
1073 setOperationAction(ISD::INSERT_SUBVECTOR, SVT, Custom);
1074 }
1075
1076 // Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
1077 for (unsigned i = (unsigned)MVT::v32i8; i != (unsigned)MVT::v4i64; ++i) {
1078 MVT::SimpleValueType SVT = (MVT::SimpleValueType)i;
1079 EVT VT = SVT;
1080
1081 // Do not attempt to promote non-256-bit vectors
1082 if (!VT.is256BitVector())
1083 continue;
1084
1085 setOperationAction(ISD::AND, SVT, Promote);
1086 AddPromotedToType (ISD::AND, SVT, MVT::v4i64);
1087 setOperationAction(ISD::OR, SVT, Promote);
1088 AddPromotedToType (ISD::OR, SVT, MVT::v4i64);
1089 setOperationAction(ISD::XOR, SVT, Promote);
1090 AddPromotedToType (ISD::XOR, SVT, MVT::v4i64);
1091 setOperationAction(ISD::LOAD, SVT, Promote);
1092 AddPromotedToType (ISD::LOAD, SVT, MVT::v4i64);
1093 setOperationAction(ISD::SELECT, SVT, Promote);
1094 AddPromotedToType (ISD::SELECT, SVT, MVT::v4i64);
1095 }
1096 }
1097
1098 // SIGN_EXTEND_INREGs are evaluated by the extend type. Handle the expansion
1099 // of this type with custom code.
1100 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
1101 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; VT++) {
1102 setOperationAction(ISD::SIGN_EXTEND_INREG, (MVT::SimpleValueType)VT, Custom);
1103 }
1104
1105 // We want to custom lower some of our intrinsics.
1106 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
1107
1108
1109 // Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
1110 // handle type legalization for these operations here.
1111 //
1112 // FIXME: We really should do custom legalization for addition and
1113 // subtraction on x86-32 once PR3203 is fixed. We really can't do much better
1114 // than generic legalization for 64-bit multiplication-with-overflow, though.
1115 for (unsigned i = 0, e = 3+Subtarget->is64Bit(); i != e; ++i) {
1116 // Add/Sub/Mul with overflow operations are custom lowered.
1117 MVT VT = IntVTs[i];
1118 setOperationAction(ISD::SADDO, VT, Custom);
1119 setOperationAction(ISD::UADDO, VT, Custom);
1120 setOperationAction(ISD::SSUBO, VT, Custom);
1121 setOperationAction(ISD::USUBO, VT, Custom);
1122 setOperationAction(ISD::SMULO, VT, Custom);
1123 setOperationAction(ISD::UMULO, VT, Custom);
1124 }
1125
1126 // There are no 8-bit 3-address imul/mul instructions
1127 setOperationAction(ISD::SMULO, MVT::i8, Expand);
1128 setOperationAction(ISD::UMULO, MVT::i8, Expand);
1129
1130 if (!Subtarget->is64Bit()) {
1131 // These libcalls are not available in 32-bit.
1132 setLibcallName(RTLIB::SHL_I128, 0);
1133 setLibcallName(RTLIB::SRL_I128, 0);
1134 setLibcallName(RTLIB::SRA_I128, 0);
1135 }
1136
1137 // We have target-specific dag combine patterns for the following nodes:
1138 setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
1139 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
1140 setTargetDAGCombine(ISD::BITCAST);
1141 setTargetDAGCombine(ISD::BUILD_VECTOR);
1142 setTargetDAGCombine(ISD::VSELECT);
1143 setTargetDAGCombine(ISD::SELECT);
1144 setTargetDAGCombine(ISD::SHL);
1145 setTargetDAGCombine(ISD::SRA);
1146 setTargetDAGCombine(ISD::SRL);
1147 setTargetDAGCombine(ISD::OR);
1148 setTargetDAGCombine(ISD::AND);
1149 setTargetDAGCombine(ISD::ADD);
1150 setTargetDAGCombine(ISD::FADD);
1151 setTargetDAGCombine(ISD::FSUB);
1152 setTargetDAGCombine(ISD::SUB);
1153 setTargetDAGCombine(ISD::LOAD);
1154 setTargetDAGCombine(ISD::STORE);
1155 setTargetDAGCombine(ISD::ZERO_EXTEND);
1156 setTargetDAGCombine(ISD::SINT_TO_FP);
1157 if (Subtarget->is64Bit())
1158 setTargetDAGCombine(ISD::MUL);
1159
1160 computeRegisterProperties();
1161
1162 // On Darwin, -Os means optimize for size without hurting performance,
1163 // do not reduce the limit.
1164 maxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
1165 maxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 16 : 8;
1166 maxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
1167 maxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1168 maxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
1169 maxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
1170 setPrefLoopAlignment(16);
1171 benefitFromCodePlacementOpt = true;
1172
1173 setPrefFunctionAlignment(4);
1174 }
1175
1176
getSetCCResultType(EVT VT) const1177 EVT X86TargetLowering::getSetCCResultType(EVT VT) const {
1178 if (!VT.isVector()) return MVT::i8;
1179 return VT.changeVectorElementTypeToInteger();
1180 }
1181
1182
1183 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1184 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,unsigned & MaxAlign)1185 static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
1186 if (MaxAlign == 16)
1187 return;
1188 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1189 if (VTy->getBitWidth() == 128)
1190 MaxAlign = 16;
1191 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1192 unsigned EltAlign = 0;
1193 getMaxByValAlign(ATy->getElementType(), EltAlign);
1194 if (EltAlign > MaxAlign)
1195 MaxAlign = EltAlign;
1196 } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1197 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1198 unsigned EltAlign = 0;
1199 getMaxByValAlign(STy->getElementType(i), EltAlign);
1200 if (EltAlign > MaxAlign)
1201 MaxAlign = EltAlign;
1202 if (MaxAlign == 16)
1203 break;
1204 }
1205 }
1206 return;
1207 }
1208
1209 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1210 /// function arguments in the caller parameter area. For X86, aggregates
1211 /// that contain SSE vectors are placed at 16-byte boundaries while the rest
1212 /// are at 4-byte boundaries.
getByValTypeAlignment(Type * Ty) const1213 unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty) const {
1214 if (Subtarget->is64Bit()) {
1215 // Max of 8 and alignment of type.
1216 unsigned TyAlign = TD->getABITypeAlignment(Ty);
1217 if (TyAlign > 8)
1218 return TyAlign;
1219 return 8;
1220 }
1221
1222 unsigned Align = 4;
1223 if (Subtarget->hasXMM())
1224 getMaxByValAlign(Ty, Align);
1225 return Align;
1226 }
1227
1228 /// getOptimalMemOpType - Returns the target specific optimal type for load
1229 /// and store operations as a result of memset, memcpy, and memmove
1230 /// lowering. If DstAlign is zero that means it's safe to destination
1231 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
1232 /// means there isn't a need to check it against alignment requirement,
1233 /// probably because the source does not need to be loaded. If
1234 /// 'NonScalarIntSafe' is true, that means it's safe to return a
1235 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
1236 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
1237 /// constant so it does not need to be loaded.
1238 /// It returns EVT::Other if the type should be determined using generic
1239 /// target-independent logic.
1240 EVT
getOptimalMemOpType(uint64_t Size,unsigned DstAlign,unsigned SrcAlign,bool NonScalarIntSafe,bool MemcpyStrSrc,MachineFunction & MF) const1241 X86TargetLowering::getOptimalMemOpType(uint64_t Size,
1242 unsigned DstAlign, unsigned SrcAlign,
1243 bool NonScalarIntSafe,
1244 bool MemcpyStrSrc,
1245 MachineFunction &MF) const {
1246 // FIXME: This turns off use of xmm stores for memset/memcpy on targets like
1247 // linux. This is because the stack realignment code can't handle certain
1248 // cases like PR2962. This should be removed when PR2962 is fixed.
1249 const Function *F = MF.getFunction();
1250 if (NonScalarIntSafe &&
1251 !F->hasFnAttr(Attribute::NoImplicitFloat)) {
1252 if (Size >= 16 &&
1253 (Subtarget->isUnalignedMemAccessFast() ||
1254 ((DstAlign == 0 || DstAlign >= 16) &&
1255 (SrcAlign == 0 || SrcAlign >= 16))) &&
1256 Subtarget->getStackAlignment() >= 16) {
1257 if (Subtarget->hasAVX() &&
1258 Subtarget->getStackAlignment() >= 32)
1259 return MVT::v8f32;
1260 if (Subtarget->hasXMMInt())
1261 return MVT::v4i32;
1262 if (Subtarget->hasXMM())
1263 return MVT::v4f32;
1264 } else if (!MemcpyStrSrc && Size >= 8 &&
1265 !Subtarget->is64Bit() &&
1266 Subtarget->getStackAlignment() >= 8 &&
1267 Subtarget->hasXMMInt()) {
1268 // Do not use f64 to lower memcpy if source is string constant. It's
1269 // better to use i32 to avoid the loads.
1270 return MVT::f64;
1271 }
1272 }
1273 if (Subtarget->is64Bit() && Size >= 8)
1274 return MVT::i64;
1275 return MVT::i32;
1276 }
1277
1278 /// getJumpTableEncoding - Return the entry encoding for a jump table in the
1279 /// current function. The returned value is a member of the
1280 /// MachineJumpTableInfo::JTEntryKind enum.
getJumpTableEncoding() const1281 unsigned X86TargetLowering::getJumpTableEncoding() const {
1282 // In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
1283 // symbol.
1284 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1285 Subtarget->isPICStyleGOT())
1286 return MachineJumpTableInfo::EK_Custom32;
1287
1288 // Otherwise, use the normal jump table encoding heuristics.
1289 return TargetLowering::getJumpTableEncoding();
1290 }
1291
1292 const MCExpr *
LowerCustomJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned uid,MCContext & Ctx) const1293 X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
1294 const MachineBasicBlock *MBB,
1295 unsigned uid,MCContext &Ctx) const{
1296 assert(getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
1297 Subtarget->isPICStyleGOT());
1298 // In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
1299 // entries.
1300 return MCSymbolRefExpr::Create(MBB->getSymbol(),
1301 MCSymbolRefExpr::VK_GOTOFF, Ctx);
1302 }
1303
1304 /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
1305 /// jumptable.
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const1306 SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
1307 SelectionDAG &DAG) const {
1308 if (!Subtarget->is64Bit())
1309 // This doesn't have DebugLoc associated with it, but is not really the
1310 // same as a Register.
1311 return DAG.getNode(X86ISD::GlobalBaseReg, DebugLoc(), getPointerTy());
1312 return Table;
1313 }
1314
1315 /// getPICJumpTableRelocBaseExpr - This returns the relocation base for the
1316 /// given PIC jumptable, the same as getPICJumpTableRelocBase, but as an
1317 /// MCExpr.
1318 const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const1319 getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
1320 MCContext &Ctx) const {
1321 // X86-64 uses RIP relative addressing based on the jump table label.
1322 if (Subtarget->isPICStyleRIPRel())
1323 return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
1324
1325 // Otherwise, the reference is relative to the PIC base.
1326 return MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), Ctx);
1327 }
1328
1329 // FIXME: Why this routine is here? Move to RegInfo!
1330 std::pair<const TargetRegisterClass*, uint8_t>
findRepresentativeClass(EVT VT) const1331 X86TargetLowering::findRepresentativeClass(EVT VT) const{
1332 const TargetRegisterClass *RRC = 0;
1333 uint8_t Cost = 1;
1334 switch (VT.getSimpleVT().SimpleTy) {
1335 default:
1336 return TargetLowering::findRepresentativeClass(VT);
1337 case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
1338 RRC = (Subtarget->is64Bit()
1339 ? X86::GR64RegisterClass : X86::GR32RegisterClass);
1340 break;
1341 case MVT::x86mmx:
1342 RRC = X86::VR64RegisterClass;
1343 break;
1344 case MVT::f32: case MVT::f64:
1345 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
1346 case MVT::v4f32: case MVT::v2f64:
1347 case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
1348 case MVT::v4f64:
1349 RRC = X86::VR128RegisterClass;
1350 break;
1351 }
1352 return std::make_pair(RRC, Cost);
1353 }
1354
getStackCookieLocation(unsigned & AddressSpace,unsigned & Offset) const1355 bool X86TargetLowering::getStackCookieLocation(unsigned &AddressSpace,
1356 unsigned &Offset) const {
1357 if (!Subtarget->isTargetLinux())
1358 return false;
1359
1360 if (Subtarget->is64Bit()) {
1361 // %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
1362 Offset = 0x28;
1363 if (getTargetMachine().getCodeModel() == CodeModel::Kernel)
1364 AddressSpace = 256;
1365 else
1366 AddressSpace = 257;
1367 } else {
1368 // %gs:0x14 on i386
1369 Offset = 0x14;
1370 AddressSpace = 256;
1371 }
1372 return true;
1373 }
1374
1375
1376 //===----------------------------------------------------------------------===//
1377 // Return Value Calling Convention Implementation
1378 //===----------------------------------------------------------------------===//
1379
1380 #include "X86GenCallingConv.inc"
1381
1382 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const1383 X86TargetLowering::CanLowerReturn(CallingConv::ID CallConv,
1384 MachineFunction &MF, bool isVarArg,
1385 const SmallVectorImpl<ISD::OutputArg> &Outs,
1386 LLVMContext &Context) const {
1387 SmallVector<CCValAssign, 16> RVLocs;
1388 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1389 RVLocs, Context);
1390 return CCInfo.CheckReturn(Outs, RetCC_X86);
1391 }
1392
1393 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,DebugLoc dl,SelectionDAG & DAG) const1394 X86TargetLowering::LowerReturn(SDValue Chain,
1395 CallingConv::ID CallConv, bool isVarArg,
1396 const SmallVectorImpl<ISD::OutputArg> &Outs,
1397 const SmallVectorImpl<SDValue> &OutVals,
1398 DebugLoc dl, SelectionDAG &DAG) const {
1399 MachineFunction &MF = DAG.getMachineFunction();
1400 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1401
1402 SmallVector<CCValAssign, 16> RVLocs;
1403 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1404 RVLocs, *DAG.getContext());
1405 CCInfo.AnalyzeReturn(Outs, RetCC_X86);
1406
1407 // Add the regs to the liveout set for the function.
1408 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1409 for (unsigned i = 0; i != RVLocs.size(); ++i)
1410 if (RVLocs[i].isRegLoc() && !MRI.isLiveOut(RVLocs[i].getLocReg()))
1411 MRI.addLiveOut(RVLocs[i].getLocReg());
1412
1413 SDValue Flag;
1414
1415 SmallVector<SDValue, 6> RetOps;
1416 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1417 // Operand #1 = Bytes To Pop
1418 RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(),
1419 MVT::i16));
1420
1421 // Copy the result values into the output registers.
1422 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1423 CCValAssign &VA = RVLocs[i];
1424 assert(VA.isRegLoc() && "Can only return in registers!");
1425 SDValue ValToCopy = OutVals[i];
1426 EVT ValVT = ValToCopy.getValueType();
1427
1428 // If this is x86-64, and we disabled SSE, we can't return FP values,
1429 // or SSE or MMX vectors.
1430 if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
1431 VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
1432 (Subtarget->is64Bit() && !Subtarget->hasXMM())) {
1433 report_fatal_error("SSE register return with SSE disabled");
1434 }
1435 // Likewise we can't return F64 values with SSE1 only. gcc does so, but
1436 // llvm-gcc has never done it right and no one has noticed, so this
1437 // should be OK for now.
1438 if (ValVT == MVT::f64 &&
1439 (Subtarget->is64Bit() && !Subtarget->hasXMMInt()))
1440 report_fatal_error("SSE2 register return with SSE2 disabled");
1441
1442 // Returns in ST0/ST1 are handled specially: these are pushed as operands to
1443 // the RET instruction and handled by the FP Stackifier.
1444 if (VA.getLocReg() == X86::ST0 ||
1445 VA.getLocReg() == X86::ST1) {
1446 // If this is a copy from an xmm register to ST(0), use an FPExtend to
1447 // change the value to the FP stack register class.
1448 if (isScalarFPTypeInSSEReg(VA.getValVT()))
1449 ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
1450 RetOps.push_back(ValToCopy);
1451 // Don't emit a copytoreg.
1452 continue;
1453 }
1454
1455 // 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
1456 // which is returned in RAX / RDX.
1457 if (Subtarget->is64Bit()) {
1458 if (ValVT == MVT::x86mmx) {
1459 if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
1460 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ValToCopy);
1461 ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
1462 ValToCopy);
1463 // If we don't have SSE2 available, convert to v4f32 so the generated
1464 // register is legal.
1465 if (!Subtarget->hasXMMInt())
1466 ValToCopy = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32,ValToCopy);
1467 }
1468 }
1469 }
1470
1471 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
1472 Flag = Chain.getValue(1);
1473 }
1474
1475 // The x86-64 ABI for returning structs by value requires that we copy
1476 // the sret argument into %rax for the return. We saved the argument into
1477 // a virtual register in the entry block, so now we copy the value out
1478 // and into %rax.
1479 if (Subtarget->is64Bit() &&
1480 DAG.getMachineFunction().getFunction()->hasStructRetAttr()) {
1481 MachineFunction &MF = DAG.getMachineFunction();
1482 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1483 unsigned Reg = FuncInfo->getSRetReturnReg();
1484 assert(Reg &&
1485 "SRetReturnReg should have been set in LowerFormalArguments().");
1486 SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
1487
1488 Chain = DAG.getCopyToReg(Chain, dl, X86::RAX, Val, Flag);
1489 Flag = Chain.getValue(1);
1490
1491 // RAX now acts like a return value.
1492 MRI.addLiveOut(X86::RAX);
1493 }
1494
1495 RetOps[0] = Chain; // Update chain.
1496
1497 // Add the flag if we have it.
1498 if (Flag.getNode())
1499 RetOps.push_back(Flag);
1500
1501 return DAG.getNode(X86ISD::RET_FLAG, dl,
1502 MVT::Other, &RetOps[0], RetOps.size());
1503 }
1504
isUsedByReturnOnly(SDNode * N) const1505 bool X86TargetLowering::isUsedByReturnOnly(SDNode *N) const {
1506 if (N->getNumValues() != 1)
1507 return false;
1508 if (!N->hasNUsesOfValue(1, 0))
1509 return false;
1510
1511 SDNode *Copy = *N->use_begin();
1512 if (Copy->getOpcode() != ISD::CopyToReg &&
1513 Copy->getOpcode() != ISD::FP_EXTEND)
1514 return false;
1515
1516 bool HasRet = false;
1517 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
1518 UI != UE; ++UI) {
1519 if (UI->getOpcode() != X86ISD::RET_FLAG)
1520 return false;
1521 HasRet = true;
1522 }
1523
1524 return HasRet;
1525 }
1526
1527 EVT
getTypeForExtArgOrReturn(LLVMContext & Context,EVT VT,ISD::NodeType ExtendKind) const1528 X86TargetLowering::getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
1529 ISD::NodeType ExtendKind) const {
1530 MVT ReturnMVT;
1531 // TODO: Is this also valid on 32-bit?
1532 if (Subtarget->is64Bit() && VT == MVT::i1 && ExtendKind == ISD::ZERO_EXTEND)
1533 ReturnMVT = MVT::i8;
1534 else
1535 ReturnMVT = MVT::i32;
1536
1537 EVT MinVT = getRegisterType(Context, ReturnMVT);
1538 return VT.bitsLT(MinVT) ? MinVT : VT;
1539 }
1540
1541 /// LowerCallResult - Lower the result values of a call into the
1542 /// appropriate copies out of appropriate physical registers.
1543 ///
1544 SDValue
LowerCallResult(SDValue Chain,SDValue InFlag,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1545 X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
1546 CallingConv::ID CallConv, bool isVarArg,
1547 const SmallVectorImpl<ISD::InputArg> &Ins,
1548 DebugLoc dl, SelectionDAG &DAG,
1549 SmallVectorImpl<SDValue> &InVals) const {
1550
1551 // Assign locations to each value returned by this call.
1552 SmallVector<CCValAssign, 16> RVLocs;
1553 bool Is64Bit = Subtarget->is64Bit();
1554 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1555 getTargetMachine(), RVLocs, *DAG.getContext());
1556 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
1557
1558 // Copy all of the result registers out of their specified physreg.
1559 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1560 CCValAssign &VA = RVLocs[i];
1561 EVT CopyVT = VA.getValVT();
1562
1563 // If this is x86-64, and we disabled SSE, we can't return FP values
1564 if ((CopyVT == MVT::f32 || CopyVT == MVT::f64) &&
1565 ((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget->hasXMM())) {
1566 report_fatal_error("SSE register return with SSE disabled");
1567 }
1568
1569 SDValue Val;
1570
1571 // If this is a call to a function that returns an fp value on the floating
1572 // point stack, we must guarantee the the value is popped from the stack, so
1573 // a CopyFromReg is not good enough - the copy instruction may be eliminated
1574 // if the return value is not used. We use the FpPOP_RETVAL instruction
1575 // instead.
1576 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) {
1577 // If we prefer to use the value in xmm registers, copy it out as f80 and
1578 // use a truncate to move it from fp stack reg to xmm reg.
1579 if (isScalarFPTypeInSSEReg(VA.getValVT())) CopyVT = MVT::f80;
1580 SDValue Ops[] = { Chain, InFlag };
1581 Chain = SDValue(DAG.getMachineNode(X86::FpPOP_RETVAL, dl, CopyVT,
1582 MVT::Other, MVT::Glue, Ops, 2), 1);
1583 Val = Chain.getValue(0);
1584
1585 // Round the f80 to the right size, which also moves it to the appropriate
1586 // xmm register.
1587 if (CopyVT != VA.getValVT())
1588 Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
1589 // This truncation won't change the value.
1590 DAG.getIntPtrConstant(1));
1591 } else {
1592 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
1593 CopyVT, InFlag).getValue(1);
1594 Val = Chain.getValue(0);
1595 }
1596 InFlag = Chain.getValue(2);
1597 InVals.push_back(Val);
1598 }
1599
1600 return Chain;
1601 }
1602
1603
1604 //===----------------------------------------------------------------------===//
1605 // C & StdCall & Fast Calling Convention implementation
1606 //===----------------------------------------------------------------------===//
1607 // StdCall calling convention seems to be standard for many Windows' API
1608 // routines and around. It differs from C calling convention just a little:
1609 // callee should clean up the stack, not caller. Symbols should be also
1610 // decorated in some fancy way :) It doesn't support any vector arguments.
1611 // For info on fast calling convention see Fast Calling Convention (tail call)
1612 // implementation LowerX86_32FastCCCallTo.
1613
1614 /// CallIsStructReturn - Determines whether a call uses struct return
1615 /// semantics.
CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> & Outs)1616 static bool CallIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs) {
1617 if (Outs.empty())
1618 return false;
1619
1620 return Outs[0].Flags.isSRet();
1621 }
1622
1623 /// ArgsAreStructReturn - Determines whether a function uses struct
1624 /// return semantics.
1625 static bool
ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> & Ins)1626 ArgsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins) {
1627 if (Ins.empty())
1628 return false;
1629
1630 return Ins[0].Flags.isSRet();
1631 }
1632
1633 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
1634 /// by "Src" to address "Dst" with size and alignment information specified by
1635 /// the specific parameter attribute. The copy will be passed as a byval
1636 /// function parameter.
1637 static SDValue
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,DebugLoc dl)1638 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
1639 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
1640 DebugLoc dl) {
1641 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
1642
1643 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
1644 /*isVolatile*/false, /*AlwaysInline=*/true,
1645 MachinePointerInfo(), MachinePointerInfo());
1646 }
1647
1648 /// IsTailCallConvention - Return true if the calling convention is one that
1649 /// supports tail call optimization.
IsTailCallConvention(CallingConv::ID CC)1650 static bool IsTailCallConvention(CallingConv::ID CC) {
1651 return (CC == CallingConv::Fast || CC == CallingConv::GHC);
1652 }
1653
mayBeEmittedAsTailCall(CallInst * CI) const1654 bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
1655 if (!CI->isTailCall())
1656 return false;
1657
1658 CallSite CS(CI);
1659 CallingConv::ID CalleeCC = CS.getCallingConv();
1660 if (!IsTailCallConvention(CalleeCC) && CalleeCC != CallingConv::C)
1661 return false;
1662
1663 return true;
1664 }
1665
1666 /// FuncIsMadeTailCallSafe - Return true if the function is being made into
1667 /// a tailcall target by changing its ABI.
FuncIsMadeTailCallSafe(CallingConv::ID CC)1668 static bool FuncIsMadeTailCallSafe(CallingConv::ID CC) {
1669 return GuaranteedTailCallOpt && IsTailCallConvention(CC);
1670 }
1671
1672 SDValue
LowerMemArgument(SDValue Chain,CallingConv::ID CallConv,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,MachineFrameInfo * MFI,unsigned i) const1673 X86TargetLowering::LowerMemArgument(SDValue Chain,
1674 CallingConv::ID CallConv,
1675 const SmallVectorImpl<ISD::InputArg> &Ins,
1676 DebugLoc dl, SelectionDAG &DAG,
1677 const CCValAssign &VA,
1678 MachineFrameInfo *MFI,
1679 unsigned i) const {
1680 // Create the nodes corresponding to a load from this parameter slot.
1681 ISD::ArgFlagsTy Flags = Ins[i].Flags;
1682 bool AlwaysUseMutable = FuncIsMadeTailCallSafe(CallConv);
1683 bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
1684 EVT ValVT;
1685
1686 // If value is passed by pointer we have address passed instead of the value
1687 // itself.
1688 if (VA.getLocInfo() == CCValAssign::Indirect)
1689 ValVT = VA.getLocVT();
1690 else
1691 ValVT = VA.getValVT();
1692
1693 // FIXME: For now, all byval parameter objects are marked mutable. This can be
1694 // changed with more analysis.
1695 // In case of tail call optimization mark all arguments mutable. Since they
1696 // could be overwritten by lowering of arguments in case of a tail call.
1697 if (Flags.isByVal()) {
1698 unsigned Bytes = Flags.getByValSize();
1699 if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
1700 int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
1701 return DAG.getFrameIndex(FI, getPointerTy());
1702 } else {
1703 int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
1704 VA.getLocMemOffset(), isImmutable);
1705 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
1706 return DAG.getLoad(ValVT, dl, Chain, FIN,
1707 MachinePointerInfo::getFixedStack(FI),
1708 false, false, 0);
1709 }
1710 }
1711
1712 SDValue
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const1713 X86TargetLowering::LowerFormalArguments(SDValue Chain,
1714 CallingConv::ID CallConv,
1715 bool isVarArg,
1716 const SmallVectorImpl<ISD::InputArg> &Ins,
1717 DebugLoc dl,
1718 SelectionDAG &DAG,
1719 SmallVectorImpl<SDValue> &InVals)
1720 const {
1721 MachineFunction &MF = DAG.getMachineFunction();
1722 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1723
1724 const Function* Fn = MF.getFunction();
1725 if (Fn->hasExternalLinkage() &&
1726 Subtarget->isTargetCygMing() &&
1727 Fn->getName() == "main")
1728 FuncInfo->setForceFramePointer(true);
1729
1730 MachineFrameInfo *MFI = MF.getFrameInfo();
1731 bool Is64Bit = Subtarget->is64Bit();
1732 bool IsWin64 = Subtarget->isTargetWin64();
1733
1734 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
1735 "Var args not supported with calling convention fastcc or ghc");
1736
1737 // Assign locations to all of the incoming arguments.
1738 SmallVector<CCValAssign, 16> ArgLocs;
1739 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
1740 ArgLocs, *DAG.getContext());
1741
1742 // Allocate shadow area for Win64
1743 if (IsWin64) {
1744 CCInfo.AllocateStack(32, 8);
1745 }
1746
1747 CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
1748
1749 unsigned LastVal = ~0U;
1750 SDValue ArgValue;
1751 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1752 CCValAssign &VA = ArgLocs[i];
1753 // TODO: If an arg is passed in two places (e.g. reg and stack), skip later
1754 // places.
1755 assert(VA.getValNo() != LastVal &&
1756 "Don't support value assigned to multiple locs yet");
1757 (void)LastVal;
1758 LastVal = VA.getValNo();
1759
1760 if (VA.isRegLoc()) {
1761 EVT RegVT = VA.getLocVT();
1762 TargetRegisterClass *RC = NULL;
1763 if (RegVT == MVT::i32)
1764 RC = X86::GR32RegisterClass;
1765 else if (Is64Bit && RegVT == MVT::i64)
1766 RC = X86::GR64RegisterClass;
1767 else if (RegVT == MVT::f32)
1768 RC = X86::FR32RegisterClass;
1769 else if (RegVT == MVT::f64)
1770 RC = X86::FR64RegisterClass;
1771 else if (RegVT.isVector() && RegVT.getSizeInBits() == 256)
1772 RC = X86::VR256RegisterClass;
1773 else if (RegVT.isVector() && RegVT.getSizeInBits() == 128)
1774 RC = X86::VR128RegisterClass;
1775 else if (RegVT == MVT::x86mmx)
1776 RC = X86::VR64RegisterClass;
1777 else
1778 llvm_unreachable("Unknown argument type!");
1779
1780 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1781 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
1782
1783 // If this is an 8 or 16-bit value, it is really passed promoted to 32
1784 // bits. Insert an assert[sz]ext to capture this, then truncate to the
1785 // right size.
1786 if (VA.getLocInfo() == CCValAssign::SExt)
1787 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
1788 DAG.getValueType(VA.getValVT()));
1789 else if (VA.getLocInfo() == CCValAssign::ZExt)
1790 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
1791 DAG.getValueType(VA.getValVT()));
1792 else if (VA.getLocInfo() == CCValAssign::BCvt)
1793 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
1794
1795 if (VA.isExtInLoc()) {
1796 // Handle MMX values passed in XMM regs.
1797 if (RegVT.isVector()) {
1798 ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(),
1799 ArgValue);
1800 } else
1801 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
1802 }
1803 } else {
1804 assert(VA.isMemLoc());
1805 ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
1806 }
1807
1808 // If value is passed via pointer - do a load.
1809 if (VA.getLocInfo() == CCValAssign::Indirect)
1810 ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
1811 MachinePointerInfo(), false, false, 0);
1812
1813 InVals.push_back(ArgValue);
1814 }
1815
1816 // The x86-64 ABI for returning structs by value requires that we copy
1817 // the sret argument into %rax for the return. Save the argument into
1818 // a virtual register so that we can access it from the return points.
1819 if (Is64Bit && MF.getFunction()->hasStructRetAttr()) {
1820 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
1821 unsigned Reg = FuncInfo->getSRetReturnReg();
1822 if (!Reg) {
1823 Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(MVT::i64));
1824 FuncInfo->setSRetReturnReg(Reg);
1825 }
1826 SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
1827 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
1828 }
1829
1830 unsigned StackSize = CCInfo.getNextStackOffset();
1831 // Align stack specially for tail calls.
1832 if (FuncIsMadeTailCallSafe(CallConv))
1833 StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
1834
1835 // If the function takes variable number of arguments, make a frame index for
1836 // the start of the first vararg value... for expansion of llvm.va_start.
1837 if (isVarArg) {
1838 if (Is64Bit || (CallConv != CallingConv::X86_FastCall &&
1839 CallConv != CallingConv::X86_ThisCall)) {
1840 FuncInfo->setVarArgsFrameIndex(MFI->CreateFixedObject(1, StackSize,true));
1841 }
1842 if (Is64Bit) {
1843 unsigned TotalNumIntRegs = 0, TotalNumXMMRegs = 0;
1844
1845 // FIXME: We should really autogenerate these arrays
1846 static const unsigned GPR64ArgRegsWin64[] = {
1847 X86::RCX, X86::RDX, X86::R8, X86::R9
1848 };
1849 static const unsigned GPR64ArgRegs64Bit[] = {
1850 X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
1851 };
1852 static const unsigned XMMArgRegs64Bit[] = {
1853 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
1854 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
1855 };
1856 const unsigned *GPR64ArgRegs;
1857 unsigned NumXMMRegs = 0;
1858
1859 if (IsWin64) {
1860 // The XMM registers which might contain var arg parameters are shadowed
1861 // in their paired GPR. So we only need to save the GPR to their home
1862 // slots.
1863 TotalNumIntRegs = 4;
1864 GPR64ArgRegs = GPR64ArgRegsWin64;
1865 } else {
1866 TotalNumIntRegs = 6; TotalNumXMMRegs = 8;
1867 GPR64ArgRegs = GPR64ArgRegs64Bit;
1868
1869 NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs64Bit, TotalNumXMMRegs);
1870 }
1871 unsigned NumIntRegs = CCInfo.getFirstUnallocated(GPR64ArgRegs,
1872 TotalNumIntRegs);
1873
1874 bool NoImplicitFloatOps = Fn->hasFnAttr(Attribute::NoImplicitFloat);
1875 assert(!(NumXMMRegs && !Subtarget->hasXMM()) &&
1876 "SSE register cannot be used when SSE is disabled!");
1877 assert(!(NumXMMRegs && UseSoftFloat && NoImplicitFloatOps) &&
1878 "SSE register cannot be used when SSE is disabled!");
1879 if (UseSoftFloat || NoImplicitFloatOps || !Subtarget->hasXMM())
1880 // Kernel mode asks for SSE to be disabled, so don't push them
1881 // on the stack.
1882 TotalNumXMMRegs = 0;
1883
1884 if (IsWin64) {
1885 const TargetFrameLowering &TFI = *getTargetMachine().getFrameLowering();
1886 // Get to the caller-allocated home save location. Add 8 to account
1887 // for the return address.
1888 int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
1889 FuncInfo->setRegSaveFrameIndex(
1890 MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
1891 // Fixup to set vararg frame on shadow area (4 x i64).
1892 if (NumIntRegs < 4)
1893 FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
1894 } else {
1895 // For X86-64, if there are vararg parameters that are passed via
1896 // registers, then we must store them to their spots on the stack so they
1897 // may be loaded by deferencing the result of va_next.
1898 FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
1899 FuncInfo->setVarArgsFPOffset(TotalNumIntRegs * 8 + NumXMMRegs * 16);
1900 FuncInfo->setRegSaveFrameIndex(
1901 MFI->CreateStackObject(TotalNumIntRegs * 8 + TotalNumXMMRegs * 16, 16,
1902 false));
1903 }
1904
1905 // Store the integer parameter registers.
1906 SmallVector<SDValue, 8> MemOps;
1907 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
1908 getPointerTy());
1909 unsigned Offset = FuncInfo->getVarArgsGPOffset();
1910 for (; NumIntRegs != TotalNumIntRegs; ++NumIntRegs) {
1911 SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), RSFIN,
1912 DAG.getIntPtrConstant(Offset));
1913 unsigned VReg = MF.addLiveIn(GPR64ArgRegs[NumIntRegs],
1914 X86::GR64RegisterClass);
1915 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
1916 SDValue Store =
1917 DAG.getStore(Val.getValue(1), dl, Val, FIN,
1918 MachinePointerInfo::getFixedStack(
1919 FuncInfo->getRegSaveFrameIndex(), Offset),
1920 false, false, 0);
1921 MemOps.push_back(Store);
1922 Offset += 8;
1923 }
1924
1925 if (TotalNumXMMRegs != 0 && NumXMMRegs != TotalNumXMMRegs) {
1926 // Now store the XMM (fp + vector) parameter registers.
1927 SmallVector<SDValue, 11> SaveXMMOps;
1928 SaveXMMOps.push_back(Chain);
1929
1930 unsigned AL = MF.addLiveIn(X86::AL, X86::GR8RegisterClass);
1931 SDValue ALVal = DAG.getCopyFromReg(DAG.getEntryNode(), dl, AL, MVT::i8);
1932 SaveXMMOps.push_back(ALVal);
1933
1934 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1935 FuncInfo->getRegSaveFrameIndex()));
1936 SaveXMMOps.push_back(DAG.getIntPtrConstant(
1937 FuncInfo->getVarArgsFPOffset()));
1938
1939 for (; NumXMMRegs != TotalNumXMMRegs; ++NumXMMRegs) {
1940 unsigned VReg = MF.addLiveIn(XMMArgRegs64Bit[NumXMMRegs],
1941 X86::VR128RegisterClass);
1942 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::v4f32);
1943 SaveXMMOps.push_back(Val);
1944 }
1945 MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
1946 MVT::Other,
1947 &SaveXMMOps[0], SaveXMMOps.size()));
1948 }
1949
1950 if (!MemOps.empty())
1951 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1952 &MemOps[0], MemOps.size());
1953 }
1954 }
1955
1956 // Some CCs need callee pop.
1957 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt)) {
1958 FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
1959 } else {
1960 FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
1961 // If this is an sret function, the return should pop the hidden pointer.
1962 if (!Is64Bit && !IsTailCallConvention(CallConv) && ArgsAreStructReturn(Ins))
1963 FuncInfo->setBytesToPopOnReturn(4);
1964 }
1965
1966 if (!Is64Bit) {
1967 // RegSaveFrameIndex is X86-64 only.
1968 FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
1969 if (CallConv == CallingConv::X86_FastCall ||
1970 CallConv == CallingConv::X86_ThisCall)
1971 // fastcc functions can't have varargs.
1972 FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
1973 }
1974
1975 FuncInfo->setArgumentStackSize(StackSize);
1976
1977 return Chain;
1978 }
1979
1980 SDValue
LowerMemOpCallTo(SDValue Chain,SDValue StackPtr,SDValue Arg,DebugLoc dl,SelectionDAG & DAG,const CCValAssign & VA,ISD::ArgFlagsTy Flags) const1981 X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
1982 SDValue StackPtr, SDValue Arg,
1983 DebugLoc dl, SelectionDAG &DAG,
1984 const CCValAssign &VA,
1985 ISD::ArgFlagsTy Flags) const {
1986 unsigned LocMemOffset = VA.getLocMemOffset();
1987 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
1988 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
1989 if (Flags.isByVal())
1990 return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
1991
1992 return DAG.getStore(Chain, dl, Arg, PtrOff,
1993 MachinePointerInfo::getStack(LocMemOffset),
1994 false, false, 0);
1995 }
1996
1997 /// EmitTailCallLoadRetAddr - Emit a load of return address if tail call
1998 /// optimization is performed and it is required.
1999 SDValue
EmitTailCallLoadRetAddr(SelectionDAG & DAG,SDValue & OutRetAddr,SDValue Chain,bool IsTailCall,bool Is64Bit,int FPDiff,DebugLoc dl) const2000 X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
2001 SDValue &OutRetAddr, SDValue Chain,
2002 bool IsTailCall, bool Is64Bit,
2003 int FPDiff, DebugLoc dl) const {
2004 // Adjust the Return address stack slot.
2005 EVT VT = getPointerTy();
2006 OutRetAddr = getReturnAddressFrameIndex(DAG);
2007
2008 // Load the "old" Return address.
2009 OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
2010 false, false, 0);
2011 return SDValue(OutRetAddr.getNode(), 1);
2012 }
2013
2014 /// EmitTailCallStoreRetAddr - Emit a store of the return address if tail call
2015 /// optimization is performed and it is required (FPDiff!=0).
2016 static SDValue
EmitTailCallStoreRetAddr(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue RetAddrFrIdx,bool Is64Bit,int FPDiff,DebugLoc dl)2017 EmitTailCallStoreRetAddr(SelectionDAG & DAG, MachineFunction &MF,
2018 SDValue Chain, SDValue RetAddrFrIdx,
2019 bool Is64Bit, int FPDiff, DebugLoc dl) {
2020 // Store the return address to the appropriate stack slot.
2021 if (!FPDiff) return Chain;
2022 // Calculate the new stack slot for the return address.
2023 int SlotSize = Is64Bit ? 8 : 4;
2024 int NewReturnAddrFI =
2025 MF.getFrameInfo()->CreateFixedObject(SlotSize, FPDiff-SlotSize, false);
2026 EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
2027 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, VT);
2028 Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
2029 MachinePointerInfo::getFixedStack(NewReturnAddrFI),
2030 false, false, 0);
2031 return Chain;
2032 }
2033
2034 SDValue
LowerCall(SDValue Chain,SDValue Callee,CallingConv::ID CallConv,bool isVarArg,bool & isTailCall,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,DebugLoc dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const2035 X86TargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2036 CallingConv::ID CallConv, bool isVarArg,
2037 bool &isTailCall,
2038 const SmallVectorImpl<ISD::OutputArg> &Outs,
2039 const SmallVectorImpl<SDValue> &OutVals,
2040 const SmallVectorImpl<ISD::InputArg> &Ins,
2041 DebugLoc dl, SelectionDAG &DAG,
2042 SmallVectorImpl<SDValue> &InVals) const {
2043 MachineFunction &MF = DAG.getMachineFunction();
2044 bool Is64Bit = Subtarget->is64Bit();
2045 bool IsWin64 = Subtarget->isTargetWin64();
2046 bool IsStructRet = CallIsStructReturn(Outs);
2047 bool IsSibcall = false;
2048
2049 if (isTailCall) {
2050 // Check if it's really possible to do a tail call.
2051 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
2052 isVarArg, IsStructRet, MF.getFunction()->hasStructRetAttr(),
2053 Outs, OutVals, Ins, DAG);
2054
2055 // Sibcalls are automatically detected tailcalls which do not require
2056 // ABI changes.
2057 if (!GuaranteedTailCallOpt && isTailCall)
2058 IsSibcall = true;
2059
2060 if (isTailCall)
2061 ++NumTailCalls;
2062 }
2063
2064 assert(!(isVarArg && IsTailCallConvention(CallConv)) &&
2065 "Var args not supported with calling convention fastcc or ghc");
2066
2067 // Analyze operands of the call, assigning locations to each operand.
2068 SmallVector<CCValAssign, 16> ArgLocs;
2069 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
2070 ArgLocs, *DAG.getContext());
2071
2072 // Allocate shadow area for Win64
2073 if (IsWin64) {
2074 CCInfo.AllocateStack(32, 8);
2075 }
2076
2077 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2078
2079 // Get a count of how many bytes are to be pushed on the stack.
2080 unsigned NumBytes = CCInfo.getNextStackOffset();
2081 if (IsSibcall)
2082 // This is a sibcall. The memory operands are available in caller's
2083 // own caller's stack.
2084 NumBytes = 0;
2085 else if (GuaranteedTailCallOpt && IsTailCallConvention(CallConv))
2086 NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
2087
2088 int FPDiff = 0;
2089 if (isTailCall && !IsSibcall) {
2090 // Lower arguments at fp - stackoffset + fpdiff.
2091 unsigned NumBytesCallerPushed =
2092 MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn();
2093 FPDiff = NumBytesCallerPushed - NumBytes;
2094
2095 // Set the delta of movement of the returnaddr stackslot.
2096 // But only set if delta is greater than previous delta.
2097 if (FPDiff < (MF.getInfo<X86MachineFunctionInfo>()->getTCReturnAddrDelta()))
2098 MF.getInfo<X86MachineFunctionInfo>()->setTCReturnAddrDelta(FPDiff);
2099 }
2100
2101 if (!IsSibcall)
2102 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2103
2104 SDValue RetAddrFrIdx;
2105 // Load return address for tail calls.
2106 if (isTailCall && FPDiff)
2107 Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
2108 Is64Bit, FPDiff, dl);
2109
2110 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2111 SmallVector<SDValue, 8> MemOpChains;
2112 SDValue StackPtr;
2113
2114 // Walk the register/memloc assignments, inserting copies/loads. In the case
2115 // of tail call optimization arguments are handle later.
2116 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2117 CCValAssign &VA = ArgLocs[i];
2118 EVT RegVT = VA.getLocVT();
2119 SDValue Arg = OutVals[i];
2120 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2121 bool isByVal = Flags.isByVal();
2122
2123 // Promote the value if needed.
2124 switch (VA.getLocInfo()) {
2125 default: llvm_unreachable("Unknown loc info!");
2126 case CCValAssign::Full: break;
2127 case CCValAssign::SExt:
2128 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
2129 break;
2130 case CCValAssign::ZExt:
2131 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
2132 break;
2133 case CCValAssign::AExt:
2134 if (RegVT.isVector() && RegVT.getSizeInBits() == 128) {
2135 // Special case: passing MMX values in XMM registers.
2136 Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
2137 Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
2138 Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
2139 } else
2140 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
2141 break;
2142 case CCValAssign::BCvt:
2143 Arg = DAG.getNode(ISD::BITCAST, dl, RegVT, Arg);
2144 break;
2145 case CCValAssign::Indirect: {
2146 // Store the argument.
2147 SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
2148 int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
2149 Chain = DAG.getStore(Chain, dl, Arg, SpillSlot,
2150 MachinePointerInfo::getFixedStack(FI),
2151 false, false, 0);
2152 Arg = SpillSlot;
2153 break;
2154 }
2155 }
2156
2157 if (VA.isRegLoc()) {
2158 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2159 if (isVarArg && IsWin64) {
2160 // Win64 ABI requires argument XMM reg to be copied to the corresponding
2161 // shadow reg if callee is a varargs function.
2162 unsigned ShadowReg = 0;
2163 switch (VA.getLocReg()) {
2164 case X86::XMM0: ShadowReg = X86::RCX; break;
2165 case X86::XMM1: ShadowReg = X86::RDX; break;
2166 case X86::XMM2: ShadowReg = X86::R8; break;
2167 case X86::XMM3: ShadowReg = X86::R9; break;
2168 }
2169 if (ShadowReg)
2170 RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
2171 }
2172 } else if (!IsSibcall && (!isTailCall || isByVal)) {
2173 assert(VA.isMemLoc());
2174 if (StackPtr.getNode() == 0)
2175 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr, getPointerTy());
2176 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
2177 dl, DAG, VA, Flags));
2178 }
2179 }
2180
2181 if (!MemOpChains.empty())
2182 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2183 &MemOpChains[0], MemOpChains.size());
2184
2185 // Build a sequence of copy-to-reg nodes chained together with token chain
2186 // and flag operands which copy the outgoing args into registers.
2187 SDValue InFlag;
2188 // Tail call byval lowering might overwrite argument registers so in case of
2189 // tail call optimization the copies to registers are lowered later.
2190 if (!isTailCall)
2191 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2192 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2193 RegsToPass[i].second, InFlag);
2194 InFlag = Chain.getValue(1);
2195 }
2196
2197 if (Subtarget->isPICStyleGOT()) {
2198 // ELF / PIC requires GOT in the EBX register before function calls via PLT
2199 // GOT pointer.
2200 if (!isTailCall) {
2201 Chain = DAG.getCopyToReg(Chain, dl, X86::EBX,
2202 DAG.getNode(X86ISD::GlobalBaseReg,
2203 DebugLoc(), getPointerTy()),
2204 InFlag);
2205 InFlag = Chain.getValue(1);
2206 } else {
2207 // If we are tail calling and generating PIC/GOT style code load the
2208 // address of the callee into ECX. The value in ecx is used as target of
2209 // the tail jump. This is done to circumvent the ebx/callee-saved problem
2210 // for tail calls on PIC/GOT architectures. Normally we would just put the
2211 // address of GOT into ebx and then call target@PLT. But for tail calls
2212 // ebx would be restored (since ebx is callee saved) before jumping to the
2213 // target@PLT.
2214
2215 // Note: The actual moving to ECX is done further down.
2216 GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
2217 if (G && !G->getGlobal()->hasHiddenVisibility() &&
2218 !G->getGlobal()->hasProtectedVisibility())
2219 Callee = LowerGlobalAddress(Callee, DAG);
2220 else if (isa<ExternalSymbolSDNode>(Callee))
2221 Callee = LowerExternalSymbol(Callee, DAG);
2222 }
2223 }
2224
2225 if (Is64Bit && isVarArg && !IsWin64) {
2226 // From AMD64 ABI document:
2227 // For calls that may call functions that use varargs or stdargs
2228 // (prototype-less calls or calls to functions containing ellipsis (...) in
2229 // the declaration) %al is used as hidden argument to specify the number
2230 // of SSE registers used. The contents of %al do not need to match exactly
2231 // the number of registers, but must be an ubound on the number of SSE
2232 // registers used and is in the range 0 - 8 inclusive.
2233
2234 // Count the number of XMM registers allocated.
2235 static const unsigned XMMArgRegs[] = {
2236 X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
2237 X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
2238 };
2239 unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8);
2240 assert((Subtarget->hasXMM() || !NumXMMRegs)
2241 && "SSE registers cannot be used when SSE is disabled");
2242
2243 Chain = DAG.getCopyToReg(Chain, dl, X86::AL,
2244 DAG.getConstant(NumXMMRegs, MVT::i8), InFlag);
2245 InFlag = Chain.getValue(1);
2246 }
2247
2248
2249 // For tail calls lower the arguments to the 'real' stack slot.
2250 if (isTailCall) {
2251 // Force all the incoming stack arguments to be loaded from the stack
2252 // before any new outgoing arguments are stored to the stack, because the
2253 // outgoing stack slots may alias the incoming argument stack slots, and
2254 // the alias isn't otherwise explicit. This is slightly more conservative
2255 // than necessary, because it means that each store effectively depends
2256 // on every argument instead of just those arguments it would clobber.
2257 SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
2258
2259 SmallVector<SDValue, 8> MemOpChains2;
2260 SDValue FIN;
2261 int FI = 0;
2262 // Do not flag preceding copytoreg stuff together with the following stuff.
2263 InFlag = SDValue();
2264 if (GuaranteedTailCallOpt) {
2265 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2266 CCValAssign &VA = ArgLocs[i];
2267 if (VA.isRegLoc())
2268 continue;
2269 assert(VA.isMemLoc());
2270 SDValue Arg = OutVals[i];
2271 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2272 // Create frame index.
2273 int32_t Offset = VA.getLocMemOffset()+FPDiff;
2274 uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
2275 FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2276 FIN = DAG.getFrameIndex(FI, getPointerTy());
2277
2278 if (Flags.isByVal()) {
2279 // Copy relative to framepointer.
2280 SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset());
2281 if (StackPtr.getNode() == 0)
2282 StackPtr = DAG.getCopyFromReg(Chain, dl, X86StackPtr,
2283 getPointerTy());
2284 Source = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, Source);
2285
2286 MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
2287 ArgChain,
2288 Flags, DAG, dl));
2289 } else {
2290 // Store relative to framepointer.
2291 MemOpChains2.push_back(
2292 DAG.getStore(ArgChain, dl, Arg, FIN,
2293 MachinePointerInfo::getFixedStack(FI),
2294 false, false, 0));
2295 }
2296 }
2297 }
2298
2299 if (!MemOpChains2.empty())
2300 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2301 &MemOpChains2[0], MemOpChains2.size());
2302
2303 // Copy arguments to their registers.
2304 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
2305 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
2306 RegsToPass[i].second, InFlag);
2307 InFlag = Chain.getValue(1);
2308 }
2309 InFlag =SDValue();
2310
2311 // Store the return address to the appropriate stack slot.
2312 Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx, Is64Bit,
2313 FPDiff, dl);
2314 }
2315
2316 if (getTargetMachine().getCodeModel() == CodeModel::Large) {
2317 assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
2318 // In the 64-bit large code model, we have to make all calls
2319 // through a register, since the call instruction's 32-bit
2320 // pc-relative offset may not be large enough to hold the whole
2321 // address.
2322 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2323 // If the callee is a GlobalAddress node (quite common, every direct call
2324 // is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
2325 // it.
2326
2327 // We should use extra load for direct calls to dllimported functions in
2328 // non-JIT mode.
2329 const GlobalValue *GV = G->getGlobal();
2330 if (!GV->hasDLLImportLinkage()) {
2331 unsigned char OpFlags = 0;
2332 bool ExtraLoad = false;
2333 unsigned WrapperKind = ISD::DELETED_NODE;
2334
2335 // On ELF targets, in both X86-64 and X86-32 mode, direct calls to
2336 // external symbols most go through the PLT in PIC mode. If the symbol
2337 // has hidden or protected visibility, or if it is static or local, then
2338 // we don't need to use the PLT - we can directly call it.
2339 if (Subtarget->isTargetELF() &&
2340 getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
2341 GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) {
2342 OpFlags = X86II::MO_PLT;
2343 } else if (Subtarget->isPICStyleStubAny() &&
2344 (GV->isDeclaration() || GV->isWeakForLinker()) &&
2345 (!Subtarget->getTargetTriple().isMacOSX() ||
2346 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2347 // PC-relative references to external symbols should go through $stub,
2348 // unless we're building with the leopard linker or later, which
2349 // automatically synthesizes these stubs.
2350 OpFlags = X86II::MO_DARWIN_STUB;
2351 } else if (Subtarget->isPICStyleRIPRel() &&
2352 isa<Function>(GV) &&
2353 cast<Function>(GV)->hasFnAttr(Attribute::NonLazyBind)) {
2354 // If the function is marked as non-lazy, generate an indirect call
2355 // which loads from the GOT directly. This avoids runtime overhead
2356 // at the cost of eager binding (and one extra byte of encoding).
2357 OpFlags = X86II::MO_GOTPCREL;
2358 WrapperKind = X86ISD::WrapperRIP;
2359 ExtraLoad = true;
2360 }
2361
2362 Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(),
2363 G->getOffset(), OpFlags);
2364
2365 // Add a wrapper if needed.
2366 if (WrapperKind != ISD::DELETED_NODE)
2367 Callee = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Callee);
2368 // Add extra indirection if needed.
2369 if (ExtraLoad)
2370 Callee = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Callee,
2371 MachinePointerInfo::getGOT(),
2372 false, false, 0);
2373 }
2374 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2375 unsigned char OpFlags = 0;
2376
2377 // On ELF targets, in either X86-64 or X86-32 mode, direct calls to
2378 // external symbols should go through the PLT.
2379 if (Subtarget->isTargetELF() &&
2380 getTargetMachine().getRelocationModel() == Reloc::PIC_) {
2381 OpFlags = X86II::MO_PLT;
2382 } else if (Subtarget->isPICStyleStubAny() &&
2383 (!Subtarget->getTargetTriple().isMacOSX() ||
2384 Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) {
2385 // PC-relative references to external symbols should go through $stub,
2386 // unless we're building with the leopard linker or later, which
2387 // automatically synthesizes these stubs.
2388 OpFlags = X86II::MO_DARWIN_STUB;
2389 }
2390
2391 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy(),
2392 OpFlags);
2393 }
2394
2395 // Returns a chain & a flag for retval copy to use.
2396 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2397 SmallVector<SDValue, 8> Ops;
2398
2399 if (!IsSibcall && isTailCall) {
2400 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2401 DAG.getIntPtrConstant(0, true), InFlag);
2402 InFlag = Chain.getValue(1);
2403 }
2404
2405 Ops.push_back(Chain);
2406 Ops.push_back(Callee);
2407
2408 if (isTailCall)
2409 Ops.push_back(DAG.getConstant(FPDiff, MVT::i32));
2410
2411 // Add argument registers to the end of the list so that they are known live
2412 // into the call.
2413 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2414 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2415 RegsToPass[i].second.getValueType()));
2416
2417 // Add an implicit use GOT pointer in EBX.
2418 if (!isTailCall && Subtarget->isPICStyleGOT())
2419 Ops.push_back(DAG.getRegister(X86::EBX, getPointerTy()));
2420
2421 // Add an implicit use of AL for non-Windows x86 64-bit vararg functions.
2422 if (Is64Bit && isVarArg && !IsWin64)
2423 Ops.push_back(DAG.getRegister(X86::AL, MVT::i8));
2424
2425 if (InFlag.getNode())
2426 Ops.push_back(InFlag);
2427
2428 if (isTailCall) {
2429 // We used to do:
2430 //// If this is the first return lowered for this function, add the regs
2431 //// to the liveout set for the function.
2432 // This isn't right, although it's probably harmless on x86; liveouts
2433 // should be computed from returns not tail calls. Consider a void
2434 // function making a tail call to a function returning int.
2435 return DAG.getNode(X86ISD::TC_RETURN, dl,
2436 NodeTys, &Ops[0], Ops.size());
2437 }
2438
2439 Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
2440 InFlag = Chain.getValue(1);
2441
2442 // Create the CALLSEQ_END node.
2443 unsigned NumBytesForCalleeToPush;
2444 if (X86::isCalleePop(CallConv, Is64Bit, isVarArg, GuaranteedTailCallOpt))
2445 NumBytesForCalleeToPush = NumBytes; // Callee pops everything
2446 else if (!Is64Bit && !IsTailCallConvention(CallConv) && IsStructRet)
2447 // If this is a call to a struct-return function, the callee
2448 // pops the hidden struct pointer, so we have to push it back.
2449 // This is common for Darwin/X86, Linux & Mingw32 targets.
2450 NumBytesForCalleeToPush = 4;
2451 else
2452 NumBytesForCalleeToPush = 0; // Callee pops nothing.
2453
2454 // Returns a flag for retval copy to use.
2455 if (!IsSibcall) {
2456 Chain = DAG.getCALLSEQ_END(Chain,
2457 DAG.getIntPtrConstant(NumBytes, true),
2458 DAG.getIntPtrConstant(NumBytesForCalleeToPush,
2459 true),
2460 InFlag);
2461 InFlag = Chain.getValue(1);
2462 }
2463
2464 // Handle result values, copying them out of physregs into vregs that we
2465 // return.
2466 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2467 Ins, dl, DAG, InVals);
2468 }
2469
2470
2471 //===----------------------------------------------------------------------===//
2472 // Fast Calling Convention (tail call) implementation
2473 //===----------------------------------------------------------------------===//
2474
2475 // Like std call, callee cleans arguments, convention except that ECX is
2476 // reserved for storing the tail called function address. Only 2 registers are
2477 // free for argument passing (inreg). Tail call optimization is performed
2478 // provided:
2479 // * tailcallopt is enabled
2480 // * caller/callee are fastcc
2481 // On X86_64 architecture with GOT-style position independent code only local
2482 // (within module) calls are supported at the moment.
2483 // To keep the stack aligned according to platform abi the function
2484 // GetAlignedArgumentStackSize ensures that argument delta is always multiples
2485 // of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
2486 // If a tail called function callee has more arguments than the caller the
2487 // caller needs to make sure that there is room to move the RETADDR to. This is
2488 // achieved by reserving an area the size of the argument delta right after the
2489 // original REtADDR, but before the saved framepointer or the spilled registers
2490 // e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
2491 // stack layout:
2492 // arg1
2493 // arg2
2494 // RETADDR
2495 // [ new RETADDR
2496 // move area ]
2497 // (possible EBP)
2498 // ESI
2499 // EDI
2500 // local1 ..
2501
2502 /// GetAlignedArgumentStackSize - Make the stack size align e.g 16n + 12 aligned
2503 /// for a 16 byte align requirement.
2504 unsigned
GetAlignedArgumentStackSize(unsigned StackSize,SelectionDAG & DAG) const2505 X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
2506 SelectionDAG& DAG) const {
2507 MachineFunction &MF = DAG.getMachineFunction();
2508 const TargetMachine &TM = MF.getTarget();
2509 const TargetFrameLowering &TFI = *TM.getFrameLowering();
2510 unsigned StackAlignment = TFI.getStackAlignment();
2511 uint64_t AlignMask = StackAlignment - 1;
2512 int64_t Offset = StackSize;
2513 uint64_t SlotSize = TD->getPointerSize();
2514 if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
2515 // Number smaller than 12 so just add the difference.
2516 Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
2517 } else {
2518 // Mask out lower bits, add stackalignment once plus the 12 bytes.
2519 Offset = ((~AlignMask) & Offset) + StackAlignment +
2520 (StackAlignment-SlotSize);
2521 }
2522 return Offset;
2523 }
2524
2525 /// MatchingStackOffset - Return true if the given stack call argument is
2526 /// already available in the same position (relatively) of the caller's
2527 /// incoming argument stack.
2528 static
MatchingStackOffset(SDValue Arg,unsigned Offset,ISD::ArgFlagsTy Flags,MachineFrameInfo * MFI,const MachineRegisterInfo * MRI,const X86InstrInfo * TII)2529 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
2530 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
2531 const X86InstrInfo *TII) {
2532 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
2533 int FI = INT_MAX;
2534 if (Arg.getOpcode() == ISD::CopyFromReg) {
2535 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
2536 if (!TargetRegisterInfo::isVirtualRegister(VR))
2537 return false;
2538 MachineInstr *Def = MRI->getVRegDef(VR);
2539 if (!Def)
2540 return false;
2541 if (!Flags.isByVal()) {
2542 if (!TII->isLoadFromStackSlot(Def, FI))
2543 return false;
2544 } else {
2545 unsigned Opcode = Def->getOpcode();
2546 if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r) &&
2547 Def->getOperand(1).isFI()) {
2548 FI = Def->getOperand(1).getIndex();
2549 Bytes = Flags.getByValSize();
2550 } else
2551 return false;
2552 }
2553 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
2554 if (Flags.isByVal())
2555 // ByVal argument is passed in as a pointer but it's now being
2556 // dereferenced. e.g.
2557 // define @foo(%struct.X* %A) {
2558 // tail call @bar(%struct.X* byval %A)
2559 // }
2560 return false;
2561 SDValue Ptr = Ld->getBasePtr();
2562 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
2563 if (!FINode)
2564 return false;
2565 FI = FINode->getIndex();
2566 } else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
2567 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
2568 FI = FINode->getIndex();
2569 Bytes = Flags.getByValSize();
2570 } else
2571 return false;
2572
2573 assert(FI != INT_MAX);
2574 if (!MFI->isFixedObjectIndex(FI))
2575 return false;
2576 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
2577 }
2578
2579 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2580 /// for tail call optimization. Targets which want to do tail call
2581 /// optimization should implement this function.
2582 bool
IsEligibleForTailCallOptimization(SDValue Callee,CallingConv::ID CalleeCC,bool isVarArg,bool isCalleeStructRet,bool isCallerStructRet,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,SelectionDAG & DAG) const2583 X86TargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2584 CallingConv::ID CalleeCC,
2585 bool isVarArg,
2586 bool isCalleeStructRet,
2587 bool isCallerStructRet,
2588 const SmallVectorImpl<ISD::OutputArg> &Outs,
2589 const SmallVectorImpl<SDValue> &OutVals,
2590 const SmallVectorImpl<ISD::InputArg> &Ins,
2591 SelectionDAG& DAG) const {
2592 if (!IsTailCallConvention(CalleeCC) &&
2593 CalleeCC != CallingConv::C)
2594 return false;
2595
2596 // If -tailcallopt is specified, make fastcc functions tail-callable.
2597 const MachineFunction &MF = DAG.getMachineFunction();
2598 const Function *CallerF = DAG.getMachineFunction().getFunction();
2599 CallingConv::ID CallerCC = CallerF->getCallingConv();
2600 bool CCMatch = CallerCC == CalleeCC;
2601
2602 if (GuaranteedTailCallOpt) {
2603 if (IsTailCallConvention(CalleeCC) && CCMatch)
2604 return true;
2605 return false;
2606 }
2607
2608 // Look for obvious safe cases to perform tail call optimization that do not
2609 // require ABI changes. This is what gcc calls sibcall.
2610
2611 // Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
2612 // emit a special epilogue.
2613 if (RegInfo->needsStackRealignment(MF))
2614 return false;
2615
2616 // Also avoid sibcall optimization if either caller or callee uses struct
2617 // return semantics.
2618 if (isCalleeStructRet || isCallerStructRet)
2619 return false;
2620
2621 // An stdcall caller is expected to clean up its arguments; the callee
2622 // isn't going to do that.
2623 if (!CCMatch && CallerCC==CallingConv::X86_StdCall)
2624 return false;
2625
2626 // Do not sibcall optimize vararg calls unless all arguments are passed via
2627 // registers.
2628 if (isVarArg && !Outs.empty()) {
2629
2630 // Optimizing for varargs on Win64 is unlikely to be safe without
2631 // additional testing.
2632 if (Subtarget->isTargetWin64())
2633 return false;
2634
2635 SmallVector<CCValAssign, 16> ArgLocs;
2636 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2637 getTargetMachine(), ArgLocs, *DAG.getContext());
2638
2639 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2640 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
2641 if (!ArgLocs[i].isRegLoc())
2642 return false;
2643 }
2644
2645 // If the call result is in ST0 / ST1, it needs to be popped off the x87 stack.
2646 // Therefore if it's not used by the call it is not safe to optimize this into
2647 // a sibcall.
2648 bool Unused = false;
2649 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
2650 if (!Ins[i].Used) {
2651 Unused = true;
2652 break;
2653 }
2654 }
2655 if (Unused) {
2656 SmallVector<CCValAssign, 16> RVLocs;
2657 CCState CCInfo(CalleeCC, false, DAG.getMachineFunction(),
2658 getTargetMachine(), RVLocs, *DAG.getContext());
2659 CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
2660 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2661 CCValAssign &VA = RVLocs[i];
2662 if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1)
2663 return false;
2664 }
2665 }
2666
2667 // If the calling conventions do not match, then we'd better make sure the
2668 // results are returned in the same way as what the caller expects.
2669 if (!CCMatch) {
2670 SmallVector<CCValAssign, 16> RVLocs1;
2671 CCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
2672 getTargetMachine(), RVLocs1, *DAG.getContext());
2673 CCInfo1.AnalyzeCallResult(Ins, RetCC_X86);
2674
2675 SmallVector<CCValAssign, 16> RVLocs2;
2676 CCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
2677 getTargetMachine(), RVLocs2, *DAG.getContext());
2678 CCInfo2.AnalyzeCallResult(Ins, RetCC_X86);
2679
2680 if (RVLocs1.size() != RVLocs2.size())
2681 return false;
2682 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
2683 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
2684 return false;
2685 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
2686 return false;
2687 if (RVLocs1[i].isRegLoc()) {
2688 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
2689 return false;
2690 } else {
2691 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
2692 return false;
2693 }
2694 }
2695 }
2696
2697 // If the callee takes no arguments then go on to check the results of the
2698 // call.
2699 if (!Outs.empty()) {
2700 // Check if stack adjustment is needed. For now, do not do this if any
2701 // argument is passed on the stack.
2702 SmallVector<CCValAssign, 16> ArgLocs;
2703 CCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
2704 getTargetMachine(), ArgLocs, *DAG.getContext());
2705
2706 // Allocate shadow area for Win64
2707 if (Subtarget->isTargetWin64()) {
2708 CCInfo.AllocateStack(32, 8);
2709 }
2710
2711 CCInfo.AnalyzeCallOperands(Outs, CC_X86);
2712 if (CCInfo.getNextStackOffset()) {
2713 MachineFunction &MF = DAG.getMachineFunction();
2714 if (MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn())
2715 return false;
2716
2717 // Check if the arguments are already laid out in the right way as
2718 // the caller's fixed stack objects.
2719 MachineFrameInfo *MFI = MF.getFrameInfo();
2720 const MachineRegisterInfo *MRI = &MF.getRegInfo();
2721 const X86InstrInfo *TII =
2722 ((X86TargetMachine&)getTargetMachine()).getInstrInfo();
2723 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2724 CCValAssign &VA = ArgLocs[i];
2725 SDValue Arg = OutVals[i];
2726 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2727 if (VA.getLocInfo() == CCValAssign::Indirect)
2728 return false;
2729 if (!VA.isRegLoc()) {
2730 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
2731 MFI, MRI, TII))
2732 return false;
2733 }
2734 }
2735 }
2736
2737 // If the tailcall address may be in a register, then make sure it's
2738 // possible to register allocate for it. In 32-bit, the call address can
2739 // only target EAX, EDX, or ECX since the tail call must be scheduled after
2740 // callee-saved registers are restored. These happen to be the same
2741 // registers used to pass 'inreg' arguments so watch out for those.
2742 if (!Subtarget->is64Bit() &&
2743 !isa<GlobalAddressSDNode>(Callee) &&
2744 !isa<ExternalSymbolSDNode>(Callee)) {
2745 unsigned NumInRegs = 0;
2746 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
2747 CCValAssign &VA = ArgLocs[i];
2748 if (!VA.isRegLoc())
2749 continue;
2750 unsigned Reg = VA.getLocReg();
2751 switch (Reg) {
2752 default: break;
2753 case X86::EAX: case X86::EDX: case X86::ECX:
2754 if (++NumInRegs == 3)
2755 return false;
2756 break;
2757 }
2758 }
2759 }
2760 }
2761
2762 return true;
2763 }
2764
2765 FastISel *
createFastISel(FunctionLoweringInfo & funcInfo) const2766 X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo) const {
2767 return X86::createFastISel(funcInfo);
2768 }
2769
2770
2771 //===----------------------------------------------------------------------===//
2772 // Other Lowering Hooks
2773 //===----------------------------------------------------------------------===//
2774
MayFoldLoad(SDValue Op)2775 static bool MayFoldLoad(SDValue Op) {
2776 return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
2777 }
2778
MayFoldIntoStore(SDValue Op)2779 static bool MayFoldIntoStore(SDValue Op) {
2780 return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
2781 }
2782
isTargetShuffle(unsigned Opcode)2783 static bool isTargetShuffle(unsigned Opcode) {
2784 switch(Opcode) {
2785 default: return false;
2786 case X86ISD::PSHUFD:
2787 case X86ISD::PSHUFHW:
2788 case X86ISD::PSHUFLW:
2789 case X86ISD::SHUFPD:
2790 case X86ISD::PALIGN:
2791 case X86ISD::SHUFPS:
2792 case X86ISD::MOVLHPS:
2793 case X86ISD::MOVLHPD:
2794 case X86ISD::MOVHLPS:
2795 case X86ISD::MOVLPS:
2796 case X86ISD::MOVLPD:
2797 case X86ISD::MOVSHDUP:
2798 case X86ISD::MOVSLDUP:
2799 case X86ISD::MOVDDUP:
2800 case X86ISD::MOVSS:
2801 case X86ISD::MOVSD:
2802 case X86ISD::UNPCKLPS:
2803 case X86ISD::UNPCKLPD:
2804 case X86ISD::VUNPCKLPSY:
2805 case X86ISD::VUNPCKLPDY:
2806 case X86ISD::PUNPCKLWD:
2807 case X86ISD::PUNPCKLBW:
2808 case X86ISD::PUNPCKLDQ:
2809 case X86ISD::PUNPCKLQDQ:
2810 case X86ISD::UNPCKHPS:
2811 case X86ISD::UNPCKHPD:
2812 case X86ISD::VUNPCKHPSY:
2813 case X86ISD::VUNPCKHPDY:
2814 case X86ISD::PUNPCKHWD:
2815 case X86ISD::PUNPCKHBW:
2816 case X86ISD::PUNPCKHDQ:
2817 case X86ISD::PUNPCKHQDQ:
2818 case X86ISD::VPERMILPS:
2819 case X86ISD::VPERMILPSY:
2820 case X86ISD::VPERMILPD:
2821 case X86ISD::VPERMILPDY:
2822 case X86ISD::VPERM2F128:
2823 return true;
2824 }
2825 return false;
2826 }
2827
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SelectionDAG & DAG)2828 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2829 SDValue V1, SelectionDAG &DAG) {
2830 switch(Opc) {
2831 default: llvm_unreachable("Unknown x86 shuffle node");
2832 case X86ISD::MOVSHDUP:
2833 case X86ISD::MOVSLDUP:
2834 case X86ISD::MOVDDUP:
2835 return DAG.getNode(Opc, dl, VT, V1);
2836 }
2837
2838 return SDValue();
2839 }
2840
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,unsigned TargetMask,SelectionDAG & DAG)2841 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2842 SDValue V1, unsigned TargetMask, SelectionDAG &DAG) {
2843 switch(Opc) {
2844 default: llvm_unreachable("Unknown x86 shuffle node");
2845 case X86ISD::PSHUFD:
2846 case X86ISD::PSHUFHW:
2847 case X86ISD::PSHUFLW:
2848 case X86ISD::VPERMILPS:
2849 case X86ISD::VPERMILPSY:
2850 case X86ISD::VPERMILPD:
2851 case X86ISD::VPERMILPDY:
2852 return DAG.getNode(Opc, dl, VT, V1, DAG.getConstant(TargetMask, MVT::i8));
2853 }
2854
2855 return SDValue();
2856 }
2857
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SDValue V2,unsigned TargetMask,SelectionDAG & DAG)2858 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2859 SDValue V1, SDValue V2, unsigned TargetMask, SelectionDAG &DAG) {
2860 switch(Opc) {
2861 default: llvm_unreachable("Unknown x86 shuffle node");
2862 case X86ISD::PALIGN:
2863 case X86ISD::SHUFPD:
2864 case X86ISD::SHUFPS:
2865 case X86ISD::VPERM2F128:
2866 return DAG.getNode(Opc, dl, VT, V1, V2,
2867 DAG.getConstant(TargetMask, MVT::i8));
2868 }
2869 return SDValue();
2870 }
2871
getTargetShuffleNode(unsigned Opc,DebugLoc dl,EVT VT,SDValue V1,SDValue V2,SelectionDAG & DAG)2872 static SDValue getTargetShuffleNode(unsigned Opc, DebugLoc dl, EVT VT,
2873 SDValue V1, SDValue V2, SelectionDAG &DAG) {
2874 switch(Opc) {
2875 default: llvm_unreachable("Unknown x86 shuffle node");
2876 case X86ISD::MOVLHPS:
2877 case X86ISD::MOVLHPD:
2878 case X86ISD::MOVHLPS:
2879 case X86ISD::MOVLPS:
2880 case X86ISD::MOVLPD:
2881 case X86ISD::MOVSS:
2882 case X86ISD::MOVSD:
2883 case X86ISD::UNPCKLPS:
2884 case X86ISD::UNPCKLPD:
2885 case X86ISD::VUNPCKLPSY:
2886 case X86ISD::VUNPCKLPDY:
2887 case X86ISD::PUNPCKLWD:
2888 case X86ISD::PUNPCKLBW:
2889 case X86ISD::PUNPCKLDQ:
2890 case X86ISD::PUNPCKLQDQ:
2891 case X86ISD::UNPCKHPS:
2892 case X86ISD::UNPCKHPD:
2893 case X86ISD::VUNPCKHPSY:
2894 case X86ISD::VUNPCKHPDY:
2895 case X86ISD::PUNPCKHWD:
2896 case X86ISD::PUNPCKHBW:
2897 case X86ISD::PUNPCKHDQ:
2898 case X86ISD::PUNPCKHQDQ:
2899 return DAG.getNode(Opc, dl, VT, V1, V2);
2900 }
2901 return SDValue();
2902 }
2903
getReturnAddressFrameIndex(SelectionDAG & DAG) const2904 SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
2905 MachineFunction &MF = DAG.getMachineFunction();
2906 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
2907 int ReturnAddrIndex = FuncInfo->getRAIndex();
2908
2909 if (ReturnAddrIndex == 0) {
2910 // Set up a frame object for the return address.
2911 uint64_t SlotSize = TD->getPointerSize();
2912 ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize, -SlotSize,
2913 false);
2914 FuncInfo->setRAIndex(ReturnAddrIndex);
2915 }
2916
2917 return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy());
2918 }
2919
2920
isOffsetSuitableForCodeModel(int64_t Offset,CodeModel::Model M,bool hasSymbolicDisplacement)2921 bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
2922 bool hasSymbolicDisplacement) {
2923 // Offset should fit into 32 bit immediate field.
2924 if (!isInt<32>(Offset))
2925 return false;
2926
2927 // If we don't have a symbolic displacement - we don't have any extra
2928 // restrictions.
2929 if (!hasSymbolicDisplacement)
2930 return true;
2931
2932 // FIXME: Some tweaks might be needed for medium code model.
2933 if (M != CodeModel::Small && M != CodeModel::Kernel)
2934 return false;
2935
2936 // For small code model we assume that latest object is 16MB before end of 31
2937 // bits boundary. We may also accept pretty large negative constants knowing
2938 // that all objects are in the positive half of address space.
2939 if (M == CodeModel::Small && Offset < 16*1024*1024)
2940 return true;
2941
2942 // For kernel code model we know that all object resist in the negative half
2943 // of 32bits address space. We may not accept negative offsets, since they may
2944 // be just off and we may accept pretty large positive ones.
2945 if (M == CodeModel::Kernel && Offset > 0)
2946 return true;
2947
2948 return false;
2949 }
2950
2951 /// isCalleePop - Determines whether the callee is required to pop its
2952 /// own arguments. Callee pop is necessary to support tail calls.
isCalleePop(CallingConv::ID CallingConv,bool is64Bit,bool IsVarArg,bool TailCallOpt)2953 bool X86::isCalleePop(CallingConv::ID CallingConv,
2954 bool is64Bit, bool IsVarArg, bool TailCallOpt) {
2955 if (IsVarArg)
2956 return false;
2957
2958 switch (CallingConv) {
2959 default:
2960 return false;
2961 case CallingConv::X86_StdCall:
2962 return !is64Bit;
2963 case CallingConv::X86_FastCall:
2964 return !is64Bit;
2965 case CallingConv::X86_ThisCall:
2966 return !is64Bit;
2967 case CallingConv::Fast:
2968 return TailCallOpt;
2969 case CallingConv::GHC:
2970 return TailCallOpt;
2971 }
2972 }
2973
2974 /// TranslateX86CC - do a one to one translation of a ISD::CondCode to the X86
2975 /// specific condition code, returning the condition code and the LHS/RHS of the
2976 /// comparison to make.
TranslateX86CC(ISD::CondCode SetCCOpcode,bool isFP,SDValue & LHS,SDValue & RHS,SelectionDAG & DAG)2977 static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, bool isFP,
2978 SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
2979 if (!isFP) {
2980 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
2981 if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
2982 // X > -1 -> X == 0, jump !sign.
2983 RHS = DAG.getConstant(0, RHS.getValueType());
2984 return X86::COND_NS;
2985 } else if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
2986 // X < 0 -> X == 0, jump on sign.
2987 return X86::COND_S;
2988 } else if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
2989 // X < 1 -> X <= 0
2990 RHS = DAG.getConstant(0, RHS.getValueType());
2991 return X86::COND_LE;
2992 }
2993 }
2994
2995 switch (SetCCOpcode) {
2996 default: llvm_unreachable("Invalid integer condition!");
2997 case ISD::SETEQ: return X86::COND_E;
2998 case ISD::SETGT: return X86::COND_G;
2999 case ISD::SETGE: return X86::COND_GE;
3000 case ISD::SETLT: return X86::COND_L;
3001 case ISD::SETLE: return X86::COND_LE;
3002 case ISD::SETNE: return X86::COND_NE;
3003 case ISD::SETULT: return X86::COND_B;
3004 case ISD::SETUGT: return X86::COND_A;
3005 case ISD::SETULE: return X86::COND_BE;
3006 case ISD::SETUGE: return X86::COND_AE;
3007 }
3008 }
3009
3010 // First determine if it is required or is profitable to flip the operands.
3011
3012 // If LHS is a foldable load, but RHS is not, flip the condition.
3013 if (ISD::isNON_EXTLoad(LHS.getNode()) &&
3014 !ISD::isNON_EXTLoad(RHS.getNode())) {
3015 SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
3016 std::swap(LHS, RHS);
3017 }
3018
3019 switch (SetCCOpcode) {
3020 default: break;
3021 case ISD::SETOLT:
3022 case ISD::SETOLE:
3023 case ISD::SETUGT:
3024 case ISD::SETUGE:
3025 std::swap(LHS, RHS);
3026 break;
3027 }
3028
3029 // On a floating point condition, the flags are set as follows:
3030 // ZF PF CF op
3031 // 0 | 0 | 0 | X > Y
3032 // 0 | 0 | 1 | X < Y
3033 // 1 | 0 | 0 | X == Y
3034 // 1 | 1 | 1 | unordered
3035 switch (SetCCOpcode) {
3036 default: llvm_unreachable("Condcode should be pre-legalized away");
3037 case ISD::SETUEQ:
3038 case ISD::SETEQ: return X86::COND_E;
3039 case ISD::SETOLT: // flipped
3040 case ISD::SETOGT:
3041 case ISD::SETGT: return X86::COND_A;
3042 case ISD::SETOLE: // flipped
3043 case ISD::SETOGE:
3044 case ISD::SETGE: return X86::COND_AE;
3045 case ISD::SETUGT: // flipped
3046 case ISD::SETULT:
3047 case ISD::SETLT: return X86::COND_B;
3048 case ISD::SETUGE: // flipped
3049 case ISD::SETULE:
3050 case ISD::SETLE: return X86::COND_BE;
3051 case ISD::SETONE:
3052 case ISD::SETNE: return X86::COND_NE;
3053 case ISD::SETUO: return X86::COND_P;
3054 case ISD::SETO: return X86::COND_NP;
3055 case ISD::SETOEQ:
3056 case ISD::SETUNE: return X86::COND_INVALID;
3057 }
3058 }
3059
3060 /// hasFPCMov - is there a floating point cmov for the specific X86 condition
3061 /// code. Current x86 isa includes the following FP cmov instructions:
3062 /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
hasFPCMov(unsigned X86CC)3063 static bool hasFPCMov(unsigned X86CC) {
3064 switch (X86CC) {
3065 default:
3066 return false;
3067 case X86::COND_B:
3068 case X86::COND_BE:
3069 case X86::COND_E:
3070 case X86::COND_P:
3071 case X86::COND_A:
3072 case X86::COND_AE:
3073 case X86::COND_NE:
3074 case X86::COND_NP:
3075 return true;
3076 }
3077 }
3078
3079 /// isFPImmLegal - Returns true if the target can instruction select the
3080 /// specified FP immediate natively. If false, the legalizer will
3081 /// materialize the FP immediate as a load from a constant pool.
isFPImmLegal(const APFloat & Imm,EVT VT) const3082 bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
3083 for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
3084 if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
3085 return true;
3086 }
3087 return false;
3088 }
3089
3090 /// isUndefOrInRange - Return true if Val is undef or if its value falls within
3091 /// the specified range (L, H].
isUndefOrInRange(int Val,int Low,int Hi)3092 static bool isUndefOrInRange(int Val, int Low, int Hi) {
3093 return (Val < 0) || (Val >= Low && Val < Hi);
3094 }
3095
3096 /// isUndefOrInRange - Return true if every element in Mask, begining
3097 /// from position Pos and ending in Pos+Size, falls within the specified
3098 /// range (L, L+Pos]. or is undef.
isUndefOrInRange(const SmallVectorImpl<int> & Mask,int Pos,int Size,int Low,int Hi)3099 static bool isUndefOrInRange(const SmallVectorImpl<int> &Mask,
3100 int Pos, int Size, int Low, int Hi) {
3101 for (int i = Pos, e = Pos+Size; i != e; ++i)
3102 if (!isUndefOrInRange(Mask[i], Low, Hi))
3103 return false;
3104 return true;
3105 }
3106
3107 /// isUndefOrEqual - Val is either less than zero (undef) or equal to the
3108 /// specified value.
isUndefOrEqual(int Val,int CmpVal)3109 static bool isUndefOrEqual(int Val, int CmpVal) {
3110 if (Val < 0 || Val == CmpVal)
3111 return true;
3112 return false;
3113 }
3114
3115 /// isSequentialOrUndefInRange - Return true if every element in Mask, begining
3116 /// from position Pos and ending in Pos+Size, falls within the specified
3117 /// sequential range (L, L+Pos]. or is undef.
isSequentialOrUndefInRange(const SmallVectorImpl<int> & Mask,int Pos,int Size,int Low)3118 static bool isSequentialOrUndefInRange(const SmallVectorImpl<int> &Mask,
3119 int Pos, int Size, int Low) {
3120 for (int i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3121 if (!isUndefOrEqual(Mask[i], Low))
3122 return false;
3123 return true;
3124 }
3125
3126 /// isPSHUFDMask - Return true if the node specifies a shuffle of elements that
3127 /// is suitable for input to PSHUFD or PSHUFW. That is, it doesn't reference
3128 /// the second operand.
isPSHUFDMask(const SmallVectorImpl<int> & Mask,EVT VT)3129 static bool isPSHUFDMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3130 if (VT == MVT::v4f32 || VT == MVT::v4i32 )
3131 return (Mask[0] < 4 && Mask[1] < 4 && Mask[2] < 4 && Mask[3] < 4);
3132 if (VT == MVT::v2f64 || VT == MVT::v2i64)
3133 return (Mask[0] < 2 && Mask[1] < 2);
3134 return false;
3135 }
3136
isPSHUFDMask(ShuffleVectorSDNode * N)3137 bool X86::isPSHUFDMask(ShuffleVectorSDNode *N) {
3138 SmallVector<int, 8> M;
3139 N->getMask(M);
3140 return ::isPSHUFDMask(M, N->getValueType(0));
3141 }
3142
3143 /// isPSHUFHWMask - Return true if the node specifies a shuffle of elements that
3144 /// is suitable for input to PSHUFHW.
isPSHUFHWMask(const SmallVectorImpl<int> & Mask,EVT VT)3145 static bool isPSHUFHWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3146 if (VT != MVT::v8i16)
3147 return false;
3148
3149 // Lower quadword copied in order or undef.
3150 for (int i = 0; i != 4; ++i)
3151 if (Mask[i] >= 0 && Mask[i] != i)
3152 return false;
3153
3154 // Upper quadword shuffled.
3155 for (int i = 4; i != 8; ++i)
3156 if (Mask[i] >= 0 && (Mask[i] < 4 || Mask[i] > 7))
3157 return false;
3158
3159 return true;
3160 }
3161
isPSHUFHWMask(ShuffleVectorSDNode * N)3162 bool X86::isPSHUFHWMask(ShuffleVectorSDNode *N) {
3163 SmallVector<int, 8> M;
3164 N->getMask(M);
3165 return ::isPSHUFHWMask(M, N->getValueType(0));
3166 }
3167
3168 /// isPSHUFLWMask - Return true if the node specifies a shuffle of elements that
3169 /// is suitable for input to PSHUFLW.
isPSHUFLWMask(const SmallVectorImpl<int> & Mask,EVT VT)3170 static bool isPSHUFLWMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3171 if (VT != MVT::v8i16)
3172 return false;
3173
3174 // Upper quadword copied in order.
3175 for (int i = 4; i != 8; ++i)
3176 if (Mask[i] >= 0 && Mask[i] != i)
3177 return false;
3178
3179 // Lower quadword shuffled.
3180 for (int i = 0; i != 4; ++i)
3181 if (Mask[i] >= 4)
3182 return false;
3183
3184 return true;
3185 }
3186
isPSHUFLWMask(ShuffleVectorSDNode * N)3187 bool X86::isPSHUFLWMask(ShuffleVectorSDNode *N) {
3188 SmallVector<int, 8> M;
3189 N->getMask(M);
3190 return ::isPSHUFLWMask(M, N->getValueType(0));
3191 }
3192
3193 /// isPALIGNRMask - Return true if the node specifies a shuffle of elements that
3194 /// is suitable for input to PALIGNR.
isPALIGNRMask(const SmallVectorImpl<int> & Mask,EVT VT,bool hasSSSE3OrAVX)3195 static bool isPALIGNRMask(const SmallVectorImpl<int> &Mask, EVT VT,
3196 bool hasSSSE3OrAVX) {
3197 int i, e = VT.getVectorNumElements();
3198 if (VT.getSizeInBits() != 128 && VT.getSizeInBits() != 64)
3199 return false;
3200
3201 // Do not handle v2i64 / v2f64 shuffles with palignr.
3202 if (e < 4 || !hasSSSE3OrAVX)
3203 return false;
3204
3205 for (i = 0; i != e; ++i)
3206 if (Mask[i] >= 0)
3207 break;
3208
3209 // All undef, not a palignr.
3210 if (i == e)
3211 return false;
3212
3213 // Make sure we're shifting in the right direction.
3214 if (Mask[i] <= i)
3215 return false;
3216
3217 int s = Mask[i] - i;
3218
3219 // Check the rest of the elements to see if they are consecutive.
3220 for (++i; i != e; ++i) {
3221 int m = Mask[i];
3222 if (m >= 0 && m != s+i)
3223 return false;
3224 }
3225 return true;
3226 }
3227
3228 /// isVSHUFPSYMask - Return true if the specified VECTOR_SHUFFLE operand
3229 /// specifies a shuffle of elements that is suitable for input to 256-bit
3230 /// VSHUFPSY.
isVSHUFPSYMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3231 static bool isVSHUFPSYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3232 const X86Subtarget *Subtarget) {
3233 int NumElems = VT.getVectorNumElements();
3234
3235 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3236 return false;
3237
3238 if (NumElems != 8)
3239 return false;
3240
3241 // VSHUFPSY divides the resulting vector into 4 chunks.
3242 // The sources are also splitted into 4 chunks, and each destination
3243 // chunk must come from a different source chunk.
3244 //
3245 // SRC1 => X7 X6 X5 X4 X3 X2 X1 X0
3246 // SRC2 => Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y9
3247 //
3248 // DST => Y7..Y4, Y7..Y4, X7..X4, X7..X4,
3249 // Y3..Y0, Y3..Y0, X3..X0, X3..X0
3250 //
3251 int QuarterSize = NumElems/4;
3252 int HalfSize = QuarterSize*2;
3253 for (int i = 0; i < QuarterSize; ++i)
3254 if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3255 return false;
3256 for (int i = QuarterSize; i < QuarterSize*2; ++i)
3257 if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3258 return false;
3259
3260 // The mask of the second half must be the same as the first but with
3261 // the appropriate offsets. This works in the same way as VPERMILPS
3262 // works with masks.
3263 for (int i = QuarterSize*2; i < QuarterSize*3; ++i) {
3264 if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3265 return false;
3266 int FstHalfIdx = i-HalfSize;
3267 if (Mask[FstHalfIdx] < 0)
3268 continue;
3269 if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3270 return false;
3271 }
3272 for (int i = QuarterSize*3; i < NumElems; ++i) {
3273 if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3274 return false;
3275 int FstHalfIdx = i-HalfSize;
3276 if (Mask[FstHalfIdx] < 0)
3277 continue;
3278 if (!isUndefOrEqual(Mask[i], Mask[FstHalfIdx]+HalfSize))
3279 return false;
3280
3281 }
3282
3283 return true;
3284 }
3285
3286 /// getShuffleVSHUFPSYImmediate - Return the appropriate immediate to shuffle
3287 /// the specified VECTOR_MASK mask with VSHUFPSY instruction.
getShuffleVSHUFPSYImmediate(SDNode * N)3288 static unsigned getShuffleVSHUFPSYImmediate(SDNode *N) {
3289 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3290 EVT VT = SVOp->getValueType(0);
3291 int NumElems = VT.getVectorNumElements();
3292
3293 assert(NumElems == 8 && VT.getSizeInBits() == 256 &&
3294 "Only supports v8i32 and v8f32 types");
3295
3296 int HalfSize = NumElems/2;
3297 unsigned Mask = 0;
3298 for (int i = 0; i != NumElems ; ++i) {
3299 if (SVOp->getMaskElt(i) < 0)
3300 continue;
3301 // The mask of the first half must be equal to the second one.
3302 unsigned Shamt = (i%HalfSize)*2;
3303 unsigned Elt = SVOp->getMaskElt(i) % HalfSize;
3304 Mask |= Elt << Shamt;
3305 }
3306
3307 return Mask;
3308 }
3309
3310 /// isVSHUFPDYMask - Return true if the specified VECTOR_SHUFFLE operand
3311 /// specifies a shuffle of elements that is suitable for input to 256-bit
3312 /// VSHUFPDY. This shuffle doesn't have the same restriction as the PS
3313 /// version and the mask of the second half isn't binded with the first
3314 /// one.
isVSHUFPDYMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3315 static bool isVSHUFPDYMask(const SmallVectorImpl<int> &Mask, EVT VT,
3316 const X86Subtarget *Subtarget) {
3317 int NumElems = VT.getVectorNumElements();
3318
3319 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3320 return false;
3321
3322 if (NumElems != 4)
3323 return false;
3324
3325 // VSHUFPSY divides the resulting vector into 4 chunks.
3326 // The sources are also splitted into 4 chunks, and each destination
3327 // chunk must come from a different source chunk.
3328 //
3329 // SRC1 => X3 X2 X1 X0
3330 // SRC2 => Y3 Y2 Y1 Y0
3331 //
3332 // DST => Y2..Y3, X2..X3, Y1..Y0, X1..X0
3333 //
3334 int QuarterSize = NumElems/4;
3335 int HalfSize = QuarterSize*2;
3336 for (int i = 0; i < QuarterSize; ++i)
3337 if (!isUndefOrInRange(Mask[i], 0, HalfSize))
3338 return false;
3339 for (int i = QuarterSize; i < QuarterSize*2; ++i)
3340 if (!isUndefOrInRange(Mask[i], NumElems, NumElems+HalfSize))
3341 return false;
3342 for (int i = QuarterSize*2; i < QuarterSize*3; ++i)
3343 if (!isUndefOrInRange(Mask[i], HalfSize, NumElems))
3344 return false;
3345 for (int i = QuarterSize*3; i < NumElems; ++i)
3346 if (!isUndefOrInRange(Mask[i], NumElems+HalfSize, NumElems*2))
3347 return false;
3348
3349 return true;
3350 }
3351
3352 /// getShuffleVSHUFPDYImmediate - Return the appropriate immediate to shuffle
3353 /// the specified VECTOR_MASK mask with VSHUFPDY instruction.
getShuffleVSHUFPDYImmediate(SDNode * N)3354 static unsigned getShuffleVSHUFPDYImmediate(SDNode *N) {
3355 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3356 EVT VT = SVOp->getValueType(0);
3357 int NumElems = VT.getVectorNumElements();
3358
3359 assert(NumElems == 4 && VT.getSizeInBits() == 256 &&
3360 "Only supports v4i64 and v4f64 types");
3361
3362 int HalfSize = NumElems/2;
3363 unsigned Mask = 0;
3364 for (int i = 0; i != NumElems ; ++i) {
3365 if (SVOp->getMaskElt(i) < 0)
3366 continue;
3367 int Elt = SVOp->getMaskElt(i) % HalfSize;
3368 Mask |= Elt << i;
3369 }
3370
3371 return Mask;
3372 }
3373
3374 /// isSHUFPMask - Return true if the specified VECTOR_SHUFFLE operand
3375 /// specifies a shuffle of elements that is suitable for input to 128-bit
3376 /// SHUFPS and SHUFPD.
isSHUFPMask(const SmallVectorImpl<int> & Mask,EVT VT)3377 static bool isSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3378 int NumElems = VT.getVectorNumElements();
3379
3380 if (VT.getSizeInBits() != 128)
3381 return false;
3382
3383 if (NumElems != 2 && NumElems != 4)
3384 return false;
3385
3386 int Half = NumElems / 2;
3387 for (int i = 0; i < Half; ++i)
3388 if (!isUndefOrInRange(Mask[i], 0, NumElems))
3389 return false;
3390 for (int i = Half; i < NumElems; ++i)
3391 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3392 return false;
3393
3394 return true;
3395 }
3396
isSHUFPMask(ShuffleVectorSDNode * N)3397 bool X86::isSHUFPMask(ShuffleVectorSDNode *N) {
3398 SmallVector<int, 8> M;
3399 N->getMask(M);
3400 return ::isSHUFPMask(M, N->getValueType(0));
3401 }
3402
3403 /// isCommutedSHUFP - Returns true if the shuffle mask is exactly
3404 /// the reverse of what x86 shuffles want. x86 shuffles requires the lower
3405 /// half elements to come from vector 1 (which would equal the dest.) and
3406 /// the upper half to come from vector 2.
isCommutedSHUFPMask(const SmallVectorImpl<int> & Mask,EVT VT)3407 static bool isCommutedSHUFPMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3408 int NumElems = VT.getVectorNumElements();
3409
3410 if (NumElems != 2 && NumElems != 4)
3411 return false;
3412
3413 int Half = NumElems / 2;
3414 for (int i = 0; i < Half; ++i)
3415 if (!isUndefOrInRange(Mask[i], NumElems, NumElems*2))
3416 return false;
3417 for (int i = Half; i < NumElems; ++i)
3418 if (!isUndefOrInRange(Mask[i], 0, NumElems))
3419 return false;
3420 return true;
3421 }
3422
isCommutedSHUFP(ShuffleVectorSDNode * N)3423 static bool isCommutedSHUFP(ShuffleVectorSDNode *N) {
3424 SmallVector<int, 8> M;
3425 N->getMask(M);
3426 return isCommutedSHUFPMask(M, N->getValueType(0));
3427 }
3428
3429 /// isMOVHLPSMask - Return true if the specified VECTOR_SHUFFLE operand
3430 /// specifies a shuffle of elements that is suitable for input to MOVHLPS.
isMOVHLPSMask(ShuffleVectorSDNode * N)3431 bool X86::isMOVHLPSMask(ShuffleVectorSDNode *N) {
3432 EVT VT = N->getValueType(0);
3433 unsigned NumElems = VT.getVectorNumElements();
3434
3435 if (VT.getSizeInBits() != 128)
3436 return false;
3437
3438 if (NumElems != 4)
3439 return false;
3440
3441 // Expect bit0 == 6, bit1 == 7, bit2 == 2, bit3 == 3
3442 return isUndefOrEqual(N->getMaskElt(0), 6) &&
3443 isUndefOrEqual(N->getMaskElt(1), 7) &&
3444 isUndefOrEqual(N->getMaskElt(2), 2) &&
3445 isUndefOrEqual(N->getMaskElt(3), 3);
3446 }
3447
3448 /// isMOVHLPS_v_undef_Mask - Special case of isMOVHLPSMask for canonical form
3449 /// of vector_shuffle v, v, <2, 3, 2, 3>, i.e. vector_shuffle v, undef,
3450 /// <2, 3, 2, 3>
isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode * N)3451 bool X86::isMOVHLPS_v_undef_Mask(ShuffleVectorSDNode *N) {
3452 EVT VT = N->getValueType(0);
3453 unsigned NumElems = VT.getVectorNumElements();
3454
3455 if (VT.getSizeInBits() != 128)
3456 return false;
3457
3458 if (NumElems != 4)
3459 return false;
3460
3461 return isUndefOrEqual(N->getMaskElt(0), 2) &&
3462 isUndefOrEqual(N->getMaskElt(1), 3) &&
3463 isUndefOrEqual(N->getMaskElt(2), 2) &&
3464 isUndefOrEqual(N->getMaskElt(3), 3);
3465 }
3466
3467 /// isMOVLPMask - Return true if the specified VECTOR_SHUFFLE operand
3468 /// specifies a shuffle of elements that is suitable for input to MOVLP{S|D}.
isMOVLPMask(ShuffleVectorSDNode * N)3469 bool X86::isMOVLPMask(ShuffleVectorSDNode *N) {
3470 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3471
3472 if (NumElems != 2 && NumElems != 4)
3473 return false;
3474
3475 for (unsigned i = 0; i < NumElems/2; ++i)
3476 if (!isUndefOrEqual(N->getMaskElt(i), i + NumElems))
3477 return false;
3478
3479 for (unsigned i = NumElems/2; i < NumElems; ++i)
3480 if (!isUndefOrEqual(N->getMaskElt(i), i))
3481 return false;
3482
3483 return true;
3484 }
3485
3486 /// isMOVLHPSMask - Return true if the specified VECTOR_SHUFFLE operand
3487 /// specifies a shuffle of elements that is suitable for input to MOVLHPS.
isMOVLHPSMask(ShuffleVectorSDNode * N)3488 bool X86::isMOVLHPSMask(ShuffleVectorSDNode *N) {
3489 unsigned NumElems = N->getValueType(0).getVectorNumElements();
3490
3491 if ((NumElems != 2 && NumElems != 4)
3492 || N->getValueType(0).getSizeInBits() > 128)
3493 return false;
3494
3495 for (unsigned i = 0; i < NumElems/2; ++i)
3496 if (!isUndefOrEqual(N->getMaskElt(i), i))
3497 return false;
3498
3499 for (unsigned i = 0; i < NumElems/2; ++i)
3500 if (!isUndefOrEqual(N->getMaskElt(i + NumElems/2), i + NumElems))
3501 return false;
3502
3503 return true;
3504 }
3505
3506 /// isUNPCKLMask - Return true if the specified VECTOR_SHUFFLE operand
3507 /// specifies a shuffle of elements that is suitable for input to UNPCKL.
isUNPCKLMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false)3508 static bool isUNPCKLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3509 bool V2IsSplat = false) {
3510 int NumElts = VT.getVectorNumElements();
3511
3512 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3513 "Unsupported vector type for unpckh");
3514
3515 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3516 return false;
3517
3518 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3519 // independently on 128-bit lanes.
3520 unsigned NumLanes = VT.getSizeInBits()/128;
3521 unsigned NumLaneElts = NumElts/NumLanes;
3522
3523 unsigned Start = 0;
3524 unsigned End = NumLaneElts;
3525 for (unsigned s = 0; s < NumLanes; ++s) {
3526 for (unsigned i = Start, j = s * NumLaneElts;
3527 i != End;
3528 i += 2, ++j) {
3529 int BitI = Mask[i];
3530 int BitI1 = Mask[i+1];
3531 if (!isUndefOrEqual(BitI, j))
3532 return false;
3533 if (V2IsSplat) {
3534 if (!isUndefOrEqual(BitI1, NumElts))
3535 return false;
3536 } else {
3537 if (!isUndefOrEqual(BitI1, j + NumElts))
3538 return false;
3539 }
3540 }
3541 // Process the next 128 bits.
3542 Start += NumLaneElts;
3543 End += NumLaneElts;
3544 }
3545
3546 return true;
3547 }
3548
isUNPCKLMask(ShuffleVectorSDNode * N,bool V2IsSplat)3549 bool X86::isUNPCKLMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3550 SmallVector<int, 8> M;
3551 N->getMask(M);
3552 return ::isUNPCKLMask(M, N->getValueType(0), V2IsSplat);
3553 }
3554
3555 /// isUNPCKHMask - Return true if the specified VECTOR_SHUFFLE operand
3556 /// specifies a shuffle of elements that is suitable for input to UNPCKH.
isUNPCKHMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false)3557 static bool isUNPCKHMask(const SmallVectorImpl<int> &Mask, EVT VT,
3558 bool V2IsSplat = false) {
3559 int NumElts = VT.getVectorNumElements();
3560
3561 assert((VT.is128BitVector() || VT.is256BitVector()) &&
3562 "Unsupported vector type for unpckh");
3563
3564 if (VT.getSizeInBits() == 256 && NumElts != 4 && NumElts != 8)
3565 return false;
3566
3567 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3568 // independently on 128-bit lanes.
3569 unsigned NumLanes = VT.getSizeInBits()/128;
3570 unsigned NumLaneElts = NumElts/NumLanes;
3571
3572 unsigned Start = 0;
3573 unsigned End = NumLaneElts;
3574 for (unsigned l = 0; l != NumLanes; ++l) {
3575 for (unsigned i = Start, j = (l*NumLaneElts)+NumLaneElts/2;
3576 i != End; i += 2, ++j) {
3577 int BitI = Mask[i];
3578 int BitI1 = Mask[i+1];
3579 if (!isUndefOrEqual(BitI, j))
3580 return false;
3581 if (V2IsSplat) {
3582 if (isUndefOrEqual(BitI1, NumElts))
3583 return false;
3584 } else {
3585 if (!isUndefOrEqual(BitI1, j+NumElts))
3586 return false;
3587 }
3588 }
3589 // Process the next 128 bits.
3590 Start += NumLaneElts;
3591 End += NumLaneElts;
3592 }
3593 return true;
3594 }
3595
isUNPCKHMask(ShuffleVectorSDNode * N,bool V2IsSplat)3596 bool X86::isUNPCKHMask(ShuffleVectorSDNode *N, bool V2IsSplat) {
3597 SmallVector<int, 8> M;
3598 N->getMask(M);
3599 return ::isUNPCKHMask(M, N->getValueType(0), V2IsSplat);
3600 }
3601
3602 /// isUNPCKL_v_undef_Mask - Special case of isUNPCKLMask for canonical form
3603 /// of vector_shuffle v, v, <0, 4, 1, 5>, i.e. vector_shuffle v, undef,
3604 /// <0, 0, 1, 1>
isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> & Mask,EVT VT)3605 static bool isUNPCKL_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3606 int NumElems = VT.getVectorNumElements();
3607 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3608 return false;
3609
3610 // For 256-bit i64/f64, use MOVDDUPY instead, so reject the matching pattern
3611 // FIXME: Need a better way to get rid of this, there's no latency difference
3612 // between UNPCKLPD and MOVDDUP, the later should always be checked first and
3613 // the former later. We should also remove the "_undef" special mask.
3614 if (NumElems == 4 && VT.getSizeInBits() == 256)
3615 return false;
3616
3617 // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate
3618 // independently on 128-bit lanes.
3619 unsigned NumLanes = VT.getSizeInBits() / 128;
3620 unsigned NumLaneElts = NumElems / NumLanes;
3621
3622 for (unsigned s = 0; s < NumLanes; ++s) {
3623 for (unsigned i = s * NumLaneElts, j = s * NumLaneElts;
3624 i != NumLaneElts * (s + 1);
3625 i += 2, ++j) {
3626 int BitI = Mask[i];
3627 int BitI1 = Mask[i+1];
3628
3629 if (!isUndefOrEqual(BitI, j))
3630 return false;
3631 if (!isUndefOrEqual(BitI1, j))
3632 return false;
3633 }
3634 }
3635
3636 return true;
3637 }
3638
isUNPCKL_v_undef_Mask(ShuffleVectorSDNode * N)3639 bool X86::isUNPCKL_v_undef_Mask(ShuffleVectorSDNode *N) {
3640 SmallVector<int, 8> M;
3641 N->getMask(M);
3642 return ::isUNPCKL_v_undef_Mask(M, N->getValueType(0));
3643 }
3644
3645 /// isUNPCKH_v_undef_Mask - Special case of isUNPCKHMask for canonical form
3646 /// of vector_shuffle v, v, <2, 6, 3, 7>, i.e. vector_shuffle v, undef,
3647 /// <2, 2, 3, 3>
isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> & Mask,EVT VT)3648 static bool isUNPCKH_v_undef_Mask(const SmallVectorImpl<int> &Mask, EVT VT) {
3649 int NumElems = VT.getVectorNumElements();
3650 if (NumElems != 2 && NumElems != 4 && NumElems != 8 && NumElems != 16)
3651 return false;
3652
3653 for (int i = 0, j = NumElems / 2; i != NumElems; i += 2, ++j) {
3654 int BitI = Mask[i];
3655 int BitI1 = Mask[i+1];
3656 if (!isUndefOrEqual(BitI, j))
3657 return false;
3658 if (!isUndefOrEqual(BitI1, j))
3659 return false;
3660 }
3661 return true;
3662 }
3663
isUNPCKH_v_undef_Mask(ShuffleVectorSDNode * N)3664 bool X86::isUNPCKH_v_undef_Mask(ShuffleVectorSDNode *N) {
3665 SmallVector<int, 8> M;
3666 N->getMask(M);
3667 return ::isUNPCKH_v_undef_Mask(M, N->getValueType(0));
3668 }
3669
3670 /// isMOVLMask - Return true if the specified VECTOR_SHUFFLE operand
3671 /// specifies a shuffle of elements that is suitable for input to MOVSS,
3672 /// MOVSD, and MOVD, i.e. setting the lowest element.
isMOVLMask(const SmallVectorImpl<int> & Mask,EVT VT)3673 static bool isMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT) {
3674 if (VT.getVectorElementType().getSizeInBits() < 32)
3675 return false;
3676
3677 int NumElts = VT.getVectorNumElements();
3678
3679 if (!isUndefOrEqual(Mask[0], NumElts))
3680 return false;
3681
3682 for (int i = 1; i < NumElts; ++i)
3683 if (!isUndefOrEqual(Mask[i], i))
3684 return false;
3685
3686 return true;
3687 }
3688
isMOVLMask(ShuffleVectorSDNode * N)3689 bool X86::isMOVLMask(ShuffleVectorSDNode *N) {
3690 SmallVector<int, 8> M;
3691 N->getMask(M);
3692 return ::isMOVLMask(M, N->getValueType(0));
3693 }
3694
3695 /// isVPERM2F128Mask - Match 256-bit shuffles where the elements are considered
3696 /// as permutations between 128-bit chunks or halves. As an example: this
3697 /// shuffle bellow:
3698 /// vector_shuffle <4, 5, 6, 7, 12, 13, 14, 15>
3699 /// The first half comes from the second half of V1 and the second half from the
3700 /// the second half of V2.
isVPERM2F128Mask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3701 static bool isVPERM2F128Mask(const SmallVectorImpl<int> &Mask, EVT VT,
3702 const X86Subtarget *Subtarget) {
3703 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256)
3704 return false;
3705
3706 // The shuffle result is divided into half A and half B. In total the two
3707 // sources have 4 halves, namely: C, D, E, F. The final values of A and
3708 // B must come from C, D, E or F.
3709 int HalfSize = VT.getVectorNumElements()/2;
3710 bool MatchA = false, MatchB = false;
3711
3712 // Check if A comes from one of C, D, E, F.
3713 for (int Half = 0; Half < 4; ++Half) {
3714 if (isSequentialOrUndefInRange(Mask, 0, HalfSize, Half*HalfSize)) {
3715 MatchA = true;
3716 break;
3717 }
3718 }
3719
3720 // Check if B comes from one of C, D, E, F.
3721 for (int Half = 0; Half < 4; ++Half) {
3722 if (isSequentialOrUndefInRange(Mask, HalfSize, HalfSize, Half*HalfSize)) {
3723 MatchB = true;
3724 break;
3725 }
3726 }
3727
3728 return MatchA && MatchB;
3729 }
3730
3731 /// getShuffleVPERM2F128Immediate - Return the appropriate immediate to shuffle
3732 /// the specified VECTOR_MASK mask with VPERM2F128 instructions.
getShuffleVPERM2F128Immediate(SDNode * N)3733 static unsigned getShuffleVPERM2F128Immediate(SDNode *N) {
3734 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3735 EVT VT = SVOp->getValueType(0);
3736
3737 int HalfSize = VT.getVectorNumElements()/2;
3738
3739 int FstHalf = 0, SndHalf = 0;
3740 for (int i = 0; i < HalfSize; ++i) {
3741 if (SVOp->getMaskElt(i) > 0) {
3742 FstHalf = SVOp->getMaskElt(i)/HalfSize;
3743 break;
3744 }
3745 }
3746 for (int i = HalfSize; i < HalfSize*2; ++i) {
3747 if (SVOp->getMaskElt(i) > 0) {
3748 SndHalf = SVOp->getMaskElt(i)/HalfSize;
3749 break;
3750 }
3751 }
3752
3753 return (FstHalf | (SndHalf << 4));
3754 }
3755
3756 /// isVPERMILPDMask - Return true if the specified VECTOR_SHUFFLE operand
3757 /// specifies a shuffle of elements that is suitable for input to VPERMILPD*.
3758 /// Note that VPERMIL mask matching is different depending whether theunderlying
3759 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3760 /// to the same elements of the low, but to the higher half of the source.
3761 /// In VPERMILPD the two lanes could be shuffled independently of each other
3762 /// with the same restriction that lanes can't be crossed.
isVPERMILPDMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3763 static bool isVPERMILPDMask(const SmallVectorImpl<int> &Mask, EVT VT,
3764 const X86Subtarget *Subtarget) {
3765 int NumElts = VT.getVectorNumElements();
3766 int NumLanes = VT.getSizeInBits()/128;
3767
3768 if (!Subtarget->hasAVX())
3769 return false;
3770
3771 // Only match 256-bit with 64-bit types
3772 if (VT.getSizeInBits() != 256 || NumElts != 4)
3773 return false;
3774
3775 // The mask on the high lane is independent of the low. Both can match
3776 // any element in inside its own lane, but can't cross.
3777 int LaneSize = NumElts/NumLanes;
3778 for (int l = 0; l < NumLanes; ++l)
3779 for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3780 int LaneStart = l*LaneSize;
3781 if (!isUndefOrInRange(Mask[i], LaneStart, LaneStart+LaneSize))
3782 return false;
3783 }
3784
3785 return true;
3786 }
3787
3788 /// isVPERMILPSMask - Return true if the specified VECTOR_SHUFFLE operand
3789 /// specifies a shuffle of elements that is suitable for input to VPERMILPS*.
3790 /// Note that VPERMIL mask matching is different depending whether theunderlying
3791 /// type is 32 or 64. In the VPERMILPS the high half of the mask should point
3792 /// to the same elements of the low, but to the higher half of the source.
3793 /// In VPERMILPD the two lanes could be shuffled independently of each other
3794 /// with the same restriction that lanes can't be crossed.
isVPERMILPSMask(const SmallVectorImpl<int> & Mask,EVT VT,const X86Subtarget * Subtarget)3795 static bool isVPERMILPSMask(const SmallVectorImpl<int> &Mask, EVT VT,
3796 const X86Subtarget *Subtarget) {
3797 unsigned NumElts = VT.getVectorNumElements();
3798 unsigned NumLanes = VT.getSizeInBits()/128;
3799
3800 if (!Subtarget->hasAVX())
3801 return false;
3802
3803 // Only match 256-bit with 32-bit types
3804 if (VT.getSizeInBits() != 256 || NumElts != 8)
3805 return false;
3806
3807 // The mask on the high lane should be the same as the low. Actually,
3808 // they can differ if any of the corresponding index in a lane is undef
3809 // and the other stays in range.
3810 int LaneSize = NumElts/NumLanes;
3811 for (int i = 0; i < LaneSize; ++i) {
3812 int HighElt = i+LaneSize;
3813 bool HighValid = isUndefOrInRange(Mask[HighElt], LaneSize, NumElts);
3814 bool LowValid = isUndefOrInRange(Mask[i], 0, LaneSize);
3815
3816 if (!HighValid || !LowValid)
3817 return false;
3818 if (Mask[i] < 0 || Mask[HighElt] < 0)
3819 continue;
3820 if (Mask[HighElt]-Mask[i] != LaneSize)
3821 return false;
3822 }
3823
3824 return true;
3825 }
3826
3827 /// getShuffleVPERMILPSImmediate - Return the appropriate immediate to shuffle
3828 /// the specified VECTOR_MASK mask with VPERMILPS* instructions.
getShuffleVPERMILPSImmediate(SDNode * N)3829 static unsigned getShuffleVPERMILPSImmediate(SDNode *N) {
3830 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3831 EVT VT = SVOp->getValueType(0);
3832
3833 int NumElts = VT.getVectorNumElements();
3834 int NumLanes = VT.getSizeInBits()/128;
3835 int LaneSize = NumElts/NumLanes;
3836
3837 // Although the mask is equal for both lanes do it twice to get the cases
3838 // where a mask will match because the same mask element is undef on the
3839 // first half but valid on the second. This would get pathological cases
3840 // such as: shuffle <u, 0, 1, 2, 4, 4, 5, 6>, which is completely valid.
3841 unsigned Mask = 0;
3842 for (int l = 0; l < NumLanes; ++l) {
3843 for (int i = 0; i < LaneSize; ++i) {
3844 int MaskElt = SVOp->getMaskElt(i+(l*LaneSize));
3845 if (MaskElt < 0)
3846 continue;
3847 if (MaskElt >= LaneSize)
3848 MaskElt -= LaneSize;
3849 Mask |= MaskElt << (i*2);
3850 }
3851 }
3852
3853 return Mask;
3854 }
3855
3856 /// getShuffleVPERMILPDImmediate - Return the appropriate immediate to shuffle
3857 /// the specified VECTOR_MASK mask with VPERMILPD* instructions.
getShuffleVPERMILPDImmediate(SDNode * N)3858 static unsigned getShuffleVPERMILPDImmediate(SDNode *N) {
3859 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
3860 EVT VT = SVOp->getValueType(0);
3861
3862 int NumElts = VT.getVectorNumElements();
3863 int NumLanes = VT.getSizeInBits()/128;
3864
3865 unsigned Mask = 0;
3866 int LaneSize = NumElts/NumLanes;
3867 for (int l = 0; l < NumLanes; ++l)
3868 for (int i = l*LaneSize; i < LaneSize*(l+1); ++i) {
3869 int MaskElt = SVOp->getMaskElt(i);
3870 if (MaskElt < 0)
3871 continue;
3872 Mask |= (MaskElt-l*LaneSize) << i;
3873 }
3874
3875 return Mask;
3876 }
3877
3878 /// isCommutedMOVL - Returns true if the shuffle mask is except the reverse
3879 /// of what x86 movss want. X86 movs requires the lowest element to be lowest
3880 /// element of vector 2 and the other elements to come from vector 1 in order.
isCommutedMOVLMask(const SmallVectorImpl<int> & Mask,EVT VT,bool V2IsSplat=false,bool V2IsUndef=false)3881 static bool isCommutedMOVLMask(const SmallVectorImpl<int> &Mask, EVT VT,
3882 bool V2IsSplat = false, bool V2IsUndef = false) {
3883 int NumOps = VT.getVectorNumElements();
3884 if (NumOps != 2 && NumOps != 4 && NumOps != 8 && NumOps != 16)
3885 return false;
3886
3887 if (!isUndefOrEqual(Mask[0], 0))
3888 return false;
3889
3890 for (int i = 1; i < NumOps; ++i)
3891 if (!(isUndefOrEqual(Mask[i], i+NumOps) ||
3892 (V2IsUndef && isUndefOrInRange(Mask[i], NumOps, NumOps*2)) ||
3893 (V2IsSplat && isUndefOrEqual(Mask[i], NumOps))))
3894 return false;
3895
3896 return true;
3897 }
3898
isCommutedMOVL(ShuffleVectorSDNode * N,bool V2IsSplat=false,bool V2IsUndef=false)3899 static bool isCommutedMOVL(ShuffleVectorSDNode *N, bool V2IsSplat = false,
3900 bool V2IsUndef = false) {
3901 SmallVector<int, 8> M;
3902 N->getMask(M);
3903 return isCommutedMOVLMask(M, N->getValueType(0), V2IsSplat, V2IsUndef);
3904 }
3905
3906 /// isMOVSHDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3907 /// specifies a shuffle of elements that is suitable for input to MOVSHDUP.
3908 /// Masks to match: <1, 1, 3, 3> or <1, 1, 3, 3, 5, 5, 7, 7>
isMOVSHDUPMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3909 bool X86::isMOVSHDUPMask(ShuffleVectorSDNode *N,
3910 const X86Subtarget *Subtarget) {
3911 if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3912 return false;
3913
3914 // The second vector must be undef
3915 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3916 return false;
3917
3918 EVT VT = N->getValueType(0);
3919 unsigned NumElems = VT.getVectorNumElements();
3920
3921 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3922 (VT.getSizeInBits() == 256 && NumElems != 8))
3923 return false;
3924
3925 // "i+1" is the value the indexed mask element must have
3926 for (unsigned i = 0; i < NumElems; i += 2)
3927 if (!isUndefOrEqual(N->getMaskElt(i), i+1) ||
3928 !isUndefOrEqual(N->getMaskElt(i+1), i+1))
3929 return false;
3930
3931 return true;
3932 }
3933
3934 /// isMOVSLDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3935 /// specifies a shuffle of elements that is suitable for input to MOVSLDUP.
3936 /// Masks to match: <0, 0, 2, 2> or <0, 0, 2, 2, 4, 4, 6, 6>
isMOVSLDUPMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3937 bool X86::isMOVSLDUPMask(ShuffleVectorSDNode *N,
3938 const X86Subtarget *Subtarget) {
3939 if (!Subtarget->hasSSE3() && !Subtarget->hasAVX())
3940 return false;
3941
3942 // The second vector must be undef
3943 if (N->getOperand(1).getOpcode() != ISD::UNDEF)
3944 return false;
3945
3946 EVT VT = N->getValueType(0);
3947 unsigned NumElems = VT.getVectorNumElements();
3948
3949 if ((VT.getSizeInBits() == 128 && NumElems != 4) ||
3950 (VT.getSizeInBits() == 256 && NumElems != 8))
3951 return false;
3952
3953 // "i" is the value the indexed mask element must have
3954 for (unsigned i = 0; i < NumElems; i += 2)
3955 if (!isUndefOrEqual(N->getMaskElt(i), i) ||
3956 !isUndefOrEqual(N->getMaskElt(i+1), i))
3957 return false;
3958
3959 return true;
3960 }
3961
3962 /// isMOVDDUPYMask - Return true if the specified VECTOR_SHUFFLE operand
3963 /// specifies a shuffle of elements that is suitable for input to 256-bit
3964 /// version of MOVDDUP.
isMOVDDUPYMask(ShuffleVectorSDNode * N,const X86Subtarget * Subtarget)3965 static bool isMOVDDUPYMask(ShuffleVectorSDNode *N,
3966 const X86Subtarget *Subtarget) {
3967 EVT VT = N->getValueType(0);
3968 int NumElts = VT.getVectorNumElements();
3969 bool V2IsUndef = N->getOperand(1).getOpcode() == ISD::UNDEF;
3970
3971 if (!Subtarget->hasAVX() || VT.getSizeInBits() != 256 ||
3972 !V2IsUndef || NumElts != 4)
3973 return false;
3974
3975 for (int i = 0; i != NumElts/2; ++i)
3976 if (!isUndefOrEqual(N->getMaskElt(i), 0))
3977 return false;
3978 for (int i = NumElts/2; i != NumElts; ++i)
3979 if (!isUndefOrEqual(N->getMaskElt(i), NumElts/2))
3980 return false;
3981 return true;
3982 }
3983
3984 /// isMOVDDUPMask - Return true if the specified VECTOR_SHUFFLE operand
3985 /// specifies a shuffle of elements that is suitable for input to 128-bit
3986 /// version of MOVDDUP.
isMOVDDUPMask(ShuffleVectorSDNode * N)3987 bool X86::isMOVDDUPMask(ShuffleVectorSDNode *N) {
3988 EVT VT = N->getValueType(0);
3989
3990 if (VT.getSizeInBits() != 128)
3991 return false;
3992
3993 int e = VT.getVectorNumElements() / 2;
3994 for (int i = 0; i < e; ++i)
3995 if (!isUndefOrEqual(N->getMaskElt(i), i))
3996 return false;
3997 for (int i = 0; i < e; ++i)
3998 if (!isUndefOrEqual(N->getMaskElt(e+i), i))
3999 return false;
4000 return true;
4001 }
4002
4003 /// isVEXTRACTF128Index - Return true if the specified
4004 /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
4005 /// suitable for input to VEXTRACTF128.
isVEXTRACTF128Index(SDNode * N)4006 bool X86::isVEXTRACTF128Index(SDNode *N) {
4007 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4008 return false;
4009
4010 // The index should be aligned on a 128-bit boundary.
4011 uint64_t Index =
4012 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4013
4014 unsigned VL = N->getValueType(0).getVectorNumElements();
4015 unsigned VBits = N->getValueType(0).getSizeInBits();
4016 unsigned ElSize = VBits / VL;
4017 bool Result = (Index * ElSize) % 128 == 0;
4018
4019 return Result;
4020 }
4021
4022 /// isVINSERTF128Index - Return true if the specified INSERT_SUBVECTOR
4023 /// operand specifies a subvector insert that is suitable for input to
4024 /// VINSERTF128.
isVINSERTF128Index(SDNode * N)4025 bool X86::isVINSERTF128Index(SDNode *N) {
4026 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4027 return false;
4028
4029 // The index should be aligned on a 128-bit boundary.
4030 uint64_t Index =
4031 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4032
4033 unsigned VL = N->getValueType(0).getVectorNumElements();
4034 unsigned VBits = N->getValueType(0).getSizeInBits();
4035 unsigned ElSize = VBits / VL;
4036 bool Result = (Index * ElSize) % 128 == 0;
4037
4038 return Result;
4039 }
4040
4041 /// getShuffleSHUFImmediate - Return the appropriate immediate to shuffle
4042 /// the specified VECTOR_SHUFFLE mask with PSHUF* and SHUFP* instructions.
getShuffleSHUFImmediate(SDNode * N)4043 unsigned X86::getShuffleSHUFImmediate(SDNode *N) {
4044 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4045 int NumOperands = SVOp->getValueType(0).getVectorNumElements();
4046
4047 unsigned Shift = (NumOperands == 4) ? 2 : 1;
4048 unsigned Mask = 0;
4049 for (int i = 0; i < NumOperands; ++i) {
4050 int Val = SVOp->getMaskElt(NumOperands-i-1);
4051 if (Val < 0) Val = 0;
4052 if (Val >= NumOperands) Val -= NumOperands;
4053 Mask |= Val;
4054 if (i != NumOperands - 1)
4055 Mask <<= Shift;
4056 }
4057 return Mask;
4058 }
4059
4060 /// getShufflePSHUFHWImmediate - Return the appropriate immediate to shuffle
4061 /// the specified VECTOR_SHUFFLE mask with the PSHUFHW instruction.
getShufflePSHUFHWImmediate(SDNode * N)4062 unsigned X86::getShufflePSHUFHWImmediate(SDNode *N) {
4063 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4064 unsigned Mask = 0;
4065 // 8 nodes, but we only care about the last 4.
4066 for (unsigned i = 7; i >= 4; --i) {
4067 int Val = SVOp->getMaskElt(i);
4068 if (Val >= 0)
4069 Mask |= (Val - 4);
4070 if (i != 4)
4071 Mask <<= 2;
4072 }
4073 return Mask;
4074 }
4075
4076 /// getShufflePSHUFLWImmediate - Return the appropriate immediate to shuffle
4077 /// the specified VECTOR_SHUFFLE mask with the PSHUFLW instruction.
getShufflePSHUFLWImmediate(SDNode * N)4078 unsigned X86::getShufflePSHUFLWImmediate(SDNode *N) {
4079 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4080 unsigned Mask = 0;
4081 // 8 nodes, but we only care about the first 4.
4082 for (int i = 3; i >= 0; --i) {
4083 int Val = SVOp->getMaskElt(i);
4084 if (Val >= 0)
4085 Mask |= Val;
4086 if (i != 0)
4087 Mask <<= 2;
4088 }
4089 return Mask;
4090 }
4091
4092 /// getShufflePALIGNRImmediate - Return the appropriate immediate to shuffle
4093 /// the specified VECTOR_SHUFFLE mask with the PALIGNR instruction.
getShufflePALIGNRImmediate(SDNode * N)4094 unsigned X86::getShufflePALIGNRImmediate(SDNode *N) {
4095 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
4096 EVT VVT = N->getValueType(0);
4097 unsigned EltSize = VVT.getVectorElementType().getSizeInBits() >> 3;
4098 int Val = 0;
4099
4100 unsigned i, e;
4101 for (i = 0, e = VVT.getVectorNumElements(); i != e; ++i) {
4102 Val = SVOp->getMaskElt(i);
4103 if (Val >= 0)
4104 break;
4105 }
4106 assert(Val - i > 0 && "PALIGNR imm should be positive");
4107 return (Val - i) * EltSize;
4108 }
4109
4110 /// getExtractVEXTRACTF128Immediate - Return the appropriate immediate
4111 /// to extract the specified EXTRACT_SUBVECTOR index with VEXTRACTF128
4112 /// instructions.
getExtractVEXTRACTF128Immediate(SDNode * N)4113 unsigned X86::getExtractVEXTRACTF128Immediate(SDNode *N) {
4114 if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
4115 llvm_unreachable("Illegal extract subvector for VEXTRACTF128");
4116
4117 uint64_t Index =
4118 cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
4119
4120 EVT VecVT = N->getOperand(0).getValueType();
4121 EVT ElVT = VecVT.getVectorElementType();
4122
4123 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4124 return Index / NumElemsPerChunk;
4125 }
4126
4127 /// getInsertVINSERTF128Immediate - Return the appropriate immediate
4128 /// to insert at the specified INSERT_SUBVECTOR index with VINSERTF128
4129 /// instructions.
getInsertVINSERTF128Immediate(SDNode * N)4130 unsigned X86::getInsertVINSERTF128Immediate(SDNode *N) {
4131 if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
4132 llvm_unreachable("Illegal insert subvector for VINSERTF128");
4133
4134 uint64_t Index =
4135 cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
4136
4137 EVT VecVT = N->getValueType(0);
4138 EVT ElVT = VecVT.getVectorElementType();
4139
4140 unsigned NumElemsPerChunk = 128 / ElVT.getSizeInBits();
4141 return Index / NumElemsPerChunk;
4142 }
4143
4144 /// isZeroNode - Returns true if Elt is a constant zero or a floating point
4145 /// constant +0.0.
isZeroNode(SDValue Elt)4146 bool X86::isZeroNode(SDValue Elt) {
4147 return ((isa<ConstantSDNode>(Elt) &&
4148 cast<ConstantSDNode>(Elt)->isNullValue()) ||
4149 (isa<ConstantFPSDNode>(Elt) &&
4150 cast<ConstantFPSDNode>(Elt)->getValueAPF().isPosZero()));
4151 }
4152
4153 /// CommuteVectorShuffle - Swap vector_shuffle operands as well as values in
4154 /// their permute mask.
CommuteVectorShuffle(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)4155 static SDValue CommuteVectorShuffle(ShuffleVectorSDNode *SVOp,
4156 SelectionDAG &DAG) {
4157 EVT VT = SVOp->getValueType(0);
4158 unsigned NumElems = VT.getVectorNumElements();
4159 SmallVector<int, 8> MaskVec;
4160
4161 for (unsigned i = 0; i != NumElems; ++i) {
4162 int idx = SVOp->getMaskElt(i);
4163 if (idx < 0)
4164 MaskVec.push_back(idx);
4165 else if (idx < (int)NumElems)
4166 MaskVec.push_back(idx + NumElems);
4167 else
4168 MaskVec.push_back(idx - NumElems);
4169 }
4170 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(1),
4171 SVOp->getOperand(0), &MaskVec[0]);
4172 }
4173
4174 /// CommuteVectorShuffleMask - Change values in a shuffle permute mask assuming
4175 /// the two vector operands have swapped position.
CommuteVectorShuffleMask(SmallVectorImpl<int> & Mask,EVT VT)4176 static void CommuteVectorShuffleMask(SmallVectorImpl<int> &Mask, EVT VT) {
4177 unsigned NumElems = VT.getVectorNumElements();
4178 for (unsigned i = 0; i != NumElems; ++i) {
4179 int idx = Mask[i];
4180 if (idx < 0)
4181 continue;
4182 else if (idx < (int)NumElems)
4183 Mask[i] = idx + NumElems;
4184 else
4185 Mask[i] = idx - NumElems;
4186 }
4187 }
4188
4189 /// ShouldXformToMOVHLPS - Return true if the node should be transformed to
4190 /// match movhlps. The lower half elements should come from upper half of
4191 /// V1 (and in order), and the upper half elements should come from the upper
4192 /// half of V2 (and in order).
ShouldXformToMOVHLPS(ShuffleVectorSDNode * Op)4193 static bool ShouldXformToMOVHLPS(ShuffleVectorSDNode *Op) {
4194 EVT VT = Op->getValueType(0);
4195 if (VT.getSizeInBits() != 128)
4196 return false;
4197 if (VT.getVectorNumElements() != 4)
4198 return false;
4199 for (unsigned i = 0, e = 2; i != e; ++i)
4200 if (!isUndefOrEqual(Op->getMaskElt(i), i+2))
4201 return false;
4202 for (unsigned i = 2; i != 4; ++i)
4203 if (!isUndefOrEqual(Op->getMaskElt(i), i+4))
4204 return false;
4205 return true;
4206 }
4207
4208 /// isScalarLoadToVector - Returns true if the node is a scalar load that
4209 /// is promoted to a vector. It also returns the LoadSDNode by reference if
4210 /// required.
isScalarLoadToVector(SDNode * N,LoadSDNode ** LD=NULL)4211 static bool isScalarLoadToVector(SDNode *N, LoadSDNode **LD = NULL) {
4212 if (N->getOpcode() != ISD::SCALAR_TO_VECTOR)
4213 return false;
4214 N = N->getOperand(0).getNode();
4215 if (!ISD::isNON_EXTLoad(N))
4216 return false;
4217 if (LD)
4218 *LD = cast<LoadSDNode>(N);
4219 return true;
4220 }
4221
4222 /// ShouldXformToMOVLP{S|D} - Return true if the node should be transformed to
4223 /// match movlp{s|d}. The lower half elements should come from lower half of
4224 /// V1 (and in order), and the upper half elements should come from the upper
4225 /// half of V2 (and in order). And since V1 will become the source of the
4226 /// MOVLP, it must be either a vector load or a scalar load to vector.
ShouldXformToMOVLP(SDNode * V1,SDNode * V2,ShuffleVectorSDNode * Op)4227 static bool ShouldXformToMOVLP(SDNode *V1, SDNode *V2,
4228 ShuffleVectorSDNode *Op) {
4229 EVT VT = Op->getValueType(0);
4230 if (VT.getSizeInBits() != 128)
4231 return false;
4232
4233 if (!ISD::isNON_EXTLoad(V1) && !isScalarLoadToVector(V1))
4234 return false;
4235 // Is V2 is a vector load, don't do this transformation. We will try to use
4236 // load folding shufps op.
4237 if (ISD::isNON_EXTLoad(V2))
4238 return false;
4239
4240 unsigned NumElems = VT.getVectorNumElements();
4241
4242 if (NumElems != 2 && NumElems != 4)
4243 return false;
4244 for (unsigned i = 0, e = NumElems/2; i != e; ++i)
4245 if (!isUndefOrEqual(Op->getMaskElt(i), i))
4246 return false;
4247 for (unsigned i = NumElems/2; i != NumElems; ++i)
4248 if (!isUndefOrEqual(Op->getMaskElt(i), i+NumElems))
4249 return false;
4250 return true;
4251 }
4252
4253 /// isSplatVector - Returns true if N is a BUILD_VECTOR node whose elements are
4254 /// all the same.
isSplatVector(SDNode * N)4255 static bool isSplatVector(SDNode *N) {
4256 if (N->getOpcode() != ISD::BUILD_VECTOR)
4257 return false;
4258
4259 SDValue SplatValue = N->getOperand(0);
4260 for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
4261 if (N->getOperand(i) != SplatValue)
4262 return false;
4263 return true;
4264 }
4265
4266 /// isZeroShuffle - Returns true if N is a VECTOR_SHUFFLE that can be resolved
4267 /// to an zero vector.
4268 /// FIXME: move to dag combiner / method on ShuffleVectorSDNode
isZeroShuffle(ShuffleVectorSDNode * N)4269 static bool isZeroShuffle(ShuffleVectorSDNode *N) {
4270 SDValue V1 = N->getOperand(0);
4271 SDValue V2 = N->getOperand(1);
4272 unsigned NumElems = N->getValueType(0).getVectorNumElements();
4273 for (unsigned i = 0; i != NumElems; ++i) {
4274 int Idx = N->getMaskElt(i);
4275 if (Idx >= (int)NumElems) {
4276 unsigned Opc = V2.getOpcode();
4277 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V2.getNode()))
4278 continue;
4279 if (Opc != ISD::BUILD_VECTOR ||
4280 !X86::isZeroNode(V2.getOperand(Idx-NumElems)))
4281 return false;
4282 } else if (Idx >= 0) {
4283 unsigned Opc = V1.getOpcode();
4284 if (Opc == ISD::UNDEF || ISD::isBuildVectorAllZeros(V1.getNode()))
4285 continue;
4286 if (Opc != ISD::BUILD_VECTOR ||
4287 !X86::isZeroNode(V1.getOperand(Idx)))
4288 return false;
4289 }
4290 }
4291 return true;
4292 }
4293
4294 /// getZeroVector - Returns a vector of specified type with all zero elements.
4295 ///
getZeroVector(EVT VT,bool HasXMMInt,SelectionDAG & DAG,DebugLoc dl)4296 static SDValue getZeroVector(EVT VT, bool HasXMMInt, SelectionDAG &DAG,
4297 DebugLoc dl) {
4298 assert(VT.isVector() && "Expected a vector type");
4299
4300 // Always build SSE zero vectors as <4 x i32> bitcasted
4301 // to their dest type. This ensures they get CSE'd.
4302 SDValue Vec;
4303 if (VT.getSizeInBits() == 128) { // SSE
4304 if (HasXMMInt) { // SSE2
4305 SDValue Cst = DAG.getTargetConstant(0, MVT::i32);
4306 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Cst, Cst, Cst, Cst);
4307 } else { // SSE1
4308 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4309 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4f32, Cst, Cst, Cst, Cst);
4310 }
4311 } else if (VT.getSizeInBits() == 256) { // AVX
4312 // 256-bit logic and arithmetic instructions in AVX are
4313 // all floating-point, no support for integer ops. Default
4314 // to emitting fp zeroed vectors then.
4315 SDValue Cst = DAG.getTargetConstantFP(+0.0, MVT::f32);
4316 SDValue Ops[] = { Cst, Cst, Cst, Cst, Cst, Cst, Cst, Cst };
4317 Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v8f32, Ops, 8);
4318 }
4319 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4320 }
4321
4322 /// getOnesVector - Returns a vector of specified type with all bits set.
4323 /// Always build ones vectors as <4 x i32>. For 256-bit types, use two
4324 /// <4 x i32> inserted in a <8 x i32> appropriately. Then bitcast to their
4325 /// original type, ensuring they get CSE'd.
getOnesVector(EVT VT,SelectionDAG & DAG,DebugLoc dl)4326 static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) {
4327 assert(VT.isVector() && "Expected a vector type");
4328 assert((VT.is128BitVector() || VT.is256BitVector())
4329 && "Expected a 128-bit or 256-bit vector type");
4330
4331 SDValue Cst = DAG.getTargetConstant(~0U, MVT::i32);
4332 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32,
4333 Cst, Cst, Cst, Cst);
4334
4335 if (VT.is256BitVector()) {
4336 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, MVT::v8i32),
4337 Vec, DAG.getConstant(0, MVT::i32), DAG, dl);
4338 Vec = Insert128BitVector(InsV, Vec,
4339 DAG.getConstant(4 /* NumElems/2 */, MVT::i32), DAG, dl);
4340 }
4341
4342 return DAG.getNode(ISD::BITCAST, dl, VT, Vec);
4343 }
4344
4345 /// NormalizeMask - V2 is a splat, modify the mask (if needed) so all elements
4346 /// that point to V2 points to its first element.
NormalizeMask(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)4347 static SDValue NormalizeMask(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
4348 EVT VT = SVOp->getValueType(0);
4349 unsigned NumElems = VT.getVectorNumElements();
4350
4351 bool Changed = false;
4352 SmallVector<int, 8> MaskVec;
4353 SVOp->getMask(MaskVec);
4354
4355 for (unsigned i = 0; i != NumElems; ++i) {
4356 if (MaskVec[i] > (int)NumElems) {
4357 MaskVec[i] = NumElems;
4358 Changed = true;
4359 }
4360 }
4361 if (Changed)
4362 return DAG.getVectorShuffle(VT, SVOp->getDebugLoc(), SVOp->getOperand(0),
4363 SVOp->getOperand(1), &MaskVec[0]);
4364 return SDValue(SVOp, 0);
4365 }
4366
4367 /// getMOVLMask - Returns a vector_shuffle mask for an movs{s|d}, movd
4368 /// operation of specified width.
getMOVL(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4369 static SDValue getMOVL(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4370 SDValue V2) {
4371 unsigned NumElems = VT.getVectorNumElements();
4372 SmallVector<int, 8> Mask;
4373 Mask.push_back(NumElems);
4374 for (unsigned i = 1; i != NumElems; ++i)
4375 Mask.push_back(i);
4376 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4377 }
4378
4379 /// getUnpackl - Returns a vector_shuffle node for an unpackl operation.
getUnpackl(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4380 static SDValue getUnpackl(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4381 SDValue V2) {
4382 unsigned NumElems = VT.getVectorNumElements();
4383 SmallVector<int, 8> Mask;
4384 for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
4385 Mask.push_back(i);
4386 Mask.push_back(i + NumElems);
4387 }
4388 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4389 }
4390
4391 /// getUnpackh - Returns a vector_shuffle node for an unpackh operation.
getUnpackh(SelectionDAG & DAG,DebugLoc dl,EVT VT,SDValue V1,SDValue V2)4392 static SDValue getUnpackh(SelectionDAG &DAG, DebugLoc dl, EVT VT, SDValue V1,
4393 SDValue V2) {
4394 unsigned NumElems = VT.getVectorNumElements();
4395 unsigned Half = NumElems/2;
4396 SmallVector<int, 8> Mask;
4397 for (unsigned i = 0; i != Half; ++i) {
4398 Mask.push_back(i + Half);
4399 Mask.push_back(i + NumElems + Half);
4400 }
4401 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
4402 }
4403
4404 // PromoteSplati8i16 - All i16 and i8 vector types can't be used directly by
4405 // a generic shuffle instruction because the target has no such instructions.
4406 // Generate shuffles which repeat i16 and i8 several times until they can be
4407 // represented by v4f32 and then be manipulated by target suported shuffles.
PromoteSplati8i16(SDValue V,SelectionDAG & DAG,int & EltNo)4408 static SDValue PromoteSplati8i16(SDValue V, SelectionDAG &DAG, int &EltNo) {
4409 EVT VT = V.getValueType();
4410 int NumElems = VT.getVectorNumElements();
4411 DebugLoc dl = V.getDebugLoc();
4412
4413 while (NumElems > 4) {
4414 if (EltNo < NumElems/2) {
4415 V = getUnpackl(DAG, dl, VT, V, V);
4416 } else {
4417 V = getUnpackh(DAG, dl, VT, V, V);
4418 EltNo -= NumElems/2;
4419 }
4420 NumElems >>= 1;
4421 }
4422 return V;
4423 }
4424
4425 /// getLegalSplat - Generate a legal splat with supported x86 shuffles
getLegalSplat(SelectionDAG & DAG,SDValue V,int EltNo)4426 static SDValue getLegalSplat(SelectionDAG &DAG, SDValue V, int EltNo) {
4427 EVT VT = V.getValueType();
4428 DebugLoc dl = V.getDebugLoc();
4429 assert((VT.getSizeInBits() == 128 || VT.getSizeInBits() == 256)
4430 && "Vector size not supported");
4431
4432 if (VT.getSizeInBits() == 128) {
4433 V = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V);
4434 int SplatMask[4] = { EltNo, EltNo, EltNo, EltNo };
4435 V = DAG.getVectorShuffle(MVT::v4f32, dl, V, DAG.getUNDEF(MVT::v4f32),
4436 &SplatMask[0]);
4437 } else {
4438 // To use VPERMILPS to splat scalars, the second half of indicies must
4439 // refer to the higher part, which is a duplication of the lower one,
4440 // because VPERMILPS can only handle in-lane permutations.
4441 int SplatMask[8] = { EltNo, EltNo, EltNo, EltNo,
4442 EltNo+4, EltNo+4, EltNo+4, EltNo+4 };
4443
4444 V = DAG.getNode(ISD::BITCAST, dl, MVT::v8f32, V);
4445 V = DAG.getVectorShuffle(MVT::v8f32, dl, V, DAG.getUNDEF(MVT::v8f32),
4446 &SplatMask[0]);
4447 }
4448
4449 return DAG.getNode(ISD::BITCAST, dl, VT, V);
4450 }
4451
4452 /// PromoteSplat - Splat is promoted to target supported vector shuffles.
PromoteSplat(ShuffleVectorSDNode * SV,SelectionDAG & DAG)4453 static SDValue PromoteSplat(ShuffleVectorSDNode *SV, SelectionDAG &DAG) {
4454 EVT SrcVT = SV->getValueType(0);
4455 SDValue V1 = SV->getOperand(0);
4456 DebugLoc dl = SV->getDebugLoc();
4457
4458 int EltNo = SV->getSplatIndex();
4459 int NumElems = SrcVT.getVectorNumElements();
4460 unsigned Size = SrcVT.getSizeInBits();
4461
4462 assert(((Size == 128 && NumElems > 4) || Size == 256) &&
4463 "Unknown how to promote splat for type");
4464
4465 // Extract the 128-bit part containing the splat element and update
4466 // the splat element index when it refers to the higher register.
4467 if (Size == 256) {
4468 unsigned Idx = (EltNo > NumElems/2) ? NumElems/2 : 0;
4469 V1 = Extract128BitVector(V1, DAG.getConstant(Idx, MVT::i32), DAG, dl);
4470 if (Idx > 0)
4471 EltNo -= NumElems/2;
4472 }
4473
4474 // All i16 and i8 vector types can't be used directly by a generic shuffle
4475 // instruction because the target has no such instruction. Generate shuffles
4476 // which repeat i16 and i8 several times until they fit in i32, and then can
4477 // be manipulated by target suported shuffles.
4478 EVT EltVT = SrcVT.getVectorElementType();
4479 if (EltVT == MVT::i8 || EltVT == MVT::i16)
4480 V1 = PromoteSplati8i16(V1, DAG, EltNo);
4481
4482 // Recreate the 256-bit vector and place the same 128-bit vector
4483 // into the low and high part. This is necessary because we want
4484 // to use VPERM* to shuffle the vectors
4485 if (Size == 256) {
4486 SDValue InsV = Insert128BitVector(DAG.getUNDEF(SrcVT), V1,
4487 DAG.getConstant(0, MVT::i32), DAG, dl);
4488 V1 = Insert128BitVector(InsV, V1,
4489 DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
4490 }
4491
4492 return getLegalSplat(DAG, V1, EltNo);
4493 }
4494
4495 /// getShuffleVectorZeroOrUndef - Return a vector_shuffle of the specified
4496 /// vector of zero or undef vector. This produces a shuffle where the low
4497 /// element of V2 is swizzled into the zero/undef vector, landing at element
4498 /// Idx. This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
getShuffleVectorZeroOrUndef(SDValue V2,unsigned Idx,bool isZero,bool HasXMMInt,SelectionDAG & DAG)4499 static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
4500 bool isZero, bool HasXMMInt,
4501 SelectionDAG &DAG) {
4502 EVT VT = V2.getValueType();
4503 SDValue V1 = isZero
4504 ? getZeroVector(VT, HasXMMInt, DAG, V2.getDebugLoc()) : DAG.getUNDEF(VT);
4505 unsigned NumElems = VT.getVectorNumElements();
4506 SmallVector<int, 16> MaskVec;
4507 for (unsigned i = 0; i != NumElems; ++i)
4508 // If this is the insertion idx, put the low elt of V2 here.
4509 MaskVec.push_back(i == Idx ? NumElems : i);
4510 return DAG.getVectorShuffle(VT, V2.getDebugLoc(), V1, V2, &MaskVec[0]);
4511 }
4512
4513 /// getShuffleScalarElt - Returns the scalar element that will make up the ith
4514 /// element of the result of the vector shuffle.
getShuffleScalarElt(SDNode * N,int Index,SelectionDAG & DAG,unsigned Depth)4515 static SDValue getShuffleScalarElt(SDNode *N, int Index, SelectionDAG &DAG,
4516 unsigned Depth) {
4517 if (Depth == 6)
4518 return SDValue(); // Limit search depth.
4519
4520 SDValue V = SDValue(N, 0);
4521 EVT VT = V.getValueType();
4522 unsigned Opcode = V.getOpcode();
4523
4524 // Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
4525 if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
4526 Index = SV->getMaskElt(Index);
4527
4528 if (Index < 0)
4529 return DAG.getUNDEF(VT.getVectorElementType());
4530
4531 int NumElems = VT.getVectorNumElements();
4532 SDValue NewV = (Index < NumElems) ? SV->getOperand(0) : SV->getOperand(1);
4533 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG, Depth+1);
4534 }
4535
4536 // Recurse into target specific vector shuffles to find scalars.
4537 if (isTargetShuffle(Opcode)) {
4538 int NumElems = VT.getVectorNumElements();
4539 SmallVector<unsigned, 16> ShuffleMask;
4540 SDValue ImmN;
4541
4542 switch(Opcode) {
4543 case X86ISD::SHUFPS:
4544 case X86ISD::SHUFPD:
4545 ImmN = N->getOperand(N->getNumOperands()-1);
4546 DecodeSHUFPSMask(NumElems,
4547 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4548 ShuffleMask);
4549 break;
4550 case X86ISD::PUNPCKHBW:
4551 case X86ISD::PUNPCKHWD:
4552 case X86ISD::PUNPCKHDQ:
4553 case X86ISD::PUNPCKHQDQ:
4554 DecodePUNPCKHMask(NumElems, ShuffleMask);
4555 break;
4556 case X86ISD::UNPCKHPS:
4557 case X86ISD::UNPCKHPD:
4558 case X86ISD::VUNPCKHPSY:
4559 case X86ISD::VUNPCKHPDY:
4560 DecodeUNPCKHPMask(NumElems, ShuffleMask);
4561 break;
4562 case X86ISD::PUNPCKLBW:
4563 case X86ISD::PUNPCKLWD:
4564 case X86ISD::PUNPCKLDQ:
4565 case X86ISD::PUNPCKLQDQ:
4566 DecodePUNPCKLMask(VT, ShuffleMask);
4567 break;
4568 case X86ISD::UNPCKLPS:
4569 case X86ISD::UNPCKLPD:
4570 case X86ISD::VUNPCKLPSY:
4571 case X86ISD::VUNPCKLPDY:
4572 DecodeUNPCKLPMask(VT, ShuffleMask);
4573 break;
4574 case X86ISD::MOVHLPS:
4575 DecodeMOVHLPSMask(NumElems, ShuffleMask);
4576 break;
4577 case X86ISD::MOVLHPS:
4578 DecodeMOVLHPSMask(NumElems, ShuffleMask);
4579 break;
4580 case X86ISD::PSHUFD:
4581 ImmN = N->getOperand(N->getNumOperands()-1);
4582 DecodePSHUFMask(NumElems,
4583 cast<ConstantSDNode>(ImmN)->getZExtValue(),
4584 ShuffleMask);
4585 break;
4586 case X86ISD::PSHUFHW:
4587 ImmN = N->getOperand(N->getNumOperands()-1);
4588 DecodePSHUFHWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4589 ShuffleMask);
4590 break;
4591 case X86ISD::PSHUFLW:
4592 ImmN = N->getOperand(N->getNumOperands()-1);
4593 DecodePSHUFLWMask(cast<ConstantSDNode>(ImmN)->getZExtValue(),
4594 ShuffleMask);
4595 break;
4596 case X86ISD::MOVSS:
4597 case X86ISD::MOVSD: {
4598 // The index 0 always comes from the first element of the second source,
4599 // this is why MOVSS and MOVSD are used in the first place. The other
4600 // elements come from the other positions of the first source vector.
4601 unsigned OpNum = (Index == 0) ? 1 : 0;
4602 return getShuffleScalarElt(V.getOperand(OpNum).getNode(), Index, DAG,
4603 Depth+1);
4604 }
4605 case X86ISD::VPERMILPS:
4606 ImmN = N->getOperand(N->getNumOperands()-1);
4607 DecodeVPERMILPSMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4608 ShuffleMask);
4609 break;
4610 case X86ISD::VPERMILPSY:
4611 ImmN = N->getOperand(N->getNumOperands()-1);
4612 DecodeVPERMILPSMask(8, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4613 ShuffleMask);
4614 break;
4615 case X86ISD::VPERMILPD:
4616 ImmN = N->getOperand(N->getNumOperands()-1);
4617 DecodeVPERMILPDMask(2, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4618 ShuffleMask);
4619 break;
4620 case X86ISD::VPERMILPDY:
4621 ImmN = N->getOperand(N->getNumOperands()-1);
4622 DecodeVPERMILPDMask(4, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4623 ShuffleMask);
4624 break;
4625 case X86ISD::VPERM2F128:
4626 ImmN = N->getOperand(N->getNumOperands()-1);
4627 DecodeVPERM2F128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(),
4628 ShuffleMask);
4629 break;
4630 case X86ISD::MOVDDUP:
4631 case X86ISD::MOVLHPD:
4632 case X86ISD::MOVLPD:
4633 case X86ISD::MOVLPS:
4634 case X86ISD::MOVSHDUP:
4635 case X86ISD::MOVSLDUP:
4636 case X86ISD::PALIGN:
4637 return SDValue(); // Not yet implemented.
4638 default:
4639 assert(0 && "unknown target shuffle node");
4640 return SDValue();
4641 }
4642
4643 Index = ShuffleMask[Index];
4644 if (Index < 0)
4645 return DAG.getUNDEF(VT.getVectorElementType());
4646
4647 SDValue NewV = (Index < NumElems) ? N->getOperand(0) : N->getOperand(1);
4648 return getShuffleScalarElt(NewV.getNode(), Index % NumElems, DAG,
4649 Depth+1);
4650 }
4651
4652 // Actual nodes that may contain scalar elements
4653 if (Opcode == ISD::BITCAST) {
4654 V = V.getOperand(0);
4655 EVT SrcVT = V.getValueType();
4656 unsigned NumElems = VT.getVectorNumElements();
4657
4658 if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
4659 return SDValue();
4660 }
4661
4662 if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
4663 return (Index == 0) ? V.getOperand(0)
4664 : DAG.getUNDEF(VT.getVectorElementType());
4665
4666 if (V.getOpcode() == ISD::BUILD_VECTOR)
4667 return V.getOperand(Index);
4668
4669 return SDValue();
4670 }
4671
4672 /// getNumOfConsecutiveZeros - Return the number of elements of a vector
4673 /// shuffle operation which come from a consecutively from a zero. The
4674 /// search can start in two different directions, from left or right.
4675 static
getNumOfConsecutiveZeros(SDNode * N,int NumElems,bool ZerosFromLeft,SelectionDAG & DAG)4676 unsigned getNumOfConsecutiveZeros(SDNode *N, int NumElems,
4677 bool ZerosFromLeft, SelectionDAG &DAG) {
4678 int i = 0;
4679
4680 while (i < NumElems) {
4681 unsigned Index = ZerosFromLeft ? i : NumElems-i-1;
4682 SDValue Elt = getShuffleScalarElt(N, Index, DAG, 0);
4683 if (!(Elt.getNode() &&
4684 (Elt.getOpcode() == ISD::UNDEF || X86::isZeroNode(Elt))))
4685 break;
4686 ++i;
4687 }
4688
4689 return i;
4690 }
4691
4692 /// isShuffleMaskConsecutive - Check if the shuffle mask indicies from MaskI to
4693 /// MaskE correspond consecutively to elements from one of the vector operands,
4694 /// starting from its index OpIdx. Also tell OpNum which source vector operand.
4695 static
isShuffleMaskConsecutive(ShuffleVectorSDNode * SVOp,int MaskI,int MaskE,int OpIdx,int NumElems,unsigned & OpNum)4696 bool isShuffleMaskConsecutive(ShuffleVectorSDNode *SVOp, int MaskI, int MaskE,
4697 int OpIdx, int NumElems, unsigned &OpNum) {
4698 bool SeenV1 = false;
4699 bool SeenV2 = false;
4700
4701 for (int i = MaskI; i <= MaskE; ++i, ++OpIdx) {
4702 int Idx = SVOp->getMaskElt(i);
4703 // Ignore undef indicies
4704 if (Idx < 0)
4705 continue;
4706
4707 if (Idx < NumElems)
4708 SeenV1 = true;
4709 else
4710 SeenV2 = true;
4711
4712 // Only accept consecutive elements from the same vector
4713 if ((Idx % NumElems != OpIdx) || (SeenV1 && SeenV2))
4714 return false;
4715 }
4716
4717 OpNum = SeenV1 ? 0 : 1;
4718 return true;
4719 }
4720
4721 /// isVectorShiftRight - Returns true if the shuffle can be implemented as a
4722 /// logical left shift of a vector.
isVectorShiftRight(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4723 static bool isVectorShiftRight(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4724 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4725 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4726 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4727 false /* check zeros from right */, DAG);
4728 unsigned OpSrc;
4729
4730 if (!NumZeros)
4731 return false;
4732
4733 // Considering the elements in the mask that are not consecutive zeros,
4734 // check if they consecutively come from only one of the source vectors.
4735 //
4736 // V1 = {X, A, B, C} 0
4737 // \ \ \ /
4738 // vector_shuffle V1, V2 <1, 2, 3, X>
4739 //
4740 if (!isShuffleMaskConsecutive(SVOp,
4741 0, // Mask Start Index
4742 NumElems-NumZeros-1, // Mask End Index
4743 NumZeros, // Where to start looking in the src vector
4744 NumElems, // Number of elements in vector
4745 OpSrc)) // Which source operand ?
4746 return false;
4747
4748 isLeft = false;
4749 ShAmt = NumZeros;
4750 ShVal = SVOp->getOperand(OpSrc);
4751 return true;
4752 }
4753
4754 /// isVectorShiftLeft - Returns true if the shuffle can be implemented as a
4755 /// logical left shift of a vector.
isVectorShiftLeft(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4756 static bool isVectorShiftLeft(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4757 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4758 unsigned NumElems = SVOp->getValueType(0).getVectorNumElements();
4759 unsigned NumZeros = getNumOfConsecutiveZeros(SVOp, NumElems,
4760 true /* check zeros from left */, DAG);
4761 unsigned OpSrc;
4762
4763 if (!NumZeros)
4764 return false;
4765
4766 // Considering the elements in the mask that are not consecutive zeros,
4767 // check if they consecutively come from only one of the source vectors.
4768 //
4769 // 0 { A, B, X, X } = V2
4770 // / \ / /
4771 // vector_shuffle V1, V2 <X, X, 4, 5>
4772 //
4773 if (!isShuffleMaskConsecutive(SVOp,
4774 NumZeros, // Mask Start Index
4775 NumElems-1, // Mask End Index
4776 0, // Where to start looking in the src vector
4777 NumElems, // Number of elements in vector
4778 OpSrc)) // Which source operand ?
4779 return false;
4780
4781 isLeft = true;
4782 ShAmt = NumZeros;
4783 ShVal = SVOp->getOperand(OpSrc);
4784 return true;
4785 }
4786
4787 /// isVectorShift - Returns true if the shuffle can be implemented as a
4788 /// logical left or right shift of a vector.
isVectorShift(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,bool & isLeft,SDValue & ShVal,unsigned & ShAmt)4789 static bool isVectorShift(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG,
4790 bool &isLeft, SDValue &ShVal, unsigned &ShAmt) {
4791 // Although the logic below support any bitwidth size, there are no
4792 // shift instructions which handle more than 128-bit vectors.
4793 if (SVOp->getValueType(0).getSizeInBits() > 128)
4794 return false;
4795
4796 if (isVectorShiftLeft(SVOp, DAG, isLeft, ShVal, ShAmt) ||
4797 isVectorShiftRight(SVOp, DAG, isLeft, ShVal, ShAmt))
4798 return true;
4799
4800 return false;
4801 }
4802
4803 /// LowerBuildVectorv16i8 - Custom lower build_vector of v16i8.
4804 ///
LowerBuildVectorv16i8(SDValue Op,unsigned NonZeros,unsigned NumNonZero,unsigned NumZero,SelectionDAG & DAG,const TargetLowering & TLI)4805 static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
4806 unsigned NumNonZero, unsigned NumZero,
4807 SelectionDAG &DAG,
4808 const TargetLowering &TLI) {
4809 if (NumNonZero > 8)
4810 return SDValue();
4811
4812 DebugLoc dl = Op.getDebugLoc();
4813 SDValue V(0, 0);
4814 bool First = true;
4815 for (unsigned i = 0; i < 16; ++i) {
4816 bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
4817 if (ThisIsNonZero && First) {
4818 if (NumZero)
4819 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4820 else
4821 V = DAG.getUNDEF(MVT::v8i16);
4822 First = false;
4823 }
4824
4825 if ((i & 1) != 0) {
4826 SDValue ThisElt(0, 0), LastElt(0, 0);
4827 bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
4828 if (LastIsNonZero) {
4829 LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
4830 MVT::i16, Op.getOperand(i-1));
4831 }
4832 if (ThisIsNonZero) {
4833 ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
4834 ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
4835 ThisElt, DAG.getConstant(8, MVT::i8));
4836 if (LastIsNonZero)
4837 ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
4838 } else
4839 ThisElt = LastElt;
4840
4841 if (ThisElt.getNode())
4842 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
4843 DAG.getIntPtrConstant(i/2));
4844 }
4845 }
4846
4847 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V);
4848 }
4849
4850 /// LowerBuildVectorv8i16 - Custom lower build_vector of v8i16.
4851 ///
LowerBuildVectorv8i16(SDValue Op,unsigned NonZeros,unsigned NumNonZero,unsigned NumZero,SelectionDAG & DAG,const TargetLowering & TLI)4852 static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
4853 unsigned NumNonZero, unsigned NumZero,
4854 SelectionDAG &DAG,
4855 const TargetLowering &TLI) {
4856 if (NumNonZero > 4)
4857 return SDValue();
4858
4859 DebugLoc dl = Op.getDebugLoc();
4860 SDValue V(0, 0);
4861 bool First = true;
4862 for (unsigned i = 0; i < 8; ++i) {
4863 bool isNonZero = (NonZeros & (1 << i)) != 0;
4864 if (isNonZero) {
4865 if (First) {
4866 if (NumZero)
4867 V = getZeroVector(MVT::v8i16, true, DAG, dl);
4868 else
4869 V = DAG.getUNDEF(MVT::v8i16);
4870 First = false;
4871 }
4872 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
4873 MVT::v8i16, V, Op.getOperand(i),
4874 DAG.getIntPtrConstant(i));
4875 }
4876 }
4877
4878 return V;
4879 }
4880
4881 /// getVShift - Return a vector logical shift node.
4882 ///
getVShift(bool isLeft,EVT VT,SDValue SrcOp,unsigned NumBits,SelectionDAG & DAG,const TargetLowering & TLI,DebugLoc dl)4883 static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
4884 unsigned NumBits, SelectionDAG &DAG,
4885 const TargetLowering &TLI, DebugLoc dl) {
4886 assert(VT.getSizeInBits() == 128 && "Unknown type for VShift");
4887 EVT ShVT = MVT::v2i64;
4888 unsigned Opc = isLeft ? X86ISD::VSHL : X86ISD::VSRL;
4889 SrcOp = DAG.getNode(ISD::BITCAST, dl, ShVT, SrcOp);
4890 return DAG.getNode(ISD::BITCAST, dl, VT,
4891 DAG.getNode(Opc, dl, ShVT, SrcOp,
4892 DAG.getConstant(NumBits,
4893 TLI.getShiftAmountTy(SrcOp.getValueType()))));
4894 }
4895
4896 SDValue
LowerAsSplatVectorLoad(SDValue SrcOp,EVT VT,DebugLoc dl,SelectionDAG & DAG) const4897 X86TargetLowering::LowerAsSplatVectorLoad(SDValue SrcOp, EVT VT, DebugLoc dl,
4898 SelectionDAG &DAG) const {
4899
4900 // Check if the scalar load can be widened into a vector load. And if
4901 // the address is "base + cst" see if the cst can be "absorbed" into
4902 // the shuffle mask.
4903 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
4904 SDValue Ptr = LD->getBasePtr();
4905 if (!ISD::isNormalLoad(LD) || LD->isVolatile())
4906 return SDValue();
4907 EVT PVT = LD->getValueType(0);
4908 if (PVT != MVT::i32 && PVT != MVT::f32)
4909 return SDValue();
4910
4911 int FI = -1;
4912 int64_t Offset = 0;
4913 if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
4914 FI = FINode->getIndex();
4915 Offset = 0;
4916 } else if (DAG.isBaseWithConstantOffset(Ptr) &&
4917 isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
4918 FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
4919 Offset = Ptr.getConstantOperandVal(1);
4920 Ptr = Ptr.getOperand(0);
4921 } else {
4922 return SDValue();
4923 }
4924
4925 // FIXME: 256-bit vector instructions don't require a strict alignment,
4926 // improve this code to support it better.
4927 unsigned RequiredAlign = VT.getSizeInBits()/8;
4928 SDValue Chain = LD->getChain();
4929 // Make sure the stack object alignment is at least 16 or 32.
4930 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4931 if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
4932 if (MFI->isFixedObjectIndex(FI)) {
4933 // Can't change the alignment. FIXME: It's possible to compute
4934 // the exact stack offset and reference FI + adjust offset instead.
4935 // If someone *really* cares about this. That's the way to implement it.
4936 return SDValue();
4937 } else {
4938 MFI->setObjectAlignment(FI, RequiredAlign);
4939 }
4940 }
4941
4942 // (Offset % 16 or 32) must be multiple of 4. Then address is then
4943 // Ptr + (Offset & ~15).
4944 if (Offset < 0)
4945 return SDValue();
4946 if ((Offset % RequiredAlign) & 3)
4947 return SDValue();
4948 int64_t StartOffset = Offset & ~(RequiredAlign-1);
4949 if (StartOffset)
4950 Ptr = DAG.getNode(ISD::ADD, Ptr.getDebugLoc(), Ptr.getValueType(),
4951 Ptr,DAG.getConstant(StartOffset, Ptr.getValueType()));
4952
4953 int EltNo = (Offset - StartOffset) >> 2;
4954 int NumElems = VT.getVectorNumElements();
4955
4956 EVT CanonVT = VT.getSizeInBits() == 128 ? MVT::v4i32 : MVT::v8i32;
4957 EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
4958 SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
4959 LD->getPointerInfo().getWithOffset(StartOffset),
4960 false, false, 0);
4961
4962 // Canonicalize it to a v4i32 or v8i32 shuffle.
4963 SmallVector<int, 8> Mask;
4964 for (int i = 0; i < NumElems; ++i)
4965 Mask.push_back(EltNo);
4966
4967 V1 = DAG.getNode(ISD::BITCAST, dl, CanonVT, V1);
4968 return DAG.getNode(ISD::BITCAST, dl, NVT,
4969 DAG.getVectorShuffle(CanonVT, dl, V1,
4970 DAG.getUNDEF(CanonVT),&Mask[0]));
4971 }
4972
4973 return SDValue();
4974 }
4975
4976 /// EltsFromConsecutiveLoads - Given the initializing elements 'Elts' of a
4977 /// vector of type 'VT', see if the elements can be replaced by a single large
4978 /// load which has the same value as a build_vector whose operands are 'elts'.
4979 ///
4980 /// Example: <load i32 *a, load i32 *a+4, undef, undef> -> zextload a
4981 ///
4982 /// FIXME: we'd also like to handle the case where the last elements are zero
4983 /// rather than undef via VZEXT_LOAD, but we do not detect that case today.
4984 /// There's even a handy isZeroNode for that purpose.
EltsFromConsecutiveLoads(EVT VT,SmallVectorImpl<SDValue> & Elts,DebugLoc & DL,SelectionDAG & DAG)4985 static SDValue EltsFromConsecutiveLoads(EVT VT, SmallVectorImpl<SDValue> &Elts,
4986 DebugLoc &DL, SelectionDAG &DAG) {
4987 EVT EltVT = VT.getVectorElementType();
4988 unsigned NumElems = Elts.size();
4989
4990 LoadSDNode *LDBase = NULL;
4991 unsigned LastLoadedElt = -1U;
4992
4993 // For each element in the initializer, see if we've found a load or an undef.
4994 // If we don't find an initial load element, or later load elements are
4995 // non-consecutive, bail out.
4996 for (unsigned i = 0; i < NumElems; ++i) {
4997 SDValue Elt = Elts[i];
4998
4999 if (!Elt.getNode() ||
5000 (Elt.getOpcode() != ISD::UNDEF && !ISD::isNON_EXTLoad(Elt.getNode())))
5001 return SDValue();
5002 if (!LDBase) {
5003 if (Elt.getNode()->getOpcode() == ISD::UNDEF)
5004 return SDValue();
5005 LDBase = cast<LoadSDNode>(Elt.getNode());
5006 LastLoadedElt = i;
5007 continue;
5008 }
5009 if (Elt.getOpcode() == ISD::UNDEF)
5010 continue;
5011
5012 LoadSDNode *LD = cast<LoadSDNode>(Elt);
5013 if (!DAG.isConsecutiveLoad(LD, LDBase, EltVT.getSizeInBits()/8, i))
5014 return SDValue();
5015 LastLoadedElt = i;
5016 }
5017
5018 // If we have found an entire vector of loads and undefs, then return a large
5019 // load of the entire vector width starting at the base pointer. If we found
5020 // consecutive loads for the low half, generate a vzext_load node.
5021 if (LastLoadedElt == NumElems - 1) {
5022 if (DAG.InferPtrAlignment(LDBase->getBasePtr()) >= 16)
5023 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5024 LDBase->getPointerInfo(),
5025 LDBase->isVolatile(), LDBase->isNonTemporal(), 0);
5026 return DAG.getLoad(VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
5027 LDBase->getPointerInfo(),
5028 LDBase->isVolatile(), LDBase->isNonTemporal(),
5029 LDBase->getAlignment());
5030 } else if (NumElems == 4 && LastLoadedElt == 1 &&
5031 DAG.getTargetLoweringInfo().isTypeLegal(MVT::v2i64)) {
5032 SDVTList Tys = DAG.getVTList(MVT::v2i64, MVT::Other);
5033 SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
5034 SDValue ResNode =
5035 DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, 2, MVT::i64,
5036 LDBase->getPointerInfo(),
5037 LDBase->getAlignment(),
5038 false/*isVolatile*/, true/*ReadMem*/,
5039 false/*WriteMem*/);
5040 return DAG.getNode(ISD::BITCAST, DL, VT, ResNode);
5041 }
5042 return SDValue();
5043 }
5044
5045 SDValue
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const5046 X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
5047 DebugLoc dl = Op.getDebugLoc();
5048
5049 EVT VT = Op.getValueType();
5050 EVT ExtVT = VT.getVectorElementType();
5051 unsigned NumElems = Op.getNumOperands();
5052
5053 // Vectors containing all zeros can be matched by pxor and xorps later
5054 if (ISD::isBuildVectorAllZeros(Op.getNode())) {
5055 // Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
5056 // and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
5057 if (Op.getValueType() == MVT::v4i32 ||
5058 Op.getValueType() == MVT::v8i32)
5059 return Op;
5060
5061 return getZeroVector(Op.getValueType(), Subtarget->hasXMMInt(), DAG, dl);
5062 }
5063
5064 // Vectors containing all ones can be matched by pcmpeqd on 128-bit width
5065 // vectors or broken into v4i32 operations on 256-bit vectors.
5066 if (ISD::isBuildVectorAllOnes(Op.getNode())) {
5067 if (Op.getValueType() == MVT::v4i32)
5068 return Op;
5069
5070 return getOnesVector(Op.getValueType(), DAG, dl);
5071 }
5072
5073 unsigned EVTBits = ExtVT.getSizeInBits();
5074
5075 unsigned NumZero = 0;
5076 unsigned NumNonZero = 0;
5077 unsigned NonZeros = 0;
5078 bool IsAllConstants = true;
5079 SmallSet<SDValue, 8> Values;
5080 for (unsigned i = 0; i < NumElems; ++i) {
5081 SDValue Elt = Op.getOperand(i);
5082 if (Elt.getOpcode() == ISD::UNDEF)
5083 continue;
5084 Values.insert(Elt);
5085 if (Elt.getOpcode() != ISD::Constant &&
5086 Elt.getOpcode() != ISD::ConstantFP)
5087 IsAllConstants = false;
5088 if (X86::isZeroNode(Elt))
5089 NumZero++;
5090 else {
5091 NonZeros |= (1 << i);
5092 NumNonZero++;
5093 }
5094 }
5095
5096 // All undef vector. Return an UNDEF. All zero vectors were handled above.
5097 if (NumNonZero == 0)
5098 return DAG.getUNDEF(VT);
5099
5100 // Special case for single non-zero, non-undef, element.
5101 if (NumNonZero == 1) {
5102 unsigned Idx = CountTrailingZeros_32(NonZeros);
5103 SDValue Item = Op.getOperand(Idx);
5104
5105 // If this is an insertion of an i64 value on x86-32, and if the top bits of
5106 // the value are obviously zero, truncate the value to i32 and do the
5107 // insertion that way. Only do this if the value is non-constant or if the
5108 // value is a constant being inserted into element 0. It is cheaper to do
5109 // a constant pool load than it is to do a movd + shuffle.
5110 if (ExtVT == MVT::i64 && !Subtarget->is64Bit() &&
5111 (!IsAllConstants || Idx == 0)) {
5112 if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
5113 // Handle SSE only.
5114 assert(VT == MVT::v2i64 && "Expected an SSE value type!");
5115 EVT VecVT = MVT::v4i32;
5116 unsigned VecElts = 4;
5117
5118 // Truncate the value (which may itself be a constant) to i32, and
5119 // convert it to a vector with movd (S2V+shuffle to zero extend).
5120 Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
5121 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
5122 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5123 Subtarget->hasXMMInt(), DAG);
5124
5125 // Now we have our 32-bit value zero extended in the low element of
5126 // a vector. If Idx != 0, swizzle it into place.
5127 if (Idx != 0) {
5128 SmallVector<int, 4> Mask;
5129 Mask.push_back(Idx);
5130 for (unsigned i = 1; i != VecElts; ++i)
5131 Mask.push_back(i);
5132 Item = DAG.getVectorShuffle(VecVT, dl, Item,
5133 DAG.getUNDEF(Item.getValueType()),
5134 &Mask[0]);
5135 }
5136 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Item);
5137 }
5138 }
5139
5140 // If we have a constant or non-constant insertion into the low element of
5141 // a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
5142 // the rest of the elements. This will be matched as movd/movq/movss/movsd
5143 // depending on what the source datatype is.
5144 if (Idx == 0) {
5145 if (NumZero == 0) {
5146 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5147 } else if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
5148 (ExtVT == MVT::i64 && Subtarget->is64Bit())) {
5149 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5150 // Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
5151 return getShuffleVectorZeroOrUndef(Item, 0, true,Subtarget->hasXMMInt(),
5152 DAG);
5153 } else if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
5154 Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
5155 assert(VT.getSizeInBits() == 128 && "Expected an SSE value type!");
5156 EVT MiddleVT = MVT::v4i32;
5157 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MiddleVT, Item);
5158 Item = getShuffleVectorZeroOrUndef(Item, 0, true,
5159 Subtarget->hasXMMInt(), DAG);
5160 return DAG.getNode(ISD::BITCAST, dl, VT, Item);
5161 }
5162 }
5163
5164 // Is it a vector logical left shift?
5165 if (NumElems == 2 && Idx == 1 &&
5166 X86::isZeroNode(Op.getOperand(0)) &&
5167 !X86::isZeroNode(Op.getOperand(1))) {
5168 unsigned NumBits = VT.getSizeInBits();
5169 return getVShift(true, VT,
5170 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5171 VT, Op.getOperand(1)),
5172 NumBits/2, DAG, *this, dl);
5173 }
5174
5175 if (IsAllConstants) // Otherwise, it's better to do a constpool load.
5176 return SDValue();
5177
5178 // Otherwise, if this is a vector with i32 or f32 elements, and the element
5179 // is a non-constant being inserted into an element other than the low one,
5180 // we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
5181 // movd/movss) to move this into the low element, then shuffle it into
5182 // place.
5183 if (EVTBits == 32) {
5184 Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
5185
5186 // Turn it into a shuffle of zero and zero-extended scalar to vector.
5187 Item = getShuffleVectorZeroOrUndef(Item, 0, NumZero > 0,
5188 Subtarget->hasXMMInt(), DAG);
5189 SmallVector<int, 8> MaskVec;
5190 for (unsigned i = 0; i < NumElems; i++)
5191 MaskVec.push_back(i == Idx ? 0 : 1);
5192 return DAG.getVectorShuffle(VT, dl, Item, DAG.getUNDEF(VT), &MaskVec[0]);
5193 }
5194 }
5195
5196 // Splat is obviously ok. Let legalizer expand it to a shuffle.
5197 if (Values.size() == 1) {
5198 if (EVTBits == 32) {
5199 // Instead of a shuffle like this:
5200 // shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
5201 // Check if it's possible to issue this instead.
5202 // shuffle (vload ptr)), undef, <1, 1, 1, 1>
5203 unsigned Idx = CountTrailingZeros_32(NonZeros);
5204 SDValue Item = Op.getOperand(Idx);
5205 if (Op.getNode()->isOnlyUserOf(Item.getNode()))
5206 return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
5207 }
5208 return SDValue();
5209 }
5210
5211 // A vector full of immediates; various special cases are already
5212 // handled, so this is best done with a single constant-pool load.
5213 if (IsAllConstants)
5214 return SDValue();
5215
5216 // For AVX-length vectors, build the individual 128-bit pieces and use
5217 // shuffles to put them in place.
5218 if (VT.getSizeInBits() == 256 && !ISD::isBuildVectorAllZeros(Op.getNode())) {
5219 SmallVector<SDValue, 32> V;
5220 for (unsigned i = 0; i < NumElems; ++i)
5221 V.push_back(Op.getOperand(i));
5222
5223 EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
5224
5225 // Build both the lower and upper subvector.
5226 SDValue Lower = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[0], NumElems/2);
5227 SDValue Upper = DAG.getNode(ISD::BUILD_VECTOR, dl, HVT, &V[NumElems / 2],
5228 NumElems/2);
5229
5230 // Recreate the wider vector with the lower and upper part.
5231 SDValue Vec = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), Lower,
5232 DAG.getConstant(0, MVT::i32), DAG, dl);
5233 return Insert128BitVector(Vec, Upper, DAG.getConstant(NumElems/2, MVT::i32),
5234 DAG, dl);
5235 }
5236
5237 // Let legalizer expand 2-wide build_vectors.
5238 if (EVTBits == 64) {
5239 if (NumNonZero == 1) {
5240 // One half is zero or undef.
5241 unsigned Idx = CountTrailingZeros_32(NonZeros);
5242 SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
5243 Op.getOperand(Idx));
5244 return getShuffleVectorZeroOrUndef(V2, Idx, true,
5245 Subtarget->hasXMMInt(), DAG);
5246 }
5247 return SDValue();
5248 }
5249
5250 // If element VT is < 32 bits, convert it to inserts into a zero vector.
5251 if (EVTBits == 8 && NumElems == 16) {
5252 SDValue V = LowerBuildVectorv16i8(Op, NonZeros,NumNonZero,NumZero, DAG,
5253 *this);
5254 if (V.getNode()) return V;
5255 }
5256
5257 if (EVTBits == 16 && NumElems == 8) {
5258 SDValue V = LowerBuildVectorv8i16(Op, NonZeros,NumNonZero,NumZero, DAG,
5259 *this);
5260 if (V.getNode()) return V;
5261 }
5262
5263 // If element VT is == 32 bits, turn it into a number of shuffles.
5264 SmallVector<SDValue, 8> V;
5265 V.resize(NumElems);
5266 if (NumElems == 4 && NumZero > 0) {
5267 for (unsigned i = 0; i < 4; ++i) {
5268 bool isZero = !(NonZeros & (1 << i));
5269 if (isZero)
5270 V[i] = getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
5271 else
5272 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5273 }
5274
5275 for (unsigned i = 0; i < 2; ++i) {
5276 switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
5277 default: break;
5278 case 0:
5279 V[i] = V[i*2]; // Must be a zero vector.
5280 break;
5281 case 1:
5282 V[i] = getMOVL(DAG, dl, VT, V[i*2+1], V[i*2]);
5283 break;
5284 case 2:
5285 V[i] = getMOVL(DAG, dl, VT, V[i*2], V[i*2+1]);
5286 break;
5287 case 3:
5288 V[i] = getUnpackl(DAG, dl, VT, V[i*2], V[i*2+1]);
5289 break;
5290 }
5291 }
5292
5293 SmallVector<int, 8> MaskVec;
5294 bool Reverse = (NonZeros & 0x3) == 2;
5295 for (unsigned i = 0; i < 2; ++i)
5296 MaskVec.push_back(Reverse ? 1-i : i);
5297 Reverse = ((NonZeros & (0x3 << 2)) >> 2) == 2;
5298 for (unsigned i = 0; i < 2; ++i)
5299 MaskVec.push_back(Reverse ? 1-i+NumElems : i+NumElems);
5300 return DAG.getVectorShuffle(VT, dl, V[0], V[1], &MaskVec[0]);
5301 }
5302
5303 if (Values.size() > 1 && VT.getSizeInBits() == 128) {
5304 // Check for a build vector of consecutive loads.
5305 for (unsigned i = 0; i < NumElems; ++i)
5306 V[i] = Op.getOperand(i);
5307
5308 // Check for elements which are consecutive loads.
5309 SDValue LD = EltsFromConsecutiveLoads(VT, V, dl, DAG);
5310 if (LD.getNode())
5311 return LD;
5312
5313 // For SSE 4.1, use insertps to put the high elements into the low element.
5314 if (getSubtarget()->hasSSE41() || getSubtarget()->hasAVX()) {
5315 SDValue Result;
5316 if (Op.getOperand(0).getOpcode() != ISD::UNDEF)
5317 Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
5318 else
5319 Result = DAG.getUNDEF(VT);
5320
5321 for (unsigned i = 1; i < NumElems; ++i) {
5322 if (Op.getOperand(i).getOpcode() == ISD::UNDEF) continue;
5323 Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
5324 Op.getOperand(i), DAG.getIntPtrConstant(i));
5325 }
5326 return Result;
5327 }
5328
5329 // Otherwise, expand into a number of unpckl*, start by extending each of
5330 // our (non-undef) elements to the full vector width with the element in the
5331 // bottom slot of the vector (which generates no code for SSE).
5332 for (unsigned i = 0; i < NumElems; ++i) {
5333 if (Op.getOperand(i).getOpcode() != ISD::UNDEF)
5334 V[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
5335 else
5336 V[i] = DAG.getUNDEF(VT);
5337 }
5338
5339 // Next, we iteratively mix elements, e.g. for v4f32:
5340 // Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
5341 // : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
5342 // Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
5343 unsigned EltStride = NumElems >> 1;
5344 while (EltStride != 0) {
5345 for (unsigned i = 0; i < EltStride; ++i) {
5346 // If V[i+EltStride] is undef and this is the first round of mixing,
5347 // then it is safe to just drop this shuffle: V[i] is already in the
5348 // right place, the one element (since it's the first round) being
5349 // inserted as undef can be dropped. This isn't safe for successive
5350 // rounds because they will permute elements within both vectors.
5351 if (V[i+EltStride].getOpcode() == ISD::UNDEF &&
5352 EltStride == NumElems/2)
5353 continue;
5354
5355 V[i] = getUnpackl(DAG, dl, VT, V[i], V[i + EltStride]);
5356 }
5357 EltStride >>= 1;
5358 }
5359 return V[0];
5360 }
5361 return SDValue();
5362 }
5363
5364 // LowerMMXCONCAT_VECTORS - We support concatenate two MMX registers and place
5365 // them in a MMX register. This is better than doing a stack convert.
LowerMMXCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)5366 static SDValue LowerMMXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5367 DebugLoc dl = Op.getDebugLoc();
5368 EVT ResVT = Op.getValueType();
5369
5370 assert(ResVT == MVT::v2i64 || ResVT == MVT::v4i32 ||
5371 ResVT == MVT::v8i16 || ResVT == MVT::v16i8);
5372 int Mask[2];
5373 SDValue InVec = DAG.getNode(ISD::BITCAST,dl, MVT::v1i64, Op.getOperand(0));
5374 SDValue VecOp = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5375 InVec = Op.getOperand(1);
5376 if (InVec.getOpcode() == ISD::SCALAR_TO_VECTOR) {
5377 unsigned NumElts = ResVT.getVectorNumElements();
5378 VecOp = DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5379 VecOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ResVT, VecOp,
5380 InVec.getOperand(0), DAG.getIntPtrConstant(NumElts/2+1));
5381 } else {
5382 InVec = DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, InVec);
5383 SDValue VecOp2 = DAG.getNode(X86ISD::MOVQ2DQ, dl, MVT::v2i64, InVec);
5384 Mask[0] = 0; Mask[1] = 2;
5385 VecOp = DAG.getVectorShuffle(MVT::v2i64, dl, VecOp, VecOp2, Mask);
5386 }
5387 return DAG.getNode(ISD::BITCAST, dl, ResVT, VecOp);
5388 }
5389
5390 // LowerAVXCONCAT_VECTORS - 256-bit AVX can use the vinsertf128 instruction
5391 // to create 256-bit vectors from two other 128-bit ones.
LowerAVXCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG)5392 static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
5393 DebugLoc dl = Op.getDebugLoc();
5394 EVT ResVT = Op.getValueType();
5395
5396 assert(ResVT.getSizeInBits() == 256 && "Value type must be 256-bit wide");
5397
5398 SDValue V1 = Op.getOperand(0);
5399 SDValue V2 = Op.getOperand(1);
5400 unsigned NumElems = ResVT.getVectorNumElements();
5401
5402 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, ResVT), V1,
5403 DAG.getConstant(0, MVT::i32), DAG, dl);
5404 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
5405 DAG, dl);
5406 }
5407
5408 SDValue
LowerCONCAT_VECTORS(SDValue Op,SelectionDAG & DAG) const5409 X86TargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
5410 EVT ResVT = Op.getValueType();
5411
5412 assert(Op.getNumOperands() == 2);
5413 assert((ResVT.getSizeInBits() == 128 || ResVT.getSizeInBits() == 256) &&
5414 "Unsupported CONCAT_VECTORS for value type");
5415
5416 // We support concatenate two MMX registers and place them in a MMX register.
5417 // This is better than doing a stack convert.
5418 if (ResVT.is128BitVector())
5419 return LowerMMXCONCAT_VECTORS(Op, DAG);
5420
5421 // 256-bit AVX can use the vinsertf128 instruction to create 256-bit vectors
5422 // from two other 128-bit ones.
5423 return LowerAVXCONCAT_VECTORS(Op, DAG);
5424 }
5425
5426 // v8i16 shuffles - Prefer shuffles in the following order:
5427 // 1. [all] pshuflw, pshufhw, optional move
5428 // 2. [ssse3] 1 x pshufb
5429 // 3. [ssse3] 2 x pshufb + 1 x por
5430 // 4. [all] mov + pshuflw + pshufhw + N x (pextrw + pinsrw)
5431 SDValue
LowerVECTOR_SHUFFLEv8i16(SDValue Op,SelectionDAG & DAG) const5432 X86TargetLowering::LowerVECTOR_SHUFFLEv8i16(SDValue Op,
5433 SelectionDAG &DAG) const {
5434 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5435 SDValue V1 = SVOp->getOperand(0);
5436 SDValue V2 = SVOp->getOperand(1);
5437 DebugLoc dl = SVOp->getDebugLoc();
5438 SmallVector<int, 8> MaskVals;
5439
5440 // Determine if more than 1 of the words in each of the low and high quadwords
5441 // of the result come from the same quadword of one of the two inputs. Undef
5442 // mask values count as coming from any quadword, for better codegen.
5443 SmallVector<unsigned, 4> LoQuad(4);
5444 SmallVector<unsigned, 4> HiQuad(4);
5445 BitVector InputQuads(4);
5446 for (unsigned i = 0; i < 8; ++i) {
5447 SmallVectorImpl<unsigned> &Quad = i < 4 ? LoQuad : HiQuad;
5448 int EltIdx = SVOp->getMaskElt(i);
5449 MaskVals.push_back(EltIdx);
5450 if (EltIdx < 0) {
5451 ++Quad[0];
5452 ++Quad[1];
5453 ++Quad[2];
5454 ++Quad[3];
5455 continue;
5456 }
5457 ++Quad[EltIdx / 4];
5458 InputQuads.set(EltIdx / 4);
5459 }
5460
5461 int BestLoQuad = -1;
5462 unsigned MaxQuad = 1;
5463 for (unsigned i = 0; i < 4; ++i) {
5464 if (LoQuad[i] > MaxQuad) {
5465 BestLoQuad = i;
5466 MaxQuad = LoQuad[i];
5467 }
5468 }
5469
5470 int BestHiQuad = -1;
5471 MaxQuad = 1;
5472 for (unsigned i = 0; i < 4; ++i) {
5473 if (HiQuad[i] > MaxQuad) {
5474 BestHiQuad = i;
5475 MaxQuad = HiQuad[i];
5476 }
5477 }
5478
5479 // For SSSE3, If all 8 words of the result come from only 1 quadword of each
5480 // of the two input vectors, shuffle them into one input vector so only a
5481 // single pshufb instruction is necessary. If There are more than 2 input
5482 // quads, disable the next transformation since it does not help SSSE3.
5483 bool V1Used = InputQuads[0] || InputQuads[1];
5484 bool V2Used = InputQuads[2] || InputQuads[3];
5485 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5486 if (InputQuads.count() == 2 && V1Used && V2Used) {
5487 BestLoQuad = InputQuads.find_first();
5488 BestHiQuad = InputQuads.find_next(BestLoQuad);
5489 }
5490 if (InputQuads.count() > 2) {
5491 BestLoQuad = -1;
5492 BestHiQuad = -1;
5493 }
5494 }
5495
5496 // If BestLoQuad or BestHiQuad are set, shuffle the quads together and update
5497 // the shuffle mask. If a quad is scored as -1, that means that it contains
5498 // words from all 4 input quadwords.
5499 SDValue NewV;
5500 if (BestLoQuad >= 0 || BestHiQuad >= 0) {
5501 SmallVector<int, 8> MaskV;
5502 MaskV.push_back(BestLoQuad < 0 ? 0 : BestLoQuad);
5503 MaskV.push_back(BestHiQuad < 0 ? 1 : BestHiQuad);
5504 NewV = DAG.getVectorShuffle(MVT::v2i64, dl,
5505 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1),
5506 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2), &MaskV[0]);
5507 NewV = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, NewV);
5508
5509 // Rewrite the MaskVals and assign NewV to V1 if NewV now contains all the
5510 // source words for the shuffle, to aid later transformations.
5511 bool AllWordsInNewV = true;
5512 bool InOrder[2] = { true, true };
5513 for (unsigned i = 0; i != 8; ++i) {
5514 int idx = MaskVals[i];
5515 if (idx != (int)i)
5516 InOrder[i/4] = false;
5517 if (idx < 0 || (idx/4) == BestLoQuad || (idx/4) == BestHiQuad)
5518 continue;
5519 AllWordsInNewV = false;
5520 break;
5521 }
5522
5523 bool pshuflw = AllWordsInNewV, pshufhw = AllWordsInNewV;
5524 if (AllWordsInNewV) {
5525 for (int i = 0; i != 8; ++i) {
5526 int idx = MaskVals[i];
5527 if (idx < 0)
5528 continue;
5529 idx = MaskVals[i] = (idx / 4) == BestLoQuad ? (idx & 3) : (idx & 3) + 4;
5530 if ((idx != i) && idx < 4)
5531 pshufhw = false;
5532 if ((idx != i) && idx > 3)
5533 pshuflw = false;
5534 }
5535 V1 = NewV;
5536 V2Used = false;
5537 BestLoQuad = 0;
5538 BestHiQuad = 1;
5539 }
5540
5541 // If we've eliminated the use of V2, and the new mask is a pshuflw or
5542 // pshufhw, that's as cheap as it gets. Return the new shuffle.
5543 if ((pshufhw && InOrder[0]) || (pshuflw && InOrder[1])) {
5544 unsigned Opc = pshufhw ? X86ISD::PSHUFHW : X86ISD::PSHUFLW;
5545 unsigned TargetMask = 0;
5546 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV,
5547 DAG.getUNDEF(MVT::v8i16), &MaskVals[0]);
5548 TargetMask = pshufhw ? X86::getShufflePSHUFHWImmediate(NewV.getNode()):
5549 X86::getShufflePSHUFLWImmediate(NewV.getNode());
5550 V1 = NewV.getOperand(0);
5551 return getTargetShuffleNode(Opc, dl, MVT::v8i16, V1, TargetMask, DAG);
5552 }
5553 }
5554
5555 // If we have SSSE3, and all words of the result are from 1 input vector,
5556 // case 2 is generated, otherwise case 3 is generated. If no SSSE3
5557 // is present, fall back to case 4.
5558 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
5559 SmallVector<SDValue,16> pshufbMask;
5560
5561 // If we have elements from both input vectors, set the high bit of the
5562 // shuffle mask element to zero out elements that come from V2 in the V1
5563 // mask, and elements that come from V1 in the V2 mask, so that the two
5564 // results can be OR'd together.
5565 bool TwoInputs = V1Used && V2Used;
5566 for (unsigned i = 0; i != 8; ++i) {
5567 int EltIdx = MaskVals[i] * 2;
5568 if (TwoInputs && (EltIdx >= 16)) {
5569 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5570 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5571 continue;
5572 }
5573 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5574 pshufbMask.push_back(DAG.getConstant(EltIdx+1, MVT::i8));
5575 }
5576 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V1);
5577 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5578 DAG.getNode(ISD::BUILD_VECTOR, dl,
5579 MVT::v16i8, &pshufbMask[0], 16));
5580 if (!TwoInputs)
5581 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5582
5583 // Calculate the shuffle mask for the second input, shuffle it, and
5584 // OR it with the first shuffled input.
5585 pshufbMask.clear();
5586 for (unsigned i = 0; i != 8; ++i) {
5587 int EltIdx = MaskVals[i] * 2;
5588 if (EltIdx < 16) {
5589 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5590 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5591 continue;
5592 }
5593 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5594 pshufbMask.push_back(DAG.getConstant(EltIdx - 15, MVT::i8));
5595 }
5596 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, V2);
5597 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5598 DAG.getNode(ISD::BUILD_VECTOR, dl,
5599 MVT::v16i8, &pshufbMask[0], 16));
5600 V1 = DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5601 return DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5602 }
5603
5604 // If BestLoQuad >= 0, generate a pshuflw to put the low elements in order,
5605 // and update MaskVals with new element order.
5606 BitVector InOrder(8);
5607 if (BestLoQuad >= 0) {
5608 SmallVector<int, 8> MaskV;
5609 for (int i = 0; i != 4; ++i) {
5610 int idx = MaskVals[i];
5611 if (idx < 0) {
5612 MaskV.push_back(-1);
5613 InOrder.set(i);
5614 } else if ((idx / 4) == BestLoQuad) {
5615 MaskV.push_back(idx & 3);
5616 InOrder.set(i);
5617 } else {
5618 MaskV.push_back(-1);
5619 }
5620 }
5621 for (unsigned i = 4; i != 8; ++i)
5622 MaskV.push_back(i);
5623 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5624 &MaskV[0]);
5625
5626 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5627 (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5628 NewV = getTargetShuffleNode(X86ISD::PSHUFLW, dl, MVT::v8i16,
5629 NewV.getOperand(0),
5630 X86::getShufflePSHUFLWImmediate(NewV.getNode()),
5631 DAG);
5632 }
5633
5634 // If BestHi >= 0, generate a pshufhw to put the high elements in order,
5635 // and update MaskVals with the new element order.
5636 if (BestHiQuad >= 0) {
5637 SmallVector<int, 8> MaskV;
5638 for (unsigned i = 0; i != 4; ++i)
5639 MaskV.push_back(i);
5640 for (unsigned i = 4; i != 8; ++i) {
5641 int idx = MaskVals[i];
5642 if (idx < 0) {
5643 MaskV.push_back(-1);
5644 InOrder.set(i);
5645 } else if ((idx / 4) == BestHiQuad) {
5646 MaskV.push_back((idx & 3) + 4);
5647 InOrder.set(i);
5648 } else {
5649 MaskV.push_back(-1);
5650 }
5651 }
5652 NewV = DAG.getVectorShuffle(MVT::v8i16, dl, NewV, DAG.getUNDEF(MVT::v8i16),
5653 &MaskV[0]);
5654
5655 if (NewV.getOpcode() == ISD::VECTOR_SHUFFLE &&
5656 (Subtarget->hasSSSE3() || Subtarget->hasAVX()))
5657 NewV = getTargetShuffleNode(X86ISD::PSHUFHW, dl, MVT::v8i16,
5658 NewV.getOperand(0),
5659 X86::getShufflePSHUFHWImmediate(NewV.getNode()),
5660 DAG);
5661 }
5662
5663 // In case BestHi & BestLo were both -1, which means each quadword has a word
5664 // from each of the four input quadwords, calculate the InOrder bitvector now
5665 // before falling through to the insert/extract cleanup.
5666 if (BestLoQuad == -1 && BestHiQuad == -1) {
5667 NewV = V1;
5668 for (int i = 0; i != 8; ++i)
5669 if (MaskVals[i] < 0 || MaskVals[i] == i)
5670 InOrder.set(i);
5671 }
5672
5673 // The other elements are put in the right place using pextrw and pinsrw.
5674 for (unsigned i = 0; i != 8; ++i) {
5675 if (InOrder[i])
5676 continue;
5677 int EltIdx = MaskVals[i];
5678 if (EltIdx < 0)
5679 continue;
5680 SDValue ExtOp = (EltIdx < 8)
5681 ? DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V1,
5682 DAG.getIntPtrConstant(EltIdx))
5683 : DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, V2,
5684 DAG.getIntPtrConstant(EltIdx - 8));
5685 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, ExtOp,
5686 DAG.getIntPtrConstant(i));
5687 }
5688 return NewV;
5689 }
5690
5691 // v16i8 shuffles - Prefer shuffles in the following order:
5692 // 1. [ssse3] 1 x pshufb
5693 // 2. [ssse3] 2 x pshufb + 1 x por
5694 // 3. [all] v8i16 shuffle + N x pextrw + rotate + pinsrw
5695 static
LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,const X86TargetLowering & TLI)5696 SDValue LowerVECTOR_SHUFFLEv16i8(ShuffleVectorSDNode *SVOp,
5697 SelectionDAG &DAG,
5698 const X86TargetLowering &TLI) {
5699 SDValue V1 = SVOp->getOperand(0);
5700 SDValue V2 = SVOp->getOperand(1);
5701 DebugLoc dl = SVOp->getDebugLoc();
5702 SmallVector<int, 16> MaskVals;
5703 SVOp->getMask(MaskVals);
5704
5705 // If we have SSSE3, case 1 is generated when all result bytes come from
5706 // one of the inputs. Otherwise, case 2 is generated. If no SSSE3 is
5707 // present, fall back to case 3.
5708 // FIXME: kill V2Only once shuffles are canonizalized by getNode.
5709 bool V1Only = true;
5710 bool V2Only = true;
5711 for (unsigned i = 0; i < 16; ++i) {
5712 int EltIdx = MaskVals[i];
5713 if (EltIdx < 0)
5714 continue;
5715 if (EltIdx < 16)
5716 V2Only = false;
5717 else
5718 V1Only = false;
5719 }
5720
5721 // If SSSE3, use 1 pshufb instruction per vector with elements in the result.
5722 if (TLI.getSubtarget()->hasSSSE3() || TLI.getSubtarget()->hasAVX()) {
5723 SmallVector<SDValue,16> pshufbMask;
5724
5725 // If all result elements are from one input vector, then only translate
5726 // undef mask values to 0x80 (zero out result) in the pshufb mask.
5727 //
5728 // Otherwise, we have elements from both input vectors, and must zero out
5729 // elements that come from V2 in the first mask, and V1 in the second mask
5730 // so that we can OR them together.
5731 bool TwoInputs = !(V1Only || V2Only);
5732 for (unsigned i = 0; i != 16; ++i) {
5733 int EltIdx = MaskVals[i];
5734 if (EltIdx < 0 || (TwoInputs && EltIdx >= 16)) {
5735 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5736 continue;
5737 }
5738 pshufbMask.push_back(DAG.getConstant(EltIdx, MVT::i8));
5739 }
5740 // If all the elements are from V2, assign it to V1 and return after
5741 // building the first pshufb.
5742 if (V2Only)
5743 V1 = V2;
5744 V1 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V1,
5745 DAG.getNode(ISD::BUILD_VECTOR, dl,
5746 MVT::v16i8, &pshufbMask[0], 16));
5747 if (!TwoInputs)
5748 return V1;
5749
5750 // Calculate the shuffle mask for the second input, shuffle it, and
5751 // OR it with the first shuffled input.
5752 pshufbMask.clear();
5753 for (unsigned i = 0; i != 16; ++i) {
5754 int EltIdx = MaskVals[i];
5755 if (EltIdx < 16) {
5756 pshufbMask.push_back(DAG.getConstant(0x80, MVT::i8));
5757 continue;
5758 }
5759 pshufbMask.push_back(DAG.getConstant(EltIdx - 16, MVT::i8));
5760 }
5761 V2 = DAG.getNode(X86ISD::PSHUFB, dl, MVT::v16i8, V2,
5762 DAG.getNode(ISD::BUILD_VECTOR, dl,
5763 MVT::v16i8, &pshufbMask[0], 16));
5764 return DAG.getNode(ISD::OR, dl, MVT::v16i8, V1, V2);
5765 }
5766
5767 // No SSSE3 - Calculate in place words and then fix all out of place words
5768 // With 0-16 extracts & inserts. Worst case is 16 bytes out of order from
5769 // the 16 different words that comprise the two doublequadword input vectors.
5770 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
5771 V2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
5772 SDValue NewV = V2Only ? V2 : V1;
5773 for (int i = 0; i != 8; ++i) {
5774 int Elt0 = MaskVals[i*2];
5775 int Elt1 = MaskVals[i*2+1];
5776
5777 // This word of the result is all undef, skip it.
5778 if (Elt0 < 0 && Elt1 < 0)
5779 continue;
5780
5781 // This word of the result is already in the correct place, skip it.
5782 if (V1Only && (Elt0 == i*2) && (Elt1 == i*2+1))
5783 continue;
5784 if (V2Only && (Elt0 == i*2+16) && (Elt1 == i*2+17))
5785 continue;
5786
5787 SDValue Elt0Src = Elt0 < 16 ? V1 : V2;
5788 SDValue Elt1Src = Elt1 < 16 ? V1 : V2;
5789 SDValue InsElt;
5790
5791 // If Elt0 and Elt1 are defined, are consecutive, and can be load
5792 // using a single extract together, load it and store it.
5793 if ((Elt0 >= 0) && ((Elt0 + 1) == Elt1) && ((Elt0 & 1) == 0)) {
5794 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5795 DAG.getIntPtrConstant(Elt1 / 2));
5796 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5797 DAG.getIntPtrConstant(i));
5798 continue;
5799 }
5800
5801 // If Elt1 is defined, extract it from the appropriate source. If the
5802 // source byte is not also odd, shift the extracted word left 8 bits
5803 // otherwise clear the bottom 8 bits if we need to do an or.
5804 if (Elt1 >= 0) {
5805 InsElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16, Elt1Src,
5806 DAG.getIntPtrConstant(Elt1 / 2));
5807 if ((Elt1 & 1) == 0)
5808 InsElt = DAG.getNode(ISD::SHL, dl, MVT::i16, InsElt,
5809 DAG.getConstant(8,
5810 TLI.getShiftAmountTy(InsElt.getValueType())));
5811 else if (Elt0 >= 0)
5812 InsElt = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt,
5813 DAG.getConstant(0xFF00, MVT::i16));
5814 }
5815 // If Elt0 is defined, extract it from the appropriate source. If the
5816 // source byte is not also even, shift the extracted word right 8 bits. If
5817 // Elt1 was also defined, OR the extracted values together before
5818 // inserting them in the result.
5819 if (Elt0 >= 0) {
5820 SDValue InsElt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i16,
5821 Elt0Src, DAG.getIntPtrConstant(Elt0 / 2));
5822 if ((Elt0 & 1) != 0)
5823 InsElt0 = DAG.getNode(ISD::SRL, dl, MVT::i16, InsElt0,
5824 DAG.getConstant(8,
5825 TLI.getShiftAmountTy(InsElt0.getValueType())));
5826 else if (Elt1 >= 0)
5827 InsElt0 = DAG.getNode(ISD::AND, dl, MVT::i16, InsElt0,
5828 DAG.getConstant(0x00FF, MVT::i16));
5829 InsElt = Elt1 >= 0 ? DAG.getNode(ISD::OR, dl, MVT::i16, InsElt, InsElt0)
5830 : InsElt0;
5831 }
5832 NewV = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, NewV, InsElt,
5833 DAG.getIntPtrConstant(i));
5834 }
5835 return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, NewV);
5836 }
5837
5838 /// RewriteAsNarrowerShuffle - Try rewriting v8i16 and v16i8 shuffles as 4 wide
5839 /// ones, or rewriting v4i32 / v4f32 as 2 wide ones if possible. This can be
5840 /// done when every pair / quad of shuffle mask elements point to elements in
5841 /// the right sequence. e.g.
5842 /// vector_shuffle X, Y, <2, 3, | 10, 11, | 0, 1, | 14, 15>
5843 static
RewriteAsNarrowerShuffle(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG,DebugLoc dl)5844 SDValue RewriteAsNarrowerShuffle(ShuffleVectorSDNode *SVOp,
5845 SelectionDAG &DAG, DebugLoc dl) {
5846 EVT VT = SVOp->getValueType(0);
5847 SDValue V1 = SVOp->getOperand(0);
5848 SDValue V2 = SVOp->getOperand(1);
5849 unsigned NumElems = VT.getVectorNumElements();
5850 unsigned NewWidth = (NumElems == 4) ? 2 : 4;
5851 EVT NewVT;
5852 switch (VT.getSimpleVT().SimpleTy) {
5853 default: assert(false && "Unexpected!");
5854 case MVT::v4f32: NewVT = MVT::v2f64; break;
5855 case MVT::v4i32: NewVT = MVT::v2i64; break;
5856 case MVT::v8i16: NewVT = MVT::v4i32; break;
5857 case MVT::v16i8: NewVT = MVT::v4i32; break;
5858 }
5859
5860 int Scale = NumElems / NewWidth;
5861 SmallVector<int, 8> MaskVec;
5862 for (unsigned i = 0; i < NumElems; i += Scale) {
5863 int StartIdx = -1;
5864 for (int j = 0; j < Scale; ++j) {
5865 int EltIdx = SVOp->getMaskElt(i+j);
5866 if (EltIdx < 0)
5867 continue;
5868 if (StartIdx == -1)
5869 StartIdx = EltIdx - (EltIdx % Scale);
5870 if (EltIdx != StartIdx + j)
5871 return SDValue();
5872 }
5873 if (StartIdx == -1)
5874 MaskVec.push_back(-1);
5875 else
5876 MaskVec.push_back(StartIdx / Scale);
5877 }
5878
5879 V1 = DAG.getNode(ISD::BITCAST, dl, NewVT, V1);
5880 V2 = DAG.getNode(ISD::BITCAST, dl, NewVT, V2);
5881 return DAG.getVectorShuffle(NewVT, dl, V1, V2, &MaskVec[0]);
5882 }
5883
5884 /// getVZextMovL - Return a zero-extending vector move low node.
5885 ///
getVZextMovL(EVT VT,EVT OpVT,SDValue SrcOp,SelectionDAG & DAG,const X86Subtarget * Subtarget,DebugLoc dl)5886 static SDValue getVZextMovL(EVT VT, EVT OpVT,
5887 SDValue SrcOp, SelectionDAG &DAG,
5888 const X86Subtarget *Subtarget, DebugLoc dl) {
5889 if (VT == MVT::v2f64 || VT == MVT::v4f32) {
5890 LoadSDNode *LD = NULL;
5891 if (!isScalarLoadToVector(SrcOp.getNode(), &LD))
5892 LD = dyn_cast<LoadSDNode>(SrcOp);
5893 if (!LD) {
5894 // movssrr and movsdrr do not clear top bits. Try to use movd, movq
5895 // instead.
5896 MVT ExtVT = (OpVT == MVT::v2f64) ? MVT::i64 : MVT::i32;
5897 if ((ExtVT != MVT::i64 || Subtarget->is64Bit()) &&
5898 SrcOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
5899 SrcOp.getOperand(0).getOpcode() == ISD::BITCAST &&
5900 SrcOp.getOperand(0).getOperand(0).getValueType() == ExtVT) {
5901 // PR2108
5902 OpVT = (OpVT == MVT::v2f64) ? MVT::v2i64 : MVT::v4i32;
5903 return DAG.getNode(ISD::BITCAST, dl, VT,
5904 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5905 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
5906 OpVT,
5907 SrcOp.getOperand(0)
5908 .getOperand(0))));
5909 }
5910 }
5911 }
5912
5913 return DAG.getNode(ISD::BITCAST, dl, VT,
5914 DAG.getNode(X86ISD::VZEXT_MOVL, dl, OpVT,
5915 DAG.getNode(ISD::BITCAST, dl,
5916 OpVT, SrcOp)));
5917 }
5918
5919 /// areShuffleHalvesWithinDisjointLanes - Check whether each half of a vector
5920 /// shuffle node referes to only one lane in the sources.
areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode * SVOp)5921 static bool areShuffleHalvesWithinDisjointLanes(ShuffleVectorSDNode *SVOp) {
5922 EVT VT = SVOp->getValueType(0);
5923 int NumElems = VT.getVectorNumElements();
5924 int HalfSize = NumElems/2;
5925 SmallVector<int, 16> M;
5926 SVOp->getMask(M);
5927 bool MatchA = false, MatchB = false;
5928
5929 for (int l = 0; l < NumElems*2; l += HalfSize) {
5930 if (isUndefOrInRange(M, 0, HalfSize, l, l+HalfSize)) {
5931 MatchA = true;
5932 break;
5933 }
5934 }
5935
5936 for (int l = 0; l < NumElems*2; l += HalfSize) {
5937 if (isUndefOrInRange(M, HalfSize, HalfSize, l, l+HalfSize)) {
5938 MatchB = true;
5939 break;
5940 }
5941 }
5942
5943 return MatchA && MatchB;
5944 }
5945
5946 /// LowerVECTOR_SHUFFLE_256 - Handle all 256-bit wide vectors shuffles
5947 /// which could not be matched by any known target speficic shuffle
5948 static SDValue
LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)5949 LowerVECTOR_SHUFFLE_256(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
5950 if (areShuffleHalvesWithinDisjointLanes(SVOp)) {
5951 // If each half of a vector shuffle node referes to only one lane in the
5952 // source vectors, extract each used 128-bit lane and shuffle them using
5953 // 128-bit shuffles. Then, concatenate the results. Otherwise leave
5954 // the work to the legalizer.
5955 DebugLoc dl = SVOp->getDebugLoc();
5956 EVT VT = SVOp->getValueType(0);
5957 int NumElems = VT.getVectorNumElements();
5958 int HalfSize = NumElems/2;
5959
5960 // Extract the reference for each half
5961 int FstVecExtractIdx = 0, SndVecExtractIdx = 0;
5962 int FstVecOpNum = 0, SndVecOpNum = 0;
5963 for (int i = 0; i < HalfSize; ++i) {
5964 int Elt = SVOp->getMaskElt(i);
5965 if (SVOp->getMaskElt(i) < 0)
5966 continue;
5967 FstVecOpNum = Elt/NumElems;
5968 FstVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5969 break;
5970 }
5971 for (int i = HalfSize; i < NumElems; ++i) {
5972 int Elt = SVOp->getMaskElt(i);
5973 if (SVOp->getMaskElt(i) < 0)
5974 continue;
5975 SndVecOpNum = Elt/NumElems;
5976 SndVecExtractIdx = Elt % NumElems < HalfSize ? 0 : HalfSize;
5977 break;
5978 }
5979
5980 // Extract the subvectors
5981 SDValue V1 = Extract128BitVector(SVOp->getOperand(FstVecOpNum),
5982 DAG.getConstant(FstVecExtractIdx, MVT::i32), DAG, dl);
5983 SDValue V2 = Extract128BitVector(SVOp->getOperand(SndVecOpNum),
5984 DAG.getConstant(SndVecExtractIdx, MVT::i32), DAG, dl);
5985
5986 // Generate 128-bit shuffles
5987 SmallVector<int, 16> MaskV1, MaskV2;
5988 for (int i = 0; i < HalfSize; ++i) {
5989 int Elt = SVOp->getMaskElt(i);
5990 MaskV1.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5991 }
5992 for (int i = HalfSize; i < NumElems; ++i) {
5993 int Elt = SVOp->getMaskElt(i);
5994 MaskV2.push_back(Elt < 0 ? Elt : Elt % HalfSize);
5995 }
5996
5997 EVT NVT = V1.getValueType();
5998 V1 = DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &MaskV1[0]);
5999 V2 = DAG.getVectorShuffle(NVT, dl, V2, DAG.getUNDEF(NVT), &MaskV2[0]);
6000
6001 // Concatenate the result back
6002 SDValue V = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT), V1,
6003 DAG.getConstant(0, MVT::i32), DAG, dl);
6004 return Insert128BitVector(V, V2, DAG.getConstant(NumElems/2, MVT::i32),
6005 DAG, dl);
6006 }
6007
6008 return SDValue();
6009 }
6010
6011 /// LowerVECTOR_SHUFFLE_128v4 - Handle all 128-bit wide vectors with
6012 /// 4 elements, and match them with several different shuffle types.
6013 static SDValue
LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode * SVOp,SelectionDAG & DAG)6014 LowerVECTOR_SHUFFLE_128v4(ShuffleVectorSDNode *SVOp, SelectionDAG &DAG) {
6015 SDValue V1 = SVOp->getOperand(0);
6016 SDValue V2 = SVOp->getOperand(1);
6017 DebugLoc dl = SVOp->getDebugLoc();
6018 EVT VT = SVOp->getValueType(0);
6019
6020 assert(VT.getSizeInBits() == 128 && "Unsupported vector size");
6021
6022 SmallVector<std::pair<int, int>, 8> Locs;
6023 Locs.resize(4);
6024 SmallVector<int, 8> Mask1(4U, -1);
6025 SmallVector<int, 8> PermMask;
6026 SVOp->getMask(PermMask);
6027
6028 unsigned NumHi = 0;
6029 unsigned NumLo = 0;
6030 for (unsigned i = 0; i != 4; ++i) {
6031 int Idx = PermMask[i];
6032 if (Idx < 0) {
6033 Locs[i] = std::make_pair(-1, -1);
6034 } else {
6035 assert(Idx < 8 && "Invalid VECTOR_SHUFFLE index!");
6036 if (Idx < 4) {
6037 Locs[i] = std::make_pair(0, NumLo);
6038 Mask1[NumLo] = Idx;
6039 NumLo++;
6040 } else {
6041 Locs[i] = std::make_pair(1, NumHi);
6042 if (2+NumHi < 4)
6043 Mask1[2+NumHi] = Idx;
6044 NumHi++;
6045 }
6046 }
6047 }
6048
6049 if (NumLo <= 2 && NumHi <= 2) {
6050 // If no more than two elements come from either vector. This can be
6051 // implemented with two shuffles. First shuffle gather the elements.
6052 // The second shuffle, which takes the first shuffle as both of its
6053 // vector operands, put the elements into the right order.
6054 V1 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6055
6056 SmallVector<int, 8> Mask2(4U, -1);
6057
6058 for (unsigned i = 0; i != 4; ++i) {
6059 if (Locs[i].first == -1)
6060 continue;
6061 else {
6062 unsigned Idx = (i < 2) ? 0 : 4;
6063 Idx += Locs[i].first * 2 + Locs[i].second;
6064 Mask2[i] = Idx;
6065 }
6066 }
6067
6068 return DAG.getVectorShuffle(VT, dl, V1, V1, &Mask2[0]);
6069 } else if (NumLo == 3 || NumHi == 3) {
6070 // Otherwise, we must have three elements from one vector, call it X, and
6071 // one element from the other, call it Y. First, use a shufps to build an
6072 // intermediate vector with the one element from Y and the element from X
6073 // that will be in the same half in the final destination (the indexes don't
6074 // matter). Then, use a shufps to build the final vector, taking the half
6075 // containing the element from Y from the intermediate, and the other half
6076 // from X.
6077 if (NumHi == 3) {
6078 // Normalize it so the 3 elements come from V1.
6079 CommuteVectorShuffleMask(PermMask, VT);
6080 std::swap(V1, V2);
6081 }
6082
6083 // Find the element from V2.
6084 unsigned HiIndex;
6085 for (HiIndex = 0; HiIndex < 3; ++HiIndex) {
6086 int Val = PermMask[HiIndex];
6087 if (Val < 0)
6088 continue;
6089 if (Val >= 4)
6090 break;
6091 }
6092
6093 Mask1[0] = PermMask[HiIndex];
6094 Mask1[1] = -1;
6095 Mask1[2] = PermMask[HiIndex^1];
6096 Mask1[3] = -1;
6097 V2 = DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6098
6099 if (HiIndex >= 2) {
6100 Mask1[0] = PermMask[0];
6101 Mask1[1] = PermMask[1];
6102 Mask1[2] = HiIndex & 1 ? 6 : 4;
6103 Mask1[3] = HiIndex & 1 ? 4 : 6;
6104 return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask1[0]);
6105 } else {
6106 Mask1[0] = HiIndex & 1 ? 2 : 0;
6107 Mask1[1] = HiIndex & 1 ? 0 : 2;
6108 Mask1[2] = PermMask[2];
6109 Mask1[3] = PermMask[3];
6110 if (Mask1[2] >= 0)
6111 Mask1[2] += 4;
6112 if (Mask1[3] >= 0)
6113 Mask1[3] += 4;
6114 return DAG.getVectorShuffle(VT, dl, V2, V1, &Mask1[0]);
6115 }
6116 }
6117
6118 // Break it into (shuffle shuffle_hi, shuffle_lo).
6119 Locs.clear();
6120 Locs.resize(4);
6121 SmallVector<int,8> LoMask(4U, -1);
6122 SmallVector<int,8> HiMask(4U, -1);
6123
6124 SmallVector<int,8> *MaskPtr = &LoMask;
6125 unsigned MaskIdx = 0;
6126 unsigned LoIdx = 0;
6127 unsigned HiIdx = 2;
6128 for (unsigned i = 0; i != 4; ++i) {
6129 if (i == 2) {
6130 MaskPtr = &HiMask;
6131 MaskIdx = 1;
6132 LoIdx = 0;
6133 HiIdx = 2;
6134 }
6135 int Idx = PermMask[i];
6136 if (Idx < 0) {
6137 Locs[i] = std::make_pair(-1, -1);
6138 } else if (Idx < 4) {
6139 Locs[i] = std::make_pair(MaskIdx, LoIdx);
6140 (*MaskPtr)[LoIdx] = Idx;
6141 LoIdx++;
6142 } else {
6143 Locs[i] = std::make_pair(MaskIdx, HiIdx);
6144 (*MaskPtr)[HiIdx] = Idx;
6145 HiIdx++;
6146 }
6147 }
6148
6149 SDValue LoShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &LoMask[0]);
6150 SDValue HiShuffle = DAG.getVectorShuffle(VT, dl, V1, V2, &HiMask[0]);
6151 SmallVector<int, 8> MaskOps;
6152 for (unsigned i = 0; i != 4; ++i) {
6153 if (Locs[i].first == -1) {
6154 MaskOps.push_back(-1);
6155 } else {
6156 unsigned Idx = Locs[i].first * 4 + Locs[i].second;
6157 MaskOps.push_back(Idx);
6158 }
6159 }
6160 return DAG.getVectorShuffle(VT, dl, LoShuffle, HiShuffle, &MaskOps[0]);
6161 }
6162
MayFoldVectorLoad(SDValue V)6163 static bool MayFoldVectorLoad(SDValue V) {
6164 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6165 V = V.getOperand(0);
6166 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6167 V = V.getOperand(0);
6168 if (MayFoldLoad(V))
6169 return true;
6170 return false;
6171 }
6172
6173 // FIXME: the version above should always be used. Since there's
6174 // a bug where several vector shuffles can't be folded because the
6175 // DAG is not updated during lowering and a node claims to have two
6176 // uses while it only has one, use this version, and let isel match
6177 // another instruction if the load really happens to have more than
6178 // one use. Remove this version after this bug get fixed.
6179 // rdar://8434668, PR8156
RelaxedMayFoldVectorLoad(SDValue V)6180 static bool RelaxedMayFoldVectorLoad(SDValue V) {
6181 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6182 V = V.getOperand(0);
6183 if (V.hasOneUse() && V.getOpcode() == ISD::SCALAR_TO_VECTOR)
6184 V = V.getOperand(0);
6185 if (ISD::isNormalLoad(V.getNode()))
6186 return true;
6187 return false;
6188 }
6189
6190 /// CanFoldShuffleIntoVExtract - Check if the current shuffle is used by
6191 /// a vector extract, and if both can be later optimized into a single load.
6192 /// This is done in visitEXTRACT_VECTOR_ELT and the conditions are checked
6193 /// here because otherwise a target specific shuffle node is going to be
6194 /// emitted for this shuffle, and the optimization not done.
6195 /// FIXME: This is probably not the best approach, but fix the problem
6196 /// until the right path is decided.
6197 static
CanXFormVExtractWithShuffleIntoLoad(SDValue V,SelectionDAG & DAG,const TargetLowering & TLI)6198 bool CanXFormVExtractWithShuffleIntoLoad(SDValue V, SelectionDAG &DAG,
6199 const TargetLowering &TLI) {
6200 EVT VT = V.getValueType();
6201 ShuffleVectorSDNode *SVOp = dyn_cast<ShuffleVectorSDNode>(V);
6202
6203 // Be sure that the vector shuffle is present in a pattern like this:
6204 // (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), c) -> (f32 load $addr)
6205 if (!V.hasOneUse())
6206 return false;
6207
6208 SDNode *N = *V.getNode()->use_begin();
6209 if (N->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
6210 return false;
6211
6212 SDValue EltNo = N->getOperand(1);
6213 if (!isa<ConstantSDNode>(EltNo))
6214 return false;
6215
6216 // If the bit convert changed the number of elements, it is unsafe
6217 // to examine the mask.
6218 bool HasShuffleIntoBitcast = false;
6219 if (V.getOpcode() == ISD::BITCAST) {
6220 EVT SrcVT = V.getOperand(0).getValueType();
6221 if (SrcVT.getVectorNumElements() != VT.getVectorNumElements())
6222 return false;
6223 V = V.getOperand(0);
6224 HasShuffleIntoBitcast = true;
6225 }
6226
6227 // Select the input vector, guarding against out of range extract vector.
6228 unsigned NumElems = VT.getVectorNumElements();
6229 unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
6230 int Idx = (Elt > NumElems) ? -1 : SVOp->getMaskElt(Elt);
6231 V = (Idx < (int)NumElems) ? V.getOperand(0) : V.getOperand(1);
6232
6233 // Skip one more bit_convert if necessary
6234 if (V.getOpcode() == ISD::BITCAST)
6235 V = V.getOperand(0);
6236
6237 if (ISD::isNormalLoad(V.getNode())) {
6238 // Is the original load suitable?
6239 LoadSDNode *LN0 = cast<LoadSDNode>(V);
6240
6241 // FIXME: avoid the multi-use bug that is preventing lots of
6242 // of foldings to be detected, this is still wrong of course, but
6243 // give the temporary desired behavior, and if it happens that
6244 // the load has real more uses, during isel it will not fold, and
6245 // will generate poor code.
6246 if (!LN0 || LN0->isVolatile()) // || !LN0->hasOneUse()
6247 return false;
6248
6249 if (!HasShuffleIntoBitcast)
6250 return true;
6251
6252 // If there's a bitcast before the shuffle, check if the load type and
6253 // alignment is valid.
6254 unsigned Align = LN0->getAlignment();
6255 unsigned NewAlign =
6256 TLI.getTargetData()->getABITypeAlignment(
6257 VT.getTypeForEVT(*DAG.getContext()));
6258
6259 if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, VT))
6260 return false;
6261 }
6262
6263 return true;
6264 }
6265
6266 static
getMOVDDup(SDValue & Op,DebugLoc & dl,SDValue V1,SelectionDAG & DAG)6267 SDValue getMOVDDup(SDValue &Op, DebugLoc &dl, SDValue V1, SelectionDAG &DAG) {
6268 EVT VT = Op.getValueType();
6269
6270 // Canonizalize to v2f64.
6271 V1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
6272 return DAG.getNode(ISD::BITCAST, dl, VT,
6273 getTargetShuffleNode(X86ISD::MOVDDUP, dl, MVT::v2f64,
6274 V1, DAG));
6275 }
6276
6277 static
getMOVLowToHigh(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG,bool HasXMMInt)6278 SDValue getMOVLowToHigh(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG,
6279 bool HasXMMInt) {
6280 SDValue V1 = Op.getOperand(0);
6281 SDValue V2 = Op.getOperand(1);
6282 EVT VT = Op.getValueType();
6283
6284 assert(VT != MVT::v2i64 && "unsupported shuffle type");
6285
6286 if (HasXMMInt && VT == MVT::v2f64)
6287 return getTargetShuffleNode(X86ISD::MOVLHPD, dl, VT, V1, V2, DAG);
6288
6289 // v4f32 or v4i32: canonizalized to v4f32 (which is legal for SSE1)
6290 return DAG.getNode(ISD::BITCAST, dl, VT,
6291 getTargetShuffleNode(X86ISD::MOVLHPS, dl, MVT::v4f32,
6292 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V1),
6293 DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, V2), DAG));
6294 }
6295
6296 static
getMOVHighToLow(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG)6297 SDValue getMOVHighToLow(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG) {
6298 SDValue V1 = Op.getOperand(0);
6299 SDValue V2 = Op.getOperand(1);
6300 EVT VT = Op.getValueType();
6301
6302 assert((VT == MVT::v4i32 || VT == MVT::v4f32) &&
6303 "unsupported shuffle type");
6304
6305 if (V2.getOpcode() == ISD::UNDEF)
6306 V2 = V1;
6307
6308 // v4i32 or v4f32
6309 return getTargetShuffleNode(X86ISD::MOVHLPS, dl, VT, V1, V2, DAG);
6310 }
6311
getSHUFPOpcode(EVT VT)6312 static inline unsigned getSHUFPOpcode(EVT VT) {
6313 switch(VT.getSimpleVT().SimpleTy) {
6314 case MVT::v8i32: // Use fp unit for int unpack.
6315 case MVT::v8f32:
6316 case MVT::v4i32: // Use fp unit for int unpack.
6317 case MVT::v4f32: return X86ISD::SHUFPS;
6318 case MVT::v4i64: // Use fp unit for int unpack.
6319 case MVT::v4f64:
6320 case MVT::v2i64: // Use fp unit for int unpack.
6321 case MVT::v2f64: return X86ISD::SHUFPD;
6322 default:
6323 llvm_unreachable("Unknown type for shufp*");
6324 }
6325 return 0;
6326 }
6327
6328 static
getMOVLP(SDValue & Op,DebugLoc & dl,SelectionDAG & DAG,bool HasXMMInt)6329 SDValue getMOVLP(SDValue &Op, DebugLoc &dl, SelectionDAG &DAG, bool HasXMMInt) {
6330 SDValue V1 = Op.getOperand(0);
6331 SDValue V2 = Op.getOperand(1);
6332 EVT VT = Op.getValueType();
6333 unsigned NumElems = VT.getVectorNumElements();
6334
6335 // Use MOVLPS and MOVLPD in case V1 or V2 are loads. During isel, the second
6336 // operand of these instructions is only memory, so check if there's a
6337 // potencial load folding here, otherwise use SHUFPS or MOVSD to match the
6338 // same masks.
6339 bool CanFoldLoad = false;
6340
6341 // Trivial case, when V2 comes from a load.
6342 if (MayFoldVectorLoad(V2))
6343 CanFoldLoad = true;
6344
6345 // When V1 is a load, it can be folded later into a store in isel, example:
6346 // (store (v4f32 (X86Movlps (load addr:$src1), VR128:$src2)), addr:$src1)
6347 // turns into:
6348 // (MOVLPSmr addr:$src1, VR128:$src2)
6349 // So, recognize this potential and also use MOVLPS or MOVLPD
6350 if (MayFoldVectorLoad(V1) && MayFoldIntoStore(Op))
6351 CanFoldLoad = true;
6352
6353 // Both of them can't be memory operations though.
6354 if (MayFoldVectorLoad(V1) && MayFoldVectorLoad(V2))
6355 CanFoldLoad = false;
6356
6357 if (CanFoldLoad) {
6358 if (HasXMMInt && NumElems == 2)
6359 return getTargetShuffleNode(X86ISD::MOVLPD, dl, VT, V1, V2, DAG);
6360
6361 if (NumElems == 4)
6362 return getTargetShuffleNode(X86ISD::MOVLPS, dl, VT, V1, V2, DAG);
6363 }
6364
6365 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6366 // movl and movlp will both match v2i64, but v2i64 is never matched by
6367 // movl earlier because we make it strict to avoid messing with the movlp load
6368 // folding logic (see the code above getMOVLP call). Match it here then,
6369 // this is horrible, but will stay like this until we move all shuffle
6370 // matching to x86 specific nodes. Note that for the 1st condition all
6371 // types are matched with movsd.
6372 if (HasXMMInt) {
6373 // FIXME: isMOVLMask should be checked and matched before getMOVLP,
6374 // as to remove this logic from here, as much as possible
6375 if (NumElems == 2 || !X86::isMOVLMask(SVOp))
6376 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6377 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6378 }
6379
6380 assert(VT != MVT::v4i32 && "unsupported shuffle type");
6381
6382 // Invert the operand order and use SHUFPS to match it.
6383 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V2, V1,
6384 X86::getShuffleSHUFImmediate(SVOp), DAG);
6385 }
6386
getUNPCKLOpcode(EVT VT)6387 static inline unsigned getUNPCKLOpcode(EVT VT) {
6388 switch(VT.getSimpleVT().SimpleTy) {
6389 case MVT::v4i32: return X86ISD::PUNPCKLDQ;
6390 case MVT::v2i64: return X86ISD::PUNPCKLQDQ;
6391 case MVT::v4f32: return X86ISD::UNPCKLPS;
6392 case MVT::v2f64: return X86ISD::UNPCKLPD;
6393 case MVT::v8i32: // Use fp unit for int unpack.
6394 case MVT::v8f32: return X86ISD::VUNPCKLPSY;
6395 case MVT::v4i64: // Use fp unit for int unpack.
6396 case MVT::v4f64: return X86ISD::VUNPCKLPDY;
6397 case MVT::v16i8: return X86ISD::PUNPCKLBW;
6398 case MVT::v8i16: return X86ISD::PUNPCKLWD;
6399 default:
6400 llvm_unreachable("Unknown type for unpckl");
6401 }
6402 return 0;
6403 }
6404
getUNPCKHOpcode(EVT VT)6405 static inline unsigned getUNPCKHOpcode(EVT VT) {
6406 switch(VT.getSimpleVT().SimpleTy) {
6407 case MVT::v4i32: return X86ISD::PUNPCKHDQ;
6408 case MVT::v2i64: return X86ISD::PUNPCKHQDQ;
6409 case MVT::v4f32: return X86ISD::UNPCKHPS;
6410 case MVT::v2f64: return X86ISD::UNPCKHPD;
6411 case MVT::v8i32: // Use fp unit for int unpack.
6412 case MVT::v8f32: return X86ISD::VUNPCKHPSY;
6413 case MVT::v4i64: // Use fp unit for int unpack.
6414 case MVT::v4f64: return X86ISD::VUNPCKHPDY;
6415 case MVT::v16i8: return X86ISD::PUNPCKHBW;
6416 case MVT::v8i16: return X86ISD::PUNPCKHWD;
6417 default:
6418 llvm_unreachable("Unknown type for unpckh");
6419 }
6420 return 0;
6421 }
6422
getVPERMILOpcode(EVT VT)6423 static inline unsigned getVPERMILOpcode(EVT VT) {
6424 switch(VT.getSimpleVT().SimpleTy) {
6425 case MVT::v4i32:
6426 case MVT::v4f32: return X86ISD::VPERMILPS;
6427 case MVT::v2i64:
6428 case MVT::v2f64: return X86ISD::VPERMILPD;
6429 case MVT::v8i32:
6430 case MVT::v8f32: return X86ISD::VPERMILPSY;
6431 case MVT::v4i64:
6432 case MVT::v4f64: return X86ISD::VPERMILPDY;
6433 default:
6434 llvm_unreachable("Unknown type for vpermil");
6435 }
6436 return 0;
6437 }
6438
6439 /// isVectorBroadcast - Check if the node chain is suitable to be xformed to
6440 /// a vbroadcast node. The nodes are suitable whenever we can fold a load coming
6441 /// from a 32 or 64 bit scalar. Update Op to the desired load to be folded.
isVectorBroadcast(SDValue & Op)6442 static bool isVectorBroadcast(SDValue &Op) {
6443 EVT VT = Op.getValueType();
6444 bool Is256 = VT.getSizeInBits() == 256;
6445
6446 assert((VT.getSizeInBits() == 128 || Is256) &&
6447 "Unsupported type for vbroadcast node");
6448
6449 SDValue V = Op;
6450 if (V.hasOneUse() && V.getOpcode() == ISD::BITCAST)
6451 V = V.getOperand(0);
6452
6453 if (Is256 && !(V.hasOneUse() &&
6454 V.getOpcode() == ISD::INSERT_SUBVECTOR &&
6455 V.getOperand(0).getOpcode() == ISD::UNDEF))
6456 return false;
6457
6458 if (Is256)
6459 V = V.getOperand(1);
6460
6461 if (!V.hasOneUse())
6462 return false;
6463
6464 // Check the source scalar_to_vector type. 256-bit broadcasts are
6465 // supported for 32/64-bit sizes, while 128-bit ones are only supported
6466 // for 32-bit scalars.
6467 if (V.getOpcode() != ISD::SCALAR_TO_VECTOR)
6468 return false;
6469
6470 unsigned ScalarSize = V.getOperand(0).getValueType().getSizeInBits();
6471 if (ScalarSize != 32 && ScalarSize != 64)
6472 return false;
6473 if (!Is256 && ScalarSize == 64)
6474 return false;
6475
6476 V = V.getOperand(0);
6477 if (!MayFoldLoad(V))
6478 return false;
6479
6480 // Return the load node
6481 Op = V;
6482 return true;
6483 }
6484
6485 static
NormalizeVectorShuffle(SDValue Op,SelectionDAG & DAG,const TargetLowering & TLI,const X86Subtarget * Subtarget)6486 SDValue NormalizeVectorShuffle(SDValue Op, SelectionDAG &DAG,
6487 const TargetLowering &TLI,
6488 const X86Subtarget *Subtarget) {
6489 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6490 EVT VT = Op.getValueType();
6491 DebugLoc dl = Op.getDebugLoc();
6492 SDValue V1 = Op.getOperand(0);
6493 SDValue V2 = Op.getOperand(1);
6494
6495 if (isZeroShuffle(SVOp))
6496 return getZeroVector(VT, Subtarget->hasXMMInt(), DAG, dl);
6497
6498 // Handle splat operations
6499 if (SVOp->isSplat()) {
6500 unsigned NumElem = VT.getVectorNumElements();
6501 int Size = VT.getSizeInBits();
6502 // Special case, this is the only place now where it's allowed to return
6503 // a vector_shuffle operation without using a target specific node, because
6504 // *hopefully* it will be optimized away by the dag combiner. FIXME: should
6505 // this be moved to DAGCombine instead?
6506 if (NumElem <= 4 && CanXFormVExtractWithShuffleIntoLoad(Op, DAG, TLI))
6507 return Op;
6508
6509 // Use vbroadcast whenever the splat comes from a foldable load
6510 if (Subtarget->hasAVX() && isVectorBroadcast(V1))
6511 return DAG.getNode(X86ISD::VBROADCAST, dl, VT, V1);
6512
6513 // Handle splats by matching through known shuffle masks
6514 if ((Size == 128 && NumElem <= 4) ||
6515 (Size == 256 && NumElem < 8))
6516 return SDValue();
6517
6518 // All remaning splats are promoted to target supported vector shuffles.
6519 return PromoteSplat(SVOp, DAG);
6520 }
6521
6522 // If the shuffle can be profitably rewritten as a narrower shuffle, then
6523 // do it!
6524 if (VT == MVT::v8i16 || VT == MVT::v16i8) {
6525 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6526 if (NewOp.getNode())
6527 return DAG.getNode(ISD::BITCAST, dl, VT, NewOp);
6528 } else if ((VT == MVT::v4i32 ||
6529 (VT == MVT::v4f32 && Subtarget->hasXMMInt()))) {
6530 // FIXME: Figure out a cleaner way to do this.
6531 // Try to make use of movq to zero out the top part.
6532 if (ISD::isBuildVectorAllZeros(V2.getNode())) {
6533 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6534 if (NewOp.getNode()) {
6535 if (isCommutedMOVL(cast<ShuffleVectorSDNode>(NewOp), true, false))
6536 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(0),
6537 DAG, Subtarget, dl);
6538 }
6539 } else if (ISD::isBuildVectorAllZeros(V1.getNode())) {
6540 SDValue NewOp = RewriteAsNarrowerShuffle(SVOp, DAG, dl);
6541 if (NewOp.getNode() && X86::isMOVLMask(cast<ShuffleVectorSDNode>(NewOp)))
6542 return getVZextMovL(VT, NewOp.getValueType(), NewOp.getOperand(1),
6543 DAG, Subtarget, dl);
6544 }
6545 }
6546 return SDValue();
6547 }
6548
6549 SDValue
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const6550 X86TargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const {
6551 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
6552 SDValue V1 = Op.getOperand(0);
6553 SDValue V2 = Op.getOperand(1);
6554 EVT VT = Op.getValueType();
6555 DebugLoc dl = Op.getDebugLoc();
6556 unsigned NumElems = VT.getVectorNumElements();
6557 bool isMMX = VT.getSizeInBits() == 64;
6558 bool V1IsUndef = V1.getOpcode() == ISD::UNDEF;
6559 bool V2IsUndef = V2.getOpcode() == ISD::UNDEF;
6560 bool V1IsSplat = false;
6561 bool V2IsSplat = false;
6562 bool HasXMMInt = Subtarget->hasXMMInt();
6563 MachineFunction &MF = DAG.getMachineFunction();
6564 bool OptForSize = MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize);
6565
6566 // Shuffle operations on MMX not supported.
6567 if (isMMX)
6568 return Op;
6569
6570 // Vector shuffle lowering takes 3 steps:
6571 //
6572 // 1) Normalize the input vectors. Here splats, zeroed vectors, profitable
6573 // narrowing and commutation of operands should be handled.
6574 // 2) Matching of shuffles with known shuffle masks to x86 target specific
6575 // shuffle nodes.
6576 // 3) Rewriting of unmatched masks into new generic shuffle operations,
6577 // so the shuffle can be broken into other shuffles and the legalizer can
6578 // try the lowering again.
6579 //
6580 // The general ideia is that no vector_shuffle operation should be left to
6581 // be matched during isel, all of them must be converted to a target specific
6582 // node here.
6583
6584 // Normalize the input vectors. Here splats, zeroed vectors, profitable
6585 // narrowing and commutation of operands should be handled. The actual code
6586 // doesn't include all of those, work in progress...
6587 SDValue NewOp = NormalizeVectorShuffle(Op, DAG, *this, Subtarget);
6588 if (NewOp.getNode())
6589 return NewOp;
6590
6591 // NOTE: isPSHUFDMask can also match both masks below (unpckl_undef and
6592 // unpckh_undef). Only use pshufd if speed is more important than size.
6593 if (OptForSize && X86::isUNPCKL_v_undef_Mask(SVOp))
6594 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6595 if (OptForSize && X86::isUNPCKH_v_undef_Mask(SVOp))
6596 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6597
6598 if (X86::isMOVDDUPMask(SVOp) &&
6599 (Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
6600 V2IsUndef && RelaxedMayFoldVectorLoad(V1))
6601 return getMOVDDup(Op, dl, V1, DAG);
6602
6603 if (X86::isMOVHLPS_v_undef_Mask(SVOp))
6604 return getMOVHighToLow(Op, dl, DAG);
6605
6606 // Use to match splats
6607 if (HasXMMInt && X86::isUNPCKHMask(SVOp) && V2IsUndef &&
6608 (VT == MVT::v2f64 || VT == MVT::v2i64))
6609 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6610
6611 if (X86::isPSHUFDMask(SVOp)) {
6612 // The actual implementation will match the mask in the if above and then
6613 // during isel it can match several different instructions, not only pshufd
6614 // as its name says, sad but true, emulate the behavior for now...
6615 if (X86::isMOVDDUPMask(SVOp) && ((VT == MVT::v4f32 || VT == MVT::v2i64)))
6616 return getTargetShuffleNode(X86ISD::MOVLHPS, dl, VT, V1, V1, DAG);
6617
6618 unsigned TargetMask = X86::getShuffleSHUFImmediate(SVOp);
6619
6620 if (HasXMMInt && (VT == MVT::v4f32 || VT == MVT::v4i32))
6621 return getTargetShuffleNode(X86ISD::PSHUFD, dl, VT, V1, TargetMask, DAG);
6622
6623 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V1,
6624 TargetMask, DAG);
6625 }
6626
6627 // Check if this can be converted into a logical shift.
6628 bool isLeft = false;
6629 unsigned ShAmt = 0;
6630 SDValue ShVal;
6631 bool isShift = getSubtarget()->hasXMMInt() &&
6632 isVectorShift(SVOp, DAG, isLeft, ShVal, ShAmt);
6633 if (isShift && ShVal.hasOneUse()) {
6634 // If the shifted value has multiple uses, it may be cheaper to use
6635 // v_set0 + movlhps or movhlps, etc.
6636 EVT EltVT = VT.getVectorElementType();
6637 ShAmt *= EltVT.getSizeInBits();
6638 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6639 }
6640
6641 if (X86::isMOVLMask(SVOp)) {
6642 if (V1IsUndef)
6643 return V2;
6644 if (ISD::isBuildVectorAllZeros(V1.getNode()))
6645 return getVZextMovL(VT, VT, V2, DAG, Subtarget, dl);
6646 if (!X86::isMOVLPMask(SVOp)) {
6647 if (HasXMMInt && (VT == MVT::v2i64 || VT == MVT::v2f64))
6648 return getTargetShuffleNode(X86ISD::MOVSD, dl, VT, V1, V2, DAG);
6649
6650 if (VT == MVT::v4i32 || VT == MVT::v4f32)
6651 return getTargetShuffleNode(X86ISD::MOVSS, dl, VT, V1, V2, DAG);
6652 }
6653 }
6654
6655 // FIXME: fold these into legal mask.
6656 if (X86::isMOVLHPSMask(SVOp) && !X86::isUNPCKLMask(SVOp))
6657 return getMOVLowToHigh(Op, dl, DAG, HasXMMInt);
6658
6659 if (X86::isMOVHLPSMask(SVOp))
6660 return getMOVHighToLow(Op, dl, DAG);
6661
6662 if (X86::isMOVSHDUPMask(SVOp, Subtarget))
6663 return getTargetShuffleNode(X86ISD::MOVSHDUP, dl, VT, V1, DAG);
6664
6665 if (X86::isMOVSLDUPMask(SVOp, Subtarget))
6666 return getTargetShuffleNode(X86ISD::MOVSLDUP, dl, VT, V1, DAG);
6667
6668 if (X86::isMOVLPMask(SVOp))
6669 return getMOVLP(Op, dl, DAG, HasXMMInt);
6670
6671 if (ShouldXformToMOVHLPS(SVOp) ||
6672 ShouldXformToMOVLP(V1.getNode(), V2.getNode(), SVOp))
6673 return CommuteVectorShuffle(SVOp, DAG);
6674
6675 if (isShift) {
6676 // No better options. Use a vshl / vsrl.
6677 EVT EltVT = VT.getVectorElementType();
6678 ShAmt *= EltVT.getSizeInBits();
6679 return getVShift(isLeft, VT, ShVal, ShAmt, DAG, *this, dl);
6680 }
6681
6682 bool Commuted = false;
6683 // FIXME: This should also accept a bitcast of a splat? Be careful, not
6684 // 1,1,1,1 -> v8i16 though.
6685 V1IsSplat = isSplatVector(V1.getNode());
6686 V2IsSplat = isSplatVector(V2.getNode());
6687
6688 // Canonicalize the splat or undef, if present, to be on the RHS.
6689 if ((V1IsSplat || V1IsUndef) && !(V2IsSplat || V2IsUndef)) {
6690 Op = CommuteVectorShuffle(SVOp, DAG);
6691 SVOp = cast<ShuffleVectorSDNode>(Op);
6692 V1 = SVOp->getOperand(0);
6693 V2 = SVOp->getOperand(1);
6694 std::swap(V1IsSplat, V2IsSplat);
6695 std::swap(V1IsUndef, V2IsUndef);
6696 Commuted = true;
6697 }
6698
6699 if (isCommutedMOVL(SVOp, V2IsSplat, V2IsUndef)) {
6700 // Shuffling low element of v1 into undef, just return v1.
6701 if (V2IsUndef)
6702 return V1;
6703 // If V2 is a splat, the mask may be malformed such as <4,3,3,3>, which
6704 // the instruction selector will not match, so get a canonical MOVL with
6705 // swapped operands to undo the commute.
6706 return getMOVL(DAG, dl, VT, V2, V1);
6707 }
6708
6709 if (X86::isUNPCKLMask(SVOp))
6710 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V2, DAG);
6711
6712 if (X86::isUNPCKHMask(SVOp))
6713 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V2, DAG);
6714
6715 if (V2IsSplat) {
6716 // Normalize mask so all entries that point to V2 points to its first
6717 // element then try to match unpck{h|l} again. If match, return a
6718 // new vector_shuffle with the corrected mask.
6719 SDValue NewMask = NormalizeMask(SVOp, DAG);
6720 ShuffleVectorSDNode *NSVOp = cast<ShuffleVectorSDNode>(NewMask);
6721 if (NSVOp != SVOp) {
6722 if (X86::isUNPCKLMask(NSVOp, true)) {
6723 return NewMask;
6724 } else if (X86::isUNPCKHMask(NSVOp, true)) {
6725 return NewMask;
6726 }
6727 }
6728 }
6729
6730 if (Commuted) {
6731 // Commute is back and try unpck* again.
6732 // FIXME: this seems wrong.
6733 SDValue NewOp = CommuteVectorShuffle(SVOp, DAG);
6734 ShuffleVectorSDNode *NewSVOp = cast<ShuffleVectorSDNode>(NewOp);
6735
6736 if (X86::isUNPCKLMask(NewSVOp))
6737 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V2, V1, DAG);
6738
6739 if (X86::isUNPCKHMask(NewSVOp))
6740 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V2, V1, DAG);
6741 }
6742
6743 // Normalize the node to match x86 shuffle ops if needed
6744 if (V2.getOpcode() != ISD::UNDEF && isCommutedSHUFP(SVOp))
6745 return CommuteVectorShuffle(SVOp, DAG);
6746
6747 // The checks below are all present in isShuffleMaskLegal, but they are
6748 // inlined here right now to enable us to directly emit target specific
6749 // nodes, and remove one by one until they don't return Op anymore.
6750 SmallVector<int, 16> M;
6751 SVOp->getMask(M);
6752
6753 if (isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()))
6754 return getTargetShuffleNode(X86ISD::PALIGN, dl, VT, V1, V2,
6755 X86::getShufflePALIGNRImmediate(SVOp),
6756 DAG);
6757
6758 if (ShuffleVectorSDNode::isSplatMask(&M[0], VT) &&
6759 SVOp->getSplatIndex() == 0 && V2IsUndef) {
6760 if (VT == MVT::v2f64)
6761 return getTargetShuffleNode(X86ISD::UNPCKLPD, dl, VT, V1, V1, DAG);
6762 if (VT == MVT::v2i64)
6763 return getTargetShuffleNode(X86ISD::PUNPCKLQDQ, dl, VT, V1, V1, DAG);
6764 }
6765
6766 if (isPSHUFHWMask(M, VT))
6767 return getTargetShuffleNode(X86ISD::PSHUFHW, dl, VT, V1,
6768 X86::getShufflePSHUFHWImmediate(SVOp),
6769 DAG);
6770
6771 if (isPSHUFLWMask(M, VT))
6772 return getTargetShuffleNode(X86ISD::PSHUFLW, dl, VT, V1,
6773 X86::getShufflePSHUFLWImmediate(SVOp),
6774 DAG);
6775
6776 if (isSHUFPMask(M, VT))
6777 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6778 X86::getShuffleSHUFImmediate(SVOp), DAG);
6779
6780 if (X86::isUNPCKL_v_undef_Mask(SVOp))
6781 return getTargetShuffleNode(getUNPCKLOpcode(VT), dl, VT, V1, V1, DAG);
6782 if (X86::isUNPCKH_v_undef_Mask(SVOp))
6783 return getTargetShuffleNode(getUNPCKHOpcode(VT), dl, VT, V1, V1, DAG);
6784
6785 //===--------------------------------------------------------------------===//
6786 // Generate target specific nodes for 128 or 256-bit shuffles only
6787 // supported in the AVX instruction set.
6788 //
6789
6790 // Handle VMOVDDUPY permutations
6791 if (isMOVDDUPYMask(SVOp, Subtarget))
6792 return getTargetShuffleNode(X86ISD::MOVDDUP, dl, VT, V1, DAG);
6793
6794 // Handle VPERMILPS* permutations
6795 if (isVPERMILPSMask(M, VT, Subtarget))
6796 return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6797 getShuffleVPERMILPSImmediate(SVOp), DAG);
6798
6799 // Handle VPERMILPD* permutations
6800 if (isVPERMILPDMask(M, VT, Subtarget))
6801 return getTargetShuffleNode(getVPERMILOpcode(VT), dl, VT, V1,
6802 getShuffleVPERMILPDImmediate(SVOp), DAG);
6803
6804 // Handle VPERM2F128 permutations
6805 if (isVPERM2F128Mask(M, VT, Subtarget))
6806 return getTargetShuffleNode(X86ISD::VPERM2F128, dl, VT, V1, V2,
6807 getShuffleVPERM2F128Immediate(SVOp), DAG);
6808
6809 // Handle VSHUFPSY permutations
6810 if (isVSHUFPSYMask(M, VT, Subtarget))
6811 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6812 getShuffleVSHUFPSYImmediate(SVOp), DAG);
6813
6814 // Handle VSHUFPDY permutations
6815 if (isVSHUFPDYMask(M, VT, Subtarget))
6816 return getTargetShuffleNode(getSHUFPOpcode(VT), dl, VT, V1, V2,
6817 getShuffleVSHUFPDYImmediate(SVOp), DAG);
6818
6819 //===--------------------------------------------------------------------===//
6820 // Since no target specific shuffle was selected for this generic one,
6821 // lower it into other known shuffles. FIXME: this isn't true yet, but
6822 // this is the plan.
6823 //
6824
6825 // Handle v8i16 specifically since SSE can do byte extraction and insertion.
6826 if (VT == MVT::v8i16) {
6827 SDValue NewOp = LowerVECTOR_SHUFFLEv8i16(Op, DAG);
6828 if (NewOp.getNode())
6829 return NewOp;
6830 }
6831
6832 if (VT == MVT::v16i8) {
6833 SDValue NewOp = LowerVECTOR_SHUFFLEv16i8(SVOp, DAG, *this);
6834 if (NewOp.getNode())
6835 return NewOp;
6836 }
6837
6838 // Handle all 128-bit wide vectors with 4 elements, and match them with
6839 // several different shuffle types.
6840 if (NumElems == 4 && VT.getSizeInBits() == 128)
6841 return LowerVECTOR_SHUFFLE_128v4(SVOp, DAG);
6842
6843 // Handle general 256-bit shuffles
6844 if (VT.is256BitVector())
6845 return LowerVECTOR_SHUFFLE_256(SVOp, DAG);
6846
6847 return SDValue();
6848 }
6849
6850 SDValue
LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,SelectionDAG & DAG) const6851 X86TargetLowering::LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op,
6852 SelectionDAG &DAG) const {
6853 EVT VT = Op.getValueType();
6854 DebugLoc dl = Op.getDebugLoc();
6855
6856 if (Op.getOperand(0).getValueType().getSizeInBits() != 128)
6857 return SDValue();
6858
6859 if (VT.getSizeInBits() == 8) {
6860 SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
6861 Op.getOperand(0), Op.getOperand(1));
6862 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6863 DAG.getValueType(VT));
6864 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6865 } else if (VT.getSizeInBits() == 16) {
6866 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6867 // If Idx is 0, it's cheaper to do a move instead of a pextrw.
6868 if (Idx == 0)
6869 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6870 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6871 DAG.getNode(ISD::BITCAST, dl,
6872 MVT::v4i32,
6873 Op.getOperand(0)),
6874 Op.getOperand(1)));
6875 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
6876 Op.getOperand(0), Op.getOperand(1));
6877 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
6878 DAG.getValueType(VT));
6879 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6880 } else if (VT == MVT::f32) {
6881 // EXTRACTPS outputs to a GPR32 register which will require a movd to copy
6882 // the result back to FR32 register. It's only worth matching if the
6883 // result has a single use which is a store or a bitcast to i32. And in
6884 // the case of a store, it's not worth it if the index is a constant 0,
6885 // because a MOVSSmr can be used instead, which is smaller and faster.
6886 if (!Op.hasOneUse())
6887 return SDValue();
6888 SDNode *User = *Op.getNode()->use_begin();
6889 if ((User->getOpcode() != ISD::STORE ||
6890 (isa<ConstantSDNode>(Op.getOperand(1)) &&
6891 cast<ConstantSDNode>(Op.getOperand(1))->isNullValue())) &&
6892 (User->getOpcode() != ISD::BITCAST ||
6893 User->getValueType(0) != MVT::i32))
6894 return SDValue();
6895 SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6896 DAG.getNode(ISD::BITCAST, dl, MVT::v4i32,
6897 Op.getOperand(0)),
6898 Op.getOperand(1));
6899 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, Extract);
6900 } else if (VT == MVT::i32) {
6901 // ExtractPS works with constant index.
6902 if (isa<ConstantSDNode>(Op.getOperand(1)))
6903 return Op;
6904 }
6905 return SDValue();
6906 }
6907
6908
6909 SDValue
LowerEXTRACT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const6910 X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
6911 SelectionDAG &DAG) const {
6912 if (!isa<ConstantSDNode>(Op.getOperand(1)))
6913 return SDValue();
6914
6915 SDValue Vec = Op.getOperand(0);
6916 EVT VecVT = Vec.getValueType();
6917
6918 // If this is a 256-bit vector result, first extract the 128-bit vector and
6919 // then extract the element from the 128-bit vector.
6920 if (VecVT.getSizeInBits() == 256) {
6921 DebugLoc dl = Op.getNode()->getDebugLoc();
6922 unsigned NumElems = VecVT.getVectorNumElements();
6923 SDValue Idx = Op.getOperand(1);
6924 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
6925
6926 // Get the 128-bit vector.
6927 bool Upper = IdxVal >= NumElems/2;
6928 Vec = Extract128BitVector(Vec,
6929 DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32), DAG, dl);
6930
6931 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
6932 Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : Idx);
6933 }
6934
6935 assert(Vec.getValueSizeInBits() <= 128 && "Unexpected vector length");
6936
6937 if (Subtarget->hasSSE41() || Subtarget->hasAVX()) {
6938 SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG);
6939 if (Res.getNode())
6940 return Res;
6941 }
6942
6943 EVT VT = Op.getValueType();
6944 DebugLoc dl = Op.getDebugLoc();
6945 // TODO: handle v16i8.
6946 if (VT.getSizeInBits() == 16) {
6947 SDValue Vec = Op.getOperand(0);
6948 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6949 if (Idx == 0)
6950 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
6951 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
6952 DAG.getNode(ISD::BITCAST, dl,
6953 MVT::v4i32, Vec),
6954 Op.getOperand(1)));
6955 // Transform it so it match pextrw which produces a 32-bit result.
6956 EVT EltVT = MVT::i32;
6957 SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT,
6958 Op.getOperand(0), Op.getOperand(1));
6959 SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
6960 DAG.getValueType(VT));
6961 return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
6962 } else if (VT.getSizeInBits() == 32) {
6963 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6964 if (Idx == 0)
6965 return Op;
6966
6967 // SHUFPS the element to the lowest double word, then movss.
6968 int Mask[4] = { static_cast<int>(Idx), -1, -1, -1 };
6969 EVT VVT = Op.getOperand(0).getValueType();
6970 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6971 DAG.getUNDEF(VVT), Mask);
6972 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6973 DAG.getIntPtrConstant(0));
6974 } else if (VT.getSizeInBits() == 64) {
6975 // FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
6976 // FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
6977 // to match extract_elt for f64.
6978 unsigned Idx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6979 if (Idx == 0)
6980 return Op;
6981
6982 // UNPCKHPD the element to the lowest double word, then movsd.
6983 // Note if the lower 64 bits of the result of the UNPCKHPD is then stored
6984 // to a f64mem, the whole operation is folded into a single MOVHPDmr.
6985 int Mask[2] = { 1, -1 };
6986 EVT VVT = Op.getOperand(0).getValueType();
6987 SDValue Vec = DAG.getVectorShuffle(VVT, dl, Op.getOperand(0),
6988 DAG.getUNDEF(VVT), Mask);
6989 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
6990 DAG.getIntPtrConstant(0));
6991 }
6992
6993 return SDValue();
6994 }
6995
6996 SDValue
LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,SelectionDAG & DAG) const6997 X86TargetLowering::LowerINSERT_VECTOR_ELT_SSE4(SDValue Op,
6998 SelectionDAG &DAG) const {
6999 EVT VT = Op.getValueType();
7000 EVT EltVT = VT.getVectorElementType();
7001 DebugLoc dl = Op.getDebugLoc();
7002
7003 SDValue N0 = Op.getOperand(0);
7004 SDValue N1 = Op.getOperand(1);
7005 SDValue N2 = Op.getOperand(2);
7006
7007 if (VT.getSizeInBits() == 256)
7008 return SDValue();
7009
7010 if ((EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) &&
7011 isa<ConstantSDNode>(N2)) {
7012 unsigned Opc;
7013 if (VT == MVT::v8i16)
7014 Opc = X86ISD::PINSRW;
7015 else if (VT == MVT::v16i8)
7016 Opc = X86ISD::PINSRB;
7017 else
7018 Opc = X86ISD::PINSRB;
7019
7020 // Transform it so it match pinsr{b,w} which expects a GR32 as its second
7021 // argument.
7022 if (N1.getValueType() != MVT::i32)
7023 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7024 if (N2.getValueType() != MVT::i32)
7025 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7026 return DAG.getNode(Opc, dl, VT, N0, N1, N2);
7027 } else if (EltVT == MVT::f32 && isa<ConstantSDNode>(N2)) {
7028 // Bits [7:6] of the constant are the source select. This will always be
7029 // zero here. The DAG Combiner may combine an extract_elt index into these
7030 // bits. For example (insert (extract, 3), 2) could be matched by putting
7031 // the '3' into bits [7:6] of X86ISD::INSERTPS.
7032 // Bits [5:4] of the constant are the destination select. This is the
7033 // value of the incoming immediate.
7034 // Bits [3:0] of the constant are the zero mask. The DAG Combiner may
7035 // combine either bitwise AND or insert of float 0.0 to set these bits.
7036 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue() << 4);
7037 // Create this as a scalar to vector..
7038 N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
7039 return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
7040 } else if (EltVT == MVT::i32 && isa<ConstantSDNode>(N2)) {
7041 // PINSR* works with constant index.
7042 return Op;
7043 }
7044 return SDValue();
7045 }
7046
7047 SDValue
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const7048 X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const {
7049 EVT VT = Op.getValueType();
7050 EVT EltVT = VT.getVectorElementType();
7051
7052 DebugLoc dl = Op.getDebugLoc();
7053 SDValue N0 = Op.getOperand(0);
7054 SDValue N1 = Op.getOperand(1);
7055 SDValue N2 = Op.getOperand(2);
7056
7057 // If this is a 256-bit vector result, first extract the 128-bit vector,
7058 // insert the element into the extracted half and then place it back.
7059 if (VT.getSizeInBits() == 256) {
7060 if (!isa<ConstantSDNode>(N2))
7061 return SDValue();
7062
7063 // Get the desired 128-bit vector half.
7064 unsigned NumElems = VT.getVectorNumElements();
7065 unsigned IdxVal = cast<ConstantSDNode>(N2)->getZExtValue();
7066 bool Upper = IdxVal >= NumElems/2;
7067 SDValue Ins128Idx = DAG.getConstant(Upper ? NumElems/2 : 0, MVT::i32);
7068 SDValue V = Extract128BitVector(N0, Ins128Idx, DAG, dl);
7069
7070 // Insert the element into the desired half.
7071 V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V,
7072 N1, Upper ? DAG.getConstant(IdxVal-NumElems/2, MVT::i32) : N2);
7073
7074 // Insert the changed part back to the 256-bit vector
7075 return Insert128BitVector(N0, V, Ins128Idx, DAG, dl);
7076 }
7077
7078 if (Subtarget->hasSSE41() || Subtarget->hasAVX())
7079 return LowerINSERT_VECTOR_ELT_SSE4(Op, DAG);
7080
7081 if (EltVT == MVT::i8)
7082 return SDValue();
7083
7084 if (EltVT.getSizeInBits() == 16 && isa<ConstantSDNode>(N2)) {
7085 // Transform it so it match pinsrw which expects a 16-bit value in a GR32
7086 // as its second argument.
7087 if (N1.getValueType() != MVT::i32)
7088 N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
7089 if (N2.getValueType() != MVT::i32)
7090 N2 = DAG.getIntPtrConstant(cast<ConstantSDNode>(N2)->getZExtValue());
7091 return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
7092 }
7093 return SDValue();
7094 }
7095
7096 SDValue
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const7097 X86TargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const {
7098 LLVMContext *Context = DAG.getContext();
7099 DebugLoc dl = Op.getDebugLoc();
7100 EVT OpVT = Op.getValueType();
7101
7102 // If this is a 256-bit vector result, first insert into a 128-bit
7103 // vector and then insert into the 256-bit vector.
7104 if (OpVT.getSizeInBits() > 128) {
7105 // Insert into a 128-bit vector.
7106 EVT VT128 = EVT::getVectorVT(*Context,
7107 OpVT.getVectorElementType(),
7108 OpVT.getVectorNumElements() / 2);
7109
7110 Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
7111
7112 // Insert the 128-bit vector.
7113 return Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, OpVT), Op,
7114 DAG.getConstant(0, MVT::i32),
7115 DAG, dl);
7116 }
7117
7118 if (Op.getValueType() == MVT::v1i64 &&
7119 Op.getOperand(0).getValueType() == MVT::i64)
7120 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
7121
7122 SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
7123 assert(Op.getValueType().getSimpleVT().getSizeInBits() == 128 &&
7124 "Expected an SSE type!");
7125 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(),
7126 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,AnyExt));
7127 }
7128
7129 // Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
7130 // a simple subregister reference or explicit instructions to grab
7131 // upper bits of a vector.
7132 SDValue
LowerEXTRACT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7133 X86TargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7134 if (Subtarget->hasAVX()) {
7135 DebugLoc dl = Op.getNode()->getDebugLoc();
7136 SDValue Vec = Op.getNode()->getOperand(0);
7137 SDValue Idx = Op.getNode()->getOperand(1);
7138
7139 if (Op.getNode()->getValueType(0).getSizeInBits() == 128
7140 && Vec.getNode()->getValueType(0).getSizeInBits() == 256) {
7141 return Extract128BitVector(Vec, Idx, DAG, dl);
7142 }
7143 }
7144 return SDValue();
7145 }
7146
7147 // Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
7148 // simple superregister reference or explicit instructions to insert
7149 // the upper bits of a vector.
7150 SDValue
LowerINSERT_SUBVECTOR(SDValue Op,SelectionDAG & DAG) const7151 X86TargetLowering::LowerINSERT_SUBVECTOR(SDValue Op, SelectionDAG &DAG) const {
7152 if (Subtarget->hasAVX()) {
7153 DebugLoc dl = Op.getNode()->getDebugLoc();
7154 SDValue Vec = Op.getNode()->getOperand(0);
7155 SDValue SubVec = Op.getNode()->getOperand(1);
7156 SDValue Idx = Op.getNode()->getOperand(2);
7157
7158 if (Op.getNode()->getValueType(0).getSizeInBits() == 256
7159 && SubVec.getNode()->getValueType(0).getSizeInBits() == 128) {
7160 return Insert128BitVector(Vec, SubVec, Idx, DAG, dl);
7161 }
7162 }
7163 return SDValue();
7164 }
7165
7166 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
7167 // their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
7168 // one of the above mentioned nodes. It has to be wrapped because otherwise
7169 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
7170 // be used to form addressing mode. These wrapped nodes will be selected
7171 // into MOV32ri.
7172 SDValue
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const7173 X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
7174 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
7175
7176 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7177 // global base reg.
7178 unsigned char OpFlag = 0;
7179 unsigned WrapperKind = X86ISD::Wrapper;
7180 CodeModel::Model M = getTargetMachine().getCodeModel();
7181
7182 if (Subtarget->isPICStyleRIPRel() &&
7183 (M == CodeModel::Small || M == CodeModel::Kernel))
7184 WrapperKind = X86ISD::WrapperRIP;
7185 else if (Subtarget->isPICStyleGOT())
7186 OpFlag = X86II::MO_GOTOFF;
7187 else if (Subtarget->isPICStyleStubPIC())
7188 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7189
7190 SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
7191 CP->getAlignment(),
7192 CP->getOffset(), OpFlag);
7193 DebugLoc DL = CP->getDebugLoc();
7194 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7195 // With PIC, the address is actually $g + Offset.
7196 if (OpFlag) {
7197 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7198 DAG.getNode(X86ISD::GlobalBaseReg,
7199 DebugLoc(), getPointerTy()),
7200 Result);
7201 }
7202
7203 return Result;
7204 }
7205
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const7206 SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
7207 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
7208
7209 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7210 // global base reg.
7211 unsigned char OpFlag = 0;
7212 unsigned WrapperKind = X86ISD::Wrapper;
7213 CodeModel::Model M = getTargetMachine().getCodeModel();
7214
7215 if (Subtarget->isPICStyleRIPRel() &&
7216 (M == CodeModel::Small || M == CodeModel::Kernel))
7217 WrapperKind = X86ISD::WrapperRIP;
7218 else if (Subtarget->isPICStyleGOT())
7219 OpFlag = X86II::MO_GOTOFF;
7220 else if (Subtarget->isPICStyleStubPIC())
7221 OpFlag = X86II::MO_PIC_BASE_OFFSET;
7222
7223 SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy(),
7224 OpFlag);
7225 DebugLoc DL = JT->getDebugLoc();
7226 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7227
7228 // With PIC, the address is actually $g + Offset.
7229 if (OpFlag)
7230 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7231 DAG.getNode(X86ISD::GlobalBaseReg,
7232 DebugLoc(), getPointerTy()),
7233 Result);
7234
7235 return Result;
7236 }
7237
7238 SDValue
LowerExternalSymbol(SDValue Op,SelectionDAG & DAG) const7239 X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
7240 const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
7241
7242 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7243 // global base reg.
7244 unsigned char OpFlag = 0;
7245 unsigned WrapperKind = X86ISD::Wrapper;
7246 CodeModel::Model M = getTargetMachine().getCodeModel();
7247
7248 if (Subtarget->isPICStyleRIPRel() &&
7249 (M == CodeModel::Small || M == CodeModel::Kernel)) {
7250 if (Subtarget->isTargetDarwin() || Subtarget->isTargetELF())
7251 OpFlag = X86II::MO_GOTPCREL;
7252 WrapperKind = X86ISD::WrapperRIP;
7253 } else if (Subtarget->isPICStyleGOT()) {
7254 OpFlag = X86II::MO_GOT;
7255 } else if (Subtarget->isPICStyleStubPIC()) {
7256 OpFlag = X86II::MO_DARWIN_NONLAZY_PIC_BASE;
7257 } else if (Subtarget->isPICStyleStubNoDynamic()) {
7258 OpFlag = X86II::MO_DARWIN_NONLAZY;
7259 }
7260
7261 SDValue Result = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlag);
7262
7263 DebugLoc DL = Op.getDebugLoc();
7264 Result = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7265
7266
7267 // With PIC, the address is actually $g + Offset.
7268 if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
7269 !Subtarget->is64Bit()) {
7270 Result = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7271 DAG.getNode(X86ISD::GlobalBaseReg,
7272 DebugLoc(), getPointerTy()),
7273 Result);
7274 }
7275
7276 // For symbols that require a load from a stub to get the address, emit the
7277 // load.
7278 if (isGlobalStubReference(OpFlag))
7279 Result = DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), Result,
7280 MachinePointerInfo::getGOT(), false, false, 0);
7281
7282 return Result;
7283 }
7284
7285 SDValue
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const7286 X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
7287 // Create the TargetBlockAddressAddress node.
7288 unsigned char OpFlags =
7289 Subtarget->ClassifyBlockAddressReference();
7290 CodeModel::Model M = getTargetMachine().getCodeModel();
7291 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
7292 DebugLoc dl = Op.getDebugLoc();
7293 SDValue Result = DAG.getBlockAddress(BA, getPointerTy(),
7294 /*isTarget=*/true, OpFlags);
7295
7296 if (Subtarget->isPICStyleRIPRel() &&
7297 (M == CodeModel::Small || M == CodeModel::Kernel))
7298 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7299 else
7300 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7301
7302 // With PIC, the address is actually $g + Offset.
7303 if (isGlobalRelativeToPICBase(OpFlags)) {
7304 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7305 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7306 Result);
7307 }
7308
7309 return Result;
7310 }
7311
7312 SDValue
LowerGlobalAddress(const GlobalValue * GV,DebugLoc dl,int64_t Offset,SelectionDAG & DAG) const7313 X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, DebugLoc dl,
7314 int64_t Offset,
7315 SelectionDAG &DAG) const {
7316 // Create the TargetGlobalAddress node, folding in the constant
7317 // offset if it is legal.
7318 unsigned char OpFlags =
7319 Subtarget->ClassifyGlobalReference(GV, getTargetMachine());
7320 CodeModel::Model M = getTargetMachine().getCodeModel();
7321 SDValue Result;
7322 if (OpFlags == X86II::MO_NO_FLAG &&
7323 X86::isOffsetSuitableForCodeModel(Offset, M)) {
7324 // A direct static reference to a global.
7325 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
7326 Offset = 0;
7327 } else {
7328 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
7329 }
7330
7331 if (Subtarget->isPICStyleRIPRel() &&
7332 (M == CodeModel::Small || M == CodeModel::Kernel))
7333 Result = DAG.getNode(X86ISD::WrapperRIP, dl, getPointerTy(), Result);
7334 else
7335 Result = DAG.getNode(X86ISD::Wrapper, dl, getPointerTy(), Result);
7336
7337 // With PIC, the address is actually $g + Offset.
7338 if (isGlobalRelativeToPICBase(OpFlags)) {
7339 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(),
7340 DAG.getNode(X86ISD::GlobalBaseReg, dl, getPointerTy()),
7341 Result);
7342 }
7343
7344 // For globals that require a load from a stub to get the address, emit the
7345 // load.
7346 if (isGlobalStubReference(OpFlags))
7347 Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
7348 MachinePointerInfo::getGOT(), false, false, 0);
7349
7350 // If there was a non-zero offset that we didn't fold, create an explicit
7351 // addition for it.
7352 if (Offset != 0)
7353 Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
7354 DAG.getConstant(Offset, getPointerTy()));
7355
7356 return Result;
7357 }
7358
7359 SDValue
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const7360 X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
7361 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
7362 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
7363 return LowerGlobalAddress(GV, Op.getDebugLoc(), Offset, DAG);
7364 }
7365
7366 static SDValue
GetTLSADDR(SelectionDAG & DAG,SDValue Chain,GlobalAddressSDNode * GA,SDValue * InFlag,const EVT PtrVT,unsigned ReturnReg,unsigned char OperandFlags)7367 GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
7368 SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
7369 unsigned char OperandFlags) {
7370 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7371 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7372 DebugLoc dl = GA->getDebugLoc();
7373 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7374 GA->getValueType(0),
7375 GA->getOffset(),
7376 OperandFlags);
7377 if (InFlag) {
7378 SDValue Ops[] = { Chain, TGA, *InFlag };
7379 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 3);
7380 } else {
7381 SDValue Ops[] = { Chain, TGA };
7382 Chain = DAG.getNode(X86ISD::TLSADDR, dl, NodeTys, Ops, 2);
7383 }
7384
7385 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
7386 MFI->setAdjustsStack(true);
7387
7388 SDValue Flag = Chain.getValue(1);
7389 return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
7390 }
7391
7392 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
7393 static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT)7394 LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7395 const EVT PtrVT) {
7396 SDValue InFlag;
7397 DebugLoc dl = GA->getDebugLoc(); // ? function entry point might be better
7398 SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
7399 DAG.getNode(X86ISD::GlobalBaseReg,
7400 DebugLoc(), PtrVT), InFlag);
7401 InFlag = Chain.getValue(1);
7402
7403 return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
7404 }
7405
7406 // Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
7407 static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT)7408 LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7409 const EVT PtrVT) {
7410 return GetTLSADDR(DAG, DAG.getEntryNode(), GA, NULL, PtrVT,
7411 X86::RAX, X86II::MO_TLSGD);
7412 }
7413
7414 // Lower ISD::GlobalTLSAddress using the "initial exec" (for no-pic) or
7415 // "local exec" model.
LowerToTLSExecModel(GlobalAddressSDNode * GA,SelectionDAG & DAG,const EVT PtrVT,TLSModel::Model model,bool is64Bit)7416 static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
7417 const EVT PtrVT, TLSModel::Model model,
7418 bool is64Bit) {
7419 DebugLoc dl = GA->getDebugLoc();
7420
7421 // Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
7422 Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
7423 is64Bit ? 257 : 256));
7424
7425 SDValue ThreadPointer = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
7426 DAG.getIntPtrConstant(0),
7427 MachinePointerInfo(Ptr), false, false, 0);
7428
7429 unsigned char OperandFlags = 0;
7430 // Most TLS accesses are not RIP relative, even on x86-64. One exception is
7431 // initialexec.
7432 unsigned WrapperKind = X86ISD::Wrapper;
7433 if (model == TLSModel::LocalExec) {
7434 OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
7435 } else if (is64Bit) {
7436 assert(model == TLSModel::InitialExec);
7437 OperandFlags = X86II::MO_GOTTPOFF;
7438 WrapperKind = X86ISD::WrapperRIP;
7439 } else {
7440 assert(model == TLSModel::InitialExec);
7441 OperandFlags = X86II::MO_INDNTPOFF;
7442 }
7443
7444 // emit "addl x@ntpoff,%eax" (local exec) or "addl x@indntpoff,%eax" (initial
7445 // exec)
7446 SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
7447 GA->getValueType(0),
7448 GA->getOffset(), OperandFlags);
7449 SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
7450
7451 if (model == TLSModel::InitialExec)
7452 Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
7453 MachinePointerInfo::getGOT(), false, false, 0);
7454
7455 // The address of the thread local variable is the add of the thread
7456 // pointer with the offset of the variable.
7457 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
7458 }
7459
7460 SDValue
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const7461 X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
7462
7463 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
7464 const GlobalValue *GV = GA->getGlobal();
7465
7466 if (Subtarget->isTargetELF()) {
7467 // TODO: implement the "local dynamic" model
7468 // TODO: implement the "initial exec"model for pic executables
7469
7470 // If GV is an alias then use the aliasee for determining
7471 // thread-localness.
7472 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
7473 GV = GA->resolveAliasedGlobal(false);
7474
7475 TLSModel::Model model
7476 = getTLSModel(GV, getTargetMachine().getRelocationModel());
7477
7478 switch (model) {
7479 case TLSModel::GeneralDynamic:
7480 case TLSModel::LocalDynamic: // not implemented
7481 if (Subtarget->is64Bit())
7482 return LowerToTLSGeneralDynamicModel64(GA, DAG, getPointerTy());
7483 return LowerToTLSGeneralDynamicModel32(GA, DAG, getPointerTy());
7484
7485 case TLSModel::InitialExec:
7486 case TLSModel::LocalExec:
7487 return LowerToTLSExecModel(GA, DAG, getPointerTy(), model,
7488 Subtarget->is64Bit());
7489 }
7490 } else if (Subtarget->isTargetDarwin()) {
7491 // Darwin only has one model of TLS. Lower to that.
7492 unsigned char OpFlag = 0;
7493 unsigned WrapperKind = Subtarget->isPICStyleRIPRel() ?
7494 X86ISD::WrapperRIP : X86ISD::Wrapper;
7495
7496 // In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
7497 // global base reg.
7498 bool PIC32 = (getTargetMachine().getRelocationModel() == Reloc::PIC_) &&
7499 !Subtarget->is64Bit();
7500 if (PIC32)
7501 OpFlag = X86II::MO_TLVP_PIC_BASE;
7502 else
7503 OpFlag = X86II::MO_TLVP;
7504 DebugLoc DL = Op.getDebugLoc();
7505 SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
7506 GA->getValueType(0),
7507 GA->getOffset(), OpFlag);
7508 SDValue Offset = DAG.getNode(WrapperKind, DL, getPointerTy(), Result);
7509
7510 // With PIC32, the address is actually $g + Offset.
7511 if (PIC32)
7512 Offset = DAG.getNode(ISD::ADD, DL, getPointerTy(),
7513 DAG.getNode(X86ISD::GlobalBaseReg,
7514 DebugLoc(), getPointerTy()),
7515 Offset);
7516
7517 // Lowering the machine isd will make sure everything is in the right
7518 // location.
7519 SDValue Chain = DAG.getEntryNode();
7520 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7521 SDValue Args[] = { Chain, Offset };
7522 Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args, 2);
7523
7524 // TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
7525 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
7526 MFI->setAdjustsStack(true);
7527
7528 // And our return value (tls address) is in the standard call return value
7529 // location.
7530 unsigned Reg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
7531 return DAG.getCopyFromReg(Chain, DL, Reg, getPointerTy(),
7532 Chain.getValue(1));
7533 }
7534
7535 assert(false &&
7536 "TLS not implemented for this target.");
7537
7538 llvm_unreachable("Unreachable");
7539 return SDValue();
7540 }
7541
7542
7543 /// LowerShiftParts - Lower SRA_PARTS and friends, which return two i32 values and
7544 /// take a 2 x i32 value to shift plus a shift amount.
LowerShiftParts(SDValue Op,SelectionDAG & DAG) const7545 SDValue X86TargetLowering::LowerShiftParts(SDValue Op, SelectionDAG &DAG) const {
7546 assert(Op.getNumOperands() == 3 && "Not a double-shift!");
7547 EVT VT = Op.getValueType();
7548 unsigned VTBits = VT.getSizeInBits();
7549 DebugLoc dl = Op.getDebugLoc();
7550 bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
7551 SDValue ShOpLo = Op.getOperand(0);
7552 SDValue ShOpHi = Op.getOperand(1);
7553 SDValue ShAmt = Op.getOperand(2);
7554 SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
7555 DAG.getConstant(VTBits - 1, MVT::i8))
7556 : DAG.getConstant(0, VT);
7557
7558 SDValue Tmp2, Tmp3;
7559 if (Op.getOpcode() == ISD::SHL_PARTS) {
7560 Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
7561 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
7562 } else {
7563 Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
7564 Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, ShAmt);
7565 }
7566
7567 SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
7568 DAG.getConstant(VTBits, MVT::i8));
7569 SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
7570 AndNode, DAG.getConstant(0, MVT::i8));
7571
7572 SDValue Hi, Lo;
7573 SDValue CC = DAG.getConstant(X86::COND_NE, MVT::i8);
7574 SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
7575 SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
7576
7577 if (Op.getOpcode() == ISD::SHL_PARTS) {
7578 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7579 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7580 } else {
7581 Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0, 4);
7582 Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1, 4);
7583 }
7584
7585 SDValue Ops[2] = { Lo, Hi };
7586 return DAG.getMergeValues(Ops, 2, dl);
7587 }
7588
LowerSINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7589 SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
7590 SelectionDAG &DAG) const {
7591 EVT SrcVT = Op.getOperand(0).getValueType();
7592
7593 if (SrcVT.isVector())
7594 return SDValue();
7595
7596 assert(SrcVT.getSimpleVT() <= MVT::i64 && SrcVT.getSimpleVT() >= MVT::i16 &&
7597 "Unknown SINT_TO_FP to lower!");
7598
7599 // These are really Legal; return the operand so the caller accepts it as
7600 // Legal.
7601 if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
7602 return Op;
7603 if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
7604 Subtarget->is64Bit()) {
7605 return Op;
7606 }
7607
7608 DebugLoc dl = Op.getDebugLoc();
7609 unsigned Size = SrcVT.getSizeInBits()/8;
7610 MachineFunction &MF = DAG.getMachineFunction();
7611 int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
7612 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7613 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7614 StackSlot,
7615 MachinePointerInfo::getFixedStack(SSFI),
7616 false, false, 0);
7617 return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
7618 }
7619
BuildFILD(SDValue Op,EVT SrcVT,SDValue Chain,SDValue StackSlot,SelectionDAG & DAG) const7620 SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
7621 SDValue StackSlot,
7622 SelectionDAG &DAG) const {
7623 // Build the FILD
7624 DebugLoc DL = Op.getDebugLoc();
7625 SDVTList Tys;
7626 bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
7627 if (useSSE)
7628 Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
7629 else
7630 Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
7631
7632 unsigned ByteSize = SrcVT.getSizeInBits()/8;
7633
7634 FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
7635 MachineMemOperand *MMO;
7636 if (FI) {
7637 int SSFI = FI->getIndex();
7638 MMO =
7639 DAG.getMachineFunction()
7640 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7641 MachineMemOperand::MOLoad, ByteSize, ByteSize);
7642 } else {
7643 MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
7644 StackSlot = StackSlot.getOperand(1);
7645 }
7646 SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
7647 SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
7648 X86ISD::FILD, DL,
7649 Tys, Ops, array_lengthof(Ops),
7650 SrcVT, MMO);
7651
7652 if (useSSE) {
7653 Chain = Result.getValue(1);
7654 SDValue InFlag = Result.getValue(2);
7655
7656 // FIXME: Currently the FST is flagged to the FILD_FLAG. This
7657 // shouldn't be necessary except that RFP cannot be live across
7658 // multiple blocks. When stackifier is fixed, they can be uncoupled.
7659 MachineFunction &MF = DAG.getMachineFunction();
7660 unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
7661 int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
7662 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7663 Tys = DAG.getVTList(MVT::Other);
7664 SDValue Ops[] = {
7665 Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
7666 };
7667 MachineMemOperand *MMO =
7668 DAG.getMachineFunction()
7669 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7670 MachineMemOperand::MOStore, SSFISize, SSFISize);
7671
7672 Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
7673 Ops, array_lengthof(Ops),
7674 Op.getValueType(), MMO);
7675 Result = DAG.getLoad(Op.getValueType(), DL, Chain, StackSlot,
7676 MachinePointerInfo::getFixedStack(SSFI),
7677 false, false, 0);
7678 }
7679
7680 return Result;
7681 }
7682
7683 // LowerUINT_TO_FP_i64 - 64-bit unsigned integer to double expansion.
LowerUINT_TO_FP_i64(SDValue Op,SelectionDAG & DAG) const7684 SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
7685 SelectionDAG &DAG) const {
7686 // This algorithm is not obvious. Here it is in C code, more or less:
7687 /*
7688 double uint64_to_double( uint32_t hi, uint32_t lo ) {
7689 static const __m128i exp = { 0x4330000045300000ULL, 0 };
7690 static const __m128d bias = { 0x1.0p84, 0x1.0p52 };
7691
7692 // Copy ints to xmm registers.
7693 __m128i xh = _mm_cvtsi32_si128( hi );
7694 __m128i xl = _mm_cvtsi32_si128( lo );
7695
7696 // Combine into low half of a single xmm register.
7697 __m128i x = _mm_unpacklo_epi32( xh, xl );
7698 __m128d d;
7699 double sd;
7700
7701 // Merge in appropriate exponents to give the integer bits the right
7702 // magnitude.
7703 x = _mm_unpacklo_epi32( x, exp );
7704
7705 // Subtract away the biases to deal with the IEEE-754 double precision
7706 // implicit 1.
7707 d = _mm_sub_pd( (__m128d) x, bias );
7708
7709 // All conversions up to here are exact. The correctly rounded result is
7710 // calculated using the current rounding mode using the following
7711 // horizontal add.
7712 d = _mm_add_sd( d, _mm_unpackhi_pd( d, d ) );
7713 _mm_store_sd( &sd, d ); // Because we are returning doubles in XMM, this
7714 // store doesn't really need to be here (except
7715 // maybe to zero the other double)
7716 return sd;
7717 }
7718 */
7719
7720 DebugLoc dl = Op.getDebugLoc();
7721 LLVMContext *Context = DAG.getContext();
7722
7723 // Build some magic constants.
7724 std::vector<Constant*> CV0;
7725 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x45300000)));
7726 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0x43300000)));
7727 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7728 CV0.push_back(ConstantInt::get(*Context, APInt(32, 0)));
7729 Constant *C0 = ConstantVector::get(CV0);
7730 SDValue CPIdx0 = DAG.getConstantPool(C0, getPointerTy(), 16);
7731
7732 std::vector<Constant*> CV1;
7733 CV1.push_back(
7734 ConstantFP::get(*Context, APFloat(APInt(64, 0x4530000000000000ULL))));
7735 CV1.push_back(
7736 ConstantFP::get(*Context, APFloat(APInt(64, 0x4330000000000000ULL))));
7737 Constant *C1 = ConstantVector::get(CV1);
7738 SDValue CPIdx1 = DAG.getConstantPool(C1, getPointerTy(), 16);
7739
7740 SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7741 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7742 Op.getOperand(0),
7743 DAG.getIntPtrConstant(1)));
7744 SDValue XR2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7745 DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
7746 Op.getOperand(0),
7747 DAG.getIntPtrConstant(0)));
7748 SDValue Unpck1 = getUnpackl(DAG, dl, MVT::v4i32, XR1, XR2);
7749 SDValue CLod0 = DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
7750 MachinePointerInfo::getConstantPool(),
7751 false, false, 16);
7752 SDValue Unpck2 = getUnpackl(DAG, dl, MVT::v4i32, Unpck1, CLod0);
7753 SDValue XR2F = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Unpck2);
7754 SDValue CLod1 = DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
7755 MachinePointerInfo::getConstantPool(),
7756 false, false, 16);
7757 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
7758
7759 // Add the halves; easiest way is to swap them into another reg first.
7760 int ShufMask[2] = { 1, -1 };
7761 SDValue Shuf = DAG.getVectorShuffle(MVT::v2f64, dl, Sub,
7762 DAG.getUNDEF(MVT::v2f64), ShufMask);
7763 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::v2f64, Shuf, Sub);
7764 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Add,
7765 DAG.getIntPtrConstant(0));
7766 }
7767
7768 // LowerUINT_TO_FP_i32 - 32-bit unsigned integer to float expansion.
LowerUINT_TO_FP_i32(SDValue Op,SelectionDAG & DAG) const7769 SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
7770 SelectionDAG &DAG) const {
7771 DebugLoc dl = Op.getDebugLoc();
7772 // FP constant to bias correct the final result.
7773 SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL),
7774 MVT::f64);
7775
7776 // Load the 32-bit value into an XMM register.
7777 SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
7778 Op.getOperand(0));
7779
7780 // Zero out the upper parts of the register.
7781 Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget->hasXMMInt(),
7782 DAG);
7783
7784 Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7785 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Load),
7786 DAG.getIntPtrConstant(0));
7787
7788 // Or the load with the bias.
7789 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64,
7790 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7791 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7792 MVT::v2f64, Load)),
7793 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
7794 DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
7795 MVT::v2f64, Bias)));
7796 Or = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
7797 DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Or),
7798 DAG.getIntPtrConstant(0));
7799
7800 // Subtract the bias.
7801 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
7802
7803 // Handle final rounding.
7804 EVT DestVT = Op.getValueType();
7805
7806 if (DestVT.bitsLT(MVT::f64)) {
7807 return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
7808 DAG.getIntPtrConstant(0));
7809 } else if (DestVT.bitsGT(MVT::f64)) {
7810 return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
7811 }
7812
7813 // Handle final rounding.
7814 return Sub;
7815 }
7816
LowerUINT_TO_FP(SDValue Op,SelectionDAG & DAG) const7817 SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
7818 SelectionDAG &DAG) const {
7819 SDValue N0 = Op.getOperand(0);
7820 DebugLoc dl = Op.getDebugLoc();
7821
7822 // Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
7823 // optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
7824 // the optimization here.
7825 if (DAG.SignBitIsZero(N0))
7826 return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
7827
7828 EVT SrcVT = N0.getValueType();
7829 EVT DstVT = Op.getValueType();
7830 if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
7831 return LowerUINT_TO_FP_i64(Op, DAG);
7832 else if (SrcVT == MVT::i32 && X86ScalarSSEf64)
7833 return LowerUINT_TO_FP_i32(Op, DAG);
7834
7835 // Make a 64-bit buffer, and use it to build an FILD.
7836 SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
7837 if (SrcVT == MVT::i32) {
7838 SDValue WordOff = DAG.getConstant(4, getPointerTy());
7839 SDValue OffsetSlot = DAG.getNode(ISD::ADD, dl,
7840 getPointerTy(), StackSlot, WordOff);
7841 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7842 StackSlot, MachinePointerInfo(),
7843 false, false, 0);
7844 SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, MVT::i32),
7845 OffsetSlot, MachinePointerInfo(),
7846 false, false, 0);
7847 SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
7848 return Fild;
7849 }
7850
7851 assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
7852 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
7853 StackSlot, MachinePointerInfo(),
7854 false, false, 0);
7855 // For i64 source, we need to add the appropriate power of 2 if the input
7856 // was negative. This is the same as the optimization in
7857 // DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
7858 // we must be careful to do the computation in x87 extended precision, not
7859 // in SSE. (The generic code can't know it's OK to do this, or how to.)
7860 int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
7861 MachineMemOperand *MMO =
7862 DAG.getMachineFunction()
7863 .getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7864 MachineMemOperand::MOLoad, 8, 8);
7865
7866 SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
7867 SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
7868 SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops, 3,
7869 MVT::i64, MMO);
7870
7871 APInt FF(32, 0x5F800000ULL);
7872
7873 // Check whether the sign bit is set.
7874 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(MVT::i64),
7875 Op.getOperand(0), DAG.getConstant(0, MVT::i64),
7876 ISD::SETLT);
7877
7878 // Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
7879 SDValue FudgePtr = DAG.getConstantPool(
7880 ConstantInt::get(*DAG.getContext(), FF.zext(64)),
7881 getPointerTy());
7882
7883 // Get a pointer to FF if the sign bit was set, or to 0 otherwise.
7884 SDValue Zero = DAG.getIntPtrConstant(0);
7885 SDValue Four = DAG.getIntPtrConstant(4);
7886 SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
7887 Zero, Four);
7888 FudgePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(), FudgePtr, Offset);
7889
7890 // Load the value out, extending it from f32 to f80.
7891 // FIXME: Avoid the extend by constructing the right constant pool?
7892 SDValue Fudge = DAG.getExtLoad(ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(),
7893 FudgePtr, MachinePointerInfo::getConstantPool(),
7894 MVT::f32, false, false, 4);
7895 // Extend everything to 80 bits to force it to be done on x87.
7896 SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
7897 return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add, DAG.getIntPtrConstant(0));
7898 }
7899
7900 std::pair<SDValue,SDValue> X86TargetLowering::
FP_TO_INTHelper(SDValue Op,SelectionDAG & DAG,bool IsSigned) const7901 FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG, bool IsSigned) const {
7902 DebugLoc DL = Op.getDebugLoc();
7903
7904 EVT DstTy = Op.getValueType();
7905
7906 if (!IsSigned) {
7907 assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
7908 DstTy = MVT::i64;
7909 }
7910
7911 assert(DstTy.getSimpleVT() <= MVT::i64 &&
7912 DstTy.getSimpleVT() >= MVT::i16 &&
7913 "Unknown FP_TO_SINT to lower!");
7914
7915 // These are really Legal.
7916 if (DstTy == MVT::i32 &&
7917 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7918 return std::make_pair(SDValue(), SDValue());
7919 if (Subtarget->is64Bit() &&
7920 DstTy == MVT::i64 &&
7921 isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
7922 return std::make_pair(SDValue(), SDValue());
7923
7924 // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary
7925 // stack slot.
7926 MachineFunction &MF = DAG.getMachineFunction();
7927 unsigned MemSize = DstTy.getSizeInBits()/8;
7928 int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7929 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7930
7931
7932
7933 unsigned Opc;
7934 switch (DstTy.getSimpleVT().SimpleTy) {
7935 default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
7936 case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
7937 case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
7938 case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
7939 }
7940
7941 SDValue Chain = DAG.getEntryNode();
7942 SDValue Value = Op.getOperand(0);
7943 EVT TheVT = Op.getOperand(0).getValueType();
7944 if (isScalarFPTypeInSSEReg(TheVT)) {
7945 assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
7946 Chain = DAG.getStore(Chain, DL, Value, StackSlot,
7947 MachinePointerInfo::getFixedStack(SSFI),
7948 false, false, 0);
7949 SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
7950 SDValue Ops[] = {
7951 Chain, StackSlot, DAG.getValueType(TheVT)
7952 };
7953
7954 MachineMemOperand *MMO =
7955 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7956 MachineMemOperand::MOLoad, MemSize, MemSize);
7957 Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, 3,
7958 DstTy, MMO);
7959 Chain = Value.getValue(1);
7960 SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
7961 StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
7962 }
7963
7964 MachineMemOperand *MMO =
7965 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
7966 MachineMemOperand::MOStore, MemSize, MemSize);
7967
7968 // Build the FP_TO_INT*_IN_MEM
7969 SDValue Ops[] = { Chain, Value, StackSlot };
7970 SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
7971 Ops, 3, DstTy, MMO);
7972
7973 return std::make_pair(FIST, StackSlot);
7974 }
7975
LowerFP_TO_SINT(SDValue Op,SelectionDAG & DAG) const7976 SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
7977 SelectionDAG &DAG) const {
7978 if (Op.getValueType().isVector())
7979 return SDValue();
7980
7981 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, true);
7982 SDValue FIST = Vals.first, StackSlot = Vals.second;
7983 // If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
7984 if (FIST.getNode() == 0) return Op;
7985
7986 // Load the result.
7987 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7988 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
7989 }
7990
LowerFP_TO_UINT(SDValue Op,SelectionDAG & DAG) const7991 SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
7992 SelectionDAG &DAG) const {
7993 std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG, false);
7994 SDValue FIST = Vals.first, StackSlot = Vals.second;
7995 assert(FIST.getNode() && "Unexpected failure");
7996
7997 // Load the result.
7998 return DAG.getLoad(Op.getValueType(), Op.getDebugLoc(),
7999 FIST, StackSlot, MachinePointerInfo(), false, false, 0);
8000 }
8001
LowerFABS(SDValue Op,SelectionDAG & DAG) const8002 SDValue X86TargetLowering::LowerFABS(SDValue Op,
8003 SelectionDAG &DAG) const {
8004 LLVMContext *Context = DAG.getContext();
8005 DebugLoc dl = Op.getDebugLoc();
8006 EVT VT = Op.getValueType();
8007 EVT EltVT = VT;
8008 if (VT.isVector())
8009 EltVT = VT.getVectorElementType();
8010 std::vector<Constant*> CV;
8011 if (EltVT == MVT::f64) {
8012 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63))));
8013 CV.push_back(C);
8014 CV.push_back(C);
8015 } else {
8016 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31))));
8017 CV.push_back(C);
8018 CV.push_back(C);
8019 CV.push_back(C);
8020 CV.push_back(C);
8021 }
8022 Constant *C = ConstantVector::get(CV);
8023 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8024 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8025 MachinePointerInfo::getConstantPool(),
8026 false, false, 16);
8027 return DAG.getNode(X86ISD::FAND, dl, VT, Op.getOperand(0), Mask);
8028 }
8029
LowerFNEG(SDValue Op,SelectionDAG & DAG) const8030 SDValue X86TargetLowering::LowerFNEG(SDValue Op, SelectionDAG &DAG) const {
8031 LLVMContext *Context = DAG.getContext();
8032 DebugLoc dl = Op.getDebugLoc();
8033 EVT VT = Op.getValueType();
8034 EVT EltVT = VT;
8035 if (VT.isVector())
8036 EltVT = VT.getVectorElementType();
8037 std::vector<Constant*> CV;
8038 if (EltVT == MVT::f64) {
8039 Constant *C = ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63)));
8040 CV.push_back(C);
8041 CV.push_back(C);
8042 } else {
8043 Constant *C = ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31)));
8044 CV.push_back(C);
8045 CV.push_back(C);
8046 CV.push_back(C);
8047 CV.push_back(C);
8048 }
8049 Constant *C = ConstantVector::get(CV);
8050 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8051 SDValue Mask = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8052 MachinePointerInfo::getConstantPool(),
8053 false, false, 16);
8054 if (VT.isVector()) {
8055 return DAG.getNode(ISD::BITCAST, dl, VT,
8056 DAG.getNode(ISD::XOR, dl, MVT::v2i64,
8057 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64,
8058 Op.getOperand(0)),
8059 DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, Mask)));
8060 } else {
8061 return DAG.getNode(X86ISD::FXOR, dl, VT, Op.getOperand(0), Mask);
8062 }
8063 }
8064
LowerFCOPYSIGN(SDValue Op,SelectionDAG & DAG) const8065 SDValue X86TargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
8066 LLVMContext *Context = DAG.getContext();
8067 SDValue Op0 = Op.getOperand(0);
8068 SDValue Op1 = Op.getOperand(1);
8069 DebugLoc dl = Op.getDebugLoc();
8070 EVT VT = Op.getValueType();
8071 EVT SrcVT = Op1.getValueType();
8072
8073 // If second operand is smaller, extend it first.
8074 if (SrcVT.bitsLT(VT)) {
8075 Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
8076 SrcVT = VT;
8077 }
8078 // And if it is bigger, shrink it first.
8079 if (SrcVT.bitsGT(VT)) {
8080 Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1));
8081 SrcVT = VT;
8082 }
8083
8084 // At this point the operands and the result should have the same
8085 // type, and that won't be f80 since that is not custom lowered.
8086
8087 // First get the sign bit of second operand.
8088 std::vector<Constant*> CV;
8089 if (SrcVT == MVT::f64) {
8090 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 1ULL << 63))));
8091 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8092 } else {
8093 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 1U << 31))));
8094 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8095 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8096 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8097 }
8098 Constant *C = ConstantVector::get(CV);
8099 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8100 SDValue Mask1 = DAG.getLoad(SrcVT, dl, DAG.getEntryNode(), CPIdx,
8101 MachinePointerInfo::getConstantPool(),
8102 false, false, 16);
8103 SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, SrcVT, Op1, Mask1);
8104
8105 // Shift sign bit right or left if the two operands have different types.
8106 if (SrcVT.bitsGT(VT)) {
8107 // Op0 is MVT::f32, Op1 is MVT::f64.
8108 SignBit = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, SignBit);
8109 SignBit = DAG.getNode(X86ISD::FSRL, dl, MVT::v2f64, SignBit,
8110 DAG.getConstant(32, MVT::i32));
8111 SignBit = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, SignBit);
8112 SignBit = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, SignBit,
8113 DAG.getIntPtrConstant(0));
8114 }
8115
8116 // Clear first operand sign bit.
8117 CV.clear();
8118 if (VT == MVT::f64) {
8119 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, ~(1ULL << 63)))));
8120 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(64, 0))));
8121 } else {
8122 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, ~(1U << 31)))));
8123 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8124 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8125 CV.push_back(ConstantFP::get(*Context, APFloat(APInt(32, 0))));
8126 }
8127 C = ConstantVector::get(CV);
8128 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
8129 SDValue Mask2 = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
8130 MachinePointerInfo::getConstantPool(),
8131 false, false, 16);
8132 SDValue Val = DAG.getNode(X86ISD::FAND, dl, VT, Op0, Mask2);
8133
8134 // Or the value with the sign bit.
8135 return DAG.getNode(X86ISD::FOR, dl, VT, Val, SignBit);
8136 }
8137
LowerFGETSIGN(SDValue Op,SelectionDAG & DAG) const8138 SDValue X86TargetLowering::LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) const {
8139 SDValue N0 = Op.getOperand(0);
8140 DebugLoc dl = Op.getDebugLoc();
8141 EVT VT = Op.getValueType();
8142
8143 // Lower ISD::FGETSIGN to (AND (X86ISD::FGETSIGNx86 ...) 1).
8144 SDValue xFGETSIGN = DAG.getNode(X86ISD::FGETSIGNx86, dl, VT, N0,
8145 DAG.getConstant(1, VT));
8146 return DAG.getNode(ISD::AND, dl, VT, xFGETSIGN, DAG.getConstant(1, VT));
8147 }
8148
8149 /// Emit nodes that will be selected as "test Op0,Op0", or something
8150 /// equivalent.
EmitTest(SDValue Op,unsigned X86CC,SelectionDAG & DAG) const8151 SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC,
8152 SelectionDAG &DAG) const {
8153 DebugLoc dl = Op.getDebugLoc();
8154
8155 // CF and OF aren't always set the way we want. Determine which
8156 // of these we need.
8157 bool NeedCF = false;
8158 bool NeedOF = false;
8159 switch (X86CC) {
8160 default: break;
8161 case X86::COND_A: case X86::COND_AE:
8162 case X86::COND_B: case X86::COND_BE:
8163 NeedCF = true;
8164 break;
8165 case X86::COND_G: case X86::COND_GE:
8166 case X86::COND_L: case X86::COND_LE:
8167 case X86::COND_O: case X86::COND_NO:
8168 NeedOF = true;
8169 break;
8170 }
8171
8172 // See if we can use the EFLAGS value from the operand instead of
8173 // doing a separate TEST. TEST always sets OF and CF to 0, so unless
8174 // we prove that the arithmetic won't overflow, we can't use OF or CF.
8175 if (Op.getResNo() != 0 || NeedOF || NeedCF)
8176 // Emit a CMP with 0, which is the TEST pattern.
8177 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8178 DAG.getConstant(0, Op.getValueType()));
8179
8180 unsigned Opcode = 0;
8181 unsigned NumOperands = 0;
8182 switch (Op.getNode()->getOpcode()) {
8183 case ISD::ADD:
8184 // Due to an isel shortcoming, be conservative if this add is likely to be
8185 // selected as part of a load-modify-store instruction. When the root node
8186 // in a match is a store, isel doesn't know how to remap non-chain non-flag
8187 // uses of other nodes in the match, such as the ADD in this case. This
8188 // leads to the ADD being left around and reselected, with the result being
8189 // two adds in the output. Alas, even if none our users are stores, that
8190 // doesn't prove we're O.K. Ergo, if we have any parents that aren't
8191 // CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
8192 // climbing the DAG back to the root, and it doesn't seem to be worth the
8193 // effort.
8194 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8195 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8196 if (UI->getOpcode() != ISD::CopyToReg && UI->getOpcode() != ISD::SETCC)
8197 goto default_case;
8198
8199 if (ConstantSDNode *C =
8200 dyn_cast<ConstantSDNode>(Op.getNode()->getOperand(1))) {
8201 // An add of one will be selected as an INC.
8202 if (C->getAPIntValue() == 1) {
8203 Opcode = X86ISD::INC;
8204 NumOperands = 1;
8205 break;
8206 }
8207
8208 // An add of negative one (subtract of one) will be selected as a DEC.
8209 if (C->getAPIntValue().isAllOnesValue()) {
8210 Opcode = X86ISD::DEC;
8211 NumOperands = 1;
8212 break;
8213 }
8214 }
8215
8216 // Otherwise use a regular EFLAGS-setting add.
8217 Opcode = X86ISD::ADD;
8218 NumOperands = 2;
8219 break;
8220 case ISD::AND: {
8221 // If the primary and result isn't used, don't bother using X86ISD::AND,
8222 // because a TEST instruction will be better.
8223 bool NonFlagUse = false;
8224 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8225 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
8226 SDNode *User = *UI;
8227 unsigned UOpNo = UI.getOperandNo();
8228 if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
8229 // Look pass truncate.
8230 UOpNo = User->use_begin().getOperandNo();
8231 User = *User->use_begin();
8232 }
8233
8234 if (User->getOpcode() != ISD::BRCOND &&
8235 User->getOpcode() != ISD::SETCC &&
8236 (User->getOpcode() != ISD::SELECT || UOpNo != 0)) {
8237 NonFlagUse = true;
8238 break;
8239 }
8240 }
8241
8242 if (!NonFlagUse)
8243 break;
8244 }
8245 // FALL THROUGH
8246 case ISD::SUB:
8247 case ISD::OR:
8248 case ISD::XOR:
8249 // Due to the ISEL shortcoming noted above, be conservative if this op is
8250 // likely to be selected as part of a load-modify-store instruction.
8251 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
8252 UE = Op.getNode()->use_end(); UI != UE; ++UI)
8253 if (UI->getOpcode() == ISD::STORE)
8254 goto default_case;
8255
8256 // Otherwise use a regular EFLAGS-setting instruction.
8257 switch (Op.getNode()->getOpcode()) {
8258 default: llvm_unreachable("unexpected operator!");
8259 case ISD::SUB: Opcode = X86ISD::SUB; break;
8260 case ISD::OR: Opcode = X86ISD::OR; break;
8261 case ISD::XOR: Opcode = X86ISD::XOR; break;
8262 case ISD::AND: Opcode = X86ISD::AND; break;
8263 }
8264
8265 NumOperands = 2;
8266 break;
8267 case X86ISD::ADD:
8268 case X86ISD::SUB:
8269 case X86ISD::INC:
8270 case X86ISD::DEC:
8271 case X86ISD::OR:
8272 case X86ISD::XOR:
8273 case X86ISD::AND:
8274 return SDValue(Op.getNode(), 1);
8275 default:
8276 default_case:
8277 break;
8278 }
8279
8280 if (Opcode == 0)
8281 // Emit a CMP with 0, which is the TEST pattern.
8282 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
8283 DAG.getConstant(0, Op.getValueType()));
8284
8285 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
8286 SmallVector<SDValue, 4> Ops;
8287 for (unsigned i = 0; i != NumOperands; ++i)
8288 Ops.push_back(Op.getOperand(i));
8289
8290 SDValue New = DAG.getNode(Opcode, dl, VTs, &Ops[0], NumOperands);
8291 DAG.ReplaceAllUsesWith(Op, New);
8292 return SDValue(New.getNode(), 1);
8293 }
8294
8295 /// Emit nodes that will be selected as "cmp Op0,Op1", or something
8296 /// equivalent.
EmitCmp(SDValue Op0,SDValue Op1,unsigned X86CC,SelectionDAG & DAG) const8297 SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
8298 SelectionDAG &DAG) const {
8299 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op1))
8300 if (C->getAPIntValue() == 0)
8301 return EmitTest(Op0, X86CC, DAG);
8302
8303 DebugLoc dl = Op0.getDebugLoc();
8304 return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
8305 }
8306
8307 /// LowerToBT - Result of 'and' is compared against zero. Turn it into a BT node
8308 /// if it's possible.
LowerToBT(SDValue And,ISD::CondCode CC,DebugLoc dl,SelectionDAG & DAG) const8309 SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
8310 DebugLoc dl, SelectionDAG &DAG) const {
8311 SDValue Op0 = And.getOperand(0);
8312 SDValue Op1 = And.getOperand(1);
8313 if (Op0.getOpcode() == ISD::TRUNCATE)
8314 Op0 = Op0.getOperand(0);
8315 if (Op1.getOpcode() == ISD::TRUNCATE)
8316 Op1 = Op1.getOperand(0);
8317
8318 SDValue LHS, RHS;
8319 if (Op1.getOpcode() == ISD::SHL)
8320 std::swap(Op0, Op1);
8321 if (Op0.getOpcode() == ISD::SHL) {
8322 if (ConstantSDNode *And00C = dyn_cast<ConstantSDNode>(Op0.getOperand(0)))
8323 if (And00C->getZExtValue() == 1) {
8324 // If we looked past a truncate, check that it's only truncating away
8325 // known zeros.
8326 unsigned BitWidth = Op0.getValueSizeInBits();
8327 unsigned AndBitWidth = And.getValueSizeInBits();
8328 if (BitWidth > AndBitWidth) {
8329 APInt Mask = APInt::getAllOnesValue(BitWidth), Zeros, Ones;
8330 DAG.ComputeMaskedBits(Op0, Mask, Zeros, Ones);
8331 if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
8332 return SDValue();
8333 }
8334 LHS = Op1;
8335 RHS = Op0.getOperand(1);
8336 }
8337 } else if (Op1.getOpcode() == ISD::Constant) {
8338 ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
8339 SDValue AndLHS = Op0;
8340 if (AndRHS->getZExtValue() == 1 && AndLHS.getOpcode() == ISD::SRL) {
8341 LHS = AndLHS.getOperand(0);
8342 RHS = AndLHS.getOperand(1);
8343 }
8344 }
8345
8346 if (LHS.getNode()) {
8347 // If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
8348 // instruction. Since the shift amount is in-range-or-undefined, we know
8349 // that doing a bittest on the i32 value is ok. We extend to i32 because
8350 // the encoding for the i16 version is larger than the i32 version.
8351 // Also promote i16 to i32 for performance / code size reason.
8352 if (LHS.getValueType() == MVT::i8 ||
8353 LHS.getValueType() == MVT::i16)
8354 LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
8355
8356 // If the operand types disagree, extend the shift amount to match. Since
8357 // BT ignores high bits (like shifts) we can use anyextend.
8358 if (LHS.getValueType() != RHS.getValueType())
8359 RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
8360
8361 SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
8362 unsigned Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
8363 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8364 DAG.getConstant(Cond, MVT::i8), BT);
8365 }
8366
8367 return SDValue();
8368 }
8369
LowerSETCC(SDValue Op,SelectionDAG & DAG) const8370 SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
8371
8372 if (Op.getValueType().isVector()) return LowerVSETCC(Op, DAG);
8373
8374 assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer");
8375 SDValue Op0 = Op.getOperand(0);
8376 SDValue Op1 = Op.getOperand(1);
8377 DebugLoc dl = Op.getDebugLoc();
8378 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
8379
8380 // Optimize to BT if possible.
8381 // Lower (X & (1 << N)) == 0 to BT(X, N).
8382 // Lower ((X >>u N) & 1) != 0 to BT(X, N).
8383 // Lower ((X >>s N) & 1) != 0 to BT(X, N).
8384 if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
8385 Op1.getOpcode() == ISD::Constant &&
8386 cast<ConstantSDNode>(Op1)->isNullValue() &&
8387 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8388 SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG);
8389 if (NewSetCC.getNode())
8390 return NewSetCC;
8391 }
8392
8393 // Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
8394 // these.
8395 if (Op1.getOpcode() == ISD::Constant &&
8396 (cast<ConstantSDNode>(Op1)->getZExtValue() == 1 ||
8397 cast<ConstantSDNode>(Op1)->isNullValue()) &&
8398 (CC == ISD::SETEQ || CC == ISD::SETNE)) {
8399
8400 // If the input is a setcc, then reuse the input setcc or use a new one with
8401 // the inverted condition.
8402 if (Op0.getOpcode() == X86ISD::SETCC) {
8403 X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
8404 bool Invert = (CC == ISD::SETNE) ^
8405 cast<ConstantSDNode>(Op1)->isNullValue();
8406 if (!Invert) return Op0;
8407
8408 CCode = X86::GetOppositeBranchCondition(CCode);
8409 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8410 DAG.getConstant(CCode, MVT::i8), Op0.getOperand(1));
8411 }
8412 }
8413
8414 bool isFP = Op1.getValueType().isFloatingPoint();
8415 unsigned X86CC = TranslateX86CC(CC, isFP, Op0, Op1, DAG);
8416 if (X86CC == X86::COND_INVALID)
8417 return SDValue();
8418
8419 SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, DAG);
8420 return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
8421 DAG.getConstant(X86CC, MVT::i8), EFLAGS);
8422 }
8423
8424 // Lower256IntVSETCC - Break a VSETCC 256-bit integer VSETCC into two new 128
8425 // ones, and then concatenate the result back.
Lower256IntVSETCC(SDValue Op,SelectionDAG & DAG)8426 static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
8427 EVT VT = Op.getValueType();
8428
8429 assert(VT.getSizeInBits() == 256 && Op.getOpcode() == ISD::SETCC &&
8430 "Unsupported value type for operation");
8431
8432 int NumElems = VT.getVectorNumElements();
8433 DebugLoc dl = Op.getDebugLoc();
8434 SDValue CC = Op.getOperand(2);
8435 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
8436 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
8437
8438 // Extract the LHS vectors
8439 SDValue LHS = Op.getOperand(0);
8440 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
8441 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
8442
8443 // Extract the RHS vectors
8444 SDValue RHS = Op.getOperand(1);
8445 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
8446 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
8447
8448 // Issue the operation on the smaller types and concatenate the result back
8449 MVT EltVT = VT.getVectorElementType().getSimpleVT();
8450 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
8451 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
8452 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
8453 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
8454 }
8455
8456
LowerVSETCC(SDValue Op,SelectionDAG & DAG) const8457 SDValue X86TargetLowering::LowerVSETCC(SDValue Op, SelectionDAG &DAG) const {
8458 SDValue Cond;
8459 SDValue Op0 = Op.getOperand(0);
8460 SDValue Op1 = Op.getOperand(1);
8461 SDValue CC = Op.getOperand(2);
8462 EVT VT = Op.getValueType();
8463 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
8464 bool isFP = Op.getOperand(1).getValueType().isFloatingPoint();
8465 DebugLoc dl = Op.getDebugLoc();
8466
8467 if (isFP) {
8468 unsigned SSECC = 8;
8469 EVT EltVT = Op0.getValueType().getVectorElementType();
8470 assert(EltVT == MVT::f32 || EltVT == MVT::f64);
8471
8472 unsigned Opc = EltVT == MVT::f32 ? X86ISD::CMPPS : X86ISD::CMPPD;
8473 bool Swap = false;
8474
8475 // SSE Condition code mapping:
8476 // 0 - EQ
8477 // 1 - LT
8478 // 2 - LE
8479 // 3 - UNORD
8480 // 4 - NEQ
8481 // 5 - NLT
8482 // 6 - NLE
8483 // 7 - ORD
8484 switch (SetCCOpcode) {
8485 default: break;
8486 case ISD::SETOEQ:
8487 case ISD::SETEQ: SSECC = 0; break;
8488 case ISD::SETOGT:
8489 case ISD::SETGT: Swap = true; // Fallthrough
8490 case ISD::SETLT:
8491 case ISD::SETOLT: SSECC = 1; break;
8492 case ISD::SETOGE:
8493 case ISD::SETGE: Swap = true; // Fallthrough
8494 case ISD::SETLE:
8495 case ISD::SETOLE: SSECC = 2; break;
8496 case ISD::SETUO: SSECC = 3; break;
8497 case ISD::SETUNE:
8498 case ISD::SETNE: SSECC = 4; break;
8499 case ISD::SETULE: Swap = true;
8500 case ISD::SETUGE: SSECC = 5; break;
8501 case ISD::SETULT: Swap = true;
8502 case ISD::SETUGT: SSECC = 6; break;
8503 case ISD::SETO: SSECC = 7; break;
8504 }
8505 if (Swap)
8506 std::swap(Op0, Op1);
8507
8508 // In the two special cases we can't handle, emit two comparisons.
8509 if (SSECC == 8) {
8510 if (SetCCOpcode == ISD::SETUEQ) {
8511 SDValue UNORD, EQ;
8512 UNORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(3, MVT::i8));
8513 EQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(0, MVT::i8));
8514 return DAG.getNode(ISD::OR, dl, VT, UNORD, EQ);
8515 }
8516 else if (SetCCOpcode == ISD::SETONE) {
8517 SDValue ORD, NEQ;
8518 ORD = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(7, MVT::i8));
8519 NEQ = DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(4, MVT::i8));
8520 return DAG.getNode(ISD::AND, dl, VT, ORD, NEQ);
8521 }
8522 llvm_unreachable("Illegal FP comparison");
8523 }
8524 // Handle all other FP comparisons here.
8525 return DAG.getNode(Opc, dl, VT, Op0, Op1, DAG.getConstant(SSECC, MVT::i8));
8526 }
8527
8528 // Break 256-bit integer vector compare into smaller ones.
8529 if (!isFP && VT.getSizeInBits() == 256)
8530 return Lower256IntVSETCC(Op, DAG);
8531
8532 // We are handling one of the integer comparisons here. Since SSE only has
8533 // GT and EQ comparisons for integer, swapping operands and multiple
8534 // operations may be required for some comparisons.
8535 unsigned Opc = 0, EQOpc = 0, GTOpc = 0;
8536 bool Swap = false, Invert = false, FlipSigns = false;
8537
8538 switch (VT.getSimpleVT().SimpleTy) {
8539 default: break;
8540 case MVT::v16i8: EQOpc = X86ISD::PCMPEQB; GTOpc = X86ISD::PCMPGTB; break;
8541 case MVT::v8i16: EQOpc = X86ISD::PCMPEQW; GTOpc = X86ISD::PCMPGTW; break;
8542 case MVT::v4i32: EQOpc = X86ISD::PCMPEQD; GTOpc = X86ISD::PCMPGTD; break;
8543 case MVT::v2i64: EQOpc = X86ISD::PCMPEQQ; GTOpc = X86ISD::PCMPGTQ; break;
8544 }
8545
8546 switch (SetCCOpcode) {
8547 default: break;
8548 case ISD::SETNE: Invert = true;
8549 case ISD::SETEQ: Opc = EQOpc; break;
8550 case ISD::SETLT: Swap = true;
8551 case ISD::SETGT: Opc = GTOpc; break;
8552 case ISD::SETGE: Swap = true;
8553 case ISD::SETLE: Opc = GTOpc; Invert = true; break;
8554 case ISD::SETULT: Swap = true;
8555 case ISD::SETUGT: Opc = GTOpc; FlipSigns = true; break;
8556 case ISD::SETUGE: Swap = true;
8557 case ISD::SETULE: Opc = GTOpc; FlipSigns = true; Invert = true; break;
8558 }
8559 if (Swap)
8560 std::swap(Op0, Op1);
8561
8562 // Check that the operation in question is available (most are plain SSE2,
8563 // but PCMPGTQ and PCMPEQQ have different requirements).
8564 if (Opc == X86ISD::PCMPGTQ && !Subtarget->hasSSE42() && !Subtarget->hasAVX())
8565 return SDValue();
8566 if (Opc == X86ISD::PCMPEQQ && !Subtarget->hasSSE41() && !Subtarget->hasAVX())
8567 return SDValue();
8568
8569 // Since SSE has no unsigned integer comparisons, we need to flip the sign
8570 // bits of the inputs before performing those operations.
8571 if (FlipSigns) {
8572 EVT EltVT = VT.getVectorElementType();
8573 SDValue SignBit = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()),
8574 EltVT);
8575 std::vector<SDValue> SignBits(VT.getVectorNumElements(), SignBit);
8576 SDValue SignVec = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &SignBits[0],
8577 SignBits.size());
8578 Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SignVec);
8579 Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SignVec);
8580 }
8581
8582 SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
8583
8584 // If the logical-not of the result is required, perform that now.
8585 if (Invert)
8586 Result = DAG.getNOT(dl, Result, VT);
8587
8588 return Result;
8589 }
8590
8591 // isX86LogicalCmp - Return true if opcode is a X86 logical comparison.
isX86LogicalCmp(SDValue Op)8592 static bool isX86LogicalCmp(SDValue Op) {
8593 unsigned Opc = Op.getNode()->getOpcode();
8594 if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI)
8595 return true;
8596 if (Op.getResNo() == 1 &&
8597 (Opc == X86ISD::ADD ||
8598 Opc == X86ISD::SUB ||
8599 Opc == X86ISD::ADC ||
8600 Opc == X86ISD::SBB ||
8601 Opc == X86ISD::SMUL ||
8602 Opc == X86ISD::UMUL ||
8603 Opc == X86ISD::INC ||
8604 Opc == X86ISD::DEC ||
8605 Opc == X86ISD::OR ||
8606 Opc == X86ISD::XOR ||
8607 Opc == X86ISD::AND))
8608 return true;
8609
8610 if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
8611 return true;
8612
8613 return false;
8614 }
8615
isZero(SDValue V)8616 static bool isZero(SDValue V) {
8617 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8618 return C && C->isNullValue();
8619 }
8620
isAllOnes(SDValue V)8621 static bool isAllOnes(SDValue V) {
8622 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V);
8623 return C && C->isAllOnesValue();
8624 }
8625
LowerSELECT(SDValue Op,SelectionDAG & DAG) const8626 SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
8627 bool addTest = true;
8628 SDValue Cond = Op.getOperand(0);
8629 SDValue Op1 = Op.getOperand(1);
8630 SDValue Op2 = Op.getOperand(2);
8631 DebugLoc DL = Op.getDebugLoc();
8632 SDValue CC;
8633
8634 if (Cond.getOpcode() == ISD::SETCC) {
8635 SDValue NewCond = LowerSETCC(Cond, DAG);
8636 if (NewCond.getNode())
8637 Cond = NewCond;
8638 }
8639
8640 // (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
8641 // (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
8642 // (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
8643 // (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
8644 if (Cond.getOpcode() == X86ISD::SETCC &&
8645 Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
8646 isZero(Cond.getOperand(1).getOperand(1))) {
8647 SDValue Cmp = Cond.getOperand(1);
8648
8649 unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
8650
8651 if ((isAllOnes(Op1) || isAllOnes(Op2)) &&
8652 (CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
8653 SDValue Y = isAllOnes(Op2) ? Op1 : Op2;
8654
8655 SDValue CmpOp0 = Cmp.getOperand(0);
8656 Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
8657 CmpOp0, DAG.getConstant(1, CmpOp0.getValueType()));
8658
8659 SDValue Res = // Res = 0 or -1.
8660 DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8661 DAG.getConstant(X86::COND_B, MVT::i8), Cmp);
8662
8663 if (isAllOnes(Op1) != (CondCode == X86::COND_E))
8664 Res = DAG.getNOT(DL, Res, Res.getValueType());
8665
8666 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(Op2);
8667 if (N2C == 0 || !N2C->isNullValue())
8668 Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
8669 return Res;
8670 }
8671 }
8672
8673 // Look past (and (setcc_carry (cmp ...)), 1).
8674 if (Cond.getOpcode() == ISD::AND &&
8675 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8676 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8677 if (C && C->getAPIntValue() == 1)
8678 Cond = Cond.getOperand(0);
8679 }
8680
8681 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8682 // setting operand in place of the X86ISD::SETCC.
8683 if (Cond.getOpcode() == X86ISD::SETCC ||
8684 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8685 CC = Cond.getOperand(0);
8686
8687 SDValue Cmp = Cond.getOperand(1);
8688 unsigned Opc = Cmp.getOpcode();
8689 EVT VT = Op.getValueType();
8690
8691 bool IllegalFPCMov = false;
8692 if (VT.isFloatingPoint() && !VT.isVector() &&
8693 !isScalarFPTypeInSSEReg(VT)) // FPStack?
8694 IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
8695
8696 if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
8697 Opc == X86ISD::BT) { // FIXME
8698 Cond = Cmp;
8699 addTest = false;
8700 }
8701 }
8702
8703 if (addTest) {
8704 // Look pass the truncate.
8705 if (Cond.getOpcode() == ISD::TRUNCATE)
8706 Cond = Cond.getOperand(0);
8707
8708 // We know the result of AND is compared against zero. Try to match
8709 // it to BT.
8710 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8711 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG);
8712 if (NewSetCC.getNode()) {
8713 CC = NewSetCC.getOperand(0);
8714 Cond = NewSetCC.getOperand(1);
8715 addTest = false;
8716 }
8717 }
8718 }
8719
8720 if (addTest) {
8721 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8722 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8723 }
8724
8725 // a < b ? -1 : 0 -> RES = ~setcc_carry
8726 // a < b ? 0 : -1 -> RES = setcc_carry
8727 // a >= b ? -1 : 0 -> RES = setcc_carry
8728 // a >= b ? 0 : -1 -> RES = ~setcc_carry
8729 if (Cond.getOpcode() == X86ISD::CMP) {
8730 unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
8731
8732 if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
8733 (isAllOnes(Op1) || isAllOnes(Op2)) && (isZero(Op1) || isZero(Op2))) {
8734 SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
8735 DAG.getConstant(X86::COND_B, MVT::i8), Cond);
8736 if (isAllOnes(Op1) != (CondCode == X86::COND_B))
8737 return DAG.getNOT(DL, Res, Res.getValueType());
8738 return Res;
8739 }
8740 }
8741
8742 // X86ISD::CMOV means set the result (which is operand 1) to the RHS if
8743 // condition is true.
8744 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
8745 SDValue Ops[] = { Op2, Op1, CC, Cond };
8746 return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops, array_lengthof(Ops));
8747 }
8748
8749 // isAndOrOfSingleUseSetCCs - Return true if node is an ISD::AND or
8750 // ISD::OR of two X86ISD::SETCC nodes each of which has no other use apart
8751 // from the AND / OR.
isAndOrOfSetCCs(SDValue Op,unsigned & Opc)8752 static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
8753 Opc = Op.getOpcode();
8754 if (Opc != ISD::OR && Opc != ISD::AND)
8755 return false;
8756 return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8757 Op.getOperand(0).hasOneUse() &&
8758 Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
8759 Op.getOperand(1).hasOneUse());
8760 }
8761
8762 // isXor1OfSetCC - Return true if node is an ISD::XOR of a X86ISD::SETCC and
8763 // 1 and that the SETCC node has a single use.
isXor1OfSetCC(SDValue Op)8764 static bool isXor1OfSetCC(SDValue Op) {
8765 if (Op.getOpcode() != ISD::XOR)
8766 return false;
8767 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
8768 if (N1C && N1C->getAPIntValue() == 1) {
8769 return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
8770 Op.getOperand(0).hasOneUse();
8771 }
8772 return false;
8773 }
8774
LowerBRCOND(SDValue Op,SelectionDAG & DAG) const8775 SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
8776 bool addTest = true;
8777 SDValue Chain = Op.getOperand(0);
8778 SDValue Cond = Op.getOperand(1);
8779 SDValue Dest = Op.getOperand(2);
8780 DebugLoc dl = Op.getDebugLoc();
8781 SDValue CC;
8782
8783 if (Cond.getOpcode() == ISD::SETCC) {
8784 SDValue NewCond = LowerSETCC(Cond, DAG);
8785 if (NewCond.getNode())
8786 Cond = NewCond;
8787 }
8788 #if 0
8789 // FIXME: LowerXALUO doesn't handle these!!
8790 else if (Cond.getOpcode() == X86ISD::ADD ||
8791 Cond.getOpcode() == X86ISD::SUB ||
8792 Cond.getOpcode() == X86ISD::SMUL ||
8793 Cond.getOpcode() == X86ISD::UMUL)
8794 Cond = LowerXALUO(Cond, DAG);
8795 #endif
8796
8797 // Look pass (and (setcc_carry (cmp ...)), 1).
8798 if (Cond.getOpcode() == ISD::AND &&
8799 Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
8800 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
8801 if (C && C->getAPIntValue() == 1)
8802 Cond = Cond.getOperand(0);
8803 }
8804
8805 // If condition flag is set by a X86ISD::CMP, then use it as the condition
8806 // setting operand in place of the X86ISD::SETCC.
8807 if (Cond.getOpcode() == X86ISD::SETCC ||
8808 Cond.getOpcode() == X86ISD::SETCC_CARRY) {
8809 CC = Cond.getOperand(0);
8810
8811 SDValue Cmp = Cond.getOperand(1);
8812 unsigned Opc = Cmp.getOpcode();
8813 // FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
8814 if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
8815 Cond = Cmp;
8816 addTest = false;
8817 } else {
8818 switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
8819 default: break;
8820 case X86::COND_O:
8821 case X86::COND_B:
8822 // These can only come from an arithmetic instruction with overflow,
8823 // e.g. SADDO, UADDO.
8824 Cond = Cond.getNode()->getOperand(1);
8825 addTest = false;
8826 break;
8827 }
8828 }
8829 } else {
8830 unsigned CondOpc;
8831 if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
8832 SDValue Cmp = Cond.getOperand(0).getOperand(1);
8833 if (CondOpc == ISD::OR) {
8834 // Also, recognize the pattern generated by an FCMP_UNE. We can emit
8835 // two branches instead of an explicit OR instruction with a
8836 // separate test.
8837 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8838 isX86LogicalCmp(Cmp)) {
8839 CC = Cond.getOperand(0).getOperand(0);
8840 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8841 Chain, Dest, CC, Cmp);
8842 CC = Cond.getOperand(1).getOperand(0);
8843 Cond = Cmp;
8844 addTest = false;
8845 }
8846 } else { // ISD::AND
8847 // Also, recognize the pattern generated by an FCMP_OEQ. We can emit
8848 // two branches instead of an explicit AND instruction with a
8849 // separate test. However, we only do this if this block doesn't
8850 // have a fall-through edge, because this requires an explicit
8851 // jmp when the condition is false.
8852 if (Cmp == Cond.getOperand(1).getOperand(1) &&
8853 isX86LogicalCmp(Cmp) &&
8854 Op.getNode()->hasOneUse()) {
8855 X86::CondCode CCode =
8856 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8857 CCode = X86::GetOppositeBranchCondition(CCode);
8858 CC = DAG.getConstant(CCode, MVT::i8);
8859 SDNode *User = *Op.getNode()->use_begin();
8860 // Look for an unconditional branch following this conditional branch.
8861 // We need this because we need to reverse the successors in order
8862 // to implement FCMP_OEQ.
8863 if (User->getOpcode() == ISD::BR) {
8864 SDValue FalseBB = User->getOperand(1);
8865 SDNode *NewBR =
8866 DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
8867 assert(NewBR == User);
8868 (void)NewBR;
8869 Dest = FalseBB;
8870
8871 Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8872 Chain, Dest, CC, Cmp);
8873 X86::CondCode CCode =
8874 (X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
8875 CCode = X86::GetOppositeBranchCondition(CCode);
8876 CC = DAG.getConstant(CCode, MVT::i8);
8877 Cond = Cmp;
8878 addTest = false;
8879 }
8880 }
8881 }
8882 } else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
8883 // Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
8884 // It should be transformed during dag combiner except when the condition
8885 // is set by a arithmetics with overflow node.
8886 X86::CondCode CCode =
8887 (X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
8888 CCode = X86::GetOppositeBranchCondition(CCode);
8889 CC = DAG.getConstant(CCode, MVT::i8);
8890 Cond = Cond.getOperand(0).getOperand(1);
8891 addTest = false;
8892 }
8893 }
8894
8895 if (addTest) {
8896 // Look pass the truncate.
8897 if (Cond.getOpcode() == ISD::TRUNCATE)
8898 Cond = Cond.getOperand(0);
8899
8900 // We know the result of AND is compared against zero. Try to match
8901 // it to BT.
8902 if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
8903 SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG);
8904 if (NewSetCC.getNode()) {
8905 CC = NewSetCC.getOperand(0);
8906 Cond = NewSetCC.getOperand(1);
8907 addTest = false;
8908 }
8909 }
8910 }
8911
8912 if (addTest) {
8913 CC = DAG.getConstant(X86::COND_NE, MVT::i8);
8914 Cond = EmitTest(Cond, X86::COND_NE, DAG);
8915 }
8916 return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
8917 Chain, Dest, CC, Cond);
8918 }
8919
8920
8921 // Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
8922 // Calls to _alloca is needed to probe the stack when allocating more than 4k
8923 // bytes in one go. Touching the stack at 4K increments is necessary to ensure
8924 // that the guard pages used by the OS virtual memory manager are allocated in
8925 // correct sequence.
8926 SDValue
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const8927 X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
8928 SelectionDAG &DAG) const {
8929 assert((Subtarget->isTargetCygMing() || Subtarget->isTargetWindows() ||
8930 EnableSegmentedStacks) &&
8931 "This should be used only on Windows targets or when segmented stacks "
8932 "are being used");
8933 assert(!Subtarget->isTargetEnvMacho() && "Not implemented");
8934 DebugLoc dl = Op.getDebugLoc();
8935
8936 // Get the inputs.
8937 SDValue Chain = Op.getOperand(0);
8938 SDValue Size = Op.getOperand(1);
8939 // FIXME: Ensure alignment here
8940
8941 bool Is64Bit = Subtarget->is64Bit();
8942 EVT SPTy = Is64Bit ? MVT::i64 : MVT::i32;
8943
8944 if (EnableSegmentedStacks) {
8945 MachineFunction &MF = DAG.getMachineFunction();
8946 MachineRegisterInfo &MRI = MF.getRegInfo();
8947
8948 if (Is64Bit) {
8949 // The 64 bit implementation of segmented stacks needs to clobber both r10
8950 // r11. This makes it impossible to use it along with nested parameters.
8951 const Function *F = MF.getFunction();
8952
8953 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
8954 I != E; I++)
8955 if (I->hasNestAttr())
8956 report_fatal_error("Cannot use segmented stacks with functions that "
8957 "have nested arguments.");
8958 }
8959
8960 const TargetRegisterClass *AddrRegClass =
8961 getRegClassFor(Subtarget->is64Bit() ? MVT::i64:MVT::i32);
8962 unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
8963 Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
8964 SDValue Value = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
8965 DAG.getRegister(Vreg, SPTy));
8966 SDValue Ops1[2] = { Value, Chain };
8967 return DAG.getMergeValues(Ops1, 2, dl);
8968 } else {
8969 SDValue Flag;
8970 unsigned Reg = (Subtarget->is64Bit() ? X86::RAX : X86::EAX);
8971
8972 Chain = DAG.getCopyToReg(Chain, dl, Reg, Size, Flag);
8973 Flag = Chain.getValue(1);
8974 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8975
8976 Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Flag);
8977 Flag = Chain.getValue(1);
8978
8979 Chain = DAG.getCopyFromReg(Chain, dl, X86StackPtr, SPTy).getValue(1);
8980
8981 SDValue Ops1[2] = { Chain.getValue(0), Chain };
8982 return DAG.getMergeValues(Ops1, 2, dl);
8983 }
8984 }
8985
LowerVASTART(SDValue Op,SelectionDAG & DAG) const8986 SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
8987 MachineFunction &MF = DAG.getMachineFunction();
8988 X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
8989
8990 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
8991 DebugLoc DL = Op.getDebugLoc();
8992
8993 if (!Subtarget->is64Bit() || Subtarget->isTargetWin64()) {
8994 // vastart just stores the address of the VarArgsFrameIndex slot into the
8995 // memory location argument.
8996 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
8997 getPointerTy());
8998 return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
8999 MachinePointerInfo(SV), false, false, 0);
9000 }
9001
9002 // __va_list_tag:
9003 // gp_offset (0 - 6 * 8)
9004 // fp_offset (48 - 48 + 8 * 16)
9005 // overflow_arg_area (point to parameters coming in memory).
9006 // reg_save_area
9007 SmallVector<SDValue, 8> MemOps;
9008 SDValue FIN = Op.getOperand(1);
9009 // Store gp_offset
9010 SDValue Store = DAG.getStore(Op.getOperand(0), DL,
9011 DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
9012 MVT::i32),
9013 FIN, MachinePointerInfo(SV), false, false, 0);
9014 MemOps.push_back(Store);
9015
9016 // Store fp_offset
9017 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9018 FIN, DAG.getIntPtrConstant(4));
9019 Store = DAG.getStore(Op.getOperand(0), DL,
9020 DAG.getConstant(FuncInfo->getVarArgsFPOffset(),
9021 MVT::i32),
9022 FIN, MachinePointerInfo(SV, 4), false, false, 0);
9023 MemOps.push_back(Store);
9024
9025 // Store ptr to overflow_arg_area
9026 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9027 FIN, DAG.getIntPtrConstant(4));
9028 SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
9029 getPointerTy());
9030 Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
9031 MachinePointerInfo(SV, 8),
9032 false, false, 0);
9033 MemOps.push_back(Store);
9034
9035 // Store ptr to reg_save_area.
9036 FIN = DAG.getNode(ISD::ADD, DL, getPointerTy(),
9037 FIN, DAG.getIntPtrConstant(8));
9038 SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
9039 getPointerTy());
9040 Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN,
9041 MachinePointerInfo(SV, 16), false, false, 0);
9042 MemOps.push_back(Store);
9043 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
9044 &MemOps[0], MemOps.size());
9045 }
9046
LowerVAARG(SDValue Op,SelectionDAG & DAG) const9047 SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
9048 assert(Subtarget->is64Bit() &&
9049 "LowerVAARG only handles 64-bit va_arg!");
9050 assert((Subtarget->isTargetLinux() ||
9051 Subtarget->isTargetDarwin()) &&
9052 "Unhandled target in LowerVAARG");
9053 assert(Op.getNode()->getNumOperands() == 4);
9054 SDValue Chain = Op.getOperand(0);
9055 SDValue SrcPtr = Op.getOperand(1);
9056 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
9057 unsigned Align = Op.getConstantOperandVal(3);
9058 DebugLoc dl = Op.getDebugLoc();
9059
9060 EVT ArgVT = Op.getNode()->getValueType(0);
9061 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
9062 uint32_t ArgSize = getTargetData()->getTypeAllocSize(ArgTy);
9063 uint8_t ArgMode;
9064
9065 // Decide which area this value should be read from.
9066 // TODO: Implement the AMD64 ABI in its entirety. This simple
9067 // selection mechanism works only for the basic types.
9068 if (ArgVT == MVT::f80) {
9069 llvm_unreachable("va_arg for f80 not yet implemented");
9070 } else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
9071 ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
9072 } else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
9073 ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
9074 } else {
9075 llvm_unreachable("Unhandled argument type in LowerVAARG");
9076 }
9077
9078 if (ArgMode == 2) {
9079 // Sanity Check: Make sure using fp_offset makes sense.
9080 assert(!UseSoftFloat &&
9081 !(DAG.getMachineFunction()
9082 .getFunction()->hasFnAttr(Attribute::NoImplicitFloat)) &&
9083 Subtarget->hasXMM());
9084 }
9085
9086 // Insert VAARG_64 node into the DAG
9087 // VAARG_64 returns two values: Variable Argument Address, Chain
9088 SmallVector<SDValue, 11> InstOps;
9089 InstOps.push_back(Chain);
9090 InstOps.push_back(SrcPtr);
9091 InstOps.push_back(DAG.getConstant(ArgSize, MVT::i32));
9092 InstOps.push_back(DAG.getConstant(ArgMode, MVT::i8));
9093 InstOps.push_back(DAG.getConstant(Align, MVT::i32));
9094 SDVTList VTs = DAG.getVTList(getPointerTy(), MVT::Other);
9095 SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
9096 VTs, &InstOps[0], InstOps.size(),
9097 MVT::i64,
9098 MachinePointerInfo(SV),
9099 /*Align=*/0,
9100 /*Volatile=*/false,
9101 /*ReadMem=*/true,
9102 /*WriteMem=*/true);
9103 Chain = VAARG.getValue(1);
9104
9105 // Load the next argument and return it
9106 return DAG.getLoad(ArgVT, dl,
9107 Chain,
9108 VAARG,
9109 MachinePointerInfo(),
9110 false, false, 0);
9111 }
9112
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const9113 SDValue X86TargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
9114 // X86-64 va_list is a struct { i32, i32, i8*, i8* }.
9115 assert(Subtarget->is64Bit() && "This code only handles 64-bit va_copy!");
9116 SDValue Chain = Op.getOperand(0);
9117 SDValue DstPtr = Op.getOperand(1);
9118 SDValue SrcPtr = Op.getOperand(2);
9119 const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
9120 const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9121 DebugLoc DL = Op.getDebugLoc();
9122
9123 return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
9124 DAG.getIntPtrConstant(24), 8, /*isVolatile*/false,
9125 false,
9126 MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
9127 }
9128
9129 SDValue
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const9130 X86TargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const {
9131 DebugLoc dl = Op.getDebugLoc();
9132 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9133 switch (IntNo) {
9134 default: return SDValue(); // Don't custom lower most intrinsics.
9135 // Comparison intrinsics.
9136 case Intrinsic::x86_sse_comieq_ss:
9137 case Intrinsic::x86_sse_comilt_ss:
9138 case Intrinsic::x86_sse_comile_ss:
9139 case Intrinsic::x86_sse_comigt_ss:
9140 case Intrinsic::x86_sse_comige_ss:
9141 case Intrinsic::x86_sse_comineq_ss:
9142 case Intrinsic::x86_sse_ucomieq_ss:
9143 case Intrinsic::x86_sse_ucomilt_ss:
9144 case Intrinsic::x86_sse_ucomile_ss:
9145 case Intrinsic::x86_sse_ucomigt_ss:
9146 case Intrinsic::x86_sse_ucomige_ss:
9147 case Intrinsic::x86_sse_ucomineq_ss:
9148 case Intrinsic::x86_sse2_comieq_sd:
9149 case Intrinsic::x86_sse2_comilt_sd:
9150 case Intrinsic::x86_sse2_comile_sd:
9151 case Intrinsic::x86_sse2_comigt_sd:
9152 case Intrinsic::x86_sse2_comige_sd:
9153 case Intrinsic::x86_sse2_comineq_sd:
9154 case Intrinsic::x86_sse2_ucomieq_sd:
9155 case Intrinsic::x86_sse2_ucomilt_sd:
9156 case Intrinsic::x86_sse2_ucomile_sd:
9157 case Intrinsic::x86_sse2_ucomigt_sd:
9158 case Intrinsic::x86_sse2_ucomige_sd:
9159 case Intrinsic::x86_sse2_ucomineq_sd: {
9160 unsigned Opc = 0;
9161 ISD::CondCode CC = ISD::SETCC_INVALID;
9162 switch (IntNo) {
9163 default: break;
9164 case Intrinsic::x86_sse_comieq_ss:
9165 case Intrinsic::x86_sse2_comieq_sd:
9166 Opc = X86ISD::COMI;
9167 CC = ISD::SETEQ;
9168 break;
9169 case Intrinsic::x86_sse_comilt_ss:
9170 case Intrinsic::x86_sse2_comilt_sd:
9171 Opc = X86ISD::COMI;
9172 CC = ISD::SETLT;
9173 break;
9174 case Intrinsic::x86_sse_comile_ss:
9175 case Intrinsic::x86_sse2_comile_sd:
9176 Opc = X86ISD::COMI;
9177 CC = ISD::SETLE;
9178 break;
9179 case Intrinsic::x86_sse_comigt_ss:
9180 case Intrinsic::x86_sse2_comigt_sd:
9181 Opc = X86ISD::COMI;
9182 CC = ISD::SETGT;
9183 break;
9184 case Intrinsic::x86_sse_comige_ss:
9185 case Intrinsic::x86_sse2_comige_sd:
9186 Opc = X86ISD::COMI;
9187 CC = ISD::SETGE;
9188 break;
9189 case Intrinsic::x86_sse_comineq_ss:
9190 case Intrinsic::x86_sse2_comineq_sd:
9191 Opc = X86ISD::COMI;
9192 CC = ISD::SETNE;
9193 break;
9194 case Intrinsic::x86_sse_ucomieq_ss:
9195 case Intrinsic::x86_sse2_ucomieq_sd:
9196 Opc = X86ISD::UCOMI;
9197 CC = ISD::SETEQ;
9198 break;
9199 case Intrinsic::x86_sse_ucomilt_ss:
9200 case Intrinsic::x86_sse2_ucomilt_sd:
9201 Opc = X86ISD::UCOMI;
9202 CC = ISD::SETLT;
9203 break;
9204 case Intrinsic::x86_sse_ucomile_ss:
9205 case Intrinsic::x86_sse2_ucomile_sd:
9206 Opc = X86ISD::UCOMI;
9207 CC = ISD::SETLE;
9208 break;
9209 case Intrinsic::x86_sse_ucomigt_ss:
9210 case Intrinsic::x86_sse2_ucomigt_sd:
9211 Opc = X86ISD::UCOMI;
9212 CC = ISD::SETGT;
9213 break;
9214 case Intrinsic::x86_sse_ucomige_ss:
9215 case Intrinsic::x86_sse2_ucomige_sd:
9216 Opc = X86ISD::UCOMI;
9217 CC = ISD::SETGE;
9218 break;
9219 case Intrinsic::x86_sse_ucomineq_ss:
9220 case Intrinsic::x86_sse2_ucomineq_sd:
9221 Opc = X86ISD::UCOMI;
9222 CC = ISD::SETNE;
9223 break;
9224 }
9225
9226 SDValue LHS = Op.getOperand(1);
9227 SDValue RHS = Op.getOperand(2);
9228 unsigned X86CC = TranslateX86CC(CC, true, LHS, RHS, DAG);
9229 assert(X86CC != X86::COND_INVALID && "Unexpected illegal condition!");
9230 SDValue Cond = DAG.getNode(Opc, dl, MVT::i32, LHS, RHS);
9231 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
9232 DAG.getConstant(X86CC, MVT::i8), Cond);
9233 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9234 }
9235 // Arithmetic intrinsics.
9236 case Intrinsic::x86_sse3_hadd_ps:
9237 case Intrinsic::x86_sse3_hadd_pd:
9238 case Intrinsic::x86_avx_hadd_ps_256:
9239 case Intrinsic::x86_avx_hadd_pd_256:
9240 return DAG.getNode(X86ISD::FHADD, dl, Op.getValueType(),
9241 Op.getOperand(1), Op.getOperand(2));
9242 case Intrinsic::x86_sse3_hsub_ps:
9243 case Intrinsic::x86_sse3_hsub_pd:
9244 case Intrinsic::x86_avx_hsub_ps_256:
9245 case Intrinsic::x86_avx_hsub_pd_256:
9246 return DAG.getNode(X86ISD::FHSUB, dl, Op.getValueType(),
9247 Op.getOperand(1), Op.getOperand(2));
9248 // ptest and testp intrinsics. The intrinsic these come from are designed to
9249 // return an integer value, not just an instruction so lower it to the ptest
9250 // or testp pattern and a setcc for the result.
9251 case Intrinsic::x86_sse41_ptestz:
9252 case Intrinsic::x86_sse41_ptestc:
9253 case Intrinsic::x86_sse41_ptestnzc:
9254 case Intrinsic::x86_avx_ptestz_256:
9255 case Intrinsic::x86_avx_ptestc_256:
9256 case Intrinsic::x86_avx_ptestnzc_256:
9257 case Intrinsic::x86_avx_vtestz_ps:
9258 case Intrinsic::x86_avx_vtestc_ps:
9259 case Intrinsic::x86_avx_vtestnzc_ps:
9260 case Intrinsic::x86_avx_vtestz_pd:
9261 case Intrinsic::x86_avx_vtestc_pd:
9262 case Intrinsic::x86_avx_vtestnzc_pd:
9263 case Intrinsic::x86_avx_vtestz_ps_256:
9264 case Intrinsic::x86_avx_vtestc_ps_256:
9265 case Intrinsic::x86_avx_vtestnzc_ps_256:
9266 case Intrinsic::x86_avx_vtestz_pd_256:
9267 case Intrinsic::x86_avx_vtestc_pd_256:
9268 case Intrinsic::x86_avx_vtestnzc_pd_256: {
9269 bool IsTestPacked = false;
9270 unsigned X86CC = 0;
9271 switch (IntNo) {
9272 default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
9273 case Intrinsic::x86_avx_vtestz_ps:
9274 case Intrinsic::x86_avx_vtestz_pd:
9275 case Intrinsic::x86_avx_vtestz_ps_256:
9276 case Intrinsic::x86_avx_vtestz_pd_256:
9277 IsTestPacked = true; // Fallthrough
9278 case Intrinsic::x86_sse41_ptestz:
9279 case Intrinsic::x86_avx_ptestz_256:
9280 // ZF = 1
9281 X86CC = X86::COND_E;
9282 break;
9283 case Intrinsic::x86_avx_vtestc_ps:
9284 case Intrinsic::x86_avx_vtestc_pd:
9285 case Intrinsic::x86_avx_vtestc_ps_256:
9286 case Intrinsic::x86_avx_vtestc_pd_256:
9287 IsTestPacked = true; // Fallthrough
9288 case Intrinsic::x86_sse41_ptestc:
9289 case Intrinsic::x86_avx_ptestc_256:
9290 // CF = 1
9291 X86CC = X86::COND_B;
9292 break;
9293 case Intrinsic::x86_avx_vtestnzc_ps:
9294 case Intrinsic::x86_avx_vtestnzc_pd:
9295 case Intrinsic::x86_avx_vtestnzc_ps_256:
9296 case Intrinsic::x86_avx_vtestnzc_pd_256:
9297 IsTestPacked = true; // Fallthrough
9298 case Intrinsic::x86_sse41_ptestnzc:
9299 case Intrinsic::x86_avx_ptestnzc_256:
9300 // ZF and CF = 0
9301 X86CC = X86::COND_A;
9302 break;
9303 }
9304
9305 SDValue LHS = Op.getOperand(1);
9306 SDValue RHS = Op.getOperand(2);
9307 unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
9308 SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
9309 SDValue CC = DAG.getConstant(X86CC, MVT::i8);
9310 SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
9311 return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
9312 }
9313
9314 // Fix vector shift instructions where the last operand is a non-immediate
9315 // i32 value.
9316 case Intrinsic::x86_sse2_pslli_w:
9317 case Intrinsic::x86_sse2_pslli_d:
9318 case Intrinsic::x86_sse2_pslli_q:
9319 case Intrinsic::x86_sse2_psrli_w:
9320 case Intrinsic::x86_sse2_psrli_d:
9321 case Intrinsic::x86_sse2_psrli_q:
9322 case Intrinsic::x86_sse2_psrai_w:
9323 case Intrinsic::x86_sse2_psrai_d:
9324 case Intrinsic::x86_mmx_pslli_w:
9325 case Intrinsic::x86_mmx_pslli_d:
9326 case Intrinsic::x86_mmx_pslli_q:
9327 case Intrinsic::x86_mmx_psrli_w:
9328 case Intrinsic::x86_mmx_psrli_d:
9329 case Intrinsic::x86_mmx_psrli_q:
9330 case Intrinsic::x86_mmx_psrai_w:
9331 case Intrinsic::x86_mmx_psrai_d: {
9332 SDValue ShAmt = Op.getOperand(2);
9333 if (isa<ConstantSDNode>(ShAmt))
9334 return SDValue();
9335
9336 unsigned NewIntNo = 0;
9337 EVT ShAmtVT = MVT::v4i32;
9338 switch (IntNo) {
9339 case Intrinsic::x86_sse2_pslli_w:
9340 NewIntNo = Intrinsic::x86_sse2_psll_w;
9341 break;
9342 case Intrinsic::x86_sse2_pslli_d:
9343 NewIntNo = Intrinsic::x86_sse2_psll_d;
9344 break;
9345 case Intrinsic::x86_sse2_pslli_q:
9346 NewIntNo = Intrinsic::x86_sse2_psll_q;
9347 break;
9348 case Intrinsic::x86_sse2_psrli_w:
9349 NewIntNo = Intrinsic::x86_sse2_psrl_w;
9350 break;
9351 case Intrinsic::x86_sse2_psrli_d:
9352 NewIntNo = Intrinsic::x86_sse2_psrl_d;
9353 break;
9354 case Intrinsic::x86_sse2_psrli_q:
9355 NewIntNo = Intrinsic::x86_sse2_psrl_q;
9356 break;
9357 case Intrinsic::x86_sse2_psrai_w:
9358 NewIntNo = Intrinsic::x86_sse2_psra_w;
9359 break;
9360 case Intrinsic::x86_sse2_psrai_d:
9361 NewIntNo = Intrinsic::x86_sse2_psra_d;
9362 break;
9363 default: {
9364 ShAmtVT = MVT::v2i32;
9365 switch (IntNo) {
9366 case Intrinsic::x86_mmx_pslli_w:
9367 NewIntNo = Intrinsic::x86_mmx_psll_w;
9368 break;
9369 case Intrinsic::x86_mmx_pslli_d:
9370 NewIntNo = Intrinsic::x86_mmx_psll_d;
9371 break;
9372 case Intrinsic::x86_mmx_pslli_q:
9373 NewIntNo = Intrinsic::x86_mmx_psll_q;
9374 break;
9375 case Intrinsic::x86_mmx_psrli_w:
9376 NewIntNo = Intrinsic::x86_mmx_psrl_w;
9377 break;
9378 case Intrinsic::x86_mmx_psrli_d:
9379 NewIntNo = Intrinsic::x86_mmx_psrl_d;
9380 break;
9381 case Intrinsic::x86_mmx_psrli_q:
9382 NewIntNo = Intrinsic::x86_mmx_psrl_q;
9383 break;
9384 case Intrinsic::x86_mmx_psrai_w:
9385 NewIntNo = Intrinsic::x86_mmx_psra_w;
9386 break;
9387 case Intrinsic::x86_mmx_psrai_d:
9388 NewIntNo = Intrinsic::x86_mmx_psra_d;
9389 break;
9390 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
9391 }
9392 break;
9393 }
9394 }
9395
9396 // The vector shift intrinsics with scalars uses 32b shift amounts but
9397 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
9398 // to be zero.
9399 SDValue ShOps[4];
9400 ShOps[0] = ShAmt;
9401 ShOps[1] = DAG.getConstant(0, MVT::i32);
9402 if (ShAmtVT == MVT::v4i32) {
9403 ShOps[2] = DAG.getUNDEF(MVT::i32);
9404 ShOps[3] = DAG.getUNDEF(MVT::i32);
9405 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 4);
9406 } else {
9407 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2);
9408 // FIXME this must be lowered to get rid of the invalid type.
9409 }
9410
9411 EVT VT = Op.getValueType();
9412 ShAmt = DAG.getNode(ISD::BITCAST, dl, VT, ShAmt);
9413 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9414 DAG.getConstant(NewIntNo, MVT::i32),
9415 Op.getOperand(1), ShAmt);
9416 }
9417 }
9418 }
9419
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const9420 SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
9421 SelectionDAG &DAG) const {
9422 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9423 MFI->setReturnAddressIsTaken(true);
9424
9425 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9426 DebugLoc dl = Op.getDebugLoc();
9427
9428 if (Depth > 0) {
9429 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
9430 SDValue Offset =
9431 DAG.getConstant(TD->getPointerSize(),
9432 Subtarget->is64Bit() ? MVT::i64 : MVT::i32);
9433 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9434 DAG.getNode(ISD::ADD, dl, getPointerTy(),
9435 FrameAddr, Offset),
9436 MachinePointerInfo(), false, false, 0);
9437 }
9438
9439 // Just load the return address.
9440 SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
9441 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
9442 RetAddrFI, MachinePointerInfo(), false, false, 0);
9443 }
9444
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const9445 SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
9446 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
9447 MFI->setFrameAddressIsTaken(true);
9448
9449 EVT VT = Op.getValueType();
9450 DebugLoc dl = Op.getDebugLoc(); // FIXME probably not meaningful
9451 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
9452 unsigned FrameReg = Subtarget->is64Bit() ? X86::RBP : X86::EBP;
9453 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
9454 while (Depth--)
9455 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
9456 MachinePointerInfo(),
9457 false, false, 0);
9458 return FrameAddr;
9459 }
9460
LowerFRAME_TO_ARGS_OFFSET(SDValue Op,SelectionDAG & DAG) const9461 SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
9462 SelectionDAG &DAG) const {
9463 return DAG.getIntPtrConstant(2*TD->getPointerSize());
9464 }
9465
LowerEH_RETURN(SDValue Op,SelectionDAG & DAG) const9466 SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
9467 MachineFunction &MF = DAG.getMachineFunction();
9468 SDValue Chain = Op.getOperand(0);
9469 SDValue Offset = Op.getOperand(1);
9470 SDValue Handler = Op.getOperand(2);
9471 DebugLoc dl = Op.getDebugLoc();
9472
9473 SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
9474 Subtarget->is64Bit() ? X86::RBP : X86::EBP,
9475 getPointerTy());
9476 unsigned StoreAddrReg = (Subtarget->is64Bit() ? X86::RCX : X86::ECX);
9477
9478 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Frame,
9479 DAG.getIntPtrConstant(TD->getPointerSize()));
9480 StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), StoreAddr, Offset);
9481 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
9482 false, false, 0);
9483 Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
9484 MF.getRegInfo().addLiveOut(StoreAddrReg);
9485
9486 return DAG.getNode(X86ISD::EH_RETURN, dl,
9487 MVT::Other,
9488 Chain, DAG.getRegister(StoreAddrReg, getPointerTy()));
9489 }
9490
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const9491 SDValue X86TargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
9492 SelectionDAG &DAG) const {
9493 return Op.getOperand(0);
9494 }
9495
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const9496 SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
9497 SelectionDAG &DAG) const {
9498 SDValue Root = Op.getOperand(0);
9499 SDValue Trmp = Op.getOperand(1); // trampoline
9500 SDValue FPtr = Op.getOperand(2); // nested function
9501 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
9502 DebugLoc dl = Op.getDebugLoc();
9503
9504 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
9505
9506 if (Subtarget->is64Bit()) {
9507 SDValue OutChains[6];
9508
9509 // Large code-model.
9510 const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
9511 const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
9512
9513 const unsigned char N86R10 = X86_MC::getX86RegNum(X86::R10);
9514 const unsigned char N86R11 = X86_MC::getX86RegNum(X86::R11);
9515
9516 const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
9517
9518 // Load the pointer to the nested function into R11.
9519 unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
9520 SDValue Addr = Trmp;
9521 OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9522 Addr, MachinePointerInfo(TrmpAddr),
9523 false, false, 0);
9524
9525 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9526 DAG.getConstant(2, MVT::i64));
9527 OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
9528 MachinePointerInfo(TrmpAddr, 2),
9529 false, false, 2);
9530
9531 // Load the 'nest' parameter value into R10.
9532 // R10 is specified in X86CallingConv.td
9533 OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
9534 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9535 DAG.getConstant(10, MVT::i64));
9536 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9537 Addr, MachinePointerInfo(TrmpAddr, 10),
9538 false, false, 0);
9539
9540 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9541 DAG.getConstant(12, MVT::i64));
9542 OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
9543 MachinePointerInfo(TrmpAddr, 12),
9544 false, false, 2);
9545
9546 // Jump to the nested function.
9547 OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
9548 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9549 DAG.getConstant(20, MVT::i64));
9550 OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, MVT::i16),
9551 Addr, MachinePointerInfo(TrmpAddr, 20),
9552 false, false, 0);
9553
9554 unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
9555 Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
9556 DAG.getConstant(22, MVT::i64));
9557 OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, MVT::i8), Addr,
9558 MachinePointerInfo(TrmpAddr, 22),
9559 false, false, 0);
9560
9561 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 6);
9562 } else {
9563 const Function *Func =
9564 cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
9565 CallingConv::ID CC = Func->getCallingConv();
9566 unsigned NestReg;
9567
9568 switch (CC) {
9569 default:
9570 llvm_unreachable("Unsupported calling convention");
9571 case CallingConv::C:
9572 case CallingConv::X86_StdCall: {
9573 // Pass 'nest' parameter in ECX.
9574 // Must be kept in sync with X86CallingConv.td
9575 NestReg = X86::ECX;
9576
9577 // Check that ECX wasn't needed by an 'inreg' parameter.
9578 FunctionType *FTy = Func->getFunctionType();
9579 const AttrListPtr &Attrs = Func->getAttributes();
9580
9581 if (!Attrs.isEmpty() && !Func->isVarArg()) {
9582 unsigned InRegCount = 0;
9583 unsigned Idx = 1;
9584
9585 for (FunctionType::param_iterator I = FTy->param_begin(),
9586 E = FTy->param_end(); I != E; ++I, ++Idx)
9587 if (Attrs.paramHasAttr(Idx, Attribute::InReg))
9588 // FIXME: should only count parameters that are lowered to integers.
9589 InRegCount += (TD->getTypeSizeInBits(*I) + 31) / 32;
9590
9591 if (InRegCount > 2) {
9592 report_fatal_error("Nest register in use - reduce number of inreg"
9593 " parameters!");
9594 }
9595 }
9596 break;
9597 }
9598 case CallingConv::X86_FastCall:
9599 case CallingConv::X86_ThisCall:
9600 case CallingConv::Fast:
9601 // Pass 'nest' parameter in EAX.
9602 // Must be kept in sync with X86CallingConv.td
9603 NestReg = X86::EAX;
9604 break;
9605 }
9606
9607 SDValue OutChains[4];
9608 SDValue Addr, Disp;
9609
9610 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9611 DAG.getConstant(10, MVT::i32));
9612 Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
9613
9614 // This is storing the opcode for MOV32ri.
9615 const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
9616 const unsigned char N86Reg = X86_MC::getX86RegNum(NestReg);
9617 OutChains[0] = DAG.getStore(Root, dl,
9618 DAG.getConstant(MOV32ri|N86Reg, MVT::i8),
9619 Trmp, MachinePointerInfo(TrmpAddr),
9620 false, false, 0);
9621
9622 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9623 DAG.getConstant(1, MVT::i32));
9624 OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
9625 MachinePointerInfo(TrmpAddr, 1),
9626 false, false, 1);
9627
9628 const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
9629 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9630 DAG.getConstant(5, MVT::i32));
9631 OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, MVT::i8), Addr,
9632 MachinePointerInfo(TrmpAddr, 5),
9633 false, false, 1);
9634
9635 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
9636 DAG.getConstant(6, MVT::i32));
9637 OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
9638 MachinePointerInfo(TrmpAddr, 6),
9639 false, false, 1);
9640
9641 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains, 4);
9642 }
9643 }
9644
LowerFLT_ROUNDS_(SDValue Op,SelectionDAG & DAG) const9645 SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
9646 SelectionDAG &DAG) const {
9647 /*
9648 The rounding mode is in bits 11:10 of FPSR, and has the following
9649 settings:
9650 00 Round to nearest
9651 01 Round to -inf
9652 10 Round to +inf
9653 11 Round to 0
9654
9655 FLT_ROUNDS, on the other hand, expects the following:
9656 -1 Undefined
9657 0 Round to 0
9658 1 Round to nearest
9659 2 Round to +inf
9660 3 Round to -inf
9661
9662 To perform the conversion, we do:
9663 (((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
9664 */
9665
9666 MachineFunction &MF = DAG.getMachineFunction();
9667 const TargetMachine &TM = MF.getTarget();
9668 const TargetFrameLowering &TFI = *TM.getFrameLowering();
9669 unsigned StackAlignment = TFI.getStackAlignment();
9670 EVT VT = Op.getValueType();
9671 DebugLoc DL = Op.getDebugLoc();
9672
9673 // Save FP Control Word to stack slot
9674 int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
9675 SDValue StackSlot = DAG.getFrameIndex(SSFI, getPointerTy());
9676
9677
9678 MachineMemOperand *MMO =
9679 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(SSFI),
9680 MachineMemOperand::MOStore, 2, 2);
9681
9682 SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
9683 SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
9684 DAG.getVTList(MVT::Other),
9685 Ops, 2, MVT::i16, MMO);
9686
9687 // Load FP Control Word from stack slot
9688 SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
9689 MachinePointerInfo(), false, false, 0);
9690
9691 // Transform as necessary
9692 SDValue CWD1 =
9693 DAG.getNode(ISD::SRL, DL, MVT::i16,
9694 DAG.getNode(ISD::AND, DL, MVT::i16,
9695 CWD, DAG.getConstant(0x800, MVT::i16)),
9696 DAG.getConstant(11, MVT::i8));
9697 SDValue CWD2 =
9698 DAG.getNode(ISD::SRL, DL, MVT::i16,
9699 DAG.getNode(ISD::AND, DL, MVT::i16,
9700 CWD, DAG.getConstant(0x400, MVT::i16)),
9701 DAG.getConstant(9, MVT::i8));
9702
9703 SDValue RetVal =
9704 DAG.getNode(ISD::AND, DL, MVT::i16,
9705 DAG.getNode(ISD::ADD, DL, MVT::i16,
9706 DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
9707 DAG.getConstant(1, MVT::i16)),
9708 DAG.getConstant(3, MVT::i16));
9709
9710
9711 return DAG.getNode((VT.getSizeInBits() < 16 ?
9712 ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
9713 }
9714
LowerCTLZ(SDValue Op,SelectionDAG & DAG) const9715 SDValue X86TargetLowering::LowerCTLZ(SDValue Op, SelectionDAG &DAG) const {
9716 EVT VT = Op.getValueType();
9717 EVT OpVT = VT;
9718 unsigned NumBits = VT.getSizeInBits();
9719 DebugLoc dl = Op.getDebugLoc();
9720
9721 Op = Op.getOperand(0);
9722 if (VT == MVT::i8) {
9723 // Zero extend to i32 since there is not an i8 bsr.
9724 OpVT = MVT::i32;
9725 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9726 }
9727
9728 // Issue a bsr (scan bits in reverse) which also sets EFLAGS.
9729 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9730 Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
9731
9732 // If src is zero (i.e. bsr sets ZF), returns NumBits.
9733 SDValue Ops[] = {
9734 Op,
9735 DAG.getConstant(NumBits+NumBits-1, OpVT),
9736 DAG.getConstant(X86::COND_E, MVT::i8),
9737 Op.getValue(1)
9738 };
9739 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9740
9741 // Finally xor with NumBits-1.
9742 Op = DAG.getNode(ISD::XOR, dl, OpVT, Op, DAG.getConstant(NumBits-1, OpVT));
9743
9744 if (VT == MVT::i8)
9745 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9746 return Op;
9747 }
9748
LowerCTTZ(SDValue Op,SelectionDAG & DAG) const9749 SDValue X86TargetLowering::LowerCTTZ(SDValue Op, SelectionDAG &DAG) const {
9750 EVT VT = Op.getValueType();
9751 EVT OpVT = VT;
9752 unsigned NumBits = VT.getSizeInBits();
9753 DebugLoc dl = Op.getDebugLoc();
9754
9755 Op = Op.getOperand(0);
9756 if (VT == MVT::i8) {
9757 OpVT = MVT::i32;
9758 Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
9759 }
9760
9761 // Issue a bsf (scan bits forward) which also sets EFLAGS.
9762 SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
9763 Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op);
9764
9765 // If src is zero (i.e. bsf sets ZF), returns NumBits.
9766 SDValue Ops[] = {
9767 Op,
9768 DAG.getConstant(NumBits, OpVT),
9769 DAG.getConstant(X86::COND_E, MVT::i8),
9770 Op.getValue(1)
9771 };
9772 Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops, array_lengthof(Ops));
9773
9774 if (VT == MVT::i8)
9775 Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
9776 return Op;
9777 }
9778
9779 // Lower256IntArith - Break a 256-bit integer operation into two new 128-bit
9780 // ones, and then concatenate the result back.
Lower256IntArith(SDValue Op,SelectionDAG & DAG)9781 static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
9782 EVT VT = Op.getValueType();
9783
9784 assert(VT.getSizeInBits() == 256 && VT.isInteger() &&
9785 "Unsupported value type for operation");
9786
9787 int NumElems = VT.getVectorNumElements();
9788 DebugLoc dl = Op.getDebugLoc();
9789 SDValue Idx0 = DAG.getConstant(0, MVT::i32);
9790 SDValue Idx1 = DAG.getConstant(NumElems/2, MVT::i32);
9791
9792 // Extract the LHS vectors
9793 SDValue LHS = Op.getOperand(0);
9794 SDValue LHS1 = Extract128BitVector(LHS, Idx0, DAG, dl);
9795 SDValue LHS2 = Extract128BitVector(LHS, Idx1, DAG, dl);
9796
9797 // Extract the RHS vectors
9798 SDValue RHS = Op.getOperand(1);
9799 SDValue RHS1 = Extract128BitVector(RHS, Idx0, DAG, dl);
9800 SDValue RHS2 = Extract128BitVector(RHS, Idx1, DAG, dl);
9801
9802 MVT EltVT = VT.getVectorElementType().getSimpleVT();
9803 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9804
9805 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
9806 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
9807 DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
9808 }
9809
LowerADD(SDValue Op,SelectionDAG & DAG) const9810 SDValue X86TargetLowering::LowerADD(SDValue Op, SelectionDAG &DAG) const {
9811 assert(Op.getValueType().getSizeInBits() == 256 &&
9812 Op.getValueType().isInteger() &&
9813 "Only handle AVX 256-bit vector integer operation");
9814 return Lower256IntArith(Op, DAG);
9815 }
9816
LowerSUB(SDValue Op,SelectionDAG & DAG) const9817 SDValue X86TargetLowering::LowerSUB(SDValue Op, SelectionDAG &DAG) const {
9818 assert(Op.getValueType().getSizeInBits() == 256 &&
9819 Op.getValueType().isInteger() &&
9820 "Only handle AVX 256-bit vector integer operation");
9821 return Lower256IntArith(Op, DAG);
9822 }
9823
LowerMUL(SDValue Op,SelectionDAG & DAG) const9824 SDValue X86TargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
9825 EVT VT = Op.getValueType();
9826
9827 // Decompose 256-bit ops into smaller 128-bit ops.
9828 if (VT.getSizeInBits() == 256)
9829 return Lower256IntArith(Op, DAG);
9830
9831 assert(VT == MVT::v2i64 && "Only know how to lower V2I64 multiply");
9832 DebugLoc dl = Op.getDebugLoc();
9833
9834 // ulong2 Ahi = __builtin_ia32_psrlqi128( a, 32);
9835 // ulong2 Bhi = __builtin_ia32_psrlqi128( b, 32);
9836 // ulong2 AloBlo = __builtin_ia32_pmuludq128( a, b );
9837 // ulong2 AloBhi = __builtin_ia32_pmuludq128( a, Bhi );
9838 // ulong2 AhiBlo = __builtin_ia32_pmuludq128( Ahi, b );
9839 //
9840 // AloBhi = __builtin_ia32_psllqi128( AloBhi, 32 );
9841 // AhiBlo = __builtin_ia32_psllqi128( AhiBlo, 32 );
9842 // return AloBlo + AloBhi + AhiBlo;
9843
9844 SDValue A = Op.getOperand(0);
9845 SDValue B = Op.getOperand(1);
9846
9847 SDValue Ahi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9848 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9849 A, DAG.getConstant(32, MVT::i32));
9850 SDValue Bhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9851 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9852 B, DAG.getConstant(32, MVT::i32));
9853 SDValue AloBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9854 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9855 A, B);
9856 SDValue AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9857 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9858 A, Bhi);
9859 SDValue AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9860 DAG.getConstant(Intrinsic::x86_sse2_pmulu_dq, MVT::i32),
9861 Ahi, B);
9862 AloBhi = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9863 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9864 AloBhi, DAG.getConstant(32, MVT::i32));
9865 AhiBlo = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9866 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9867 AhiBlo, DAG.getConstant(32, MVT::i32));
9868 SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
9869 Res = DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
9870 return Res;
9871 }
9872
LowerShift(SDValue Op,SelectionDAG & DAG) const9873 SDValue X86TargetLowering::LowerShift(SDValue Op, SelectionDAG &DAG) const {
9874
9875 EVT VT = Op.getValueType();
9876 DebugLoc dl = Op.getDebugLoc();
9877 SDValue R = Op.getOperand(0);
9878 SDValue Amt = Op.getOperand(1);
9879 LLVMContext *Context = DAG.getContext();
9880
9881 if (!Subtarget->hasXMMInt())
9882 return SDValue();
9883
9884 // Decompose 256-bit shifts into smaller 128-bit shifts.
9885 if (VT.getSizeInBits() == 256) {
9886 int NumElems = VT.getVectorNumElements();
9887 MVT EltVT = VT.getVectorElementType().getSimpleVT();
9888 EVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
9889
9890 // Extract the two vectors
9891 SDValue V1 = Extract128BitVector(R, DAG.getConstant(0, MVT::i32), DAG, dl);
9892 SDValue V2 = Extract128BitVector(R, DAG.getConstant(NumElems/2, MVT::i32),
9893 DAG, dl);
9894
9895 // Recreate the shift amount vectors
9896 SDValue Amt1, Amt2;
9897 if (Amt.getOpcode() == ISD::BUILD_VECTOR) {
9898 // Constant shift amount
9899 SmallVector<SDValue, 4> Amt1Csts;
9900 SmallVector<SDValue, 4> Amt2Csts;
9901 for (int i = 0; i < NumElems/2; ++i)
9902 Amt1Csts.push_back(Amt->getOperand(i));
9903 for (int i = NumElems/2; i < NumElems; ++i)
9904 Amt2Csts.push_back(Amt->getOperand(i));
9905
9906 Amt1 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9907 &Amt1Csts[0], NumElems/2);
9908 Amt2 = DAG.getNode(ISD::BUILD_VECTOR, dl, NewVT,
9909 &Amt2Csts[0], NumElems/2);
9910 } else {
9911 // Variable shift amount
9912 Amt1 = Extract128BitVector(Amt, DAG.getConstant(0, MVT::i32), DAG, dl);
9913 Amt2 = Extract128BitVector(Amt, DAG.getConstant(NumElems/2, MVT::i32),
9914 DAG, dl);
9915 }
9916
9917 // Issue new vector shifts for the smaller types
9918 V1 = DAG.getNode(Op.getOpcode(), dl, NewVT, V1, Amt1);
9919 V2 = DAG.getNode(Op.getOpcode(), dl, NewVT, V2, Amt2);
9920
9921 // Concatenate the result back
9922 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, V1, V2);
9923 }
9924
9925 // Optimize shl/srl/sra with constant shift amount.
9926 if (isSplatVector(Amt.getNode())) {
9927 SDValue SclrAmt = Amt->getOperand(0);
9928 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(SclrAmt)) {
9929 uint64_t ShiftAmt = C->getZExtValue();
9930
9931 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SHL)
9932 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9933 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
9934 R, DAG.getConstant(ShiftAmt, MVT::i32));
9935
9936 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SHL)
9937 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9938 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9939 R, DAG.getConstant(ShiftAmt, MVT::i32));
9940
9941 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SHL)
9942 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9943 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9944 R, DAG.getConstant(ShiftAmt, MVT::i32));
9945
9946 if (VT == MVT::v2i64 && Op.getOpcode() == ISD::SRL)
9947 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9948 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
9949 R, DAG.getConstant(ShiftAmt, MVT::i32));
9950
9951 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRL)
9952 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9953 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
9954 R, DAG.getConstant(ShiftAmt, MVT::i32));
9955
9956 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRL)
9957 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9958 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
9959 R, DAG.getConstant(ShiftAmt, MVT::i32));
9960
9961 if (VT == MVT::v4i32 && Op.getOpcode() == ISD::SRA)
9962 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9963 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
9964 R, DAG.getConstant(ShiftAmt, MVT::i32));
9965
9966 if (VT == MVT::v8i16 && Op.getOpcode() == ISD::SRA)
9967 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9968 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
9969 R, DAG.getConstant(ShiftAmt, MVT::i32));
9970 }
9971 }
9972
9973 // Lower SHL with variable shift amount.
9974 if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
9975 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9976 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
9977 Op.getOperand(1), DAG.getConstant(23, MVT::i32));
9978
9979 ConstantInt *CI = ConstantInt::get(*Context, APInt(32, 0x3f800000U));
9980
9981 std::vector<Constant*> CV(4, CI);
9982 Constant *C = ConstantVector::get(CV);
9983 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
9984 SDValue Addend = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
9985 MachinePointerInfo::getConstantPool(),
9986 false, false, 16);
9987
9988 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Addend);
9989 Op = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, Op);
9990 Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
9991 return DAG.getNode(ISD::MUL, dl, VT, Op, R);
9992 }
9993 if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
9994 // a = a << 5;
9995 Op = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
9996 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
9997 Op.getOperand(1), DAG.getConstant(5, MVT::i32));
9998
9999 ConstantInt *CM1 = ConstantInt::get(*Context, APInt(8, 15));
10000 ConstantInt *CM2 = ConstantInt::get(*Context, APInt(8, 63));
10001
10002 std::vector<Constant*> CVM1(16, CM1);
10003 std::vector<Constant*> CVM2(16, CM2);
10004 Constant *C = ConstantVector::get(CVM1);
10005 SDValue CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10006 SDValue M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10007 MachinePointerInfo::getConstantPool(),
10008 false, false, 16);
10009
10010 // r = pblendv(r, psllw(r & (char16)15, 4), a);
10011 M = DAG.getNode(ISD::AND, dl, VT, R, M);
10012 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10013 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10014 DAG.getConstant(4, MVT::i32));
10015 R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10016 // a += a
10017 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10018
10019 C = ConstantVector::get(CVM2);
10020 CPIdx = DAG.getConstantPool(C, getPointerTy(), 16);
10021 M = DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
10022 MachinePointerInfo::getConstantPool(),
10023 false, false, 16);
10024
10025 // r = pblendv(r, psllw(r & (char16)63, 2), a);
10026 M = DAG.getNode(ISD::AND, dl, VT, R, M);
10027 M = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10028 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32), M,
10029 DAG.getConstant(2, MVT::i32));
10030 R = DAG.getNode(ISD::VSELECT, dl, VT, Op, R, M);
10031 // a += a
10032 Op = DAG.getNode(ISD::ADD, dl, VT, Op, Op);
10033
10034 // return pblendv(r, r+r, a);
10035 R = DAG.getNode(ISD::VSELECT, dl, VT, Op,
10036 R, DAG.getNode(ISD::ADD, dl, VT, R, R));
10037 return R;
10038 }
10039 return SDValue();
10040 }
10041
LowerXALUO(SDValue Op,SelectionDAG & DAG) const10042 SDValue X86TargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
10043 // Lower the "add/sub/mul with overflow" instruction into a regular ins plus
10044 // a "setcc" instruction that checks the overflow flag. The "brcond" lowering
10045 // looks for this combo and may remove the "setcc" instruction if the "setcc"
10046 // has only one use.
10047 SDNode *N = Op.getNode();
10048 SDValue LHS = N->getOperand(0);
10049 SDValue RHS = N->getOperand(1);
10050 unsigned BaseOp = 0;
10051 unsigned Cond = 0;
10052 DebugLoc DL = Op.getDebugLoc();
10053 switch (Op.getOpcode()) {
10054 default: llvm_unreachable("Unknown ovf instruction!");
10055 case ISD::SADDO:
10056 // A subtract of one will be selected as a INC. Note that INC doesn't
10057 // set CF, so we can't do this for UADDO.
10058 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10059 if (C->isOne()) {
10060 BaseOp = X86ISD::INC;
10061 Cond = X86::COND_O;
10062 break;
10063 }
10064 BaseOp = X86ISD::ADD;
10065 Cond = X86::COND_O;
10066 break;
10067 case ISD::UADDO:
10068 BaseOp = X86ISD::ADD;
10069 Cond = X86::COND_B;
10070 break;
10071 case ISD::SSUBO:
10072 // A subtract of one will be selected as a DEC. Note that DEC doesn't
10073 // set CF, so we can't do this for USUBO.
10074 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS))
10075 if (C->isOne()) {
10076 BaseOp = X86ISD::DEC;
10077 Cond = X86::COND_O;
10078 break;
10079 }
10080 BaseOp = X86ISD::SUB;
10081 Cond = X86::COND_O;
10082 break;
10083 case ISD::USUBO:
10084 BaseOp = X86ISD::SUB;
10085 Cond = X86::COND_B;
10086 break;
10087 case ISD::SMULO:
10088 BaseOp = X86ISD::SMUL;
10089 Cond = X86::COND_O;
10090 break;
10091 case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
10092 SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
10093 MVT::i32);
10094 SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
10095
10096 SDValue SetCC =
10097 DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
10098 DAG.getConstant(X86::COND_O, MVT::i32),
10099 SDValue(Sum.getNode(), 2));
10100
10101 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10102 }
10103 }
10104
10105 // Also sets EFLAGS.
10106 SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
10107 SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
10108
10109 SDValue SetCC =
10110 DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
10111 DAG.getConstant(Cond, MVT::i32),
10112 SDValue(Sum.getNode(), 1));
10113
10114 return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
10115 }
10116
LowerSIGN_EXTEND_INREG(SDValue Op,SelectionDAG & DAG) const10117 SDValue X86TargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const{
10118 DebugLoc dl = Op.getDebugLoc();
10119 SDNode* Node = Op.getNode();
10120 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
10121 EVT VT = Node->getValueType(0);
10122 if (Subtarget->hasXMMInt() && VT.isVector()) {
10123 unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
10124 ExtraVT.getScalarType().getSizeInBits();
10125 SDValue ShAmt = DAG.getConstant(BitsDiff, MVT::i32);
10126
10127 unsigned SHLIntrinsicsID = 0;
10128 unsigned SRAIntrinsicsID = 0;
10129 switch (VT.getSimpleVT().SimpleTy) {
10130 default:
10131 return SDValue();
10132 case MVT::v4i32: {
10133 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_d;
10134 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_d;
10135 break;
10136 }
10137 case MVT::v8i16: {
10138 SHLIntrinsicsID = Intrinsic::x86_sse2_pslli_w;
10139 SRAIntrinsicsID = Intrinsic::x86_sse2_psrai_w;
10140 break;
10141 }
10142 }
10143
10144 SDValue Tmp1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10145 DAG.getConstant(SHLIntrinsicsID, MVT::i32),
10146 Node->getOperand(0), ShAmt);
10147
10148 // In case of 1 bit sext, no need to shr
10149 if (ExtraVT.getScalarType().getSizeInBits() == 1) return Tmp1;
10150
10151 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
10152 DAG.getConstant(SRAIntrinsicsID, MVT::i32),
10153 Tmp1, ShAmt);
10154 }
10155
10156 return SDValue();
10157 }
10158
10159
LowerMEMBARRIER(SDValue Op,SelectionDAG & DAG) const10160 SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
10161 DebugLoc dl = Op.getDebugLoc();
10162
10163 // Go ahead and emit the fence on x86-64 even if we asked for no-sse2.
10164 // There isn't any reason to disable it if the target processor supports it.
10165 if (!Subtarget->hasXMMInt() && !Subtarget->is64Bit()) {
10166 SDValue Chain = Op.getOperand(0);
10167 SDValue Zero = DAG.getConstant(0, MVT::i32);
10168 SDValue Ops[] = {
10169 DAG.getRegister(X86::ESP, MVT::i32), // Base
10170 DAG.getTargetConstant(1, MVT::i8), // Scale
10171 DAG.getRegister(0, MVT::i32), // Index
10172 DAG.getTargetConstant(0, MVT::i32), // Disp
10173 DAG.getRegister(0, MVT::i32), // Segment.
10174 Zero,
10175 Chain
10176 };
10177 SDNode *Res =
10178 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10179 array_lengthof(Ops));
10180 return SDValue(Res, 0);
10181 }
10182
10183 unsigned isDev = cast<ConstantSDNode>(Op.getOperand(5))->getZExtValue();
10184 if (!isDev)
10185 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10186
10187 unsigned Op1 = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
10188 unsigned Op2 = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
10189 unsigned Op3 = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
10190 unsigned Op4 = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
10191
10192 // def : Pat<(membarrier (i8 0), (i8 0), (i8 0), (i8 1), (i8 1)), (SFENCE)>;
10193 if (!Op1 && !Op2 && !Op3 && Op4)
10194 return DAG.getNode(X86ISD::SFENCE, dl, MVT::Other, Op.getOperand(0));
10195
10196 // def : Pat<(membarrier (i8 1), (i8 0), (i8 0), (i8 0), (i8 1)), (LFENCE)>;
10197 if (Op1 && !Op2 && !Op3 && !Op4)
10198 return DAG.getNode(X86ISD::LFENCE, dl, MVT::Other, Op.getOperand(0));
10199
10200 // def : Pat<(membarrier (i8 imm), (i8 imm), (i8 imm), (i8 imm), (i8 1)),
10201 // (MFENCE)>;
10202 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10203 }
10204
LowerATOMIC_FENCE(SDValue Op,SelectionDAG & DAG) const10205 SDValue X86TargetLowering::LowerATOMIC_FENCE(SDValue Op,
10206 SelectionDAG &DAG) const {
10207 DebugLoc dl = Op.getDebugLoc();
10208 AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
10209 cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
10210 SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
10211 cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
10212
10213 // The only fence that needs an instruction is a sequentially-consistent
10214 // cross-thread fence.
10215 if (FenceOrdering == SequentiallyConsistent && FenceScope == CrossThread) {
10216 // Use mfence if we have SSE2 or we're on x86-64 (even if we asked for
10217 // no-sse2). There isn't any reason to disable it if the target processor
10218 // supports it.
10219 if (Subtarget->hasXMMInt() || Subtarget->is64Bit())
10220 return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
10221
10222 SDValue Chain = Op.getOperand(0);
10223 SDValue Zero = DAG.getConstant(0, MVT::i32);
10224 SDValue Ops[] = {
10225 DAG.getRegister(X86::ESP, MVT::i32), // Base
10226 DAG.getTargetConstant(1, MVT::i8), // Scale
10227 DAG.getRegister(0, MVT::i32), // Index
10228 DAG.getTargetConstant(0, MVT::i32), // Disp
10229 DAG.getRegister(0, MVT::i32), // Segment.
10230 Zero,
10231 Chain
10232 };
10233 SDNode *Res =
10234 DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops,
10235 array_lengthof(Ops));
10236 return SDValue(Res, 0);
10237 }
10238
10239 // MEMBARRIER is a compiler barrier; it codegens to a no-op.
10240 return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
10241 }
10242
10243
LowerCMP_SWAP(SDValue Op,SelectionDAG & DAG) const10244 SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
10245 EVT T = Op.getValueType();
10246 DebugLoc DL = Op.getDebugLoc();
10247 unsigned Reg = 0;
10248 unsigned size = 0;
10249 switch(T.getSimpleVT().SimpleTy) {
10250 default:
10251 assert(false && "Invalid value type!");
10252 case MVT::i8: Reg = X86::AL; size = 1; break;
10253 case MVT::i16: Reg = X86::AX; size = 2; break;
10254 case MVT::i32: Reg = X86::EAX; size = 4; break;
10255 case MVT::i64:
10256 assert(Subtarget->is64Bit() && "Node not type legal!");
10257 Reg = X86::RAX; size = 8;
10258 break;
10259 }
10260 SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
10261 Op.getOperand(2), SDValue());
10262 SDValue Ops[] = { cpIn.getValue(0),
10263 Op.getOperand(1),
10264 Op.getOperand(3),
10265 DAG.getTargetConstant(size, MVT::i8),
10266 cpIn.getValue(1) };
10267 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10268 MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
10269 SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
10270 Ops, 5, T, MMO);
10271 SDValue cpOut =
10272 DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
10273 return cpOut;
10274 }
10275
LowerREADCYCLECOUNTER(SDValue Op,SelectionDAG & DAG) const10276 SDValue X86TargetLowering::LowerREADCYCLECOUNTER(SDValue Op,
10277 SelectionDAG &DAG) const {
10278 assert(Subtarget->is64Bit() && "Result not type legalized?");
10279 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10280 SDValue TheChain = Op.getOperand(0);
10281 DebugLoc dl = Op.getDebugLoc();
10282 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10283 SDValue rax = DAG.getCopyFromReg(rd, dl, X86::RAX, MVT::i64, rd.getValue(1));
10284 SDValue rdx = DAG.getCopyFromReg(rax.getValue(1), dl, X86::RDX, MVT::i64,
10285 rax.getValue(2));
10286 SDValue Tmp = DAG.getNode(ISD::SHL, dl, MVT::i64, rdx,
10287 DAG.getConstant(32, MVT::i8));
10288 SDValue Ops[] = {
10289 DAG.getNode(ISD::OR, dl, MVT::i64, rax, Tmp),
10290 rdx.getValue(1)
10291 };
10292 return DAG.getMergeValues(Ops, 2, dl);
10293 }
10294
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const10295 SDValue X86TargetLowering::LowerBITCAST(SDValue Op,
10296 SelectionDAG &DAG) const {
10297 EVT SrcVT = Op.getOperand(0).getValueType();
10298 EVT DstVT = Op.getValueType();
10299 assert(Subtarget->is64Bit() && !Subtarget->hasXMMInt() &&
10300 Subtarget->hasMMX() && "Unexpected custom BITCAST");
10301 assert((DstVT == MVT::i64 ||
10302 (DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
10303 "Unexpected custom BITCAST");
10304 // i64 <=> MMX conversions are Legal.
10305 if (SrcVT==MVT::i64 && DstVT.isVector())
10306 return Op;
10307 if (DstVT==MVT::i64 && SrcVT.isVector())
10308 return Op;
10309 // MMX <=> MMX conversions are Legal.
10310 if (SrcVT.isVector() && DstVT.isVector())
10311 return Op;
10312 // All other conversions need to be expanded.
10313 return SDValue();
10314 }
10315
LowerLOAD_SUB(SDValue Op,SelectionDAG & DAG) const10316 SDValue X86TargetLowering::LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const {
10317 SDNode *Node = Op.getNode();
10318 DebugLoc dl = Node->getDebugLoc();
10319 EVT T = Node->getValueType(0);
10320 SDValue negOp = DAG.getNode(ISD::SUB, dl, T,
10321 DAG.getConstant(0, T), Node->getOperand(2));
10322 return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, dl,
10323 cast<AtomicSDNode>(Node)->getMemoryVT(),
10324 Node->getOperand(0),
10325 Node->getOperand(1), negOp,
10326 cast<AtomicSDNode>(Node)->getSrcValue(),
10327 cast<AtomicSDNode>(Node)->getAlignment(),
10328 cast<AtomicSDNode>(Node)->getOrdering(),
10329 cast<AtomicSDNode>(Node)->getSynchScope());
10330 }
10331
LowerATOMIC_STORE(SDValue Op,SelectionDAG & DAG)10332 static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
10333 SDNode *Node = Op.getNode();
10334 DebugLoc dl = Node->getDebugLoc();
10335 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10336
10337 // Convert seq_cst store -> xchg
10338 // Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
10339 // FIXME: On 32-bit, store -> fist or movq would be more efficient
10340 // (The only way to get a 16-byte store is cmpxchg16b)
10341 // FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
10342 if (cast<AtomicSDNode>(Node)->getOrdering() == SequentiallyConsistent ||
10343 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
10344 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
10345 cast<AtomicSDNode>(Node)->getMemoryVT(),
10346 Node->getOperand(0),
10347 Node->getOperand(1), Node->getOperand(2),
10348 cast<AtomicSDNode>(Node)->getMemOperand(),
10349 cast<AtomicSDNode>(Node)->getOrdering(),
10350 cast<AtomicSDNode>(Node)->getSynchScope());
10351 return Swap.getValue(1);
10352 }
10353 // Other atomic stores have a simple pattern.
10354 return Op;
10355 }
10356
LowerADDC_ADDE_SUBC_SUBE(SDValue Op,SelectionDAG & DAG)10357 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
10358 EVT VT = Op.getNode()->getValueType(0);
10359
10360 // Let legalize expand this if it isn't a legal type yet.
10361 if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
10362 return SDValue();
10363
10364 SDVTList VTs = DAG.getVTList(VT, MVT::i32);
10365
10366 unsigned Opc;
10367 bool ExtraOp = false;
10368 switch (Op.getOpcode()) {
10369 default: assert(0 && "Invalid code");
10370 case ISD::ADDC: Opc = X86ISD::ADD; break;
10371 case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
10372 case ISD::SUBC: Opc = X86ISD::SUB; break;
10373 case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
10374 }
10375
10376 if (!ExtraOp)
10377 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10378 Op.getOperand(1));
10379 return DAG.getNode(Opc, Op->getDebugLoc(), VTs, Op.getOperand(0),
10380 Op.getOperand(1), Op.getOperand(2));
10381 }
10382
10383 /// LowerOperation - Provide custom lowering hooks for some operations.
10384 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const10385 SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10386 switch (Op.getOpcode()) {
10387 default: llvm_unreachable("Should not custom lower this!");
10388 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op,DAG);
10389 case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
10390 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op,DAG);
10391 case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
10392 case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
10393 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op,DAG);
10394 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
10395 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
10396 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
10397 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
10398 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
10399 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
10400 case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, DAG);
10401 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
10402 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
10403 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
10404 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
10405 case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
10406 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
10407 case ISD::SHL_PARTS:
10408 case ISD::SRA_PARTS:
10409 case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
10410 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
10411 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
10412 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
10413 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
10414 case ISD::FABS: return LowerFABS(Op, DAG);
10415 case ISD::FNEG: return LowerFNEG(Op, DAG);
10416 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
10417 case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
10418 case ISD::SETCC: return LowerSETCC(Op, DAG);
10419 case ISD::SELECT: return LowerSELECT(Op, DAG);
10420 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
10421 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
10422 case ISD::VASTART: return LowerVASTART(Op, DAG);
10423 case ISD::VAARG: return LowerVAARG(Op, DAG);
10424 case ISD::VACOPY: return LowerVACOPY(Op, DAG);
10425 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
10426 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
10427 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
10428 case ISD::FRAME_TO_ARGS_OFFSET:
10429 return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
10430 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
10431 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
10432 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
10433 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
10434 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
10435 case ISD::CTLZ: return LowerCTLZ(Op, DAG);
10436 case ISD::CTTZ: return LowerCTTZ(Op, DAG);
10437 case ISD::MUL: return LowerMUL(Op, DAG);
10438 case ISD::SRA:
10439 case ISD::SRL:
10440 case ISD::SHL: return LowerShift(Op, DAG);
10441 case ISD::SADDO:
10442 case ISD::UADDO:
10443 case ISD::SSUBO:
10444 case ISD::USUBO:
10445 case ISD::SMULO:
10446 case ISD::UMULO: return LowerXALUO(Op, DAG);
10447 case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, DAG);
10448 case ISD::BITCAST: return LowerBITCAST(Op, DAG);
10449 case ISD::ADDC:
10450 case ISD::ADDE:
10451 case ISD::SUBC:
10452 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
10453 case ISD::ADD: return LowerADD(Op, DAG);
10454 case ISD::SUB: return LowerSUB(Op, DAG);
10455 }
10456 }
10457
ReplaceATOMIC_LOAD(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG)10458 static void ReplaceATOMIC_LOAD(SDNode *Node,
10459 SmallVectorImpl<SDValue> &Results,
10460 SelectionDAG &DAG) {
10461 DebugLoc dl = Node->getDebugLoc();
10462 EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
10463
10464 // Convert wide load -> cmpxchg8b/cmpxchg16b
10465 // FIXME: On 32-bit, load -> fild or movq would be more efficient
10466 // (The only way to get a 16-byte load is cmpxchg16b)
10467 // FIXME: 16-byte ATOMIC_CMP_SWAP isn't actually hooked up at the moment.
10468 SDValue Zero = DAG.getConstant(0, VT);
10469 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, VT,
10470 Node->getOperand(0),
10471 Node->getOperand(1), Zero, Zero,
10472 cast<AtomicSDNode>(Node)->getMemOperand(),
10473 cast<AtomicSDNode>(Node)->getOrdering(),
10474 cast<AtomicSDNode>(Node)->getSynchScope());
10475 Results.push_back(Swap.getValue(0));
10476 Results.push_back(Swap.getValue(1));
10477 }
10478
10479 void X86TargetLowering::
ReplaceATOMIC_BINARY_64(SDNode * Node,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG,unsigned NewOp) const10480 ReplaceATOMIC_BINARY_64(SDNode *Node, SmallVectorImpl<SDValue>&Results,
10481 SelectionDAG &DAG, unsigned NewOp) const {
10482 DebugLoc dl = Node->getDebugLoc();
10483 assert (Node->getValueType(0) == MVT::i64 &&
10484 "Only know how to expand i64 atomics");
10485
10486 SDValue Chain = Node->getOperand(0);
10487 SDValue In1 = Node->getOperand(1);
10488 SDValue In2L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10489 Node->getOperand(2), DAG.getIntPtrConstant(0));
10490 SDValue In2H = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
10491 Node->getOperand(2), DAG.getIntPtrConstant(1));
10492 SDValue Ops[] = { Chain, In1, In2L, In2H };
10493 SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
10494 SDValue Result =
10495 DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops, 4, MVT::i64,
10496 cast<MemSDNode>(Node)->getMemOperand());
10497 SDValue OpsF[] = { Result.getValue(0), Result.getValue(1)};
10498 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
10499 Results.push_back(Result.getValue(2));
10500 }
10501
10502 /// ReplaceNodeResults - Replace a node with an illegal result type
10503 /// with a new node built out of custom code.
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const10504 void X86TargetLowering::ReplaceNodeResults(SDNode *N,
10505 SmallVectorImpl<SDValue>&Results,
10506 SelectionDAG &DAG) const {
10507 DebugLoc dl = N->getDebugLoc();
10508 switch (N->getOpcode()) {
10509 default:
10510 assert(false && "Do not know how to custom type legalize this operation!");
10511 return;
10512 case ISD::SIGN_EXTEND_INREG:
10513 case ISD::ADDC:
10514 case ISD::ADDE:
10515 case ISD::SUBC:
10516 case ISD::SUBE:
10517 // We don't want to expand or promote these.
10518 return;
10519 case ISD::FP_TO_SINT: {
10520 std::pair<SDValue,SDValue> Vals =
10521 FP_TO_INTHelper(SDValue(N, 0), DAG, true);
10522 SDValue FIST = Vals.first, StackSlot = Vals.second;
10523 if (FIST.getNode() != 0) {
10524 EVT VT = N->getValueType(0);
10525 // Return a load from the stack slot.
10526 Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
10527 MachinePointerInfo(), false, false, 0));
10528 }
10529 return;
10530 }
10531 case ISD::READCYCLECOUNTER: {
10532 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10533 SDValue TheChain = N->getOperand(0);
10534 SDValue rd = DAG.getNode(X86ISD::RDTSC_DAG, dl, Tys, &TheChain, 1);
10535 SDValue eax = DAG.getCopyFromReg(rd, dl, X86::EAX, MVT::i32,
10536 rd.getValue(1));
10537 SDValue edx = DAG.getCopyFromReg(eax.getValue(1), dl, X86::EDX, MVT::i32,
10538 eax.getValue(2));
10539 // Use a buildpair to merge the two 32-bit values into a 64-bit one.
10540 SDValue Ops[] = { eax, edx };
10541 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Ops, 2));
10542 Results.push_back(edx.getValue(1));
10543 return;
10544 }
10545 case ISD::ATOMIC_CMP_SWAP: {
10546 EVT T = N->getValueType(0);
10547 assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
10548 bool Regs64bit = T == MVT::i128;
10549 EVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
10550 SDValue cpInL, cpInH;
10551 cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10552 DAG.getConstant(0, HalfT));
10553 cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
10554 DAG.getConstant(1, HalfT));
10555 cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
10556 Regs64bit ? X86::RAX : X86::EAX,
10557 cpInL, SDValue());
10558 cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
10559 Regs64bit ? X86::RDX : X86::EDX,
10560 cpInH, cpInL.getValue(1));
10561 SDValue swapInL, swapInH;
10562 swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10563 DAG.getConstant(0, HalfT));
10564 swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
10565 DAG.getConstant(1, HalfT));
10566 swapInL = DAG.getCopyToReg(cpInH.getValue(0), dl,
10567 Regs64bit ? X86::RBX : X86::EBX,
10568 swapInL, cpInH.getValue(1));
10569 swapInH = DAG.getCopyToReg(swapInL.getValue(0), dl,
10570 Regs64bit ? X86::RCX : X86::ECX,
10571 swapInH, swapInL.getValue(1));
10572 SDValue Ops[] = { swapInH.getValue(0),
10573 N->getOperand(1),
10574 swapInH.getValue(1) };
10575 SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
10576 MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
10577 unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_DAG :
10578 X86ISD::LCMPXCHG8_DAG;
10579 SDValue Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys,
10580 Ops, 3, T, MMO);
10581 SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
10582 Regs64bit ? X86::RAX : X86::EAX,
10583 HalfT, Result.getValue(1));
10584 SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
10585 Regs64bit ? X86::RDX : X86::EDX,
10586 HalfT, cpOutL.getValue(2));
10587 SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
10588 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF, 2));
10589 Results.push_back(cpOutH.getValue(1));
10590 return;
10591 }
10592 case ISD::ATOMIC_LOAD_ADD:
10593 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMADD64_DAG);
10594 return;
10595 case ISD::ATOMIC_LOAD_AND:
10596 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMAND64_DAG);
10597 return;
10598 case ISD::ATOMIC_LOAD_NAND:
10599 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMNAND64_DAG);
10600 return;
10601 case ISD::ATOMIC_LOAD_OR:
10602 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMOR64_DAG);
10603 return;
10604 case ISD::ATOMIC_LOAD_SUB:
10605 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSUB64_DAG);
10606 return;
10607 case ISD::ATOMIC_LOAD_XOR:
10608 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMXOR64_DAG);
10609 return;
10610 case ISD::ATOMIC_SWAP:
10611 ReplaceATOMIC_BINARY_64(N, Results, DAG, X86ISD::ATOMSWAP64_DAG);
10612 return;
10613 case ISD::ATOMIC_LOAD:
10614 ReplaceATOMIC_LOAD(N, Results, DAG);
10615 }
10616 }
10617
getTargetNodeName(unsigned Opcode) const10618 const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
10619 switch (Opcode) {
10620 default: return NULL;
10621 case X86ISD::BSF: return "X86ISD::BSF";
10622 case X86ISD::BSR: return "X86ISD::BSR";
10623 case X86ISD::SHLD: return "X86ISD::SHLD";
10624 case X86ISD::SHRD: return "X86ISD::SHRD";
10625 case X86ISD::FAND: return "X86ISD::FAND";
10626 case X86ISD::FOR: return "X86ISD::FOR";
10627 case X86ISD::FXOR: return "X86ISD::FXOR";
10628 case X86ISD::FSRL: return "X86ISD::FSRL";
10629 case X86ISD::FILD: return "X86ISD::FILD";
10630 case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
10631 case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
10632 case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
10633 case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
10634 case X86ISD::FLD: return "X86ISD::FLD";
10635 case X86ISD::FST: return "X86ISD::FST";
10636 case X86ISD::CALL: return "X86ISD::CALL";
10637 case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
10638 case X86ISD::BT: return "X86ISD::BT";
10639 case X86ISD::CMP: return "X86ISD::CMP";
10640 case X86ISD::COMI: return "X86ISD::COMI";
10641 case X86ISD::UCOMI: return "X86ISD::UCOMI";
10642 case X86ISD::SETCC: return "X86ISD::SETCC";
10643 case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
10644 case X86ISD::FSETCCsd: return "X86ISD::FSETCCsd";
10645 case X86ISD::FSETCCss: return "X86ISD::FSETCCss";
10646 case X86ISD::CMOV: return "X86ISD::CMOV";
10647 case X86ISD::BRCOND: return "X86ISD::BRCOND";
10648 case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
10649 case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
10650 case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
10651 case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
10652 case X86ISD::Wrapper: return "X86ISD::Wrapper";
10653 case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
10654 case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
10655 case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
10656 case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
10657 case X86ISD::PINSRB: return "X86ISD::PINSRB";
10658 case X86ISD::PINSRW: return "X86ISD::PINSRW";
10659 case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
10660 case X86ISD::ANDNP: return "X86ISD::ANDNP";
10661 case X86ISD::PSIGNB: return "X86ISD::PSIGNB";
10662 case X86ISD::PSIGNW: return "X86ISD::PSIGNW";
10663 case X86ISD::PSIGND: return "X86ISD::PSIGND";
10664 case X86ISD::FMAX: return "X86ISD::FMAX";
10665 case X86ISD::FMIN: return "X86ISD::FMIN";
10666 case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
10667 case X86ISD::FRCP: return "X86ISD::FRCP";
10668 case X86ISD::FHADD: return "X86ISD::FHADD";
10669 case X86ISD::FHSUB: return "X86ISD::FHSUB";
10670 case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
10671 case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
10672 case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
10673 case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
10674 case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
10675 case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
10676 case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
10677 case X86ISD::ATOMADD64_DAG: return "X86ISD::ATOMADD64_DAG";
10678 case X86ISD::ATOMSUB64_DAG: return "X86ISD::ATOMSUB64_DAG";
10679 case X86ISD::ATOMOR64_DAG: return "X86ISD::ATOMOR64_DAG";
10680 case X86ISD::ATOMXOR64_DAG: return "X86ISD::ATOMXOR64_DAG";
10681 case X86ISD::ATOMAND64_DAG: return "X86ISD::ATOMAND64_DAG";
10682 case X86ISD::ATOMNAND64_DAG: return "X86ISD::ATOMNAND64_DAG";
10683 case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
10684 case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
10685 case X86ISD::VSHL: return "X86ISD::VSHL";
10686 case X86ISD::VSRL: return "X86ISD::VSRL";
10687 case X86ISD::CMPPD: return "X86ISD::CMPPD";
10688 case X86ISD::CMPPS: return "X86ISD::CMPPS";
10689 case X86ISD::PCMPEQB: return "X86ISD::PCMPEQB";
10690 case X86ISD::PCMPEQW: return "X86ISD::PCMPEQW";
10691 case X86ISD::PCMPEQD: return "X86ISD::PCMPEQD";
10692 case X86ISD::PCMPEQQ: return "X86ISD::PCMPEQQ";
10693 case X86ISD::PCMPGTB: return "X86ISD::PCMPGTB";
10694 case X86ISD::PCMPGTW: return "X86ISD::PCMPGTW";
10695 case X86ISD::PCMPGTD: return "X86ISD::PCMPGTD";
10696 case X86ISD::PCMPGTQ: return "X86ISD::PCMPGTQ";
10697 case X86ISD::ADD: return "X86ISD::ADD";
10698 case X86ISD::SUB: return "X86ISD::SUB";
10699 case X86ISD::ADC: return "X86ISD::ADC";
10700 case X86ISD::SBB: return "X86ISD::SBB";
10701 case X86ISD::SMUL: return "X86ISD::SMUL";
10702 case X86ISD::UMUL: return "X86ISD::UMUL";
10703 case X86ISD::INC: return "X86ISD::INC";
10704 case X86ISD::DEC: return "X86ISD::DEC";
10705 case X86ISD::OR: return "X86ISD::OR";
10706 case X86ISD::XOR: return "X86ISD::XOR";
10707 case X86ISD::AND: return "X86ISD::AND";
10708 case X86ISD::ANDN: return "X86ISD::ANDN";
10709 case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
10710 case X86ISD::PTEST: return "X86ISD::PTEST";
10711 case X86ISD::TESTP: return "X86ISD::TESTP";
10712 case X86ISD::PALIGN: return "X86ISD::PALIGN";
10713 case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
10714 case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
10715 case X86ISD::PSHUFHW_LD: return "X86ISD::PSHUFHW_LD";
10716 case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
10717 case X86ISD::PSHUFLW_LD: return "X86ISD::PSHUFLW_LD";
10718 case X86ISD::SHUFPS: return "X86ISD::SHUFPS";
10719 case X86ISD::SHUFPD: return "X86ISD::SHUFPD";
10720 case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
10721 case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
10722 case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
10723 case X86ISD::MOVHLPD: return "X86ISD::MOVHLPD";
10724 case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
10725 case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
10726 case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
10727 case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
10728 case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
10729 case X86ISD::MOVSHDUP_LD: return "X86ISD::MOVSHDUP_LD";
10730 case X86ISD::MOVSLDUP_LD: return "X86ISD::MOVSLDUP_LD";
10731 case X86ISD::MOVSD: return "X86ISD::MOVSD";
10732 case X86ISD::MOVSS: return "X86ISD::MOVSS";
10733 case X86ISD::UNPCKLPS: return "X86ISD::UNPCKLPS";
10734 case X86ISD::UNPCKLPD: return "X86ISD::UNPCKLPD";
10735 case X86ISD::VUNPCKLPDY: return "X86ISD::VUNPCKLPDY";
10736 case X86ISD::UNPCKHPS: return "X86ISD::UNPCKHPS";
10737 case X86ISD::UNPCKHPD: return "X86ISD::UNPCKHPD";
10738 case X86ISD::PUNPCKLBW: return "X86ISD::PUNPCKLBW";
10739 case X86ISD::PUNPCKLWD: return "X86ISD::PUNPCKLWD";
10740 case X86ISD::PUNPCKLDQ: return "X86ISD::PUNPCKLDQ";
10741 case X86ISD::PUNPCKLQDQ: return "X86ISD::PUNPCKLQDQ";
10742 case X86ISD::PUNPCKHBW: return "X86ISD::PUNPCKHBW";
10743 case X86ISD::PUNPCKHWD: return "X86ISD::PUNPCKHWD";
10744 case X86ISD::PUNPCKHDQ: return "X86ISD::PUNPCKHDQ";
10745 case X86ISD::PUNPCKHQDQ: return "X86ISD::PUNPCKHQDQ";
10746 case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
10747 case X86ISD::VPERMILPS: return "X86ISD::VPERMILPS";
10748 case X86ISD::VPERMILPSY: return "X86ISD::VPERMILPSY";
10749 case X86ISD::VPERMILPD: return "X86ISD::VPERMILPD";
10750 case X86ISD::VPERMILPDY: return "X86ISD::VPERMILPDY";
10751 case X86ISD::VPERM2F128: return "X86ISD::VPERM2F128";
10752 case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
10753 case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
10754 case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
10755 case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
10756 case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
10757 }
10758 }
10759
10760 // isLegalAddressingMode - Return true if the addressing mode represented
10761 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const AddrMode & AM,Type * Ty) const10762 bool X86TargetLowering::isLegalAddressingMode(const AddrMode &AM,
10763 Type *Ty) const {
10764 // X86 supports extremely general addressing modes.
10765 CodeModel::Model M = getTargetMachine().getCodeModel();
10766 Reloc::Model R = getTargetMachine().getRelocationModel();
10767
10768 // X86 allows a sign-extended 32-bit immediate field as a displacement.
10769 if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != NULL))
10770 return false;
10771
10772 if (AM.BaseGV) {
10773 unsigned GVFlags =
10774 Subtarget->ClassifyGlobalReference(AM.BaseGV, getTargetMachine());
10775
10776 // If a reference to this global requires an extra load, we can't fold it.
10777 if (isGlobalStubReference(GVFlags))
10778 return false;
10779
10780 // If BaseGV requires a register for the PIC base, we cannot also have a
10781 // BaseReg specified.
10782 if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
10783 return false;
10784
10785 // If lower 4G is not available, then we must use rip-relative addressing.
10786 if ((M != CodeModel::Small || R != Reloc::Static) &&
10787 Subtarget->is64Bit() && (AM.BaseOffs || AM.Scale > 1))
10788 return false;
10789 }
10790
10791 switch (AM.Scale) {
10792 case 0:
10793 case 1:
10794 case 2:
10795 case 4:
10796 case 8:
10797 // These scales always work.
10798 break;
10799 case 3:
10800 case 5:
10801 case 9:
10802 // These scales are formed with basereg+scalereg. Only accept if there is
10803 // no basereg yet.
10804 if (AM.HasBaseReg)
10805 return false;
10806 break;
10807 default: // Other stuff never works.
10808 return false;
10809 }
10810
10811 return true;
10812 }
10813
10814
isTruncateFree(Type * Ty1,Type * Ty2) const10815 bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
10816 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
10817 return false;
10818 unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
10819 unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
10820 if (NumBits1 <= NumBits2)
10821 return false;
10822 return true;
10823 }
10824
isTruncateFree(EVT VT1,EVT VT2) const10825 bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
10826 if (!VT1.isInteger() || !VT2.isInteger())
10827 return false;
10828 unsigned NumBits1 = VT1.getSizeInBits();
10829 unsigned NumBits2 = VT2.getSizeInBits();
10830 if (NumBits1 <= NumBits2)
10831 return false;
10832 return true;
10833 }
10834
isZExtFree(Type * Ty1,Type * Ty2) const10835 bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
10836 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10837 return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget->is64Bit();
10838 }
10839
isZExtFree(EVT VT1,EVT VT2) const10840 bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
10841 // x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
10842 return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget->is64Bit();
10843 }
10844
isNarrowingProfitable(EVT VT1,EVT VT2) const10845 bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
10846 // i16 instructions are longer (0x66 prefix) and potentially slower.
10847 return !(VT1 == MVT::i32 && VT2 == MVT::i16);
10848 }
10849
10850 /// isShuffleMaskLegal - Targets can use this to indicate that they only
10851 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
10852 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
10853 /// are assumed to be legal.
10854 bool
isShuffleMaskLegal(const SmallVectorImpl<int> & M,EVT VT) const10855 X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
10856 EVT VT) const {
10857 // Very little shuffling can be done for 64-bit vectors right now.
10858 if (VT.getSizeInBits() == 64)
10859 return isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX());
10860
10861 // FIXME: pshufb, blends, shifts.
10862 return (VT.getVectorNumElements() == 2 ||
10863 ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
10864 isMOVLMask(M, VT) ||
10865 isSHUFPMask(M, VT) ||
10866 isPSHUFDMask(M, VT) ||
10867 isPSHUFHWMask(M, VT) ||
10868 isPSHUFLWMask(M, VT) ||
10869 isPALIGNRMask(M, VT, Subtarget->hasSSSE3() || Subtarget->hasAVX()) ||
10870 isUNPCKLMask(M, VT) ||
10871 isUNPCKHMask(M, VT) ||
10872 isUNPCKL_v_undef_Mask(M, VT) ||
10873 isUNPCKH_v_undef_Mask(M, VT));
10874 }
10875
10876 bool
isVectorClearMaskLegal(const SmallVectorImpl<int> & Mask,EVT VT) const10877 X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
10878 EVT VT) const {
10879 unsigned NumElts = VT.getVectorNumElements();
10880 // FIXME: This collection of masks seems suspect.
10881 if (NumElts == 2)
10882 return true;
10883 if (NumElts == 4 && VT.getSizeInBits() == 128) {
10884 return (isMOVLMask(Mask, VT) ||
10885 isCommutedMOVLMask(Mask, VT, true) ||
10886 isSHUFPMask(Mask, VT) ||
10887 isCommutedSHUFPMask(Mask, VT));
10888 }
10889 return false;
10890 }
10891
10892 //===----------------------------------------------------------------------===//
10893 // X86 Scheduler Hooks
10894 //===----------------------------------------------------------------------===//
10895
10896 // private utility function
10897 MachineBasicBlock *
EmitAtomicBitwiseWithCustomInserter(MachineInstr * bInstr,MachineBasicBlock * MBB,unsigned regOpc,unsigned immOpc,unsigned LoadOpc,unsigned CXchgOpc,unsigned notOpc,unsigned EAXreg,TargetRegisterClass * RC,bool invSrc) const10898 X86TargetLowering::EmitAtomicBitwiseWithCustomInserter(MachineInstr *bInstr,
10899 MachineBasicBlock *MBB,
10900 unsigned regOpc,
10901 unsigned immOpc,
10902 unsigned LoadOpc,
10903 unsigned CXchgOpc,
10904 unsigned notOpc,
10905 unsigned EAXreg,
10906 TargetRegisterClass *RC,
10907 bool invSrc) const {
10908 // For the atomic bitwise operator, we generate
10909 // thisMBB:
10910 // newMBB:
10911 // ld t1 = [bitinstr.addr]
10912 // op t2 = t1, [bitinstr.val]
10913 // mov EAX = t1
10914 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
10915 // bz newMBB
10916 // fallthrough -->nextMBB
10917 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
10918 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
10919 MachineFunction::iterator MBBIter = MBB;
10920 ++MBBIter;
10921
10922 /// First build the CFG
10923 MachineFunction *F = MBB->getParent();
10924 MachineBasicBlock *thisMBB = MBB;
10925 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
10926 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
10927 F->insert(MBBIter, newMBB);
10928 F->insert(MBBIter, nextMBB);
10929
10930 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
10931 nextMBB->splice(nextMBB->begin(), thisMBB,
10932 llvm::next(MachineBasicBlock::iterator(bInstr)),
10933 thisMBB->end());
10934 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
10935
10936 // Update thisMBB to fall through to newMBB
10937 thisMBB->addSuccessor(newMBB);
10938
10939 // newMBB jumps to itself and fall through to nextMBB
10940 newMBB->addSuccessor(nextMBB);
10941 newMBB->addSuccessor(newMBB);
10942
10943 // Insert instructions into newMBB based on incoming instruction
10944 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
10945 "unexpected number of operands");
10946 DebugLoc dl = bInstr->getDebugLoc();
10947 MachineOperand& destOper = bInstr->getOperand(0);
10948 MachineOperand* argOpers[2 + X86::AddrNumOperands];
10949 int numArgs = bInstr->getNumOperands() - 1;
10950 for (int i=0; i < numArgs; ++i)
10951 argOpers[i] = &bInstr->getOperand(i+1);
10952
10953 // x86 address has 4 operands: base, index, scale, and displacement
10954 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
10955 int valArgIndx = lastAddrIndx + 1;
10956
10957 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
10958 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(LoadOpc), t1);
10959 for (int i=0; i <= lastAddrIndx; ++i)
10960 (*MIB).addOperand(*argOpers[i]);
10961
10962 unsigned tt = F->getRegInfo().createVirtualRegister(RC);
10963 if (invSrc) {
10964 MIB = BuildMI(newMBB, dl, TII->get(notOpc), tt).addReg(t1);
10965 }
10966 else
10967 tt = t1;
10968
10969 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
10970 assert((argOpers[valArgIndx]->isReg() ||
10971 argOpers[valArgIndx]->isImm()) &&
10972 "invalid operand");
10973 if (argOpers[valArgIndx]->isReg())
10974 MIB = BuildMI(newMBB, dl, TII->get(regOpc), t2);
10975 else
10976 MIB = BuildMI(newMBB, dl, TII->get(immOpc), t2);
10977 MIB.addReg(tt);
10978 (*MIB).addOperand(*argOpers[valArgIndx]);
10979
10980 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), EAXreg);
10981 MIB.addReg(t1);
10982
10983 MIB = BuildMI(newMBB, dl, TII->get(CXchgOpc));
10984 for (int i=0; i <= lastAddrIndx; ++i)
10985 (*MIB).addOperand(*argOpers[i]);
10986 MIB.addReg(t2);
10987 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
10988 (*MIB).setMemRefs(bInstr->memoperands_begin(),
10989 bInstr->memoperands_end());
10990
10991 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
10992 MIB.addReg(EAXreg);
10993
10994 // insert branch
10995 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
10996
10997 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
10998 return nextMBB;
10999 }
11000
11001 // private utility function: 64 bit atomics on 32 bit host.
11002 MachineBasicBlock *
EmitAtomicBit6432WithCustomInserter(MachineInstr * bInstr,MachineBasicBlock * MBB,unsigned regOpcL,unsigned regOpcH,unsigned immOpcL,unsigned immOpcH,bool invSrc) const11003 X86TargetLowering::EmitAtomicBit6432WithCustomInserter(MachineInstr *bInstr,
11004 MachineBasicBlock *MBB,
11005 unsigned regOpcL,
11006 unsigned regOpcH,
11007 unsigned immOpcL,
11008 unsigned immOpcH,
11009 bool invSrc) const {
11010 // For the atomic bitwise operator, we generate
11011 // thisMBB (instructions are in pairs, except cmpxchg8b)
11012 // ld t1,t2 = [bitinstr.addr]
11013 // newMBB:
11014 // out1, out2 = phi (thisMBB, t1/t2) (newMBB, t3/t4)
11015 // op t5, t6 <- out1, out2, [bitinstr.val]
11016 // (for SWAP, substitute: mov t5, t6 <- [bitinstr.val])
11017 // mov ECX, EBX <- t5, t6
11018 // mov EAX, EDX <- t1, t2
11019 // cmpxchg8b [bitinstr.addr] [EAX, EDX, EBX, ECX implicit]
11020 // mov t3, t4 <- EAX, EDX
11021 // bz newMBB
11022 // result in out1, out2
11023 // fallthrough -->nextMBB
11024
11025 const TargetRegisterClass *RC = X86::GR32RegisterClass;
11026 const unsigned LoadOpc = X86::MOV32rm;
11027 const unsigned NotOpc = X86::NOT32r;
11028 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11029 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11030 MachineFunction::iterator MBBIter = MBB;
11031 ++MBBIter;
11032
11033 /// First build the CFG
11034 MachineFunction *F = MBB->getParent();
11035 MachineBasicBlock *thisMBB = MBB;
11036 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11037 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11038 F->insert(MBBIter, newMBB);
11039 F->insert(MBBIter, nextMBB);
11040
11041 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11042 nextMBB->splice(nextMBB->begin(), thisMBB,
11043 llvm::next(MachineBasicBlock::iterator(bInstr)),
11044 thisMBB->end());
11045 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11046
11047 // Update thisMBB to fall through to newMBB
11048 thisMBB->addSuccessor(newMBB);
11049
11050 // newMBB jumps to itself and fall through to nextMBB
11051 newMBB->addSuccessor(nextMBB);
11052 newMBB->addSuccessor(newMBB);
11053
11054 DebugLoc dl = bInstr->getDebugLoc();
11055 // Insert instructions into newMBB based on incoming instruction
11056 // There are 8 "real" operands plus 9 implicit def/uses, ignored here.
11057 assert(bInstr->getNumOperands() < X86::AddrNumOperands + 14 &&
11058 "unexpected number of operands");
11059 MachineOperand& dest1Oper = bInstr->getOperand(0);
11060 MachineOperand& dest2Oper = bInstr->getOperand(1);
11061 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11062 for (int i=0; i < 2 + X86::AddrNumOperands; ++i) {
11063 argOpers[i] = &bInstr->getOperand(i+2);
11064
11065 // We use some of the operands multiple times, so conservatively just
11066 // clear any kill flags that might be present.
11067 if (argOpers[i]->isReg() && argOpers[i]->isUse())
11068 argOpers[i]->setIsKill(false);
11069 }
11070
11071 // x86 address has 5 operands: base, index, scale, displacement, and segment.
11072 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11073
11074 unsigned t1 = F->getRegInfo().createVirtualRegister(RC);
11075 MachineInstrBuilder MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t1);
11076 for (int i=0; i <= lastAddrIndx; ++i)
11077 (*MIB).addOperand(*argOpers[i]);
11078 unsigned t2 = F->getRegInfo().createVirtualRegister(RC);
11079 MIB = BuildMI(thisMBB, dl, TII->get(LoadOpc), t2);
11080 // add 4 to displacement.
11081 for (int i=0; i <= lastAddrIndx-2; ++i)
11082 (*MIB).addOperand(*argOpers[i]);
11083 MachineOperand newOp3 = *(argOpers[3]);
11084 if (newOp3.isImm())
11085 newOp3.setImm(newOp3.getImm()+4);
11086 else
11087 newOp3.setOffset(newOp3.getOffset()+4);
11088 (*MIB).addOperand(newOp3);
11089 (*MIB).addOperand(*argOpers[lastAddrIndx]);
11090
11091 // t3/4 are defined later, at the bottom of the loop
11092 unsigned t3 = F->getRegInfo().createVirtualRegister(RC);
11093 unsigned t4 = F->getRegInfo().createVirtualRegister(RC);
11094 BuildMI(newMBB, dl, TII->get(X86::PHI), dest1Oper.getReg())
11095 .addReg(t1).addMBB(thisMBB).addReg(t3).addMBB(newMBB);
11096 BuildMI(newMBB, dl, TII->get(X86::PHI), dest2Oper.getReg())
11097 .addReg(t2).addMBB(thisMBB).addReg(t4).addMBB(newMBB);
11098
11099 // The subsequent operations should be using the destination registers of
11100 //the PHI instructions.
11101 if (invSrc) {
11102 t1 = F->getRegInfo().createVirtualRegister(RC);
11103 t2 = F->getRegInfo().createVirtualRegister(RC);
11104 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t1).addReg(dest1Oper.getReg());
11105 MIB = BuildMI(newMBB, dl, TII->get(NotOpc), t2).addReg(dest2Oper.getReg());
11106 } else {
11107 t1 = dest1Oper.getReg();
11108 t2 = dest2Oper.getReg();
11109 }
11110
11111 int valArgIndx = lastAddrIndx + 1;
11112 assert((argOpers[valArgIndx]->isReg() ||
11113 argOpers[valArgIndx]->isImm()) &&
11114 "invalid operand");
11115 unsigned t5 = F->getRegInfo().createVirtualRegister(RC);
11116 unsigned t6 = F->getRegInfo().createVirtualRegister(RC);
11117 if (argOpers[valArgIndx]->isReg())
11118 MIB = BuildMI(newMBB, dl, TII->get(regOpcL), t5);
11119 else
11120 MIB = BuildMI(newMBB, dl, TII->get(immOpcL), t5);
11121 if (regOpcL != X86::MOV32rr)
11122 MIB.addReg(t1);
11123 (*MIB).addOperand(*argOpers[valArgIndx]);
11124 assert(argOpers[valArgIndx + 1]->isReg() ==
11125 argOpers[valArgIndx]->isReg());
11126 assert(argOpers[valArgIndx + 1]->isImm() ==
11127 argOpers[valArgIndx]->isImm());
11128 if (argOpers[valArgIndx + 1]->isReg())
11129 MIB = BuildMI(newMBB, dl, TII->get(regOpcH), t6);
11130 else
11131 MIB = BuildMI(newMBB, dl, TII->get(immOpcH), t6);
11132 if (regOpcH != X86::MOV32rr)
11133 MIB.addReg(t2);
11134 (*MIB).addOperand(*argOpers[valArgIndx + 1]);
11135
11136 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11137 MIB.addReg(t1);
11138 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EDX);
11139 MIB.addReg(t2);
11140
11141 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EBX);
11142 MIB.addReg(t5);
11143 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::ECX);
11144 MIB.addReg(t6);
11145
11146 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG8B));
11147 for (int i=0; i <= lastAddrIndx; ++i)
11148 (*MIB).addOperand(*argOpers[i]);
11149
11150 assert(bInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11151 (*MIB).setMemRefs(bInstr->memoperands_begin(),
11152 bInstr->memoperands_end());
11153
11154 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t3);
11155 MIB.addReg(X86::EAX);
11156 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t4);
11157 MIB.addReg(X86::EDX);
11158
11159 // insert branch
11160 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11161
11162 bInstr->eraseFromParent(); // The pseudo instruction is gone now.
11163 return nextMBB;
11164 }
11165
11166 // private utility function
11167 MachineBasicBlock *
EmitAtomicMinMaxWithCustomInserter(MachineInstr * mInstr,MachineBasicBlock * MBB,unsigned cmovOpc) const11168 X86TargetLowering::EmitAtomicMinMaxWithCustomInserter(MachineInstr *mInstr,
11169 MachineBasicBlock *MBB,
11170 unsigned cmovOpc) const {
11171 // For the atomic min/max operator, we generate
11172 // thisMBB:
11173 // newMBB:
11174 // ld t1 = [min/max.addr]
11175 // mov t2 = [min/max.val]
11176 // cmp t1, t2
11177 // cmov[cond] t2 = t1
11178 // mov EAX = t1
11179 // lcs dest = [bitinstr.addr], t2 [EAX is implicit]
11180 // bz newMBB
11181 // fallthrough -->nextMBB
11182 //
11183 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11184 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11185 MachineFunction::iterator MBBIter = MBB;
11186 ++MBBIter;
11187
11188 /// First build the CFG
11189 MachineFunction *F = MBB->getParent();
11190 MachineBasicBlock *thisMBB = MBB;
11191 MachineBasicBlock *newMBB = F->CreateMachineBasicBlock(LLVM_BB);
11192 MachineBasicBlock *nextMBB = F->CreateMachineBasicBlock(LLVM_BB);
11193 F->insert(MBBIter, newMBB);
11194 F->insert(MBBIter, nextMBB);
11195
11196 // Transfer the remainder of thisMBB and its successor edges to nextMBB.
11197 nextMBB->splice(nextMBB->begin(), thisMBB,
11198 llvm::next(MachineBasicBlock::iterator(mInstr)),
11199 thisMBB->end());
11200 nextMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11201
11202 // Update thisMBB to fall through to newMBB
11203 thisMBB->addSuccessor(newMBB);
11204
11205 // newMBB jumps to newMBB and fall through to nextMBB
11206 newMBB->addSuccessor(nextMBB);
11207 newMBB->addSuccessor(newMBB);
11208
11209 DebugLoc dl = mInstr->getDebugLoc();
11210 // Insert instructions into newMBB based on incoming instruction
11211 assert(mInstr->getNumOperands() < X86::AddrNumOperands + 4 &&
11212 "unexpected number of operands");
11213 MachineOperand& destOper = mInstr->getOperand(0);
11214 MachineOperand* argOpers[2 + X86::AddrNumOperands];
11215 int numArgs = mInstr->getNumOperands() - 1;
11216 for (int i=0; i < numArgs; ++i)
11217 argOpers[i] = &mInstr->getOperand(i+1);
11218
11219 // x86 address has 4 operands: base, index, scale, and displacement
11220 int lastAddrIndx = X86::AddrNumOperands - 1; // [0,3]
11221 int valArgIndx = lastAddrIndx + 1;
11222
11223 unsigned t1 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11224 MachineInstrBuilder MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rm), t1);
11225 for (int i=0; i <= lastAddrIndx; ++i)
11226 (*MIB).addOperand(*argOpers[i]);
11227
11228 // We only support register and immediate values
11229 assert((argOpers[valArgIndx]->isReg() ||
11230 argOpers[valArgIndx]->isImm()) &&
11231 "invalid operand");
11232
11233 unsigned t2 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11234 if (argOpers[valArgIndx]->isReg())
11235 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), t2);
11236 else
11237 MIB = BuildMI(newMBB, dl, TII->get(X86::MOV32rr), t2);
11238 (*MIB).addOperand(*argOpers[valArgIndx]);
11239
11240 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), X86::EAX);
11241 MIB.addReg(t1);
11242
11243 MIB = BuildMI(newMBB, dl, TII->get(X86::CMP32rr));
11244 MIB.addReg(t1);
11245 MIB.addReg(t2);
11246
11247 // Generate movc
11248 unsigned t3 = F->getRegInfo().createVirtualRegister(X86::GR32RegisterClass);
11249 MIB = BuildMI(newMBB, dl, TII->get(cmovOpc),t3);
11250 MIB.addReg(t2);
11251 MIB.addReg(t1);
11252
11253 // Cmp and exchange if none has modified the memory location
11254 MIB = BuildMI(newMBB, dl, TII->get(X86::LCMPXCHG32));
11255 for (int i=0; i <= lastAddrIndx; ++i)
11256 (*MIB).addOperand(*argOpers[i]);
11257 MIB.addReg(t3);
11258 assert(mInstr->hasOneMemOperand() && "Unexpected number of memoperand");
11259 (*MIB).setMemRefs(mInstr->memoperands_begin(),
11260 mInstr->memoperands_end());
11261
11262 MIB = BuildMI(newMBB, dl, TII->get(TargetOpcode::COPY), destOper.getReg());
11263 MIB.addReg(X86::EAX);
11264
11265 // insert branch
11266 BuildMI(newMBB, dl, TII->get(X86::JNE_4)).addMBB(newMBB);
11267
11268 mInstr->eraseFromParent(); // The pseudo instruction is gone now.
11269 return nextMBB;
11270 }
11271
11272 // FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
11273 // or XMM0_V32I8 in AVX all of this code can be replaced with that
11274 // in the .td file.
11275 MachineBasicBlock *
EmitPCMP(MachineInstr * MI,MachineBasicBlock * BB,unsigned numArgs,bool memArg) const11276 X86TargetLowering::EmitPCMP(MachineInstr *MI, MachineBasicBlock *BB,
11277 unsigned numArgs, bool memArg) const {
11278 assert((Subtarget->hasSSE42() || Subtarget->hasAVX()) &&
11279 "Target must have SSE4.2 or AVX features enabled");
11280
11281 DebugLoc dl = MI->getDebugLoc();
11282 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11283 unsigned Opc;
11284 if (!Subtarget->hasAVX()) {
11285 if (memArg)
11286 Opc = numArgs == 3 ? X86::PCMPISTRM128rm : X86::PCMPESTRM128rm;
11287 else
11288 Opc = numArgs == 3 ? X86::PCMPISTRM128rr : X86::PCMPESTRM128rr;
11289 } else {
11290 if (memArg)
11291 Opc = numArgs == 3 ? X86::VPCMPISTRM128rm : X86::VPCMPESTRM128rm;
11292 else
11293 Opc = numArgs == 3 ? X86::VPCMPISTRM128rr : X86::VPCMPESTRM128rr;
11294 }
11295
11296 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
11297 for (unsigned i = 0; i < numArgs; ++i) {
11298 MachineOperand &Op = MI->getOperand(i+1);
11299 if (!(Op.isReg() && Op.isImplicit()))
11300 MIB.addOperand(Op);
11301 }
11302 BuildMI(*BB, MI, dl,
11303 TII->get(Subtarget->hasAVX() ? X86::VMOVAPSrr : X86::MOVAPSrr),
11304 MI->getOperand(0).getReg())
11305 .addReg(X86::XMM0);
11306
11307 MI->eraseFromParent();
11308 return BB;
11309 }
11310
11311 MachineBasicBlock *
EmitMonitor(MachineInstr * MI,MachineBasicBlock * BB) const11312 X86TargetLowering::EmitMonitor(MachineInstr *MI, MachineBasicBlock *BB) const {
11313 DebugLoc dl = MI->getDebugLoc();
11314 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11315
11316 // Address into RAX/EAX, other two args into ECX, EDX.
11317 unsigned MemOpc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r;
11318 unsigned MemReg = Subtarget->is64Bit() ? X86::RAX : X86::EAX;
11319 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
11320 for (int i = 0; i < X86::AddrNumOperands; ++i)
11321 MIB.addOperand(MI->getOperand(i));
11322
11323 unsigned ValOps = X86::AddrNumOperands;
11324 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11325 .addReg(MI->getOperand(ValOps).getReg());
11326 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
11327 .addReg(MI->getOperand(ValOps+1).getReg());
11328
11329 // The instruction doesn't actually take any operands though.
11330 BuildMI(*BB, MI, dl, TII->get(X86::MONITORrrr));
11331
11332 MI->eraseFromParent(); // The pseudo is gone now.
11333 return BB;
11334 }
11335
11336 MachineBasicBlock *
EmitMwait(MachineInstr * MI,MachineBasicBlock * BB) const11337 X86TargetLowering::EmitMwait(MachineInstr *MI, MachineBasicBlock *BB) const {
11338 DebugLoc dl = MI->getDebugLoc();
11339 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11340
11341 // First arg in ECX, the second in EAX.
11342 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
11343 .addReg(MI->getOperand(0).getReg());
11344 BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
11345 .addReg(MI->getOperand(1).getReg());
11346
11347 // The instruction doesn't actually take any operands though.
11348 BuildMI(*BB, MI, dl, TII->get(X86::MWAITrr));
11349
11350 MI->eraseFromParent(); // The pseudo is gone now.
11351 return BB;
11352 }
11353
11354 MachineBasicBlock *
EmitVAARG64WithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const11355 X86TargetLowering::EmitVAARG64WithCustomInserter(
11356 MachineInstr *MI,
11357 MachineBasicBlock *MBB) const {
11358 // Emit va_arg instruction on X86-64.
11359
11360 // Operands to this pseudo-instruction:
11361 // 0 ) Output : destination address (reg)
11362 // 1-5) Input : va_list address (addr, i64mem)
11363 // 6 ) ArgSize : Size (in bytes) of vararg type
11364 // 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
11365 // 8 ) Align : Alignment of type
11366 // 9 ) EFLAGS (implicit-def)
11367
11368 assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
11369 assert(X86::AddrNumOperands == 5 && "VAARG_64 assumes 5 address operands");
11370
11371 unsigned DestReg = MI->getOperand(0).getReg();
11372 MachineOperand &Base = MI->getOperand(1);
11373 MachineOperand &Scale = MI->getOperand(2);
11374 MachineOperand &Index = MI->getOperand(3);
11375 MachineOperand &Disp = MI->getOperand(4);
11376 MachineOperand &Segment = MI->getOperand(5);
11377 unsigned ArgSize = MI->getOperand(6).getImm();
11378 unsigned ArgMode = MI->getOperand(7).getImm();
11379 unsigned Align = MI->getOperand(8).getImm();
11380
11381 // Memory Reference
11382 assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
11383 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
11384 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
11385
11386 // Machine Information
11387 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11388 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
11389 const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
11390 const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
11391 DebugLoc DL = MI->getDebugLoc();
11392
11393 // struct va_list {
11394 // i32 gp_offset
11395 // i32 fp_offset
11396 // i64 overflow_area (address)
11397 // i64 reg_save_area (address)
11398 // }
11399 // sizeof(va_list) = 24
11400 // alignment(va_list) = 8
11401
11402 unsigned TotalNumIntRegs = 6;
11403 unsigned TotalNumXMMRegs = 8;
11404 bool UseGPOffset = (ArgMode == 1);
11405 bool UseFPOffset = (ArgMode == 2);
11406 unsigned MaxOffset = TotalNumIntRegs * 8 +
11407 (UseFPOffset ? TotalNumXMMRegs * 16 : 0);
11408
11409 /* Align ArgSize to a multiple of 8 */
11410 unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
11411 bool NeedsAlign = (Align > 8);
11412
11413 MachineBasicBlock *thisMBB = MBB;
11414 MachineBasicBlock *overflowMBB;
11415 MachineBasicBlock *offsetMBB;
11416 MachineBasicBlock *endMBB;
11417
11418 unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
11419 unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
11420 unsigned OffsetReg = 0;
11421
11422 if (!UseGPOffset && !UseFPOffset) {
11423 // If we only pull from the overflow region, we don't create a branch.
11424 // We don't need to alter control flow.
11425 OffsetDestReg = 0; // unused
11426 OverflowDestReg = DestReg;
11427
11428 offsetMBB = NULL;
11429 overflowMBB = thisMBB;
11430 endMBB = thisMBB;
11431 } else {
11432 // First emit code to check if gp_offset (or fp_offset) is below the bound.
11433 // If so, pull the argument from reg_save_area. (branch to offsetMBB)
11434 // If not, pull from overflow_area. (branch to overflowMBB)
11435 //
11436 // thisMBB
11437 // | .
11438 // | .
11439 // offsetMBB overflowMBB
11440 // | .
11441 // | .
11442 // endMBB
11443
11444 // Registers for the PHI in endMBB
11445 OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
11446 OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
11447
11448 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11449 MachineFunction *MF = MBB->getParent();
11450 overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11451 offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11452 endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11453
11454 MachineFunction::iterator MBBIter = MBB;
11455 ++MBBIter;
11456
11457 // Insert the new basic blocks
11458 MF->insert(MBBIter, offsetMBB);
11459 MF->insert(MBBIter, overflowMBB);
11460 MF->insert(MBBIter, endMBB);
11461
11462 // Transfer the remainder of MBB and its successor edges to endMBB.
11463 endMBB->splice(endMBB->begin(), thisMBB,
11464 llvm::next(MachineBasicBlock::iterator(MI)),
11465 thisMBB->end());
11466 endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
11467
11468 // Make offsetMBB and overflowMBB successors of thisMBB
11469 thisMBB->addSuccessor(offsetMBB);
11470 thisMBB->addSuccessor(overflowMBB);
11471
11472 // endMBB is a successor of both offsetMBB and overflowMBB
11473 offsetMBB->addSuccessor(endMBB);
11474 overflowMBB->addSuccessor(endMBB);
11475
11476 // Load the offset value into a register
11477 OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11478 BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
11479 .addOperand(Base)
11480 .addOperand(Scale)
11481 .addOperand(Index)
11482 .addDisp(Disp, UseFPOffset ? 4 : 0)
11483 .addOperand(Segment)
11484 .setMemRefs(MMOBegin, MMOEnd);
11485
11486 // Check if there is enough room left to pull this argument.
11487 BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
11488 .addReg(OffsetReg)
11489 .addImm(MaxOffset + 8 - ArgSizeA8);
11490
11491 // Branch to "overflowMBB" if offset >= max
11492 // Fall through to "offsetMBB" otherwise
11493 BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
11494 .addMBB(overflowMBB);
11495 }
11496
11497 // In offsetMBB, emit code to use the reg_save_area.
11498 if (offsetMBB) {
11499 assert(OffsetReg != 0);
11500
11501 // Read the reg_save_area address.
11502 unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
11503 BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
11504 .addOperand(Base)
11505 .addOperand(Scale)
11506 .addOperand(Index)
11507 .addDisp(Disp, 16)
11508 .addOperand(Segment)
11509 .setMemRefs(MMOBegin, MMOEnd);
11510
11511 // Zero-extend the offset
11512 unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
11513 BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
11514 .addImm(0)
11515 .addReg(OffsetReg)
11516 .addImm(X86::sub_32bit);
11517
11518 // Add the offset to the reg_save_area to get the final address.
11519 BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
11520 .addReg(OffsetReg64)
11521 .addReg(RegSaveReg);
11522
11523 // Compute the offset for the next argument
11524 unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
11525 BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
11526 .addReg(OffsetReg)
11527 .addImm(UseFPOffset ? 16 : 8);
11528
11529 // Store it back into the va_list.
11530 BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
11531 .addOperand(Base)
11532 .addOperand(Scale)
11533 .addOperand(Index)
11534 .addDisp(Disp, UseFPOffset ? 4 : 0)
11535 .addOperand(Segment)
11536 .addReg(NextOffsetReg)
11537 .setMemRefs(MMOBegin, MMOEnd);
11538
11539 // Jump to endMBB
11540 BuildMI(offsetMBB, DL, TII->get(X86::JMP_4))
11541 .addMBB(endMBB);
11542 }
11543
11544 //
11545 // Emit code to use overflow area
11546 //
11547
11548 // Load the overflow_area address into a register.
11549 unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
11550 BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
11551 .addOperand(Base)
11552 .addOperand(Scale)
11553 .addOperand(Index)
11554 .addDisp(Disp, 8)
11555 .addOperand(Segment)
11556 .setMemRefs(MMOBegin, MMOEnd);
11557
11558 // If we need to align it, do so. Otherwise, just copy the address
11559 // to OverflowDestReg.
11560 if (NeedsAlign) {
11561 // Align the overflow address
11562 assert((Align & (Align-1)) == 0 && "Alignment must be a power of 2");
11563 unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
11564
11565 // aligned_addr = (addr + (align-1)) & ~(align-1)
11566 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
11567 .addReg(OverflowAddrReg)
11568 .addImm(Align-1);
11569
11570 BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
11571 .addReg(TmpReg)
11572 .addImm(~(uint64_t)(Align-1));
11573 } else {
11574 BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
11575 .addReg(OverflowAddrReg);
11576 }
11577
11578 // Compute the next overflow address after this argument.
11579 // (the overflow address should be kept 8-byte aligned)
11580 unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
11581 BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
11582 .addReg(OverflowDestReg)
11583 .addImm(ArgSizeA8);
11584
11585 // Store the new overflow address.
11586 BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
11587 .addOperand(Base)
11588 .addOperand(Scale)
11589 .addOperand(Index)
11590 .addDisp(Disp, 8)
11591 .addOperand(Segment)
11592 .addReg(NextAddrReg)
11593 .setMemRefs(MMOBegin, MMOEnd);
11594
11595 // If we branched, emit the PHI to the front of endMBB.
11596 if (offsetMBB) {
11597 BuildMI(*endMBB, endMBB->begin(), DL,
11598 TII->get(X86::PHI), DestReg)
11599 .addReg(OffsetDestReg).addMBB(offsetMBB)
11600 .addReg(OverflowDestReg).addMBB(overflowMBB);
11601 }
11602
11603 // Erase the pseudo instruction
11604 MI->eraseFromParent();
11605
11606 return endMBB;
11607 }
11608
11609 MachineBasicBlock *
EmitVAStartSaveXMMRegsWithCustomInserter(MachineInstr * MI,MachineBasicBlock * MBB) const11610 X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
11611 MachineInstr *MI,
11612 MachineBasicBlock *MBB) const {
11613 // Emit code to save XMM registers to the stack. The ABI says that the
11614 // number of registers to save is given in %al, so it's theoretically
11615 // possible to do an indirect jump trick to avoid saving all of them,
11616 // however this code takes a simpler approach and just executes all
11617 // of the stores if %al is non-zero. It's less code, and it's probably
11618 // easier on the hardware branch predictor, and stores aren't all that
11619 // expensive anyway.
11620
11621 // Create the new basic blocks. One block contains all the XMM stores,
11622 // and one block is the final destination regardless of whether any
11623 // stores were performed.
11624 const BasicBlock *LLVM_BB = MBB->getBasicBlock();
11625 MachineFunction *F = MBB->getParent();
11626 MachineFunction::iterator MBBIter = MBB;
11627 ++MBBIter;
11628 MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
11629 MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
11630 F->insert(MBBIter, XMMSaveMBB);
11631 F->insert(MBBIter, EndMBB);
11632
11633 // Transfer the remainder of MBB and its successor edges to EndMBB.
11634 EndMBB->splice(EndMBB->begin(), MBB,
11635 llvm::next(MachineBasicBlock::iterator(MI)),
11636 MBB->end());
11637 EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
11638
11639 // The original block will now fall through to the XMM save block.
11640 MBB->addSuccessor(XMMSaveMBB);
11641 // The XMMSaveMBB will fall through to the end block.
11642 XMMSaveMBB->addSuccessor(EndMBB);
11643
11644 // Now add the instructions.
11645 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11646 DebugLoc DL = MI->getDebugLoc();
11647
11648 unsigned CountReg = MI->getOperand(0).getReg();
11649 int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
11650 int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
11651
11652 if (!Subtarget->isTargetWin64()) {
11653 // If %al is 0, branch around the XMM save block.
11654 BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
11655 BuildMI(MBB, DL, TII->get(X86::JE_4)).addMBB(EndMBB);
11656 MBB->addSuccessor(EndMBB);
11657 }
11658
11659 unsigned MOVOpc = Subtarget->hasAVX() ? X86::VMOVAPSmr : X86::MOVAPSmr;
11660 // In the XMM save block, save all the XMM argument registers.
11661 for (int i = 3, e = MI->getNumOperands(); i != e; ++i) {
11662 int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
11663 MachineMemOperand *MMO =
11664 F->getMachineMemOperand(
11665 MachinePointerInfo::getFixedStack(RegSaveFrameIndex, Offset),
11666 MachineMemOperand::MOStore,
11667 /*Size=*/16, /*Align=*/16);
11668 BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
11669 .addFrameIndex(RegSaveFrameIndex)
11670 .addImm(/*Scale=*/1)
11671 .addReg(/*IndexReg=*/0)
11672 .addImm(/*Disp=*/Offset)
11673 .addReg(/*Segment=*/0)
11674 .addReg(MI->getOperand(i).getReg())
11675 .addMemOperand(MMO);
11676 }
11677
11678 MI->eraseFromParent(); // The pseudo instruction is gone now.
11679
11680 return EndMBB;
11681 }
11682
11683 MachineBasicBlock *
EmitLoweredSelect(MachineInstr * MI,MachineBasicBlock * BB) const11684 X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
11685 MachineBasicBlock *BB) const {
11686 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11687 DebugLoc DL = MI->getDebugLoc();
11688
11689 // To "insert" a SELECT_CC instruction, we actually have to insert the
11690 // diamond control-flow pattern. The incoming instruction knows the
11691 // destination vreg to set, the condition code register to branch on, the
11692 // true/false values to select between, and a branch opcode to use.
11693 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11694 MachineFunction::iterator It = BB;
11695 ++It;
11696
11697 // thisMBB:
11698 // ...
11699 // TrueVal = ...
11700 // cmpTY ccX, r1, r2
11701 // bCC copy1MBB
11702 // fallthrough --> copy0MBB
11703 MachineBasicBlock *thisMBB = BB;
11704 MachineFunction *F = BB->getParent();
11705 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
11706 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
11707 F->insert(It, copy0MBB);
11708 F->insert(It, sinkMBB);
11709
11710 // If the EFLAGS register isn't dead in the terminator, then claim that it's
11711 // live into the sink and copy blocks.
11712 if (!MI->killsRegister(X86::EFLAGS)) {
11713 copy0MBB->addLiveIn(X86::EFLAGS);
11714 sinkMBB->addLiveIn(X86::EFLAGS);
11715 }
11716
11717 // Transfer the remainder of BB and its successor edges to sinkMBB.
11718 sinkMBB->splice(sinkMBB->begin(), BB,
11719 llvm::next(MachineBasicBlock::iterator(MI)),
11720 BB->end());
11721 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
11722
11723 // Add the true and fallthrough blocks as its successors.
11724 BB->addSuccessor(copy0MBB);
11725 BB->addSuccessor(sinkMBB);
11726
11727 // Create the conditional branch instruction.
11728 unsigned Opc =
11729 X86::GetCondBranchFromCond((X86::CondCode)MI->getOperand(3).getImm());
11730 BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
11731
11732 // copy0MBB:
11733 // %FalseValue = ...
11734 // # fallthrough to sinkMBB
11735 copy0MBB->addSuccessor(sinkMBB);
11736
11737 // sinkMBB:
11738 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
11739 // ...
11740 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
11741 TII->get(X86::PHI), MI->getOperand(0).getReg())
11742 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
11743 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
11744
11745 MI->eraseFromParent(); // The pseudo instruction is gone now.
11746 return sinkMBB;
11747 }
11748
11749 MachineBasicBlock *
EmitLoweredSegAlloca(MachineInstr * MI,MachineBasicBlock * BB,bool Is64Bit) const11750 X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI, MachineBasicBlock *BB,
11751 bool Is64Bit) const {
11752 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11753 DebugLoc DL = MI->getDebugLoc();
11754 MachineFunction *MF = BB->getParent();
11755 const BasicBlock *LLVM_BB = BB->getBasicBlock();
11756
11757 assert(EnableSegmentedStacks);
11758
11759 unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
11760 unsigned TlsOffset = Is64Bit ? 0x70 : 0x30;
11761
11762 // BB:
11763 // ... [Till the alloca]
11764 // If stacklet is not large enough, jump to mallocMBB
11765 //
11766 // bumpMBB:
11767 // Allocate by subtracting from RSP
11768 // Jump to continueMBB
11769 //
11770 // mallocMBB:
11771 // Allocate by call to runtime
11772 //
11773 // continueMBB:
11774 // ...
11775 // [rest of original BB]
11776 //
11777
11778 MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11779 MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11780 MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
11781
11782 MachineRegisterInfo &MRI = MF->getRegInfo();
11783 const TargetRegisterClass *AddrRegClass =
11784 getRegClassFor(Is64Bit ? MVT::i64:MVT::i32);
11785
11786 unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11787 bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
11788 tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
11789 sizeVReg = MI->getOperand(1).getReg(),
11790 physSPReg = Is64Bit ? X86::RSP : X86::ESP;
11791
11792 MachineFunction::iterator MBBIter = BB;
11793 ++MBBIter;
11794
11795 MF->insert(MBBIter, bumpMBB);
11796 MF->insert(MBBIter, mallocMBB);
11797 MF->insert(MBBIter, continueMBB);
11798
11799 continueMBB->splice(continueMBB->begin(), BB, llvm::next
11800 (MachineBasicBlock::iterator(MI)), BB->end());
11801 continueMBB->transferSuccessorsAndUpdatePHIs(BB);
11802
11803 // Add code to the main basic block to check if the stack limit has been hit,
11804 // and if so, jump to mallocMBB otherwise to bumpMBB.
11805 BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
11806 BuildMI(BB, DL, TII->get(Is64Bit ? X86::SUB64rr:X86::SUB32rr), tmpSPVReg)
11807 .addReg(tmpSPVReg).addReg(sizeVReg);
11808 BuildMI(BB, DL, TII->get(Is64Bit ? X86::CMP64mr:X86::CMP32mr))
11809 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg)
11810 .addReg(tmpSPVReg);
11811 BuildMI(BB, DL, TII->get(X86::JG_4)).addMBB(mallocMBB);
11812
11813 // bumpMBB simply decreases the stack pointer, since we know the current
11814 // stacklet has enough space.
11815 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
11816 .addReg(tmpSPVReg);
11817 BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
11818 .addReg(tmpSPVReg);
11819 BuildMI(bumpMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11820
11821 // Calls into a routine in libgcc to allocate more space from the heap.
11822 if (Is64Bit) {
11823 BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
11824 .addReg(sizeVReg);
11825 BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
11826 .addExternalSymbol("__morestack_allocate_stack_space").addReg(X86::RDI);
11827 } else {
11828 BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
11829 .addImm(12);
11830 BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
11831 BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
11832 .addExternalSymbol("__morestack_allocate_stack_space");
11833 }
11834
11835 if (!Is64Bit)
11836 BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
11837 .addImm(16);
11838
11839 BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
11840 .addReg(Is64Bit ? X86::RAX : X86::EAX);
11841 BuildMI(mallocMBB, DL, TII->get(X86::JMP_4)).addMBB(continueMBB);
11842
11843 // Set up the CFG correctly.
11844 BB->addSuccessor(bumpMBB);
11845 BB->addSuccessor(mallocMBB);
11846 mallocMBB->addSuccessor(continueMBB);
11847 bumpMBB->addSuccessor(continueMBB);
11848
11849 // Take care of the PHI nodes.
11850 BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
11851 MI->getOperand(0).getReg())
11852 .addReg(mallocPtrVReg).addMBB(mallocMBB)
11853 .addReg(bumpSPPtrVReg).addMBB(bumpMBB);
11854
11855 // Delete the original pseudo instruction.
11856 MI->eraseFromParent();
11857
11858 // And we're done.
11859 return continueMBB;
11860 }
11861
11862 MachineBasicBlock *
EmitLoweredWinAlloca(MachineInstr * MI,MachineBasicBlock * BB) const11863 X86TargetLowering::EmitLoweredWinAlloca(MachineInstr *MI,
11864 MachineBasicBlock *BB) const {
11865 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
11866 DebugLoc DL = MI->getDebugLoc();
11867
11868 assert(!Subtarget->isTargetEnvMacho());
11869
11870 // The lowering is pretty easy: we're just emitting the call to _alloca. The
11871 // non-trivial part is impdef of ESP.
11872
11873 if (Subtarget->isTargetWin64()) {
11874 if (Subtarget->isTargetCygMing()) {
11875 // ___chkstk(Mingw64):
11876 // Clobbers R10, R11, RAX and EFLAGS.
11877 // Updates RSP.
11878 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11879 .addExternalSymbol("___chkstk")
11880 .addReg(X86::RAX, RegState::Implicit)
11881 .addReg(X86::RSP, RegState::Implicit)
11882 .addReg(X86::RAX, RegState::Define | RegState::Implicit)
11883 .addReg(X86::RSP, RegState::Define | RegState::Implicit)
11884 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11885 } else {
11886 // __chkstk(MSVCRT): does not update stack pointer.
11887 // Clobbers R10, R11 and EFLAGS.
11888 // FIXME: RAX(allocated size) might be reused and not killed.
11889 BuildMI(*BB, MI, DL, TII->get(X86::W64ALLOCA))
11890 .addExternalSymbol("__chkstk")
11891 .addReg(X86::RAX, RegState::Implicit)
11892 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11893 // RAX has the offset to subtracted from RSP.
11894 BuildMI(*BB, MI, DL, TII->get(X86::SUB64rr), X86::RSP)
11895 .addReg(X86::RSP)
11896 .addReg(X86::RAX);
11897 }
11898 } else {
11899 const char *StackProbeSymbol =
11900 Subtarget->isTargetWindows() ? "_chkstk" : "_alloca";
11901
11902 BuildMI(*BB, MI, DL, TII->get(X86::CALLpcrel32))
11903 .addExternalSymbol(StackProbeSymbol)
11904 .addReg(X86::EAX, RegState::Implicit)
11905 .addReg(X86::ESP, RegState::Implicit)
11906 .addReg(X86::EAX, RegState::Define | RegState::Implicit)
11907 .addReg(X86::ESP, RegState::Define | RegState::Implicit)
11908 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit);
11909 }
11910
11911 MI->eraseFromParent(); // The pseudo instruction is gone now.
11912 return BB;
11913 }
11914
11915 MachineBasicBlock *
EmitLoweredTLSCall(MachineInstr * MI,MachineBasicBlock * BB) const11916 X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
11917 MachineBasicBlock *BB) const {
11918 // This is pretty easy. We're taking the value that we received from
11919 // our load from the relocation, sticking it in either RDI (x86-64)
11920 // or EAX and doing an indirect call. The return value will then
11921 // be in the normal return register.
11922 const X86InstrInfo *TII
11923 = static_cast<const X86InstrInfo*>(getTargetMachine().getInstrInfo());
11924 DebugLoc DL = MI->getDebugLoc();
11925 MachineFunction *F = BB->getParent();
11926
11927 assert(Subtarget->isTargetDarwin() && "Darwin only instr emitted?");
11928 assert(MI->getOperand(3).isGlobal() && "This should be a global");
11929
11930 if (Subtarget->is64Bit()) {
11931 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11932 TII->get(X86::MOV64rm), X86::RDI)
11933 .addReg(X86::RIP)
11934 .addImm(0).addReg(0)
11935 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11936 MI->getOperand(3).getTargetFlags())
11937 .addReg(0);
11938 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
11939 addDirectMem(MIB, X86::RDI);
11940 } else if (getTargetMachine().getRelocationModel() != Reloc::PIC_) {
11941 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11942 TII->get(X86::MOV32rm), X86::EAX)
11943 .addReg(0)
11944 .addImm(0).addReg(0)
11945 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11946 MI->getOperand(3).getTargetFlags())
11947 .addReg(0);
11948 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11949 addDirectMem(MIB, X86::EAX);
11950 } else {
11951 MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
11952 TII->get(X86::MOV32rm), X86::EAX)
11953 .addReg(TII->getGlobalBaseReg(F))
11954 .addImm(0).addReg(0)
11955 .addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
11956 MI->getOperand(3).getTargetFlags())
11957 .addReg(0);
11958 MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
11959 addDirectMem(MIB, X86::EAX);
11960 }
11961
11962 MI->eraseFromParent(); // The pseudo instruction is gone now.
11963 return BB;
11964 }
11965
11966 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr * MI,MachineBasicBlock * BB) const11967 X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
11968 MachineBasicBlock *BB) const {
11969 switch (MI->getOpcode()) {
11970 default: assert(0 && "Unexpected instr type to insert");
11971 case X86::TAILJMPd64:
11972 case X86::TAILJMPr64:
11973 case X86::TAILJMPm64:
11974 assert(0 && "TAILJMP64 would not be touched here.");
11975 case X86::TCRETURNdi64:
11976 case X86::TCRETURNri64:
11977 case X86::TCRETURNmi64:
11978 // Defs of TCRETURNxx64 has Win64's callee-saved registers, as subset.
11979 // On AMD64, additional defs should be added before register allocation.
11980 if (!Subtarget->isTargetWin64()) {
11981 MI->addRegisterDefined(X86::RSI);
11982 MI->addRegisterDefined(X86::RDI);
11983 MI->addRegisterDefined(X86::XMM6);
11984 MI->addRegisterDefined(X86::XMM7);
11985 MI->addRegisterDefined(X86::XMM8);
11986 MI->addRegisterDefined(X86::XMM9);
11987 MI->addRegisterDefined(X86::XMM10);
11988 MI->addRegisterDefined(X86::XMM11);
11989 MI->addRegisterDefined(X86::XMM12);
11990 MI->addRegisterDefined(X86::XMM13);
11991 MI->addRegisterDefined(X86::XMM14);
11992 MI->addRegisterDefined(X86::XMM15);
11993 }
11994 return BB;
11995 case X86::WIN_ALLOCA:
11996 return EmitLoweredWinAlloca(MI, BB);
11997 case X86::SEG_ALLOCA_32:
11998 return EmitLoweredSegAlloca(MI, BB, false);
11999 case X86::SEG_ALLOCA_64:
12000 return EmitLoweredSegAlloca(MI, BB, true);
12001 case X86::TLSCall_32:
12002 case X86::TLSCall_64:
12003 return EmitLoweredTLSCall(MI, BB);
12004 case X86::CMOV_GR8:
12005 case X86::CMOV_FR32:
12006 case X86::CMOV_FR64:
12007 case X86::CMOV_V4F32:
12008 case X86::CMOV_V2F64:
12009 case X86::CMOV_V2I64:
12010 case X86::CMOV_V8F32:
12011 case X86::CMOV_V4F64:
12012 case X86::CMOV_V4I64:
12013 case X86::CMOV_GR16:
12014 case X86::CMOV_GR32:
12015 case X86::CMOV_RFP32:
12016 case X86::CMOV_RFP64:
12017 case X86::CMOV_RFP80:
12018 return EmitLoweredSelect(MI, BB);
12019
12020 case X86::FP32_TO_INT16_IN_MEM:
12021 case X86::FP32_TO_INT32_IN_MEM:
12022 case X86::FP32_TO_INT64_IN_MEM:
12023 case X86::FP64_TO_INT16_IN_MEM:
12024 case X86::FP64_TO_INT32_IN_MEM:
12025 case X86::FP64_TO_INT64_IN_MEM:
12026 case X86::FP80_TO_INT16_IN_MEM:
12027 case X86::FP80_TO_INT32_IN_MEM:
12028 case X86::FP80_TO_INT64_IN_MEM: {
12029 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
12030 DebugLoc DL = MI->getDebugLoc();
12031
12032 // Change the floating point control register to use "round towards zero"
12033 // mode when truncating to an integer value.
12034 MachineFunction *F = BB->getParent();
12035 int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
12036 addFrameReference(BuildMI(*BB, MI, DL,
12037 TII->get(X86::FNSTCW16m)), CWFrameIdx);
12038
12039 // Load the old value of the high byte of the control word...
12040 unsigned OldCW =
12041 F->getRegInfo().createVirtualRegister(X86::GR16RegisterClass);
12042 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
12043 CWFrameIdx);
12044
12045 // Set the high part to be round to zero...
12046 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
12047 .addImm(0xC7F);
12048
12049 // Reload the modified control word now...
12050 addFrameReference(BuildMI(*BB, MI, DL,
12051 TII->get(X86::FLDCW16m)), CWFrameIdx);
12052
12053 // Restore the memory image of control word to original value
12054 addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
12055 .addReg(OldCW);
12056
12057 // Get the X86 opcode to use.
12058 unsigned Opc;
12059 switch (MI->getOpcode()) {
12060 default: llvm_unreachable("illegal opcode!");
12061 case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
12062 case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
12063 case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
12064 case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
12065 case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
12066 case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
12067 case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
12068 case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
12069 case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
12070 }
12071
12072 X86AddressMode AM;
12073 MachineOperand &Op = MI->getOperand(0);
12074 if (Op.isReg()) {
12075 AM.BaseType = X86AddressMode::RegBase;
12076 AM.Base.Reg = Op.getReg();
12077 } else {
12078 AM.BaseType = X86AddressMode::FrameIndexBase;
12079 AM.Base.FrameIndex = Op.getIndex();
12080 }
12081 Op = MI->getOperand(1);
12082 if (Op.isImm())
12083 AM.Scale = Op.getImm();
12084 Op = MI->getOperand(2);
12085 if (Op.isImm())
12086 AM.IndexReg = Op.getImm();
12087 Op = MI->getOperand(3);
12088 if (Op.isGlobal()) {
12089 AM.GV = Op.getGlobal();
12090 } else {
12091 AM.Disp = Op.getImm();
12092 }
12093 addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
12094 .addReg(MI->getOperand(X86::AddrNumOperands).getReg());
12095
12096 // Reload the original control word now.
12097 addFrameReference(BuildMI(*BB, MI, DL,
12098 TII->get(X86::FLDCW16m)), CWFrameIdx);
12099
12100 MI->eraseFromParent(); // The pseudo instruction is gone now.
12101 return BB;
12102 }
12103 // String/text processing lowering.
12104 case X86::PCMPISTRM128REG:
12105 case X86::VPCMPISTRM128REG:
12106 return EmitPCMP(MI, BB, 3, false /* in-mem */);
12107 case X86::PCMPISTRM128MEM:
12108 case X86::VPCMPISTRM128MEM:
12109 return EmitPCMP(MI, BB, 3, true /* in-mem */);
12110 case X86::PCMPESTRM128REG:
12111 case X86::VPCMPESTRM128REG:
12112 return EmitPCMP(MI, BB, 5, false /* in mem */);
12113 case X86::PCMPESTRM128MEM:
12114 case X86::VPCMPESTRM128MEM:
12115 return EmitPCMP(MI, BB, 5, true /* in mem */);
12116
12117 // Thread synchronization.
12118 case X86::MONITOR:
12119 return EmitMonitor(MI, BB);
12120 case X86::MWAIT:
12121 return EmitMwait(MI, BB);
12122
12123 // Atomic Lowering.
12124 case X86::ATOMAND32:
12125 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12126 X86::AND32ri, X86::MOV32rm,
12127 X86::LCMPXCHG32,
12128 X86::NOT32r, X86::EAX,
12129 X86::GR32RegisterClass);
12130 case X86::ATOMOR32:
12131 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR32rr,
12132 X86::OR32ri, X86::MOV32rm,
12133 X86::LCMPXCHG32,
12134 X86::NOT32r, X86::EAX,
12135 X86::GR32RegisterClass);
12136 case X86::ATOMXOR32:
12137 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR32rr,
12138 X86::XOR32ri, X86::MOV32rm,
12139 X86::LCMPXCHG32,
12140 X86::NOT32r, X86::EAX,
12141 X86::GR32RegisterClass);
12142 case X86::ATOMNAND32:
12143 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND32rr,
12144 X86::AND32ri, X86::MOV32rm,
12145 X86::LCMPXCHG32,
12146 X86::NOT32r, X86::EAX,
12147 X86::GR32RegisterClass, true);
12148 case X86::ATOMMIN32:
12149 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL32rr);
12150 case X86::ATOMMAX32:
12151 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG32rr);
12152 case X86::ATOMUMIN32:
12153 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB32rr);
12154 case X86::ATOMUMAX32:
12155 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA32rr);
12156
12157 case X86::ATOMAND16:
12158 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12159 X86::AND16ri, X86::MOV16rm,
12160 X86::LCMPXCHG16,
12161 X86::NOT16r, X86::AX,
12162 X86::GR16RegisterClass);
12163 case X86::ATOMOR16:
12164 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR16rr,
12165 X86::OR16ri, X86::MOV16rm,
12166 X86::LCMPXCHG16,
12167 X86::NOT16r, X86::AX,
12168 X86::GR16RegisterClass);
12169 case X86::ATOMXOR16:
12170 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR16rr,
12171 X86::XOR16ri, X86::MOV16rm,
12172 X86::LCMPXCHG16,
12173 X86::NOT16r, X86::AX,
12174 X86::GR16RegisterClass);
12175 case X86::ATOMNAND16:
12176 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND16rr,
12177 X86::AND16ri, X86::MOV16rm,
12178 X86::LCMPXCHG16,
12179 X86::NOT16r, X86::AX,
12180 X86::GR16RegisterClass, true);
12181 case X86::ATOMMIN16:
12182 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL16rr);
12183 case X86::ATOMMAX16:
12184 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG16rr);
12185 case X86::ATOMUMIN16:
12186 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB16rr);
12187 case X86::ATOMUMAX16:
12188 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA16rr);
12189
12190 case X86::ATOMAND8:
12191 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12192 X86::AND8ri, X86::MOV8rm,
12193 X86::LCMPXCHG8,
12194 X86::NOT8r, X86::AL,
12195 X86::GR8RegisterClass);
12196 case X86::ATOMOR8:
12197 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR8rr,
12198 X86::OR8ri, X86::MOV8rm,
12199 X86::LCMPXCHG8,
12200 X86::NOT8r, X86::AL,
12201 X86::GR8RegisterClass);
12202 case X86::ATOMXOR8:
12203 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR8rr,
12204 X86::XOR8ri, X86::MOV8rm,
12205 X86::LCMPXCHG8,
12206 X86::NOT8r, X86::AL,
12207 X86::GR8RegisterClass);
12208 case X86::ATOMNAND8:
12209 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND8rr,
12210 X86::AND8ri, X86::MOV8rm,
12211 X86::LCMPXCHG8,
12212 X86::NOT8r, X86::AL,
12213 X86::GR8RegisterClass, true);
12214 // FIXME: There are no CMOV8 instructions; MIN/MAX need some other way.
12215 // This group is for 64-bit host.
12216 case X86::ATOMAND64:
12217 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12218 X86::AND64ri32, X86::MOV64rm,
12219 X86::LCMPXCHG64,
12220 X86::NOT64r, X86::RAX,
12221 X86::GR64RegisterClass);
12222 case X86::ATOMOR64:
12223 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::OR64rr,
12224 X86::OR64ri32, X86::MOV64rm,
12225 X86::LCMPXCHG64,
12226 X86::NOT64r, X86::RAX,
12227 X86::GR64RegisterClass);
12228 case X86::ATOMXOR64:
12229 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::XOR64rr,
12230 X86::XOR64ri32, X86::MOV64rm,
12231 X86::LCMPXCHG64,
12232 X86::NOT64r, X86::RAX,
12233 X86::GR64RegisterClass);
12234 case X86::ATOMNAND64:
12235 return EmitAtomicBitwiseWithCustomInserter(MI, BB, X86::AND64rr,
12236 X86::AND64ri32, X86::MOV64rm,
12237 X86::LCMPXCHG64,
12238 X86::NOT64r, X86::RAX,
12239 X86::GR64RegisterClass, true);
12240 case X86::ATOMMIN64:
12241 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVL64rr);
12242 case X86::ATOMMAX64:
12243 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVG64rr);
12244 case X86::ATOMUMIN64:
12245 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVB64rr);
12246 case X86::ATOMUMAX64:
12247 return EmitAtomicMinMaxWithCustomInserter(MI, BB, X86::CMOVA64rr);
12248
12249 // This group does 64-bit operations on a 32-bit host.
12250 case X86::ATOMAND6432:
12251 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12252 X86::AND32rr, X86::AND32rr,
12253 X86::AND32ri, X86::AND32ri,
12254 false);
12255 case X86::ATOMOR6432:
12256 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12257 X86::OR32rr, X86::OR32rr,
12258 X86::OR32ri, X86::OR32ri,
12259 false);
12260 case X86::ATOMXOR6432:
12261 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12262 X86::XOR32rr, X86::XOR32rr,
12263 X86::XOR32ri, X86::XOR32ri,
12264 false);
12265 case X86::ATOMNAND6432:
12266 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12267 X86::AND32rr, X86::AND32rr,
12268 X86::AND32ri, X86::AND32ri,
12269 true);
12270 case X86::ATOMADD6432:
12271 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12272 X86::ADD32rr, X86::ADC32rr,
12273 X86::ADD32ri, X86::ADC32ri,
12274 false);
12275 case X86::ATOMSUB6432:
12276 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12277 X86::SUB32rr, X86::SBB32rr,
12278 X86::SUB32ri, X86::SBB32ri,
12279 false);
12280 case X86::ATOMSWAP6432:
12281 return EmitAtomicBit6432WithCustomInserter(MI, BB,
12282 X86::MOV32rr, X86::MOV32rr,
12283 X86::MOV32ri, X86::MOV32ri,
12284 false);
12285 case X86::VASTART_SAVE_XMM_REGS:
12286 return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
12287
12288 case X86::VAARG_64:
12289 return EmitVAARG64WithCustomInserter(MI, BB);
12290 }
12291 }
12292
12293 //===----------------------------------------------------------------------===//
12294 // X86 Optimization Hooks
12295 //===----------------------------------------------------------------------===//
12296
computeMaskedBitsForTargetNode(const SDValue Op,const APInt & Mask,APInt & KnownZero,APInt & KnownOne,const SelectionDAG & DAG,unsigned Depth) const12297 void X86TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
12298 const APInt &Mask,
12299 APInt &KnownZero,
12300 APInt &KnownOne,
12301 const SelectionDAG &DAG,
12302 unsigned Depth) const {
12303 unsigned Opc = Op.getOpcode();
12304 assert((Opc >= ISD::BUILTIN_OP_END ||
12305 Opc == ISD::INTRINSIC_WO_CHAIN ||
12306 Opc == ISD::INTRINSIC_W_CHAIN ||
12307 Opc == ISD::INTRINSIC_VOID) &&
12308 "Should use MaskedValueIsZero if you don't know whether Op"
12309 " is a target node!");
12310
12311 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); // Don't know anything.
12312 switch (Opc) {
12313 default: break;
12314 case X86ISD::ADD:
12315 case X86ISD::SUB:
12316 case X86ISD::ADC:
12317 case X86ISD::SBB:
12318 case X86ISD::SMUL:
12319 case X86ISD::UMUL:
12320 case X86ISD::INC:
12321 case X86ISD::DEC:
12322 case X86ISD::OR:
12323 case X86ISD::XOR:
12324 case X86ISD::AND:
12325 // These nodes' second result is a boolean.
12326 if (Op.getResNo() == 0)
12327 break;
12328 // Fallthrough
12329 case X86ISD::SETCC:
12330 KnownZero |= APInt::getHighBitsSet(Mask.getBitWidth(),
12331 Mask.getBitWidth() - 1);
12332 break;
12333 case ISD::INTRINSIC_WO_CHAIN: {
12334 unsigned IntId = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
12335 unsigned NumLoBits = 0;
12336 switch (IntId) {
12337 default: break;
12338 case Intrinsic::x86_sse_movmsk_ps:
12339 case Intrinsic::x86_avx_movmsk_ps_256:
12340 case Intrinsic::x86_sse2_movmsk_pd:
12341 case Intrinsic::x86_avx_movmsk_pd_256:
12342 case Intrinsic::x86_mmx_pmovmskb:
12343 case Intrinsic::x86_sse2_pmovmskb_128: {
12344 // High bits of movmskp{s|d}, pmovmskb are known zero.
12345 switch (IntId) {
12346 case Intrinsic::x86_sse_movmsk_ps: NumLoBits = 4; break;
12347 case Intrinsic::x86_avx_movmsk_ps_256: NumLoBits = 8; break;
12348 case Intrinsic::x86_sse2_movmsk_pd: NumLoBits = 2; break;
12349 case Intrinsic::x86_avx_movmsk_pd_256: NumLoBits = 4; break;
12350 case Intrinsic::x86_mmx_pmovmskb: NumLoBits = 8; break;
12351 case Intrinsic::x86_sse2_pmovmskb_128: NumLoBits = 16; break;
12352 }
12353 KnownZero = APInt::getHighBitsSet(Mask.getBitWidth(),
12354 Mask.getBitWidth() - NumLoBits);
12355 break;
12356 }
12357 }
12358 break;
12359 }
12360 }
12361 }
12362
ComputeNumSignBitsForTargetNode(SDValue Op,unsigned Depth) const12363 unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
12364 unsigned Depth) const {
12365 // SETCC_CARRY sets the dest to ~0 for true or 0 for false.
12366 if (Op.getOpcode() == X86ISD::SETCC_CARRY)
12367 return Op.getValueType().getScalarType().getSizeInBits();
12368
12369 // Fallback case.
12370 return 1;
12371 }
12372
12373 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
12374 /// node is a GlobalAddress + offset.
isGAPlusOffset(SDNode * N,const GlobalValue * & GA,int64_t & Offset) const12375 bool X86TargetLowering::isGAPlusOffset(SDNode *N,
12376 const GlobalValue* &GA,
12377 int64_t &Offset) const {
12378 if (N->getOpcode() == X86ISD::Wrapper) {
12379 if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
12380 GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
12381 Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
12382 return true;
12383 }
12384 }
12385 return TargetLowering::isGAPlusOffset(N, GA, Offset);
12386 }
12387
12388 /// isShuffleHigh128VectorInsertLow - Checks whether the shuffle node is the
12389 /// same as extracting the high 128-bit part of 256-bit vector and then
12390 /// inserting the result into the low part of a new 256-bit vector
isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode * SVOp)12391 static bool isShuffleHigh128VectorInsertLow(ShuffleVectorSDNode *SVOp) {
12392 EVT VT = SVOp->getValueType(0);
12393 int NumElems = VT.getVectorNumElements();
12394
12395 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12396 for (int i = 0, j = NumElems/2; i < NumElems/2; ++i, ++j)
12397 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12398 SVOp->getMaskElt(j) >= 0)
12399 return false;
12400
12401 return true;
12402 }
12403
12404 /// isShuffleLow128VectorInsertHigh - Checks whether the shuffle node is the
12405 /// same as extracting the low 128-bit part of 256-bit vector and then
12406 /// inserting the result into the high part of a new 256-bit vector
isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode * SVOp)12407 static bool isShuffleLow128VectorInsertHigh(ShuffleVectorSDNode *SVOp) {
12408 EVT VT = SVOp->getValueType(0);
12409 int NumElems = VT.getVectorNumElements();
12410
12411 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12412 for (int i = NumElems/2, j = 0; i < NumElems; ++i, ++j)
12413 if (!isUndefOrEqual(SVOp->getMaskElt(i), j) ||
12414 SVOp->getMaskElt(j) >= 0)
12415 return false;
12416
12417 return true;
12418 }
12419
12420 /// PerformShuffleCombine256 - Performs shuffle combines for 256-bit vectors.
PerformShuffleCombine256(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)12421 static SDValue PerformShuffleCombine256(SDNode *N, SelectionDAG &DAG,
12422 TargetLowering::DAGCombinerInfo &DCI) {
12423 DebugLoc dl = N->getDebugLoc();
12424 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
12425 SDValue V1 = SVOp->getOperand(0);
12426 SDValue V2 = SVOp->getOperand(1);
12427 EVT VT = SVOp->getValueType(0);
12428 int NumElems = VT.getVectorNumElements();
12429
12430 if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
12431 V2.getOpcode() == ISD::CONCAT_VECTORS) {
12432 //
12433 // 0,0,0,...
12434 // |
12435 // V UNDEF BUILD_VECTOR UNDEF
12436 // \ / \ /
12437 // CONCAT_VECTOR CONCAT_VECTOR
12438 // \ /
12439 // \ /
12440 // RESULT: V + zero extended
12441 //
12442 if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
12443 V2.getOperand(1).getOpcode() != ISD::UNDEF ||
12444 V1.getOperand(1).getOpcode() != ISD::UNDEF)
12445 return SDValue();
12446
12447 if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
12448 return SDValue();
12449
12450 // To match the shuffle mask, the first half of the mask should
12451 // be exactly the first vector, and all the rest a splat with the
12452 // first element of the second one.
12453 for (int i = 0; i < NumElems/2; ++i)
12454 if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
12455 !isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
12456 return SDValue();
12457
12458 // Emit a zeroed vector and insert the desired subvector on its
12459 // first half.
12460 SDValue Zeros = getZeroVector(VT, true /* HasXMMInt */, DAG, dl);
12461 SDValue InsV = Insert128BitVector(Zeros, V1.getOperand(0),
12462 DAG.getConstant(0, MVT::i32), DAG, dl);
12463 return DCI.CombineTo(N, InsV);
12464 }
12465
12466 //===--------------------------------------------------------------------===//
12467 // Combine some shuffles into subvector extracts and inserts:
12468 //
12469
12470 // vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
12471 if (isShuffleHigh128VectorInsertLow(SVOp)) {
12472 SDValue V = Extract128BitVector(V1, DAG.getConstant(NumElems/2, MVT::i32),
12473 DAG, dl);
12474 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12475 V, DAG.getConstant(0, MVT::i32), DAG, dl);
12476 return DCI.CombineTo(N, InsV);
12477 }
12478
12479 // vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
12480 if (isShuffleLow128VectorInsertHigh(SVOp)) {
12481 SDValue V = Extract128BitVector(V1, DAG.getConstant(0, MVT::i32), DAG, dl);
12482 SDValue InsV = Insert128BitVector(DAG.getNode(ISD::UNDEF, dl, VT),
12483 V, DAG.getConstant(NumElems/2, MVT::i32), DAG, dl);
12484 return DCI.CombineTo(N, InsV);
12485 }
12486
12487 return SDValue();
12488 }
12489
12490 /// PerformShuffleCombine - Performs several different shuffle combines.
PerformShuffleCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)12491 static SDValue PerformShuffleCombine(SDNode *N, SelectionDAG &DAG,
12492 TargetLowering::DAGCombinerInfo &DCI,
12493 const X86Subtarget *Subtarget) {
12494 DebugLoc dl = N->getDebugLoc();
12495 EVT VT = N->getValueType(0);
12496
12497 // Don't create instructions with illegal types after legalize types has run.
12498 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
12499 if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
12500 return SDValue();
12501
12502 // Combine 256-bit vector shuffles. This is only profitable when in AVX mode
12503 if (Subtarget->hasAVX() && VT.getSizeInBits() == 256 &&
12504 N->getOpcode() == ISD::VECTOR_SHUFFLE)
12505 return PerformShuffleCombine256(N, DAG, DCI);
12506
12507 // Only handle 128 wide vector from here on.
12508 if (VT.getSizeInBits() != 128)
12509 return SDValue();
12510
12511 // Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
12512 // load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
12513 // consecutive, non-overlapping, and in the right order.
12514 SmallVector<SDValue, 16> Elts;
12515 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
12516 Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
12517
12518 return EltsFromConsecutiveLoads(VT, Elts, dl, DAG);
12519 }
12520
12521 /// \brief Detect bitcasts between i32 to x86mmx low word. Since MMX types are
12522 /// special and don't usually play with other vector types, it's better to
12523 /// handle them early to be sure we emit efficient code by avoiding
12524 /// store-load conversions.
PerformBITCASTCombine(SDNode * N,SelectionDAG & DAG)12525 static SDValue PerformBITCASTCombine(SDNode *N, SelectionDAG &DAG) {
12526 if (N->getValueType(0) != MVT::x86mmx ||
12527 N->getOperand(0)->getOpcode() != ISD::BUILD_VECTOR ||
12528 N->getOperand(0)->getValueType(0) != MVT::v2i32)
12529 return SDValue();
12530
12531 SDValue V = N->getOperand(0);
12532 ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(1));
12533 if (C && C->getZExtValue() == 0 && V.getOperand(0).getValueType() == MVT::i32)
12534 return DAG.getNode(X86ISD::MMX_MOVW2D, V.getOperand(0).getDebugLoc(),
12535 N->getValueType(0), V.getOperand(0));
12536
12537 return SDValue();
12538 }
12539
12540 /// PerformEXTRACT_VECTOR_ELTCombine - Detect vector gather/scatter index
12541 /// generation and convert it from being a bunch of shuffles and extracts
12542 /// to a simple store and scalar loads to extract the elements.
PerformEXTRACT_VECTOR_ELTCombine(SDNode * N,SelectionDAG & DAG,const TargetLowering & TLI)12543 static SDValue PerformEXTRACT_VECTOR_ELTCombine(SDNode *N, SelectionDAG &DAG,
12544 const TargetLowering &TLI) {
12545 SDValue InputVector = N->getOperand(0);
12546 // Detect whether we are trying to convert from mmx to i32 and the bitcast
12547 // from mmx to v2i32 has a single usage.
12548 if (InputVector.getNode()->getOpcode() == llvm::ISD::BITCAST &&
12549 InputVector.getNode()->getOperand(0).getValueType() == MVT::x86mmx &&
12550 InputVector.hasOneUse() && N->getValueType(0) == MVT::i32)
12551 return DAG.getNode(X86ISD::MMX_MOVD2W, InputVector.getDebugLoc(),
12552 N->getValueType(0),
12553 InputVector.getNode()->getOperand(0));
12554
12555 // Only operate on vectors of 4 elements, where the alternative shuffling
12556 // gets to be more expensive.
12557 if (InputVector.getValueType() != MVT::v4i32)
12558 return SDValue();
12559
12560 // Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
12561 // single use which is a sign-extend or zero-extend, and all elements are
12562 // used.
12563 SmallVector<SDNode *, 4> Uses;
12564 unsigned ExtractedElements = 0;
12565 for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
12566 UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
12567 if (UI.getUse().getResNo() != InputVector.getResNo())
12568 return SDValue();
12569
12570 SDNode *Extract = *UI;
12571 if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
12572 return SDValue();
12573
12574 if (Extract->getValueType(0) != MVT::i32)
12575 return SDValue();
12576 if (!Extract->hasOneUse())
12577 return SDValue();
12578 if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
12579 Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
12580 return SDValue();
12581 if (!isa<ConstantSDNode>(Extract->getOperand(1)))
12582 return SDValue();
12583
12584 // Record which element was extracted.
12585 ExtractedElements |=
12586 1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
12587
12588 Uses.push_back(Extract);
12589 }
12590
12591 // If not all the elements were used, this may not be worthwhile.
12592 if (ExtractedElements != 15)
12593 return SDValue();
12594
12595 // Ok, we've now decided to do the transformation.
12596 DebugLoc dl = InputVector.getDebugLoc();
12597
12598 // Store the value to a temporary stack slot.
12599 SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
12600 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
12601 MachinePointerInfo(), false, false, 0);
12602
12603 // Replace each use (extract) with a load of the appropriate element.
12604 for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
12605 UE = Uses.end(); UI != UE; ++UI) {
12606 SDNode *Extract = *UI;
12607
12608 // cOMpute the element's address.
12609 SDValue Idx = Extract->getOperand(1);
12610 unsigned EltSize =
12611 InputVector.getValueType().getVectorElementType().getSizeInBits()/8;
12612 uint64_t Offset = EltSize * cast<ConstantSDNode>(Idx)->getZExtValue();
12613 SDValue OffsetVal = DAG.getConstant(Offset, TLI.getPointerTy());
12614
12615 SDValue ScalarAddr = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(),
12616 StackPtr, OffsetVal);
12617
12618 // Load the scalar.
12619 SDValue LoadScalar = DAG.getLoad(Extract->getValueType(0), dl, Ch,
12620 ScalarAddr, MachinePointerInfo(),
12621 false, false, 0);
12622
12623 // Replace the exact with the load.
12624 DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), LoadScalar);
12625 }
12626
12627 // The replacement was made in place; don't return anything.
12628 return SDValue();
12629 }
12630
12631 /// PerformSELECTCombine - Do target-specific dag combines on SELECT and VSELECT
12632 /// nodes.
PerformSELECTCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)12633 static SDValue PerformSELECTCombine(SDNode *N, SelectionDAG &DAG,
12634 const X86Subtarget *Subtarget) {
12635 DebugLoc DL = N->getDebugLoc();
12636 SDValue Cond = N->getOperand(0);
12637 // Get the LHS/RHS of the select.
12638 SDValue LHS = N->getOperand(1);
12639 SDValue RHS = N->getOperand(2);
12640 EVT VT = LHS.getValueType();
12641
12642 // If we have SSE[12] support, try to form min/max nodes. SSE min/max
12643 // instructions match the semantics of the common C idiom x<y?x:y but not
12644 // x<=y?x:y, because of how they handle negative zero (which can be
12645 // ignored in unsafe-math mode).
12646 if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
12647 VT != MVT::f80 && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
12648 (Subtarget->hasXMMInt() ||
12649 (Subtarget->hasSSE1() && VT.getScalarType() == MVT::f32))) {
12650 ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
12651
12652 unsigned Opcode = 0;
12653 // Check for x CC y ? x : y.
12654 if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
12655 DAG.isEqualTo(RHS, Cond.getOperand(1))) {
12656 switch (CC) {
12657 default: break;
12658 case ISD::SETULT:
12659 // Converting this to a min would handle NaNs incorrectly, and swapping
12660 // the operands would cause it to handle comparisons between positive
12661 // and negative zero incorrectly.
12662 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12663 if (!UnsafeFPMath &&
12664 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12665 break;
12666 std::swap(LHS, RHS);
12667 }
12668 Opcode = X86ISD::FMIN;
12669 break;
12670 case ISD::SETOLE:
12671 // Converting this to a min would handle comparisons between positive
12672 // and negative zero incorrectly.
12673 if (!UnsafeFPMath &&
12674 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12675 break;
12676 Opcode = X86ISD::FMIN;
12677 break;
12678 case ISD::SETULE:
12679 // Converting this to a min would handle both negative zeros and NaNs
12680 // incorrectly, but we can swap the operands to fix both.
12681 std::swap(LHS, RHS);
12682 case ISD::SETOLT:
12683 case ISD::SETLT:
12684 case ISD::SETLE:
12685 Opcode = X86ISD::FMIN;
12686 break;
12687
12688 case ISD::SETOGE:
12689 // Converting this to a max would handle comparisons between positive
12690 // and negative zero incorrectly.
12691 if (!UnsafeFPMath &&
12692 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
12693 break;
12694 Opcode = X86ISD::FMAX;
12695 break;
12696 case ISD::SETUGT:
12697 // Converting this to a max would handle NaNs incorrectly, and swapping
12698 // the operands would cause it to handle comparisons between positive
12699 // and negative zero incorrectly.
12700 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
12701 if (!UnsafeFPMath &&
12702 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
12703 break;
12704 std::swap(LHS, RHS);
12705 }
12706 Opcode = X86ISD::FMAX;
12707 break;
12708 case ISD::SETUGE:
12709 // Converting this to a max would handle both negative zeros and NaNs
12710 // incorrectly, but we can swap the operands to fix both.
12711 std::swap(LHS, RHS);
12712 case ISD::SETOGT:
12713 case ISD::SETGT:
12714 case ISD::SETGE:
12715 Opcode = X86ISD::FMAX;
12716 break;
12717 }
12718 // Check for x CC y ? y : x -- a min/max with reversed arms.
12719 } else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
12720 DAG.isEqualTo(RHS, Cond.getOperand(0))) {
12721 switch (CC) {
12722 default: break;
12723 case ISD::SETOGE:
12724 // Converting this to a min would handle comparisons between positive
12725 // and negative zero incorrectly, and swapping the operands would
12726 // cause it to handle NaNs incorrectly.
12727 if (!UnsafeFPMath &&
12728 !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
12729 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12730 break;
12731 std::swap(LHS, RHS);
12732 }
12733 Opcode = X86ISD::FMIN;
12734 break;
12735 case ISD::SETUGT:
12736 // Converting this to a min would handle NaNs incorrectly.
12737 if (!UnsafeFPMath &&
12738 (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
12739 break;
12740 Opcode = X86ISD::FMIN;
12741 break;
12742 case ISD::SETUGE:
12743 // Converting this to a min would handle both negative zeros and NaNs
12744 // incorrectly, but we can swap the operands to fix both.
12745 std::swap(LHS, RHS);
12746 case ISD::SETOGT:
12747 case ISD::SETGT:
12748 case ISD::SETGE:
12749 Opcode = X86ISD::FMIN;
12750 break;
12751
12752 case ISD::SETULT:
12753 // Converting this to a max would handle NaNs incorrectly.
12754 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12755 break;
12756 Opcode = X86ISD::FMAX;
12757 break;
12758 case ISD::SETOLE:
12759 // Converting this to a max would handle comparisons between positive
12760 // and negative zero incorrectly, and swapping the operands would
12761 // cause it to handle NaNs incorrectly.
12762 if (!UnsafeFPMath &&
12763 !DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
12764 if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
12765 break;
12766 std::swap(LHS, RHS);
12767 }
12768 Opcode = X86ISD::FMAX;
12769 break;
12770 case ISD::SETULE:
12771 // Converting this to a max would handle both negative zeros and NaNs
12772 // incorrectly, but we can swap the operands to fix both.
12773 std::swap(LHS, RHS);
12774 case ISD::SETOLT:
12775 case ISD::SETLT:
12776 case ISD::SETLE:
12777 Opcode = X86ISD::FMAX;
12778 break;
12779 }
12780 }
12781
12782 if (Opcode)
12783 return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
12784 }
12785
12786 // If this is a select between two integer constants, try to do some
12787 // optimizations.
12788 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
12789 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
12790 // Don't do this for crazy integer types.
12791 if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
12792 // If this is efficiently invertible, canonicalize the LHSC/RHSC values
12793 // so that TrueC (the true value) is larger than FalseC.
12794 bool NeedsCondInvert = false;
12795
12796 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
12797 // Efficiently invertible.
12798 (Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
12799 (Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
12800 isa<ConstantSDNode>(Cond.getOperand(1))))) {
12801 NeedsCondInvert = true;
12802 std::swap(TrueC, FalseC);
12803 }
12804
12805 // Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
12806 if (FalseC->getAPIntValue() == 0 &&
12807 TrueC->getAPIntValue().isPowerOf2()) {
12808 if (NeedsCondInvert) // Invert the condition if needed.
12809 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12810 DAG.getConstant(1, Cond.getValueType()));
12811
12812 // Zero extend the condition if needed.
12813 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
12814
12815 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12816 return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
12817 DAG.getConstant(ShAmt, MVT::i8));
12818 }
12819
12820 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
12821 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12822 if (NeedsCondInvert) // Invert the condition if needed.
12823 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12824 DAG.getConstant(1, Cond.getValueType()));
12825
12826 // Zero extend the condition if needed.
12827 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12828 FalseC->getValueType(0), Cond);
12829 return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12830 SDValue(FalseC, 0));
12831 }
12832
12833 // Optimize cases that will turn into an LEA instruction. This requires
12834 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12835 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12836 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12837 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12838
12839 bool isFastMultiplier = false;
12840 if (Diff < 10) {
12841 switch ((unsigned char)Diff) {
12842 default: break;
12843 case 1: // result = add base, cond
12844 case 2: // result = lea base( , cond*2)
12845 case 3: // result = lea base(cond, cond*2)
12846 case 4: // result = lea base( , cond*4)
12847 case 5: // result = lea base(cond, cond*4)
12848 case 8: // result = lea base( , cond*8)
12849 case 9: // result = lea base(cond, cond*8)
12850 isFastMultiplier = true;
12851 break;
12852 }
12853 }
12854
12855 if (isFastMultiplier) {
12856 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12857 if (NeedsCondInvert) // Invert the condition if needed.
12858 Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
12859 DAG.getConstant(1, Cond.getValueType()));
12860
12861 // Zero extend the condition if needed.
12862 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12863 Cond);
12864 // Scale the condition by the difference.
12865 if (Diff != 1)
12866 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12867 DAG.getConstant(Diff, Cond.getValueType()));
12868
12869 // Add the base if non-zero.
12870 if (FalseC->getAPIntValue() != 0)
12871 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12872 SDValue(FalseC, 0));
12873 return Cond;
12874 }
12875 }
12876 }
12877 }
12878
12879 return SDValue();
12880 }
12881
12882 /// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
PerformCMOVCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)12883 static SDValue PerformCMOVCombine(SDNode *N, SelectionDAG &DAG,
12884 TargetLowering::DAGCombinerInfo &DCI) {
12885 DebugLoc DL = N->getDebugLoc();
12886
12887 // If the flag operand isn't dead, don't touch this CMOV.
12888 if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
12889 return SDValue();
12890
12891 SDValue FalseOp = N->getOperand(0);
12892 SDValue TrueOp = N->getOperand(1);
12893 X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
12894 SDValue Cond = N->getOperand(3);
12895 if (CC == X86::COND_E || CC == X86::COND_NE) {
12896 switch (Cond.getOpcode()) {
12897 default: break;
12898 case X86ISD::BSR:
12899 case X86ISD::BSF:
12900 // If operand of BSR / BSF are proven never zero, then ZF cannot be set.
12901 if (DAG.isKnownNeverZero(Cond.getOperand(0)))
12902 return (CC == X86::COND_E) ? FalseOp : TrueOp;
12903 }
12904 }
12905
12906 // If this is a select between two integer constants, try to do some
12907 // optimizations. Note that the operands are ordered the opposite of SELECT
12908 // operands.
12909 if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
12910 if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
12911 // Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
12912 // larger than FalseC (the false value).
12913 if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
12914 CC = X86::GetOppositeBranchCondition(CC);
12915 std::swap(TrueC, FalseC);
12916 }
12917
12918 // Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
12919 // This is efficient for any integer data type (including i8/i16) and
12920 // shift amount.
12921 if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
12922 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12923 DAG.getConstant(CC, MVT::i8), Cond);
12924
12925 // Zero extend the condition if needed.
12926 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
12927
12928 unsigned ShAmt = TrueC->getAPIntValue().logBase2();
12929 Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
12930 DAG.getConstant(ShAmt, MVT::i8));
12931 if (N->getNumValues() == 2) // Dead flag value?
12932 return DCI.CombineTo(N, Cond, SDValue());
12933 return Cond;
12934 }
12935
12936 // Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
12937 // for any integer data type, including i8/i16.
12938 if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
12939 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12940 DAG.getConstant(CC, MVT::i8), Cond);
12941
12942 // Zero extend the condition if needed.
12943 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
12944 FalseC->getValueType(0), Cond);
12945 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12946 SDValue(FalseC, 0));
12947
12948 if (N->getNumValues() == 2) // Dead flag value?
12949 return DCI.CombineTo(N, Cond, SDValue());
12950 return Cond;
12951 }
12952
12953 // Optimize cases that will turn into an LEA instruction. This requires
12954 // an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
12955 if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
12956 uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
12957 if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
12958
12959 bool isFastMultiplier = false;
12960 if (Diff < 10) {
12961 switch ((unsigned char)Diff) {
12962 default: break;
12963 case 1: // result = add base, cond
12964 case 2: // result = lea base( , cond*2)
12965 case 3: // result = lea base(cond, cond*2)
12966 case 4: // result = lea base( , cond*4)
12967 case 5: // result = lea base(cond, cond*4)
12968 case 8: // result = lea base( , cond*8)
12969 case 9: // result = lea base(cond, cond*8)
12970 isFastMultiplier = true;
12971 break;
12972 }
12973 }
12974
12975 if (isFastMultiplier) {
12976 APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
12977 Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
12978 DAG.getConstant(CC, MVT::i8), Cond);
12979 // Zero extend the condition if needed.
12980 Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
12981 Cond);
12982 // Scale the condition by the difference.
12983 if (Diff != 1)
12984 Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
12985 DAG.getConstant(Diff, Cond.getValueType()));
12986
12987 // Add the base if non-zero.
12988 if (FalseC->getAPIntValue() != 0)
12989 Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
12990 SDValue(FalseC, 0));
12991 if (N->getNumValues() == 2) // Dead flag value?
12992 return DCI.CombineTo(N, Cond, SDValue());
12993 return Cond;
12994 }
12995 }
12996 }
12997 }
12998 return SDValue();
12999 }
13000
13001
13002 /// PerformMulCombine - Optimize a single multiply with constant into two
13003 /// in order to implement it with two cheaper instructions, e.g.
13004 /// LEA + SHL, LEA + LEA.
PerformMulCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)13005 static SDValue PerformMulCombine(SDNode *N, SelectionDAG &DAG,
13006 TargetLowering::DAGCombinerInfo &DCI) {
13007 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
13008 return SDValue();
13009
13010 EVT VT = N->getValueType(0);
13011 if (VT != MVT::i64)
13012 return SDValue();
13013
13014 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
13015 if (!C)
13016 return SDValue();
13017 uint64_t MulAmt = C->getZExtValue();
13018 if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
13019 return SDValue();
13020
13021 uint64_t MulAmt1 = 0;
13022 uint64_t MulAmt2 = 0;
13023 if ((MulAmt % 9) == 0) {
13024 MulAmt1 = 9;
13025 MulAmt2 = MulAmt / 9;
13026 } else if ((MulAmt % 5) == 0) {
13027 MulAmt1 = 5;
13028 MulAmt2 = MulAmt / 5;
13029 } else if ((MulAmt % 3) == 0) {
13030 MulAmt1 = 3;
13031 MulAmt2 = MulAmt / 3;
13032 }
13033 if (MulAmt2 &&
13034 (isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
13035 DebugLoc DL = N->getDebugLoc();
13036
13037 if (isPowerOf2_64(MulAmt2) &&
13038 !(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
13039 // If second multiplifer is pow2, issue it first. We want the multiply by
13040 // 3, 5, or 9 to be folded into the addressing mode unless the lone use
13041 // is an add.
13042 std::swap(MulAmt1, MulAmt2);
13043
13044 SDValue NewMul;
13045 if (isPowerOf2_64(MulAmt1))
13046 NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
13047 DAG.getConstant(Log2_64(MulAmt1), MVT::i8));
13048 else
13049 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
13050 DAG.getConstant(MulAmt1, VT));
13051
13052 if (isPowerOf2_64(MulAmt2))
13053 NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
13054 DAG.getConstant(Log2_64(MulAmt2), MVT::i8));
13055 else
13056 NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
13057 DAG.getConstant(MulAmt2, VT));
13058
13059 // Do not add new nodes to DAG combiner worklist.
13060 DCI.CombineTo(N, NewMul, false);
13061 }
13062 return SDValue();
13063 }
13064
PerformSHLCombine(SDNode * N,SelectionDAG & DAG)13065 static SDValue PerformSHLCombine(SDNode *N, SelectionDAG &DAG) {
13066 SDValue N0 = N->getOperand(0);
13067 SDValue N1 = N->getOperand(1);
13068 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
13069 EVT VT = N0.getValueType();
13070
13071 // fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
13072 // since the result of setcc_c is all zero's or all ones.
13073 if (N1C && N0.getOpcode() == ISD::AND &&
13074 N0.getOperand(1).getOpcode() == ISD::Constant) {
13075 SDValue N00 = N0.getOperand(0);
13076 if (N00.getOpcode() == X86ISD::SETCC_CARRY ||
13077 ((N00.getOpcode() == ISD::ANY_EXTEND ||
13078 N00.getOpcode() == ISD::ZERO_EXTEND) &&
13079 N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY)) {
13080 APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
13081 APInt ShAmt = N1C->getAPIntValue();
13082 Mask = Mask.shl(ShAmt);
13083 if (Mask != 0)
13084 return DAG.getNode(ISD::AND, N->getDebugLoc(), VT,
13085 N00, DAG.getConstant(Mask, VT));
13086 }
13087 }
13088
13089 return SDValue();
13090 }
13091
13092 /// PerformShiftCombine - Transforms vector shift nodes to use vector shifts
13093 /// when possible.
PerformShiftCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13094 static SDValue PerformShiftCombine(SDNode* N, SelectionDAG &DAG,
13095 const X86Subtarget *Subtarget) {
13096 EVT VT = N->getValueType(0);
13097 if (!VT.isVector() && VT.isInteger() &&
13098 N->getOpcode() == ISD::SHL)
13099 return PerformSHLCombine(N, DAG);
13100
13101 // On X86 with SSE2 support, we can transform this to a vector shift if
13102 // all elements are shifted by the same amount. We can't do this in legalize
13103 // because the a constant vector is typically transformed to a constant pool
13104 // so we have no knowledge of the shift amount.
13105 if (!Subtarget->hasXMMInt())
13106 return SDValue();
13107
13108 if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16)
13109 return SDValue();
13110
13111 SDValue ShAmtOp = N->getOperand(1);
13112 EVT EltVT = VT.getVectorElementType();
13113 DebugLoc DL = N->getDebugLoc();
13114 SDValue BaseShAmt = SDValue();
13115 if (ShAmtOp.getOpcode() == ISD::BUILD_VECTOR) {
13116 unsigned NumElts = VT.getVectorNumElements();
13117 unsigned i = 0;
13118 for (; i != NumElts; ++i) {
13119 SDValue Arg = ShAmtOp.getOperand(i);
13120 if (Arg.getOpcode() == ISD::UNDEF) continue;
13121 BaseShAmt = Arg;
13122 break;
13123 }
13124 for (; i != NumElts; ++i) {
13125 SDValue Arg = ShAmtOp.getOperand(i);
13126 if (Arg.getOpcode() == ISD::UNDEF) continue;
13127 if (Arg != BaseShAmt) {
13128 return SDValue();
13129 }
13130 }
13131 } else if (ShAmtOp.getOpcode() == ISD::VECTOR_SHUFFLE &&
13132 cast<ShuffleVectorSDNode>(ShAmtOp)->isSplat()) {
13133 SDValue InVec = ShAmtOp.getOperand(0);
13134 if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
13135 unsigned NumElts = InVec.getValueType().getVectorNumElements();
13136 unsigned i = 0;
13137 for (; i != NumElts; ++i) {
13138 SDValue Arg = InVec.getOperand(i);
13139 if (Arg.getOpcode() == ISD::UNDEF) continue;
13140 BaseShAmt = Arg;
13141 break;
13142 }
13143 } else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
13144 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
13145 unsigned SplatIdx= cast<ShuffleVectorSDNode>(ShAmtOp)->getSplatIndex();
13146 if (C->getZExtValue() == SplatIdx)
13147 BaseShAmt = InVec.getOperand(1);
13148 }
13149 }
13150 if (BaseShAmt.getNode() == 0)
13151 BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, ShAmtOp,
13152 DAG.getIntPtrConstant(0));
13153 } else
13154 return SDValue();
13155
13156 // The shift amount is an i32.
13157 if (EltVT.bitsGT(MVT::i32))
13158 BaseShAmt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i32, BaseShAmt);
13159 else if (EltVT.bitsLT(MVT::i32))
13160 BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, BaseShAmt);
13161
13162 // The shift amount is identical so we can do a vector shift.
13163 SDValue ValOp = N->getOperand(0);
13164 switch (N->getOpcode()) {
13165 default:
13166 llvm_unreachable("Unknown shift opcode!");
13167 break;
13168 case ISD::SHL:
13169 if (VT == MVT::v2i64)
13170 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13171 DAG.getConstant(Intrinsic::x86_sse2_pslli_q, MVT::i32),
13172 ValOp, BaseShAmt);
13173 if (VT == MVT::v4i32)
13174 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13175 DAG.getConstant(Intrinsic::x86_sse2_pslli_d, MVT::i32),
13176 ValOp, BaseShAmt);
13177 if (VT == MVT::v8i16)
13178 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13179 DAG.getConstant(Intrinsic::x86_sse2_pslli_w, MVT::i32),
13180 ValOp, BaseShAmt);
13181 break;
13182 case ISD::SRA:
13183 if (VT == MVT::v4i32)
13184 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13185 DAG.getConstant(Intrinsic::x86_sse2_psrai_d, MVT::i32),
13186 ValOp, BaseShAmt);
13187 if (VT == MVT::v8i16)
13188 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13189 DAG.getConstant(Intrinsic::x86_sse2_psrai_w, MVT::i32),
13190 ValOp, BaseShAmt);
13191 break;
13192 case ISD::SRL:
13193 if (VT == MVT::v2i64)
13194 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13195 DAG.getConstant(Intrinsic::x86_sse2_psrli_q, MVT::i32),
13196 ValOp, BaseShAmt);
13197 if (VT == MVT::v4i32)
13198 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13199 DAG.getConstant(Intrinsic::x86_sse2_psrli_d, MVT::i32),
13200 ValOp, BaseShAmt);
13201 if (VT == MVT::v8i16)
13202 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
13203 DAG.getConstant(Intrinsic::x86_sse2_psrli_w, MVT::i32),
13204 ValOp, BaseShAmt);
13205 break;
13206 }
13207 return SDValue();
13208 }
13209
13210
13211 // CMPEQCombine - Recognize the distinctive (AND (setcc ...) (setcc ..))
13212 // where both setccs reference the same FP CMP, and rewrite for CMPEQSS
13213 // and friends. Likewise for OR -> CMPNEQSS.
CMPEQCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13214 static SDValue CMPEQCombine(SDNode *N, SelectionDAG &DAG,
13215 TargetLowering::DAGCombinerInfo &DCI,
13216 const X86Subtarget *Subtarget) {
13217 unsigned opcode;
13218
13219 // SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
13220 // we're requiring SSE2 for both.
13221 if (Subtarget->hasXMMInt() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
13222 SDValue N0 = N->getOperand(0);
13223 SDValue N1 = N->getOperand(1);
13224 SDValue CMP0 = N0->getOperand(1);
13225 SDValue CMP1 = N1->getOperand(1);
13226 DebugLoc DL = N->getDebugLoc();
13227
13228 // The SETCCs should both refer to the same CMP.
13229 if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
13230 return SDValue();
13231
13232 SDValue CMP00 = CMP0->getOperand(0);
13233 SDValue CMP01 = CMP0->getOperand(1);
13234 EVT VT = CMP00.getValueType();
13235
13236 if (VT == MVT::f32 || VT == MVT::f64) {
13237 bool ExpectingFlags = false;
13238 // Check for any users that want flags:
13239 for (SDNode::use_iterator UI = N->use_begin(),
13240 UE = N->use_end();
13241 !ExpectingFlags && UI != UE; ++UI)
13242 switch (UI->getOpcode()) {
13243 default:
13244 case ISD::BR_CC:
13245 case ISD::BRCOND:
13246 case ISD::SELECT:
13247 ExpectingFlags = true;
13248 break;
13249 case ISD::CopyToReg:
13250 case ISD::SIGN_EXTEND:
13251 case ISD::ZERO_EXTEND:
13252 case ISD::ANY_EXTEND:
13253 break;
13254 }
13255
13256 if (!ExpectingFlags) {
13257 enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
13258 enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
13259
13260 if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
13261 X86::CondCode tmp = cc0;
13262 cc0 = cc1;
13263 cc1 = tmp;
13264 }
13265
13266 if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
13267 (cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
13268 bool is64BitFP = (CMP00.getValueType() == MVT::f64);
13269 X86ISD::NodeType NTOperator = is64BitFP ?
13270 X86ISD::FSETCCsd : X86ISD::FSETCCss;
13271 // FIXME: need symbolic constants for these magic numbers.
13272 // See X86ATTInstPrinter.cpp:printSSECC().
13273 unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
13274 SDValue OnesOrZeroesF = DAG.getNode(NTOperator, DL, MVT::f32, CMP00, CMP01,
13275 DAG.getConstant(x86cc, MVT::i8));
13276 SDValue OnesOrZeroesI = DAG.getNode(ISD::BITCAST, DL, MVT::i32,
13277 OnesOrZeroesF);
13278 SDValue ANDed = DAG.getNode(ISD::AND, DL, MVT::i32, OnesOrZeroesI,
13279 DAG.getConstant(1, MVT::i32));
13280 SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8, ANDed);
13281 return OneBitOfTruth;
13282 }
13283 }
13284 }
13285 }
13286 return SDValue();
13287 }
13288
13289 /// CanFoldXORWithAllOnes - Test whether the XOR operand is a AllOnes vector
13290 /// so it can be folded inside ANDNP.
CanFoldXORWithAllOnes(const SDNode * N)13291 static bool CanFoldXORWithAllOnes(const SDNode *N) {
13292 EVT VT = N->getValueType(0);
13293
13294 // Match direct AllOnes for 128 and 256-bit vectors
13295 if (ISD::isBuildVectorAllOnes(N))
13296 return true;
13297
13298 // Look through a bit convert.
13299 if (N->getOpcode() == ISD::BITCAST)
13300 N = N->getOperand(0).getNode();
13301
13302 // Sometimes the operand may come from a insert_subvector building a 256-bit
13303 // allones vector
13304 if (VT.getSizeInBits() == 256 &&
13305 N->getOpcode() == ISD::INSERT_SUBVECTOR) {
13306 SDValue V1 = N->getOperand(0);
13307 SDValue V2 = N->getOperand(1);
13308
13309 if (V1.getOpcode() == ISD::INSERT_SUBVECTOR &&
13310 V1.getOperand(0).getOpcode() == ISD::UNDEF &&
13311 ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) &&
13312 ISD::isBuildVectorAllOnes(V2.getNode()))
13313 return true;
13314 }
13315
13316 return false;
13317 }
13318
PerformAndCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13319 static SDValue PerformAndCombine(SDNode *N, SelectionDAG &DAG,
13320 TargetLowering::DAGCombinerInfo &DCI,
13321 const X86Subtarget *Subtarget) {
13322 if (DCI.isBeforeLegalizeOps())
13323 return SDValue();
13324
13325 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13326 if (R.getNode())
13327 return R;
13328
13329 EVT VT = N->getValueType(0);
13330
13331 // Create ANDN instructions
13332 if (Subtarget->hasBMI() && (VT == MVT::i32 || VT == MVT::i64)) {
13333 SDValue N0 = N->getOperand(0);
13334 SDValue N1 = N->getOperand(1);
13335 DebugLoc DL = N->getDebugLoc();
13336
13337 // Check LHS for not
13338 if (N0.getOpcode() == ISD::XOR && isAllOnes(N0.getOperand(1)))
13339 return DAG.getNode(X86ISD::ANDN, DL, VT, N0.getOperand(0), N1);
13340 // Check RHS for not
13341 if (N1.getOpcode() == ISD::XOR && isAllOnes(N1.getOperand(1)))
13342 return DAG.getNode(X86ISD::ANDN, DL, VT, N1.getOperand(0), N0);
13343
13344 return SDValue();
13345 }
13346
13347 // Want to form ANDNP nodes:
13348 // 1) In the hopes of then easily combining them with OR and AND nodes
13349 // to form PBLEND/PSIGN.
13350 // 2) To match ANDN packed intrinsics
13351 if (VT != MVT::v2i64 && VT != MVT::v4i64)
13352 return SDValue();
13353
13354 SDValue N0 = N->getOperand(0);
13355 SDValue N1 = N->getOperand(1);
13356 DebugLoc DL = N->getDebugLoc();
13357
13358 // Check LHS for vnot
13359 if (N0.getOpcode() == ISD::XOR &&
13360 //ISD::isBuildVectorAllOnes(N0.getOperand(1).getNode()))
13361 CanFoldXORWithAllOnes(N0.getOperand(1).getNode()))
13362 return DAG.getNode(X86ISD::ANDNP, DL, VT, N0.getOperand(0), N1);
13363
13364 // Check RHS for vnot
13365 if (N1.getOpcode() == ISD::XOR &&
13366 //ISD::isBuildVectorAllOnes(N1.getOperand(1).getNode()))
13367 CanFoldXORWithAllOnes(N1.getOperand(1).getNode()))
13368 return DAG.getNode(X86ISD::ANDNP, DL, VT, N1.getOperand(0), N0);
13369
13370 return SDValue();
13371 }
13372
PerformOrCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI,const X86Subtarget * Subtarget)13373 static SDValue PerformOrCombine(SDNode *N, SelectionDAG &DAG,
13374 TargetLowering::DAGCombinerInfo &DCI,
13375 const X86Subtarget *Subtarget) {
13376 if (DCI.isBeforeLegalizeOps())
13377 return SDValue();
13378
13379 SDValue R = CMPEQCombine(N, DAG, DCI, Subtarget);
13380 if (R.getNode())
13381 return R;
13382
13383 EVT VT = N->getValueType(0);
13384 if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64 && VT != MVT::v2i64)
13385 return SDValue();
13386
13387 SDValue N0 = N->getOperand(0);
13388 SDValue N1 = N->getOperand(1);
13389
13390 // look for psign/blend
13391 if (Subtarget->hasSSSE3() || Subtarget->hasAVX()) {
13392 if (VT == MVT::v2i64) {
13393 // Canonicalize pandn to RHS
13394 if (N0.getOpcode() == X86ISD::ANDNP)
13395 std::swap(N0, N1);
13396 // or (and (m, x), (pandn m, y))
13397 if (N0.getOpcode() == ISD::AND && N1.getOpcode() == X86ISD::ANDNP) {
13398 SDValue Mask = N1.getOperand(0);
13399 SDValue X = N1.getOperand(1);
13400 SDValue Y;
13401 if (N0.getOperand(0) == Mask)
13402 Y = N0.getOperand(1);
13403 if (N0.getOperand(1) == Mask)
13404 Y = N0.getOperand(0);
13405
13406 // Check to see if the mask appeared in both the AND and ANDNP and
13407 if (!Y.getNode())
13408 return SDValue();
13409
13410 // Validate that X, Y, and Mask are BIT_CONVERTS, and see through them.
13411 if (Mask.getOpcode() != ISD::BITCAST ||
13412 X.getOpcode() != ISD::BITCAST ||
13413 Y.getOpcode() != ISD::BITCAST)
13414 return SDValue();
13415
13416 // Look through mask bitcast.
13417 Mask = Mask.getOperand(0);
13418 EVT MaskVT = Mask.getValueType();
13419
13420 // Validate that the Mask operand is a vector sra node. The sra node
13421 // will be an intrinsic.
13422 if (Mask.getOpcode() != ISD::INTRINSIC_WO_CHAIN)
13423 return SDValue();
13424
13425 // FIXME: what to do for bytes, since there is a psignb/pblendvb, but
13426 // there is no psrai.b
13427 switch (cast<ConstantSDNode>(Mask.getOperand(0))->getZExtValue()) {
13428 case Intrinsic::x86_sse2_psrai_w:
13429 case Intrinsic::x86_sse2_psrai_d:
13430 break;
13431 default: return SDValue();
13432 }
13433
13434 // Check that the SRA is all signbits.
13435 SDValue SraC = Mask.getOperand(2);
13436 unsigned SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
13437 unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
13438 if ((SraAmt + 1) != EltBits)
13439 return SDValue();
13440
13441 DebugLoc DL = N->getDebugLoc();
13442
13443 // Now we know we at least have a plendvb with the mask val. See if
13444 // we can form a psignb/w/d.
13445 // psign = x.type == y.type == mask.type && y = sub(0, x);
13446 X = X.getOperand(0);
13447 Y = Y.getOperand(0);
13448 if (Y.getOpcode() == ISD::SUB && Y.getOperand(1) == X &&
13449 ISD::isBuildVectorAllZeros(Y.getOperand(0).getNode()) &&
13450 X.getValueType() == MaskVT && X.getValueType() == Y.getValueType()){
13451 unsigned Opc = 0;
13452 switch (EltBits) {
13453 case 8: Opc = X86ISD::PSIGNB; break;
13454 case 16: Opc = X86ISD::PSIGNW; break;
13455 case 32: Opc = X86ISD::PSIGND; break;
13456 default: break;
13457 }
13458 if (Opc) {
13459 SDValue Sign = DAG.getNode(Opc, DL, MaskVT, X, Mask.getOperand(1));
13460 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Sign);
13461 }
13462 }
13463 // PBLENDVB only available on SSE 4.1
13464 if (!(Subtarget->hasSSE41() || Subtarget->hasAVX()))
13465 return SDValue();
13466
13467 X = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, X);
13468 Y = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Y);
13469 Mask = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Mask);
13470 Mask = DAG.getNode(ISD::VSELECT, DL, MVT::v16i8, Mask, X, Y);
13471 return DAG.getNode(ISD::BITCAST, DL, MVT::v2i64, Mask);
13472 }
13473 }
13474 }
13475
13476 // fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
13477 if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
13478 std::swap(N0, N1);
13479 if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
13480 return SDValue();
13481 if (!N0.hasOneUse() || !N1.hasOneUse())
13482 return SDValue();
13483
13484 SDValue ShAmt0 = N0.getOperand(1);
13485 if (ShAmt0.getValueType() != MVT::i8)
13486 return SDValue();
13487 SDValue ShAmt1 = N1.getOperand(1);
13488 if (ShAmt1.getValueType() != MVT::i8)
13489 return SDValue();
13490 if (ShAmt0.getOpcode() == ISD::TRUNCATE)
13491 ShAmt0 = ShAmt0.getOperand(0);
13492 if (ShAmt1.getOpcode() == ISD::TRUNCATE)
13493 ShAmt1 = ShAmt1.getOperand(0);
13494
13495 DebugLoc DL = N->getDebugLoc();
13496 unsigned Opc = X86ISD::SHLD;
13497 SDValue Op0 = N0.getOperand(0);
13498 SDValue Op1 = N1.getOperand(0);
13499 if (ShAmt0.getOpcode() == ISD::SUB) {
13500 Opc = X86ISD::SHRD;
13501 std::swap(Op0, Op1);
13502 std::swap(ShAmt0, ShAmt1);
13503 }
13504
13505 unsigned Bits = VT.getSizeInBits();
13506 if (ShAmt1.getOpcode() == ISD::SUB) {
13507 SDValue Sum = ShAmt1.getOperand(0);
13508 if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
13509 SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
13510 if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
13511 ShAmt1Op1 = ShAmt1Op1.getOperand(0);
13512 if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
13513 return DAG.getNode(Opc, DL, VT,
13514 Op0, Op1,
13515 DAG.getNode(ISD::TRUNCATE, DL,
13516 MVT::i8, ShAmt0));
13517 }
13518 } else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
13519 ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
13520 if (ShAmt0C &&
13521 ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
13522 return DAG.getNode(Opc, DL, VT,
13523 N0.getOperand(0), N1.getOperand(0),
13524 DAG.getNode(ISD::TRUNCATE, DL,
13525 MVT::i8, ShAmt0));
13526 }
13527
13528 return SDValue();
13529 }
13530
13531 /// PerformLOADCombine - Do target-specific dag combines on LOAD nodes.
PerformLOADCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13532 static SDValue PerformLOADCombine(SDNode *N, SelectionDAG &DAG,
13533 const X86Subtarget *Subtarget) {
13534 LoadSDNode *Ld = cast<LoadSDNode>(N);
13535 EVT RegVT = Ld->getValueType(0);
13536 EVT MemVT = Ld->getMemoryVT();
13537 DebugLoc dl = Ld->getDebugLoc();
13538 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13539
13540 ISD::LoadExtType Ext = Ld->getExtensionType();
13541
13542 // If this is a vector EXT Load then attempt to optimize it using a
13543 // shuffle. We need SSE4 for the shuffles.
13544 // TODO: It is possible to support ZExt by zeroing the undef values
13545 // during the shuffle phase or after the shuffle.
13546 if (RegVT.isVector() && Ext == ISD::EXTLOAD && Subtarget->hasSSE41()) {
13547 assert(MemVT != RegVT && "Cannot extend to the same type");
13548 assert(MemVT.isVector() && "Must load a vector from memory");
13549
13550 unsigned NumElems = RegVT.getVectorNumElements();
13551 unsigned RegSz = RegVT.getSizeInBits();
13552 unsigned MemSz = MemVT.getSizeInBits();
13553 assert(RegSz > MemSz && "Register size must be greater than the mem size");
13554 // All sizes must be a power of two
13555 if (!isPowerOf2_32(RegSz * MemSz * NumElems)) return SDValue();
13556
13557 // Attempt to load the original value using a single load op.
13558 // Find a scalar type which is equal to the loaded word size.
13559 MVT SclrLoadTy = MVT::i8;
13560 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13561 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13562 MVT Tp = (MVT::SimpleValueType)tp;
13563 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() == MemSz) {
13564 SclrLoadTy = Tp;
13565 break;
13566 }
13567 }
13568
13569 // Proceed if a load word is found.
13570 if (SclrLoadTy.getSizeInBits() != MemSz) return SDValue();
13571
13572 EVT LoadUnitVecVT = EVT::getVectorVT(*DAG.getContext(), SclrLoadTy,
13573 RegSz/SclrLoadTy.getSizeInBits());
13574
13575 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
13576 RegSz/MemVT.getScalarType().getSizeInBits());
13577 // Can't shuffle using an illegal type.
13578 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13579
13580 // Perform a single load.
13581 SDValue ScalarLoad = DAG.getLoad(SclrLoadTy, dl, Ld->getChain(),
13582 Ld->getBasePtr(),
13583 Ld->getPointerInfo(), Ld->isVolatile(),
13584 Ld->isNonTemporal(), Ld->getAlignment());
13585
13586 // Insert the word loaded into a vector.
13587 SDValue ScalarInVector = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
13588 LoadUnitVecVT, ScalarLoad);
13589
13590 // Bitcast the loaded value to a vector of the original element type, in
13591 // the size of the target vector type.
13592 SDValue SlicedVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, ScalarInVector);
13593 unsigned SizeRatio = RegSz/MemSz;
13594
13595 // Redistribute the loaded elements into the different locations.
13596 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13597 for (unsigned i = 0; i < NumElems; i++) ShuffleVec[i*SizeRatio] = i;
13598
13599 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
13600 DAG.getUNDEF(SlicedVec.getValueType()),
13601 ShuffleVec.data());
13602
13603 // Bitcast to the requested type.
13604 Shuff = DAG.getNode(ISD::BITCAST, dl, RegVT, Shuff);
13605 // Replace the original load with the new sequence
13606 // and return the new chain.
13607 DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Shuff);
13608 return SDValue(ScalarLoad.getNode(), 1);
13609 }
13610
13611 return SDValue();
13612 }
13613
13614 /// PerformSTORECombine - Do target-specific dag combines on STORE nodes.
PerformSTORECombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13615 static SDValue PerformSTORECombine(SDNode *N, SelectionDAG &DAG,
13616 const X86Subtarget *Subtarget) {
13617 StoreSDNode *St = cast<StoreSDNode>(N);
13618 EVT VT = St->getValue().getValueType();
13619 EVT StVT = St->getMemoryVT();
13620 DebugLoc dl = St->getDebugLoc();
13621 SDValue StoredVal = St->getOperand(1);
13622 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13623
13624 // If we are saving a concatination of two XMM registers, perform two stores.
13625 // This is better in Sandy Bridge cause one 256-bit mem op is done via two
13626 // 128-bit ones. If in the future the cost becomes only one memory access the
13627 // first version would be better.
13628 if (VT.getSizeInBits() == 256 &&
13629 StoredVal.getNode()->getOpcode() == ISD::CONCAT_VECTORS &&
13630 StoredVal.getNumOperands() == 2) {
13631
13632 SDValue Value0 = StoredVal.getOperand(0);
13633 SDValue Value1 = StoredVal.getOperand(1);
13634
13635 SDValue Stride = DAG.getConstant(16, TLI.getPointerTy());
13636 SDValue Ptr0 = St->getBasePtr();
13637 SDValue Ptr1 = DAG.getNode(ISD::ADD, dl, Ptr0.getValueType(), Ptr0, Stride);
13638
13639 SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
13640 St->getPointerInfo(), St->isVolatile(),
13641 St->isNonTemporal(), St->getAlignment());
13642 SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
13643 St->getPointerInfo(), St->isVolatile(),
13644 St->isNonTemporal(), St->getAlignment());
13645 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
13646 }
13647
13648 // Optimize trunc store (of multiple scalars) to shuffle and store.
13649 // First, pack all of the elements in one place. Next, store to memory
13650 // in fewer chunks.
13651 if (St->isTruncatingStore() && VT.isVector()) {
13652 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13653 unsigned NumElems = VT.getVectorNumElements();
13654 assert(StVT != VT && "Cannot truncate to the same type");
13655 unsigned FromSz = VT.getVectorElementType().getSizeInBits();
13656 unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
13657
13658 // From, To sizes and ElemCount must be pow of two
13659 if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
13660 // We are going to use the original vector elt for storing.
13661 // Accumulated smaller vector elements must be a multiple of the store size.
13662 if (0 != (NumElems * FromSz) % ToSz) return SDValue();
13663
13664 unsigned SizeRatio = FromSz / ToSz;
13665
13666 assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
13667
13668 // Create a type on which we perform the shuffle
13669 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
13670 StVT.getScalarType(), NumElems*SizeRatio);
13671
13672 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
13673
13674 SDValue WideVec = DAG.getNode(ISD::BITCAST, dl, WideVecVT, St->getValue());
13675 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
13676 for (unsigned i = 0; i < NumElems; i++ ) ShuffleVec[i] = i * SizeRatio;
13677
13678 // Can't shuffle using an illegal type
13679 if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
13680
13681 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
13682 DAG.getUNDEF(WideVec.getValueType()),
13683 ShuffleVec.data());
13684 // At this point all of the data is stored at the bottom of the
13685 // register. We now need to save it to mem.
13686
13687 // Find the largest store unit
13688 MVT StoreType = MVT::i8;
13689 for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
13690 tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
13691 MVT Tp = (MVT::SimpleValueType)tp;
13692 if (TLI.isTypeLegal(Tp) && StoreType.getSizeInBits() < NumElems * ToSz)
13693 StoreType = Tp;
13694 }
13695
13696 // Bitcast the original vector into a vector of store-size units
13697 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
13698 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
13699 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
13700 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, dl, StoreVecVT, Shuff);
13701 SmallVector<SDValue, 8> Chains;
13702 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
13703 TLI.getPointerTy());
13704 SDValue Ptr = St->getBasePtr();
13705
13706 // Perform one or more big stores into memory.
13707 for (unsigned i = 0; i < (ToSz*NumElems)/StoreType.getSizeInBits() ; i++) {
13708 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
13709 StoreType, ShuffWide,
13710 DAG.getIntPtrConstant(i));
13711 SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
13712 St->getPointerInfo(), St->isVolatile(),
13713 St->isNonTemporal(), St->getAlignment());
13714 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
13715 Chains.push_back(Ch);
13716 }
13717
13718 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0],
13719 Chains.size());
13720 }
13721
13722
13723 // Turn load->store of MMX types into GPR load/stores. This avoids clobbering
13724 // the FP state in cases where an emms may be missing.
13725 // A preferable solution to the general problem is to figure out the right
13726 // places to insert EMMS. This qualifies as a quick hack.
13727
13728 // Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
13729 if (VT.getSizeInBits() != 64)
13730 return SDValue();
13731
13732 const Function *F = DAG.getMachineFunction().getFunction();
13733 bool NoImplicitFloatOps = F->hasFnAttr(Attribute::NoImplicitFloat);
13734 bool F64IsLegal = !UseSoftFloat && !NoImplicitFloatOps
13735 && Subtarget->hasXMMInt();
13736 if ((VT.isVector() ||
13737 (VT == MVT::i64 && F64IsLegal && !Subtarget->is64Bit())) &&
13738 isa<LoadSDNode>(St->getValue()) &&
13739 !cast<LoadSDNode>(St->getValue())->isVolatile() &&
13740 St->getChain().hasOneUse() && !St->isVolatile()) {
13741 SDNode* LdVal = St->getValue().getNode();
13742 LoadSDNode *Ld = 0;
13743 int TokenFactorIndex = -1;
13744 SmallVector<SDValue, 8> Ops;
13745 SDNode* ChainVal = St->getChain().getNode();
13746 // Must be a store of a load. We currently handle two cases: the load
13747 // is a direct child, and it's under an intervening TokenFactor. It is
13748 // possible to dig deeper under nested TokenFactors.
13749 if (ChainVal == LdVal)
13750 Ld = cast<LoadSDNode>(St->getChain());
13751 else if (St->getValue().hasOneUse() &&
13752 ChainVal->getOpcode() == ISD::TokenFactor) {
13753 for (unsigned i=0, e = ChainVal->getNumOperands(); i != e; ++i) {
13754 if (ChainVal->getOperand(i).getNode() == LdVal) {
13755 TokenFactorIndex = i;
13756 Ld = cast<LoadSDNode>(St->getValue());
13757 } else
13758 Ops.push_back(ChainVal->getOperand(i));
13759 }
13760 }
13761
13762 if (!Ld || !ISD::isNormalLoad(Ld))
13763 return SDValue();
13764
13765 // If this is not the MMX case, i.e. we are just turning i64 load/store
13766 // into f64 load/store, avoid the transformation if there are multiple
13767 // uses of the loaded value.
13768 if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
13769 return SDValue();
13770
13771 DebugLoc LdDL = Ld->getDebugLoc();
13772 DebugLoc StDL = N->getDebugLoc();
13773 // If we are a 64-bit capable x86, lower to a single movq load/store pair.
13774 // Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
13775 // pair instead.
13776 if (Subtarget->is64Bit() || F64IsLegal) {
13777 EVT LdVT = Subtarget->is64Bit() ? MVT::i64 : MVT::f64;
13778 SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
13779 Ld->getPointerInfo(), Ld->isVolatile(),
13780 Ld->isNonTemporal(), Ld->getAlignment());
13781 SDValue NewChain = NewLd.getValue(1);
13782 if (TokenFactorIndex != -1) {
13783 Ops.push_back(NewChain);
13784 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13785 Ops.size());
13786 }
13787 return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
13788 St->getPointerInfo(),
13789 St->isVolatile(), St->isNonTemporal(),
13790 St->getAlignment());
13791 }
13792
13793 // Otherwise, lower to two pairs of 32-bit loads / stores.
13794 SDValue LoAddr = Ld->getBasePtr();
13795 SDValue HiAddr = DAG.getNode(ISD::ADD, LdDL, MVT::i32, LoAddr,
13796 DAG.getConstant(4, MVT::i32));
13797
13798 SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
13799 Ld->getPointerInfo(),
13800 Ld->isVolatile(), Ld->isNonTemporal(),
13801 Ld->getAlignment());
13802 SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
13803 Ld->getPointerInfo().getWithOffset(4),
13804 Ld->isVolatile(), Ld->isNonTemporal(),
13805 MinAlign(Ld->getAlignment(), 4));
13806
13807 SDValue NewChain = LoLd.getValue(1);
13808 if (TokenFactorIndex != -1) {
13809 Ops.push_back(LoLd);
13810 Ops.push_back(HiLd);
13811 NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, &Ops[0],
13812 Ops.size());
13813 }
13814
13815 LoAddr = St->getBasePtr();
13816 HiAddr = DAG.getNode(ISD::ADD, StDL, MVT::i32, LoAddr,
13817 DAG.getConstant(4, MVT::i32));
13818
13819 SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
13820 St->getPointerInfo(),
13821 St->isVolatile(), St->isNonTemporal(),
13822 St->getAlignment());
13823 SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
13824 St->getPointerInfo().getWithOffset(4),
13825 St->isVolatile(),
13826 St->isNonTemporal(),
13827 MinAlign(St->getAlignment(), 4));
13828 return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
13829 }
13830 return SDValue();
13831 }
13832
13833 /// isHorizontalBinOp - Return 'true' if this vector operation is "horizontal"
13834 /// and return the operands for the horizontal operation in LHS and RHS. A
13835 /// horizontal operation performs the binary operation on successive elements
13836 /// of its first operand, then on successive elements of its second operand,
13837 /// returning the resulting values in a vector. For example, if
13838 /// A = < float a0, float a1, float a2, float a3 >
13839 /// and
13840 /// B = < float b0, float b1, float b2, float b3 >
13841 /// then the result of doing a horizontal operation on A and B is
13842 /// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
13843 /// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
13844 /// A horizontal-op B, for some already available A and B, and if so then LHS is
13845 /// set to A, RHS to B, and the routine returns 'true'.
13846 /// Note that the binary operation should have the property that if one of the
13847 /// operands is UNDEF then the result is UNDEF.
isHorizontalBinOp(SDValue & LHS,SDValue & RHS,bool isCommutative)13848 static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool isCommutative) {
13849 // Look for the following pattern: if
13850 // A = < float a0, float a1, float a2, float a3 >
13851 // B = < float b0, float b1, float b2, float b3 >
13852 // and
13853 // LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
13854 // RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
13855 // then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
13856 // which is A horizontal-op B.
13857
13858 // At least one of the operands should be a vector shuffle.
13859 if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
13860 RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
13861 return false;
13862
13863 EVT VT = LHS.getValueType();
13864 unsigned N = VT.getVectorNumElements();
13865
13866 // View LHS in the form
13867 // LHS = VECTOR_SHUFFLE A, B, LMask
13868 // If LHS is not a shuffle then pretend it is the shuffle
13869 // LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
13870 // NOTE: in what follows a default initialized SDValue represents an UNDEF of
13871 // type VT.
13872 SDValue A, B;
13873 SmallVector<int, 8> LMask(N);
13874 if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13875 if (LHS.getOperand(0).getOpcode() != ISD::UNDEF)
13876 A = LHS.getOperand(0);
13877 if (LHS.getOperand(1).getOpcode() != ISD::UNDEF)
13878 B = LHS.getOperand(1);
13879 cast<ShuffleVectorSDNode>(LHS.getNode())->getMask(LMask);
13880 } else {
13881 if (LHS.getOpcode() != ISD::UNDEF)
13882 A = LHS;
13883 for (unsigned i = 0; i != N; ++i)
13884 LMask[i] = i;
13885 }
13886
13887 // Likewise, view RHS in the form
13888 // RHS = VECTOR_SHUFFLE C, D, RMask
13889 SDValue C, D;
13890 SmallVector<int, 8> RMask(N);
13891 if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
13892 if (RHS.getOperand(0).getOpcode() != ISD::UNDEF)
13893 C = RHS.getOperand(0);
13894 if (RHS.getOperand(1).getOpcode() != ISD::UNDEF)
13895 D = RHS.getOperand(1);
13896 cast<ShuffleVectorSDNode>(RHS.getNode())->getMask(RMask);
13897 } else {
13898 if (RHS.getOpcode() != ISD::UNDEF)
13899 C = RHS;
13900 for (unsigned i = 0; i != N; ++i)
13901 RMask[i] = i;
13902 }
13903
13904 // Check that the shuffles are both shuffling the same vectors.
13905 if (!(A == C && B == D) && !(A == D && B == C))
13906 return false;
13907
13908 // If everything is UNDEF then bail out: it would be better to fold to UNDEF.
13909 if (!A.getNode() && !B.getNode())
13910 return false;
13911
13912 // If A and B occur in reverse order in RHS, then "swap" them (which means
13913 // rewriting the mask).
13914 if (A != C)
13915 for (unsigned i = 0; i != N; ++i) {
13916 unsigned Idx = RMask[i];
13917 if (Idx < N)
13918 RMask[i] += N;
13919 else if (Idx < 2*N)
13920 RMask[i] -= N;
13921 }
13922
13923 // At this point LHS and RHS are equivalent to
13924 // LHS = VECTOR_SHUFFLE A, B, LMask
13925 // RHS = VECTOR_SHUFFLE A, B, RMask
13926 // Check that the masks correspond to performing a horizontal operation.
13927 for (unsigned i = 0; i != N; ++i) {
13928 unsigned LIdx = LMask[i], RIdx = RMask[i];
13929
13930 // Ignore any UNDEF components.
13931 if (LIdx >= 2*N || RIdx >= 2*N || (!A.getNode() && (LIdx < N || RIdx < N))
13932 || (!B.getNode() && (LIdx >= N || RIdx >= N)))
13933 continue;
13934
13935 // Check that successive elements are being operated on. If not, this is
13936 // not a horizontal operation.
13937 if (!(LIdx == 2*i && RIdx == 2*i + 1) &&
13938 !(isCommutative && LIdx == 2*i + 1 && RIdx == 2*i))
13939 return false;
13940 }
13941
13942 LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
13943 RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
13944 return true;
13945 }
13946
13947 /// PerformFADDCombine - Do target-specific dag combines on floating point adds.
PerformFADDCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13948 static SDValue PerformFADDCombine(SDNode *N, SelectionDAG &DAG,
13949 const X86Subtarget *Subtarget) {
13950 EVT VT = N->getValueType(0);
13951 SDValue LHS = N->getOperand(0);
13952 SDValue RHS = N->getOperand(1);
13953
13954 // Try to synthesize horizontal adds from adds of shuffles.
13955 if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13956 (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13957 isHorizontalBinOp(LHS, RHS, true))
13958 return DAG.getNode(X86ISD::FHADD, N->getDebugLoc(), VT, LHS, RHS);
13959 return SDValue();
13960 }
13961
13962 /// PerformFSUBCombine - Do target-specific dag combines on floating point subs.
PerformFSUBCombine(SDNode * N,SelectionDAG & DAG,const X86Subtarget * Subtarget)13963 static SDValue PerformFSUBCombine(SDNode *N, SelectionDAG &DAG,
13964 const X86Subtarget *Subtarget) {
13965 EVT VT = N->getValueType(0);
13966 SDValue LHS = N->getOperand(0);
13967 SDValue RHS = N->getOperand(1);
13968
13969 // Try to synthesize horizontal subs from subs of shuffles.
13970 if ((Subtarget->hasSSE3() || Subtarget->hasAVX()) &&
13971 (VT == MVT::v4f32 || VT == MVT::v2f64) &&
13972 isHorizontalBinOp(LHS, RHS, false))
13973 return DAG.getNode(X86ISD::FHSUB, N->getDebugLoc(), VT, LHS, RHS);
13974 return SDValue();
13975 }
13976
13977 /// PerformFORCombine - Do target-specific dag combines on X86ISD::FOR and
13978 /// X86ISD::FXOR nodes.
PerformFORCombine(SDNode * N,SelectionDAG & DAG)13979 static SDValue PerformFORCombine(SDNode *N, SelectionDAG &DAG) {
13980 assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
13981 // F[X]OR(0.0, x) -> x
13982 // F[X]OR(x, 0.0) -> x
13983 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13984 if (C->getValueAPF().isPosZero())
13985 return N->getOperand(1);
13986 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
13987 if (C->getValueAPF().isPosZero())
13988 return N->getOperand(0);
13989 return SDValue();
13990 }
13991
13992 /// PerformFANDCombine - Do target-specific dag combines on X86ISD::FAND nodes.
PerformFANDCombine(SDNode * N,SelectionDAG & DAG)13993 static SDValue PerformFANDCombine(SDNode *N, SelectionDAG &DAG) {
13994 // FAND(0.0, x) -> 0.0
13995 // FAND(x, 0.0) -> 0.0
13996 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
13997 if (C->getValueAPF().isPosZero())
13998 return N->getOperand(0);
13999 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
14000 if (C->getValueAPF().isPosZero())
14001 return N->getOperand(1);
14002 return SDValue();
14003 }
14004
PerformBTCombine(SDNode * N,SelectionDAG & DAG,TargetLowering::DAGCombinerInfo & DCI)14005 static SDValue PerformBTCombine(SDNode *N,
14006 SelectionDAG &DAG,
14007 TargetLowering::DAGCombinerInfo &DCI) {
14008 // BT ignores high bits in the bit index operand.
14009 SDValue Op1 = N->getOperand(1);
14010 if (Op1.hasOneUse()) {
14011 unsigned BitWidth = Op1.getValueSizeInBits();
14012 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
14013 APInt KnownZero, KnownOne;
14014 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
14015 !DCI.isBeforeLegalizeOps());
14016 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
14017 if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
14018 TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
14019 DCI.CommitTargetLoweringOpt(TLO);
14020 }
14021 return SDValue();
14022 }
14023
PerformVZEXT_MOVLCombine(SDNode * N,SelectionDAG & DAG)14024 static SDValue PerformVZEXT_MOVLCombine(SDNode *N, SelectionDAG &DAG) {
14025 SDValue Op = N->getOperand(0);
14026 if (Op.getOpcode() == ISD::BITCAST)
14027 Op = Op.getOperand(0);
14028 EVT VT = N->getValueType(0), OpVT = Op.getValueType();
14029 if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
14030 VT.getVectorElementType().getSizeInBits() ==
14031 OpVT.getVectorElementType().getSizeInBits()) {
14032 return DAG.getNode(ISD::BITCAST, N->getDebugLoc(), VT, Op);
14033 }
14034 return SDValue();
14035 }
14036
PerformZExtCombine(SDNode * N,SelectionDAG & DAG)14037 static SDValue PerformZExtCombine(SDNode *N, SelectionDAG &DAG) {
14038 // (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
14039 // (and (i32 x86isd::setcc_carry), 1)
14040 // This eliminates the zext. This transformation is necessary because
14041 // ISD::SETCC is always legalized to i8.
14042 DebugLoc dl = N->getDebugLoc();
14043 SDValue N0 = N->getOperand(0);
14044 EVT VT = N->getValueType(0);
14045 if (N0.getOpcode() == ISD::AND &&
14046 N0.hasOneUse() &&
14047 N0.getOperand(0).hasOneUse()) {
14048 SDValue N00 = N0.getOperand(0);
14049 if (N00.getOpcode() != X86ISD::SETCC_CARRY)
14050 return SDValue();
14051 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
14052 if (!C || C->getZExtValue() != 1)
14053 return SDValue();
14054 return DAG.getNode(ISD::AND, dl, VT,
14055 DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
14056 N00.getOperand(0), N00.getOperand(1)),
14057 DAG.getConstant(1, VT));
14058 }
14059
14060 return SDValue();
14061 }
14062
14063 // Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
PerformSETCCCombine(SDNode * N,SelectionDAG & DAG)14064 static SDValue PerformSETCCCombine(SDNode *N, SelectionDAG &DAG) {
14065 unsigned X86CC = N->getConstantOperandVal(0);
14066 SDValue EFLAG = N->getOperand(1);
14067 DebugLoc DL = N->getDebugLoc();
14068
14069 // Materialize "setb reg" as "sbb reg,reg", since it can be extended without
14070 // a zext and produces an all-ones bit which is more useful than 0/1 in some
14071 // cases.
14072 if (X86CC == X86::COND_B)
14073 return DAG.getNode(ISD::AND, DL, MVT::i8,
14074 DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
14075 DAG.getConstant(X86CC, MVT::i8), EFLAG),
14076 DAG.getConstant(1, MVT::i8));
14077
14078 return SDValue();
14079 }
14080
PerformSINT_TO_FPCombine(SDNode * N,SelectionDAG & DAG,const X86TargetLowering * XTLI)14081 static SDValue PerformSINT_TO_FPCombine(SDNode *N, SelectionDAG &DAG,
14082 const X86TargetLowering *XTLI) {
14083 SDValue Op0 = N->getOperand(0);
14084 // Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
14085 // a 32-bit target where SSE doesn't support i64->FP operations.
14086 if (Op0.getOpcode() == ISD::LOAD) {
14087 LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
14088 EVT VT = Ld->getValueType(0);
14089 if (!Ld->isVolatile() && !N->getValueType(0).isVector() &&
14090 ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
14091 !XTLI->getSubtarget()->is64Bit() &&
14092 !DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
14093 SDValue FILDChain = XTLI->BuildFILD(SDValue(N, 0), Ld->getValueType(0),
14094 Ld->getChain(), Op0, DAG);
14095 DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
14096 return FILDChain;
14097 }
14098 }
14099 return SDValue();
14100 }
14101
14102 // Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
PerformADCCombine(SDNode * N,SelectionDAG & DAG,X86TargetLowering::DAGCombinerInfo & DCI)14103 static SDValue PerformADCCombine(SDNode *N, SelectionDAG &DAG,
14104 X86TargetLowering::DAGCombinerInfo &DCI) {
14105 // If the LHS and RHS of the ADC node are zero, then it can't overflow and
14106 // the result is either zero or one (depending on the input carry bit).
14107 // Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
14108 if (X86::isZeroNode(N->getOperand(0)) &&
14109 X86::isZeroNode(N->getOperand(1)) &&
14110 // We don't have a good way to replace an EFLAGS use, so only do this when
14111 // dead right now.
14112 SDValue(N, 1).use_empty()) {
14113 DebugLoc DL = N->getDebugLoc();
14114 EVT VT = N->getValueType(0);
14115 SDValue CarryOut = DAG.getConstant(0, N->getValueType(1));
14116 SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
14117 DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
14118 DAG.getConstant(X86::COND_B,MVT::i8),
14119 N->getOperand(2)),
14120 DAG.getConstant(1, VT));
14121 return DCI.CombineTo(N, Res1, CarryOut);
14122 }
14123
14124 return SDValue();
14125 }
14126
14127 // fold (add Y, (sete X, 0)) -> adc 0, Y
14128 // (add Y, (setne X, 0)) -> sbb -1, Y
14129 // (sub (sete X, 0), Y) -> sbb 0, Y
14130 // (sub (setne X, 0), Y) -> adc -1, Y
OptimizeConditionalInDecrement(SDNode * N,SelectionDAG & DAG)14131 static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
14132 DebugLoc DL = N->getDebugLoc();
14133
14134 // Look through ZExts.
14135 SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
14136 if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
14137 return SDValue();
14138
14139 SDValue SetCC = Ext.getOperand(0);
14140 if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
14141 return SDValue();
14142
14143 X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
14144 if (CC != X86::COND_E && CC != X86::COND_NE)
14145 return SDValue();
14146
14147 SDValue Cmp = SetCC.getOperand(1);
14148 if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
14149 !X86::isZeroNode(Cmp.getOperand(1)) ||
14150 !Cmp.getOperand(0).getValueType().isInteger())
14151 return SDValue();
14152
14153 SDValue CmpOp0 = Cmp.getOperand(0);
14154 SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
14155 DAG.getConstant(1, CmpOp0.getValueType()));
14156
14157 SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
14158 if (CC == X86::COND_NE)
14159 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
14160 DL, OtherVal.getValueType(), OtherVal,
14161 DAG.getConstant(-1ULL, OtherVal.getValueType()), NewCmp);
14162 return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
14163 DL, OtherVal.getValueType(), OtherVal,
14164 DAG.getConstant(0, OtherVal.getValueType()), NewCmp);
14165 }
14166
PerformSubCombine(SDNode * N,SelectionDAG & DAG)14167 static SDValue PerformSubCombine(SDNode *N, SelectionDAG &DAG) {
14168 SDValue Op0 = N->getOperand(0);
14169 SDValue Op1 = N->getOperand(1);
14170
14171 // X86 can't encode an immediate LHS of a sub. See if we can push the
14172 // negation into a preceding instruction.
14173 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
14174 // If the RHS of the sub is a XOR with one use and a constant, invert the
14175 // immediate. Then add one to the LHS of the sub so we can turn
14176 // X-Y -> X+~Y+1, saving one register.
14177 if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
14178 isa<ConstantSDNode>(Op1.getOperand(1))) {
14179 APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
14180 EVT VT = Op0.getValueType();
14181 SDValue NewXor = DAG.getNode(ISD::XOR, Op1.getDebugLoc(), VT,
14182 Op1.getOperand(0),
14183 DAG.getConstant(~XorC, VT));
14184 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT, NewXor,
14185 DAG.getConstant(C->getAPIntValue()+1, VT));
14186 }
14187 }
14188
14189 return OptimizeConditionalInDecrement(N, DAG);
14190 }
14191
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const14192 SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
14193 DAGCombinerInfo &DCI) const {
14194 SelectionDAG &DAG = DCI.DAG;
14195 switch (N->getOpcode()) {
14196 default: break;
14197 case ISD::EXTRACT_VECTOR_ELT:
14198 return PerformEXTRACT_VECTOR_ELTCombine(N, DAG, *this);
14199 case ISD::VSELECT:
14200 case ISD::SELECT: return PerformSELECTCombine(N, DAG, Subtarget);
14201 case ISD::BITCAST: return PerformBITCASTCombine(N, DAG);
14202 case X86ISD::CMOV: return PerformCMOVCombine(N, DAG, DCI);
14203 case ISD::ADD: return OptimizeConditionalInDecrement(N, DAG);
14204 case ISD::SUB: return PerformSubCombine(N, DAG);
14205 case X86ISD::ADC: return PerformADCCombine(N, DAG, DCI);
14206 case ISD::MUL: return PerformMulCombine(N, DAG, DCI);
14207 case ISD::SHL:
14208 case ISD::SRA:
14209 case ISD::SRL: return PerformShiftCombine(N, DAG, Subtarget);
14210 case ISD::AND: return PerformAndCombine(N, DAG, DCI, Subtarget);
14211 case ISD::OR: return PerformOrCombine(N, DAG, DCI, Subtarget);
14212 case ISD::LOAD: return PerformLOADCombine(N, DAG, Subtarget);
14213 case ISD::STORE: return PerformSTORECombine(N, DAG, Subtarget);
14214 case ISD::SINT_TO_FP: return PerformSINT_TO_FPCombine(N, DAG, this);
14215 case ISD::FADD: return PerformFADDCombine(N, DAG, Subtarget);
14216 case ISD::FSUB: return PerformFSUBCombine(N, DAG, Subtarget);
14217 case X86ISD::FXOR:
14218 case X86ISD::FOR: return PerformFORCombine(N, DAG);
14219 case X86ISD::FAND: return PerformFANDCombine(N, DAG);
14220 case X86ISD::BT: return PerformBTCombine(N, DAG, DCI);
14221 case X86ISD::VZEXT_MOVL: return PerformVZEXT_MOVLCombine(N, DAG);
14222 case ISD::ZERO_EXTEND: return PerformZExtCombine(N, DAG);
14223 case X86ISD::SETCC: return PerformSETCCCombine(N, DAG);
14224 case X86ISD::SHUFPS: // Handle all target specific shuffles
14225 case X86ISD::SHUFPD:
14226 case X86ISD::PALIGN:
14227 case X86ISD::PUNPCKHBW:
14228 case X86ISD::PUNPCKHWD:
14229 case X86ISD::PUNPCKHDQ:
14230 case X86ISD::PUNPCKHQDQ:
14231 case X86ISD::UNPCKHPS:
14232 case X86ISD::UNPCKHPD:
14233 case X86ISD::VUNPCKHPSY:
14234 case X86ISD::VUNPCKHPDY:
14235 case X86ISD::PUNPCKLBW:
14236 case X86ISD::PUNPCKLWD:
14237 case X86ISD::PUNPCKLDQ:
14238 case X86ISD::PUNPCKLQDQ:
14239 case X86ISD::UNPCKLPS:
14240 case X86ISD::UNPCKLPD:
14241 case X86ISD::VUNPCKLPSY:
14242 case X86ISD::VUNPCKLPDY:
14243 case X86ISD::MOVHLPS:
14244 case X86ISD::MOVLHPS:
14245 case X86ISD::PSHUFD:
14246 case X86ISD::PSHUFHW:
14247 case X86ISD::PSHUFLW:
14248 case X86ISD::MOVSS:
14249 case X86ISD::MOVSD:
14250 case X86ISD::VPERMILPS:
14251 case X86ISD::VPERMILPSY:
14252 case X86ISD::VPERMILPD:
14253 case X86ISD::VPERMILPDY:
14254 case X86ISD::VPERM2F128:
14255 case ISD::VECTOR_SHUFFLE: return PerformShuffleCombine(N, DAG, DCI,Subtarget);
14256 }
14257
14258 return SDValue();
14259 }
14260
14261 /// isTypeDesirableForOp - Return true if the target has native support for
14262 /// the specified value type and it is 'desirable' to use the type for the
14263 /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
14264 /// instruction encodings are longer and some i16 instructions are slow.
isTypeDesirableForOp(unsigned Opc,EVT VT) const14265 bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
14266 if (!isTypeLegal(VT))
14267 return false;
14268 if (VT != MVT::i16)
14269 return true;
14270
14271 switch (Opc) {
14272 default:
14273 return true;
14274 case ISD::LOAD:
14275 case ISD::SIGN_EXTEND:
14276 case ISD::ZERO_EXTEND:
14277 case ISD::ANY_EXTEND:
14278 case ISD::SHL:
14279 case ISD::SRL:
14280 case ISD::SUB:
14281 case ISD::ADD:
14282 case ISD::MUL:
14283 case ISD::AND:
14284 case ISD::OR:
14285 case ISD::XOR:
14286 return false;
14287 }
14288 }
14289
14290 /// IsDesirableToPromoteOp - This method query the target whether it is
14291 /// beneficial for dag combiner to promote the specified node. If true, it
14292 /// should return the desired promotion type by reference.
IsDesirableToPromoteOp(SDValue Op,EVT & PVT) const14293 bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
14294 EVT VT = Op.getValueType();
14295 if (VT != MVT::i16)
14296 return false;
14297
14298 bool Promote = false;
14299 bool Commute = false;
14300 switch (Op.getOpcode()) {
14301 default: break;
14302 case ISD::LOAD: {
14303 LoadSDNode *LD = cast<LoadSDNode>(Op);
14304 // If the non-extending load has a single use and it's not live out, then it
14305 // might be folded.
14306 if (LD->getExtensionType() == ISD::NON_EXTLOAD /*&&
14307 Op.hasOneUse()*/) {
14308 for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
14309 UE = Op.getNode()->use_end(); UI != UE; ++UI) {
14310 // The only case where we'd want to promote LOAD (rather then it being
14311 // promoted as an operand is when it's only use is liveout.
14312 if (UI->getOpcode() != ISD::CopyToReg)
14313 return false;
14314 }
14315 }
14316 Promote = true;
14317 break;
14318 }
14319 case ISD::SIGN_EXTEND:
14320 case ISD::ZERO_EXTEND:
14321 case ISD::ANY_EXTEND:
14322 Promote = true;
14323 break;
14324 case ISD::SHL:
14325 case ISD::SRL: {
14326 SDValue N0 = Op.getOperand(0);
14327 // Look out for (store (shl (load), x)).
14328 if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
14329 return false;
14330 Promote = true;
14331 break;
14332 }
14333 case ISD::ADD:
14334 case ISD::MUL:
14335 case ISD::AND:
14336 case ISD::OR:
14337 case ISD::XOR:
14338 Commute = true;
14339 // fallthrough
14340 case ISD::SUB: {
14341 SDValue N0 = Op.getOperand(0);
14342 SDValue N1 = Op.getOperand(1);
14343 if (!Commute && MayFoldLoad(N1))
14344 return false;
14345 // Avoid disabling potential load folding opportunities.
14346 if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
14347 return false;
14348 if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
14349 return false;
14350 Promote = true;
14351 }
14352 }
14353
14354 PVT = MVT::i32;
14355 return Promote;
14356 }
14357
14358 //===----------------------------------------------------------------------===//
14359 // X86 Inline Assembly Support
14360 //===----------------------------------------------------------------------===//
14361
ExpandInlineAsm(CallInst * CI) const14362 bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
14363 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
14364
14365 std::string AsmStr = IA->getAsmString();
14366
14367 // TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
14368 SmallVector<StringRef, 4> AsmPieces;
14369 SplitString(AsmStr, AsmPieces, ";\n");
14370
14371 switch (AsmPieces.size()) {
14372 default: return false;
14373 case 1:
14374 AsmStr = AsmPieces[0];
14375 AsmPieces.clear();
14376 SplitString(AsmStr, AsmPieces, " \t"); // Split with whitespace.
14377
14378 // FIXME: this should verify that we are targeting a 486 or better. If not,
14379 // we will turn this bswap into something that will be lowered to logical ops
14380 // instead of emitting the bswap asm. For now, we don't support 486 or lower
14381 // so don't worry about this.
14382 // bswap $0
14383 if (AsmPieces.size() == 2 &&
14384 (AsmPieces[0] == "bswap" ||
14385 AsmPieces[0] == "bswapq" ||
14386 AsmPieces[0] == "bswapl") &&
14387 (AsmPieces[1] == "$0" ||
14388 AsmPieces[1] == "${0:q}")) {
14389 // No need to check constraints, nothing other than the equivalent of
14390 // "=r,0" would be valid here.
14391 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14392 if (!Ty || Ty->getBitWidth() % 16 != 0)
14393 return false;
14394 return IntrinsicLowering::LowerToByteSwap(CI);
14395 }
14396 // rorw $$8, ${0:w} --> llvm.bswap.i16
14397 if (CI->getType()->isIntegerTy(16) &&
14398 AsmPieces.size() == 3 &&
14399 (AsmPieces[0] == "rorw" || AsmPieces[0] == "rolw") &&
14400 AsmPieces[1] == "$$8," &&
14401 AsmPieces[2] == "${0:w}" &&
14402 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14403 AsmPieces.clear();
14404 const std::string &ConstraintsStr = IA->getConstraintString();
14405 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14406 std::sort(AsmPieces.begin(), AsmPieces.end());
14407 if (AsmPieces.size() == 4 &&
14408 AsmPieces[0] == "~{cc}" &&
14409 AsmPieces[1] == "~{dirflag}" &&
14410 AsmPieces[2] == "~{flags}" &&
14411 AsmPieces[3] == "~{fpsr}") {
14412 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14413 if (!Ty || Ty->getBitWidth() % 16 != 0)
14414 return false;
14415 return IntrinsicLowering::LowerToByteSwap(CI);
14416 }
14417 }
14418 break;
14419 case 3:
14420 if (CI->getType()->isIntegerTy(32) &&
14421 IA->getConstraintString().compare(0, 5, "=r,0,") == 0) {
14422 SmallVector<StringRef, 4> Words;
14423 SplitString(AsmPieces[0], Words, " \t,");
14424 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14425 Words[2] == "${0:w}") {
14426 Words.clear();
14427 SplitString(AsmPieces[1], Words, " \t,");
14428 if (Words.size() == 3 && Words[0] == "rorl" && Words[1] == "$$16" &&
14429 Words[2] == "$0") {
14430 Words.clear();
14431 SplitString(AsmPieces[2], Words, " \t,");
14432 if (Words.size() == 3 && Words[0] == "rorw" && Words[1] == "$$8" &&
14433 Words[2] == "${0:w}") {
14434 AsmPieces.clear();
14435 const std::string &ConstraintsStr = IA->getConstraintString();
14436 SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
14437 std::sort(AsmPieces.begin(), AsmPieces.end());
14438 if (AsmPieces.size() == 4 &&
14439 AsmPieces[0] == "~{cc}" &&
14440 AsmPieces[1] == "~{dirflag}" &&
14441 AsmPieces[2] == "~{flags}" &&
14442 AsmPieces[3] == "~{fpsr}") {
14443 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14444 if (!Ty || Ty->getBitWidth() % 16 != 0)
14445 return false;
14446 return IntrinsicLowering::LowerToByteSwap(CI);
14447 }
14448 }
14449 }
14450 }
14451 }
14452
14453 if (CI->getType()->isIntegerTy(64)) {
14454 InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
14455 if (Constraints.size() >= 2 &&
14456 Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
14457 Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
14458 // bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
14459 SmallVector<StringRef, 4> Words;
14460 SplitString(AsmPieces[0], Words, " \t");
14461 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%eax") {
14462 Words.clear();
14463 SplitString(AsmPieces[1], Words, " \t");
14464 if (Words.size() == 2 && Words[0] == "bswap" && Words[1] == "%edx") {
14465 Words.clear();
14466 SplitString(AsmPieces[2], Words, " \t,");
14467 if (Words.size() == 3 && Words[0] == "xchgl" && Words[1] == "%eax" &&
14468 Words[2] == "%edx") {
14469 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
14470 if (!Ty || Ty->getBitWidth() % 16 != 0)
14471 return false;
14472 return IntrinsicLowering::LowerToByteSwap(CI);
14473 }
14474 }
14475 }
14476 }
14477 }
14478 break;
14479 }
14480 return false;
14481 }
14482
14483
14484
14485 /// getConstraintType - Given a constraint letter, return the type of
14486 /// constraint it is for this target.
14487 X86TargetLowering::ConstraintType
getConstraintType(const std::string & Constraint) const14488 X86TargetLowering::getConstraintType(const std::string &Constraint) const {
14489 if (Constraint.size() == 1) {
14490 switch (Constraint[0]) {
14491 case 'R':
14492 case 'q':
14493 case 'Q':
14494 case 'f':
14495 case 't':
14496 case 'u':
14497 case 'y':
14498 case 'x':
14499 case 'Y':
14500 case 'l':
14501 return C_RegisterClass;
14502 case 'a':
14503 case 'b':
14504 case 'c':
14505 case 'd':
14506 case 'S':
14507 case 'D':
14508 case 'A':
14509 return C_Register;
14510 case 'I':
14511 case 'J':
14512 case 'K':
14513 case 'L':
14514 case 'M':
14515 case 'N':
14516 case 'G':
14517 case 'C':
14518 case 'e':
14519 case 'Z':
14520 return C_Other;
14521 default:
14522 break;
14523 }
14524 }
14525 return TargetLowering::getConstraintType(Constraint);
14526 }
14527
14528 /// Examine constraint type and operand type and determine a weight value.
14529 /// This object must already have been set up with the operand type
14530 /// and the current alternative constraint selected.
14531 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const14532 X86TargetLowering::getSingleConstraintMatchWeight(
14533 AsmOperandInfo &info, const char *constraint) const {
14534 ConstraintWeight weight = CW_Invalid;
14535 Value *CallOperandVal = info.CallOperandVal;
14536 // If we don't have a value, we can't do a match,
14537 // but allow it at the lowest weight.
14538 if (CallOperandVal == NULL)
14539 return CW_Default;
14540 Type *type = CallOperandVal->getType();
14541 // Look at the constraint type.
14542 switch (*constraint) {
14543 default:
14544 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
14545 case 'R':
14546 case 'q':
14547 case 'Q':
14548 case 'a':
14549 case 'b':
14550 case 'c':
14551 case 'd':
14552 case 'S':
14553 case 'D':
14554 case 'A':
14555 if (CallOperandVal->getType()->isIntegerTy())
14556 weight = CW_SpecificReg;
14557 break;
14558 case 'f':
14559 case 't':
14560 case 'u':
14561 if (type->isFloatingPointTy())
14562 weight = CW_SpecificReg;
14563 break;
14564 case 'y':
14565 if (type->isX86_MMXTy() && Subtarget->hasMMX())
14566 weight = CW_SpecificReg;
14567 break;
14568 case 'x':
14569 case 'Y':
14570 if ((type->getPrimitiveSizeInBits() == 128) && Subtarget->hasXMM())
14571 weight = CW_Register;
14572 break;
14573 case 'I':
14574 if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
14575 if (C->getZExtValue() <= 31)
14576 weight = CW_Constant;
14577 }
14578 break;
14579 case 'J':
14580 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14581 if (C->getZExtValue() <= 63)
14582 weight = CW_Constant;
14583 }
14584 break;
14585 case 'K':
14586 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14587 if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
14588 weight = CW_Constant;
14589 }
14590 break;
14591 case 'L':
14592 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14593 if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
14594 weight = CW_Constant;
14595 }
14596 break;
14597 case 'M':
14598 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14599 if (C->getZExtValue() <= 3)
14600 weight = CW_Constant;
14601 }
14602 break;
14603 case 'N':
14604 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14605 if (C->getZExtValue() <= 0xff)
14606 weight = CW_Constant;
14607 }
14608 break;
14609 case 'G':
14610 case 'C':
14611 if (dyn_cast<ConstantFP>(CallOperandVal)) {
14612 weight = CW_Constant;
14613 }
14614 break;
14615 case 'e':
14616 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14617 if ((C->getSExtValue() >= -0x80000000LL) &&
14618 (C->getSExtValue() <= 0x7fffffffLL))
14619 weight = CW_Constant;
14620 }
14621 break;
14622 case 'Z':
14623 if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
14624 if (C->getZExtValue() <= 0xffffffff)
14625 weight = CW_Constant;
14626 }
14627 break;
14628 }
14629 return weight;
14630 }
14631
14632 /// LowerXConstraint - try to replace an X constraint, which matches anything,
14633 /// with another that has more specific requirements based on the type of the
14634 /// corresponding operand.
14635 const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const14636 LowerXConstraint(EVT ConstraintVT) const {
14637 // FP X constraints get lowered to SSE1/2 registers if available, otherwise
14638 // 'f' like normal targets.
14639 if (ConstraintVT.isFloatingPoint()) {
14640 if (Subtarget->hasXMMInt())
14641 return "Y";
14642 if (Subtarget->hasXMM())
14643 return "x";
14644 }
14645
14646 return TargetLowering::LowerXConstraint(ConstraintVT);
14647 }
14648
14649 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
14650 /// vector. If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,std::string & Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const14651 void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
14652 std::string &Constraint,
14653 std::vector<SDValue>&Ops,
14654 SelectionDAG &DAG) const {
14655 SDValue Result(0, 0);
14656
14657 // Only support length 1 constraints for now.
14658 if (Constraint.length() > 1) return;
14659
14660 char ConstraintLetter = Constraint[0];
14661 switch (ConstraintLetter) {
14662 default: break;
14663 case 'I':
14664 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14665 if (C->getZExtValue() <= 31) {
14666 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14667 break;
14668 }
14669 }
14670 return;
14671 case 'J':
14672 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14673 if (C->getZExtValue() <= 63) {
14674 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14675 break;
14676 }
14677 }
14678 return;
14679 case 'K':
14680 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14681 if ((int8_t)C->getSExtValue() == C->getSExtValue()) {
14682 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14683 break;
14684 }
14685 }
14686 return;
14687 case 'N':
14688 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14689 if (C->getZExtValue() <= 255) {
14690 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14691 break;
14692 }
14693 }
14694 return;
14695 case 'e': {
14696 // 32-bit signed value
14697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14698 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14699 C->getSExtValue())) {
14700 // Widen to 64 bits here to get it sign extended.
14701 Result = DAG.getTargetConstant(C->getSExtValue(), MVT::i64);
14702 break;
14703 }
14704 // FIXME gcc accepts some relocatable values here too, but only in certain
14705 // memory models; it's complicated.
14706 }
14707 return;
14708 }
14709 case 'Z': {
14710 // 32-bit unsigned value
14711 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
14712 if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
14713 C->getZExtValue())) {
14714 Result = DAG.getTargetConstant(C->getZExtValue(), Op.getValueType());
14715 break;
14716 }
14717 }
14718 // FIXME gcc accepts some relocatable values here too, but only in certain
14719 // memory models; it's complicated.
14720 return;
14721 }
14722 case 'i': {
14723 // Literal immediates are always ok.
14724 if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
14725 // Widen to 64 bits here to get it sign extended.
14726 Result = DAG.getTargetConstant(CST->getSExtValue(), MVT::i64);
14727 break;
14728 }
14729
14730 // In any sort of PIC mode addresses need to be computed at runtime by
14731 // adding in a register or some sort of table lookup. These can't
14732 // be used as immediates.
14733 if (Subtarget->isPICStyleGOT() || Subtarget->isPICStyleStubPIC())
14734 return;
14735
14736 // If we are in non-pic codegen mode, we allow the address of a global (with
14737 // an optional displacement) to be used with 'i'.
14738 GlobalAddressSDNode *GA = 0;
14739 int64_t Offset = 0;
14740
14741 // Match either (GA), (GA+C), (GA+C1+C2), etc.
14742 while (1) {
14743 if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
14744 Offset += GA->getOffset();
14745 break;
14746 } else if (Op.getOpcode() == ISD::ADD) {
14747 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14748 Offset += C->getZExtValue();
14749 Op = Op.getOperand(0);
14750 continue;
14751 }
14752 } else if (Op.getOpcode() == ISD::SUB) {
14753 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
14754 Offset += -C->getZExtValue();
14755 Op = Op.getOperand(0);
14756 continue;
14757 }
14758 }
14759
14760 // Otherwise, this isn't something we can handle, reject it.
14761 return;
14762 }
14763
14764 const GlobalValue *GV = GA->getGlobal();
14765 // If we require an extra load to get this address, as in PIC mode, we
14766 // can't accept it.
14767 if (isGlobalStubReference(Subtarget->ClassifyGlobalReference(GV,
14768 getTargetMachine())))
14769 return;
14770
14771 Result = DAG.getTargetGlobalAddress(GV, Op.getDebugLoc(),
14772 GA->getValueType(0), Offset);
14773 break;
14774 }
14775 }
14776
14777 if (Result.getNode()) {
14778 Ops.push_back(Result);
14779 return;
14780 }
14781 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
14782 }
14783
14784 std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string & Constraint,EVT VT) const14785 X86TargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
14786 EVT VT) const {
14787 // First, see if this is a constraint that directly corresponds to an LLVM
14788 // register class.
14789 if (Constraint.size() == 1) {
14790 // GCC Constraint Letters
14791 switch (Constraint[0]) {
14792 default: break;
14793 // TODO: Slight differences here in allocation order and leaving
14794 // RIP in the class. Do they matter any more here than they do
14795 // in the normal allocation?
14796 case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
14797 if (Subtarget->is64Bit()) {
14798 if (VT == MVT::i32 || VT == MVT::f32)
14799 return std::make_pair(0U, X86::GR32RegisterClass);
14800 else if (VT == MVT::i16)
14801 return std::make_pair(0U, X86::GR16RegisterClass);
14802 else if (VT == MVT::i8 || VT == MVT::i1)
14803 return std::make_pair(0U, X86::GR8RegisterClass);
14804 else if (VT == MVT::i64 || VT == MVT::f64)
14805 return std::make_pair(0U, X86::GR64RegisterClass);
14806 break;
14807 }
14808 // 32-bit fallthrough
14809 case 'Q': // Q_REGS
14810 if (VT == MVT::i32 || VT == MVT::f32)
14811 return std::make_pair(0U, X86::GR32_ABCDRegisterClass);
14812 else if (VT == MVT::i16)
14813 return std::make_pair(0U, X86::GR16_ABCDRegisterClass);
14814 else if (VT == MVT::i8 || VT == MVT::i1)
14815 return std::make_pair(0U, X86::GR8_ABCD_LRegisterClass);
14816 else if (VT == MVT::i64)
14817 return std::make_pair(0U, X86::GR64_ABCDRegisterClass);
14818 break;
14819 case 'r': // GENERAL_REGS
14820 case 'l': // INDEX_REGS
14821 if (VT == MVT::i8 || VT == MVT::i1)
14822 return std::make_pair(0U, X86::GR8RegisterClass);
14823 if (VT == MVT::i16)
14824 return std::make_pair(0U, X86::GR16RegisterClass);
14825 if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget->is64Bit())
14826 return std::make_pair(0U, X86::GR32RegisterClass);
14827 return std::make_pair(0U, X86::GR64RegisterClass);
14828 case 'R': // LEGACY_REGS
14829 if (VT == MVT::i8 || VT == MVT::i1)
14830 return std::make_pair(0U, X86::GR8_NOREXRegisterClass);
14831 if (VT == MVT::i16)
14832 return std::make_pair(0U, X86::GR16_NOREXRegisterClass);
14833 if (VT == MVT::i32 || !Subtarget->is64Bit())
14834 return std::make_pair(0U, X86::GR32_NOREXRegisterClass);
14835 return std::make_pair(0U, X86::GR64_NOREXRegisterClass);
14836 case 'f': // FP Stack registers.
14837 // If SSE is enabled for this VT, use f80 to ensure the isel moves the
14838 // value to the correct fpstack register class.
14839 if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
14840 return std::make_pair(0U, X86::RFP32RegisterClass);
14841 if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
14842 return std::make_pair(0U, X86::RFP64RegisterClass);
14843 return std::make_pair(0U, X86::RFP80RegisterClass);
14844 case 'y': // MMX_REGS if MMX allowed.
14845 if (!Subtarget->hasMMX()) break;
14846 return std::make_pair(0U, X86::VR64RegisterClass);
14847 case 'Y': // SSE_REGS if SSE2 allowed
14848 if (!Subtarget->hasXMMInt()) break;
14849 // FALL THROUGH.
14850 case 'x': // SSE_REGS if SSE1 allowed
14851 if (!Subtarget->hasXMM()) break;
14852
14853 switch (VT.getSimpleVT().SimpleTy) {
14854 default: break;
14855 // Scalar SSE types.
14856 case MVT::f32:
14857 case MVT::i32:
14858 return std::make_pair(0U, X86::FR32RegisterClass);
14859 case MVT::f64:
14860 case MVT::i64:
14861 return std::make_pair(0U, X86::FR64RegisterClass);
14862 // Vector types.
14863 case MVT::v16i8:
14864 case MVT::v8i16:
14865 case MVT::v4i32:
14866 case MVT::v2i64:
14867 case MVT::v4f32:
14868 case MVT::v2f64:
14869 return std::make_pair(0U, X86::VR128RegisterClass);
14870 }
14871 break;
14872 }
14873 }
14874
14875 // Use the default implementation in TargetLowering to convert the register
14876 // constraint into a member of a register class.
14877 std::pair<unsigned, const TargetRegisterClass*> Res;
14878 Res = TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
14879
14880 // Not found as a standard register?
14881 if (Res.second == 0) {
14882 // Map st(0) -> st(7) -> ST0
14883 if (Constraint.size() == 7 && Constraint[0] == '{' &&
14884 tolower(Constraint[1]) == 's' &&
14885 tolower(Constraint[2]) == 't' &&
14886 Constraint[3] == '(' &&
14887 (Constraint[4] >= '0' && Constraint[4] <= '7') &&
14888 Constraint[5] == ')' &&
14889 Constraint[6] == '}') {
14890
14891 Res.first = X86::ST0+Constraint[4]-'0';
14892 Res.second = X86::RFP80RegisterClass;
14893 return Res;
14894 }
14895
14896 // GCC allows "st(0)" to be called just plain "st".
14897 if (StringRef("{st}").equals_lower(Constraint)) {
14898 Res.first = X86::ST0;
14899 Res.second = X86::RFP80RegisterClass;
14900 return Res;
14901 }
14902
14903 // flags -> EFLAGS
14904 if (StringRef("{flags}").equals_lower(Constraint)) {
14905 Res.first = X86::EFLAGS;
14906 Res.second = X86::CCRRegisterClass;
14907 return Res;
14908 }
14909
14910 // 'A' means EAX + EDX.
14911 if (Constraint == "A") {
14912 Res.first = X86::EAX;
14913 Res.second = X86::GR32_ADRegisterClass;
14914 return Res;
14915 }
14916 return Res;
14917 }
14918
14919 // Otherwise, check to see if this is a register class of the wrong value
14920 // type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
14921 // turn into {ax},{dx}.
14922 if (Res.second->hasType(VT))
14923 return Res; // Correct type already, nothing to do.
14924
14925 // All of the single-register GCC register classes map their values onto
14926 // 16-bit register pieces "ax","dx","cx","bx","si","di","bp","sp". If we
14927 // really want an 8-bit or 32-bit register, map to the appropriate register
14928 // class and return the appropriate register.
14929 if (Res.second == X86::GR16RegisterClass) {
14930 if (VT == MVT::i8) {
14931 unsigned DestReg = 0;
14932 switch (Res.first) {
14933 default: break;
14934 case X86::AX: DestReg = X86::AL; break;
14935 case X86::DX: DestReg = X86::DL; break;
14936 case X86::CX: DestReg = X86::CL; break;
14937 case X86::BX: DestReg = X86::BL; break;
14938 }
14939 if (DestReg) {
14940 Res.first = DestReg;
14941 Res.second = X86::GR8RegisterClass;
14942 }
14943 } else if (VT == MVT::i32) {
14944 unsigned DestReg = 0;
14945 switch (Res.first) {
14946 default: break;
14947 case X86::AX: DestReg = X86::EAX; break;
14948 case X86::DX: DestReg = X86::EDX; break;
14949 case X86::CX: DestReg = X86::ECX; break;
14950 case X86::BX: DestReg = X86::EBX; break;
14951 case X86::SI: DestReg = X86::ESI; break;
14952 case X86::DI: DestReg = X86::EDI; break;
14953 case X86::BP: DestReg = X86::EBP; break;
14954 case X86::SP: DestReg = X86::ESP; break;
14955 }
14956 if (DestReg) {
14957 Res.first = DestReg;
14958 Res.second = X86::GR32RegisterClass;
14959 }
14960 } else if (VT == MVT::i64) {
14961 unsigned DestReg = 0;
14962 switch (Res.first) {
14963 default: break;
14964 case X86::AX: DestReg = X86::RAX; break;
14965 case X86::DX: DestReg = X86::RDX; break;
14966 case X86::CX: DestReg = X86::RCX; break;
14967 case X86::BX: DestReg = X86::RBX; break;
14968 case X86::SI: DestReg = X86::RSI; break;
14969 case X86::DI: DestReg = X86::RDI; break;
14970 case X86::BP: DestReg = X86::RBP; break;
14971 case X86::SP: DestReg = X86::RSP; break;
14972 }
14973 if (DestReg) {
14974 Res.first = DestReg;
14975 Res.second = X86::GR64RegisterClass;
14976 }
14977 }
14978 } else if (Res.second == X86::FR32RegisterClass ||
14979 Res.second == X86::FR64RegisterClass ||
14980 Res.second == X86::VR128RegisterClass) {
14981 // Handle references to XMM physical registers that got mapped into the
14982 // wrong class. This can happen with constraints like {xmm0} where the
14983 // target independent register mapper will just pick the first match it can
14984 // find, ignoring the required type.
14985 if (VT == MVT::f32)
14986 Res.second = X86::FR32RegisterClass;
14987 else if (VT == MVT::f64)
14988 Res.second = X86::FR64RegisterClass;
14989 else if (X86::VR128RegisterClass->hasType(VT))
14990 Res.second = X86::VR128RegisterClass;
14991 }
14992
14993 return Res;
14994 }
14995