• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.util.concurrent;
18 
19 import com.google.common.annotations.Beta;
20 import com.google.common.annotations.VisibleForTesting;
21 import com.google.common.base.MoreObjects;
22 import com.google.common.base.Preconditions;
23 import com.google.common.base.Supplier;
24 import com.google.common.collect.ImmutableList;
25 import com.google.common.collect.Iterables;
26 import com.google.common.collect.MapMaker;
27 import com.google.common.math.IntMath;
28 import com.google.common.primitives.Ints;
29 
30 import java.lang.ref.Reference;
31 import java.lang.ref.ReferenceQueue;
32 import java.lang.ref.WeakReference;
33 import java.math.RoundingMode;
34 import java.util.Arrays;
35 import java.util.Collections;
36 import java.util.List;
37 import java.util.concurrent.ConcurrentMap;
38 import java.util.concurrent.Semaphore;
39 import java.util.concurrent.atomic.AtomicReferenceArray;
40 import java.util.concurrent.locks.Lock;
41 import java.util.concurrent.locks.ReadWriteLock;
42 import java.util.concurrent.locks.ReentrantLock;
43 import java.util.concurrent.locks.ReentrantReadWriteLock;
44 
45 /**
46  * A striped {@code Lock/Semaphore/ReadWriteLock}. This offers the underlying lock striping
47  * similar to that of {@code ConcurrentHashMap} in a reusable form, and extends it for
48  * semaphores and read-write locks. Conceptually, lock striping is the technique of dividing a lock
49  * into many <i>stripes</i>, increasing the granularity of a single lock and allowing independent
50  * operations to lock different stripes and proceed concurrently, instead of creating contention
51  * for a single lock.
52  *
53  * <p>The guarantee provided by this class is that equal keys lead to the same lock (or semaphore),
54  * i.e. {@code if (key1.equals(key2))} then {@code striped.get(key1) == striped.get(key2)}
55  * (assuming {@link Object#hashCode()} is correctly implemented for the keys). Note
56  * that if {@code key1} is <strong>not</strong> equal to {@code key2}, it is <strong>not</strong>
57  * guaranteed that {@code striped.get(key1) != striped.get(key2)}; the elements might nevertheless
58  * be mapped to the same lock. The lower the number of stripes, the higher the probability of this
59  * happening.
60  *
61  * <p>There are three flavors of this class: {@code Striped<Lock>}, {@code Striped<Semaphore>},
62  * and {@code Striped<ReadWriteLock>}. For each type, two implementations are offered:
63  * {@linkplain #lock(int) strong} and {@linkplain #lazyWeakLock(int) weak}
64  * {@code Striped<Lock>}, {@linkplain #semaphore(int, int) strong} and {@linkplain
65  * #lazyWeakSemaphore(int, int) weak} {@code Striped<Semaphore>}, and {@linkplain
66  * #readWriteLock(int) strong} and {@linkplain #lazyWeakReadWriteLock(int) weak}
67  * {@code Striped<ReadWriteLock>}. <i>Strong</i> means that all stripes (locks/semaphores) are
68  * initialized eagerly, and are not reclaimed unless {@code Striped} itself is reclaimable.
69  * <i>Weak</i> means that locks/semaphores are created lazily, and they are allowed to be reclaimed
70  * if nobody is holding on to them. This is useful, for example, if one wants to create a {@code
71  * Striped<Lock>} of many locks, but worries that in most cases only a small portion of these
72  * would be in use.
73  *
74  * <p>Prior to this class, one might be tempted to use {@code Map<K, Lock>}, where {@code K}
75  * represents the task. This maximizes concurrency by having each unique key mapped to a unique
76  * lock, but also maximizes memory footprint. On the other extreme, one could use a single lock
77  * for all tasks, which minimizes memory footprint but also minimizes concurrency. Instead of
78  * choosing either of these extremes, {@code Striped} allows the user to trade between required
79  * concurrency and memory footprint. For example, if a set of tasks are CPU-bound, one could easily
80  * create a very compact {@code Striped<Lock>} of {@code availableProcessors() * 4} stripes,
81  * instead of possibly thousands of locks which could be created in a {@code Map<K, Lock>}
82  * structure.
83  *
84  * @author Dimitris Andreou
85  * @since 13.0
86  */
87 @Beta
88 public abstract class Striped<L> {
89   /**
90    * If there are at least this many stripes, we assume the memory usage of a ConcurrentMap will be
91    * smaller than a large array.  (This assumes that in the lazy case, most stripes are unused. As
92    * always, if many stripes are in use, a non-lazy striped makes more sense.)
93    */
94   private static final int LARGE_LAZY_CUTOFF = 1024;
95 
Striped()96   private Striped() {}
97 
98   /**
99    * Returns the stripe that corresponds to the passed key. It is always guaranteed that if
100    * {@code key1.equals(key2)}, then {@code get(key1) == get(key2)}.
101    *
102    * @param key an arbitrary, non-null key
103    * @return the stripe that the passed key corresponds to
104    */
get(Object key)105   public abstract L get(Object key);
106 
107   /**
108    * Returns the stripe at the specified index. Valid indexes are 0, inclusively, to
109    * {@code size()}, exclusively.
110    *
111    * @param index the index of the stripe to return; must be in {@code [0...size())}
112    * @return the stripe at the specified index
113    */
getAt(int index)114   public abstract L getAt(int index);
115 
116   /**
117    * Returns the index to which the given key is mapped, so that getAt(indexFor(key)) == get(key).
118    */
indexFor(Object key)119   abstract int indexFor(Object key);
120 
121   /**
122    * Returns the total number of stripes in this instance.
123    */
size()124   public abstract int size();
125 
126   /**
127    * Returns the stripes that correspond to the passed objects, in ascending (as per
128    * {@link #getAt(int)}) order. Thus, threads that use the stripes in the order returned
129    * by this method are guaranteed to not deadlock each other.
130    *
131    * <p>It should be noted that using a {@code Striped<L>} with relatively few stripes, and
132    * {@code bulkGet(keys)} with a relative large number of keys can cause an excessive number
133    * of shared stripes (much like the birthday paradox, where much fewer than anticipated birthdays
134    * are needed for a pair of them to match). Please consider carefully the implications of the
135    * number of stripes, the intended concurrency level, and the typical number of keys used in a
136    * {@code bulkGet(keys)} operation. See <a href="http://www.mathpages.com/home/kmath199.htm">Balls
137    * in Bins model</a> for mathematical formulas that can be used to estimate the probability of
138    * collisions.
139    *
140    * @param keys arbitrary non-null keys
141    * @return the stripes corresponding to the objects (one per each object, derived by delegating
142    *         to {@link #get(Object)}; may contain duplicates), in an increasing index order.
143    */
bulkGet(Iterable<?> keys)144   public Iterable<L> bulkGet(Iterable<?> keys) {
145     // Initially using the array to store the keys, then reusing it to store the respective L's
146     final Object[] array = Iterables.toArray(keys, Object.class);
147     if (array.length == 0) {
148       return ImmutableList.of();
149     }
150     int[] stripes = new int[array.length];
151     for (int i = 0; i < array.length; i++) {
152       stripes[i] = indexFor(array[i]);
153     }
154     Arrays.sort(stripes);
155     // optimize for runs of identical stripes
156     int previousStripe = stripes[0];
157     array[0] = getAt(previousStripe);
158     for (int i = 1; i < array.length; i++) {
159       int currentStripe = stripes[i];
160       if (currentStripe == previousStripe) {
161         array[i] = array[i - 1];
162       } else {
163         array[i] = getAt(currentStripe);
164         previousStripe = currentStripe;
165       }
166     }
167     /*
168      * Note that the returned Iterable holds references to the returned stripes, to avoid
169      * error-prone code like:
170      *
171      * Striped<Lock> stripedLock = Striped.lazyWeakXXX(...)'
172      * Iterable<Lock> locks = stripedLock.bulkGet(keys);
173      * for (Lock lock : locks) {
174      *   lock.lock();
175      * }
176      * operation();
177      * for (Lock lock : locks) {
178      *   lock.unlock();
179      * }
180      *
181      * If we only held the int[] stripes, translating it on the fly to L's, the original locks
182      * might be garbage collected after locking them, ending up in a huge mess.
183      */
184     @SuppressWarnings("unchecked") // we carefully replaced all keys with their respective L's
185     List<L> asList = (List<L>) Arrays.asList(array);
186     return Collections.unmodifiableList(asList);
187   }
188 
189   // Static factories
190 
191   /**
192    * Creates a {@code Striped<Lock>} with eagerly initialized, strongly referenced locks.
193    * Every lock is reentrant.
194    *
195    * @param stripes the minimum number of stripes (locks) required
196    * @return a new {@code Striped<Lock>}
197    */
lock(int stripes)198   public static Striped<Lock> lock(int stripes) {
199     return new CompactStriped<Lock>(stripes, new Supplier<Lock>() {
200       @Override public Lock get() {
201         return new PaddedLock();
202       }
203     });
204   }
205 
206   /**
207    * Creates a {@code Striped<Lock>} with lazily initialized, weakly referenced locks.
208    * Every lock is reentrant.
209    *
210    * @param stripes the minimum number of stripes (locks) required
211    * @return a new {@code Striped<Lock>}
212    */
213   public static Striped<Lock> lazyWeakLock(int stripes) {
214     return lazy(stripes, new Supplier<Lock>() {
215       @Override public Lock get() {
216         return new ReentrantLock(false);
217       }
218     });
219   }
220 
221   private static <L> Striped<L> lazy(int stripes, Supplier<L> supplier) {
222     return stripes < LARGE_LAZY_CUTOFF
223         ? new SmallLazyStriped<L>(stripes, supplier)
224         : new LargeLazyStriped<L>(stripes, supplier);
225   }
226 
227   /**
228    * Creates a {@code Striped<Semaphore>} with eagerly initialized, strongly referenced semaphores,
229    * with the specified number of permits.
230    *
231    * @param stripes the minimum number of stripes (semaphores) required
232    * @param permits the number of permits in each semaphore
233    * @return a new {@code Striped<Semaphore>}
234    */
235   public static Striped<Semaphore> semaphore(int stripes, final int permits) {
236     return new CompactStriped<Semaphore>(stripes, new Supplier<Semaphore>() {
237       @Override public Semaphore get() {
238         return new PaddedSemaphore(permits);
239       }
240     });
241   }
242 
243   /**
244    * Creates a {@code Striped<Semaphore>} with lazily initialized, weakly referenced semaphores,
245    * with the specified number of permits.
246    *
247    * @param stripes the minimum number of stripes (semaphores) required
248    * @param permits the number of permits in each semaphore
249    * @return a new {@code Striped<Semaphore>}
250    */
251   public static Striped<Semaphore> lazyWeakSemaphore(int stripes, final int permits) {
252     return lazy(stripes, new Supplier<Semaphore>() {
253       @Override public Semaphore get() {
254         return new Semaphore(permits, false);
255       }
256     });
257   }
258 
259   /**
260    * Creates a {@code Striped<ReadWriteLock>} with eagerly initialized, strongly referenced
261    * read-write locks. Every lock is reentrant.
262    *
263    * @param stripes the minimum number of stripes (locks) required
264    * @return a new {@code Striped<ReadWriteLock>}
265    */
266   public static Striped<ReadWriteLock> readWriteLock(int stripes) {
267     return new CompactStriped<ReadWriteLock>(stripes, READ_WRITE_LOCK_SUPPLIER);
268   }
269 
270   /**
271    * Creates a {@code Striped<ReadWriteLock>} with lazily initialized, weakly referenced
272    * read-write locks. Every lock is reentrant.
273    *
274    * @param stripes the minimum number of stripes (locks) required
275    * @return a new {@code Striped<ReadWriteLock>}
276    */
277   public static Striped<ReadWriteLock> lazyWeakReadWriteLock(int stripes) {
278     return lazy(stripes, READ_WRITE_LOCK_SUPPLIER);
279   }
280 
281   // ReentrantReadWriteLock is large enough to make padding probably unnecessary
282   private static final Supplier<ReadWriteLock> READ_WRITE_LOCK_SUPPLIER =
283       new Supplier<ReadWriteLock>() {
284     @Override public ReadWriteLock get() {
285       return new ReentrantReadWriteLock();
286     }
287   };
288 
289   private abstract static class PowerOfTwoStriped<L> extends Striped<L> {
290     /** Capacity (power of two) minus one, for fast mod evaluation */
291     final int mask;
292 
293     PowerOfTwoStriped(int stripes) {
294       Preconditions.checkArgument(stripes > 0, "Stripes must be positive");
295       this.mask = stripes > Ints.MAX_POWER_OF_TWO ? ALL_SET : ceilToPowerOfTwo(stripes) - 1;
296     }
297 
298     @Override final int indexFor(Object key) {
299       int hash = smear(key.hashCode());
300       return hash & mask;
301     }
302 
303     @Override public final L get(Object key) {
304       return getAt(indexFor(key));
305     }
306   }
307 
308   /**
309    * Implementation of Striped where 2^k stripes are represented as an array of the same length,
310    * eagerly initialized.
311    */
312   private static class CompactStriped<L> extends PowerOfTwoStriped<L> {
313     /** Size is a power of two. */
314     private final Object[] array;
315 
316     private CompactStriped(int stripes, Supplier<L> supplier) {
317       super(stripes);
318       Preconditions.checkArgument(stripes <= Ints.MAX_POWER_OF_TWO, "Stripes must be <= 2^30)");
319 
320       this.array = new Object[mask + 1];
321       for (int i = 0; i < array.length; i++) {
322         array[i] = supplier.get();
323       }
324     }
325 
326     @SuppressWarnings("unchecked") // we only put L's in the array
327     @Override public L getAt(int index) {
328       return (L) array[index];
329     }
330 
331     @Override public int size() {
332       return array.length;
333     }
334   }
335 
336   /**
337    * Implementation of Striped where up to 2^k stripes can be represented, using an
338    * AtomicReferenceArray of size 2^k. To map a user key into a stripe, we take a k-bit slice of the
339    * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
340    */
341   @VisibleForTesting static class SmallLazyStriped<L> extends PowerOfTwoStriped<L> {
342     final AtomicReferenceArray<ArrayReference<? extends L>> locks;
343     final Supplier<L> supplier;
344     final int size;
345     final ReferenceQueue<L> queue = new ReferenceQueue<L>();
346 
347     SmallLazyStriped(int stripes, Supplier<L> supplier) {
348       super(stripes);
349       this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
350       this.locks = new AtomicReferenceArray<ArrayReference<? extends L>>(size);
351       this.supplier = supplier;
352     }
353 
354     @Override public L getAt(int index) {
355       if (size != Integer.MAX_VALUE) {
356         Preconditions.checkElementIndex(index, size());
357       } // else no check necessary, all index values are valid
358       ArrayReference<? extends L> existingRef = locks.get(index);
359       L existing = existingRef == null ? null : existingRef.get();
360       if (existing != null) {
361         return existing;
362       }
363       L created = supplier.get();
364       ArrayReference<L> newRef = new ArrayReference<L>(created, index, queue);
365       while (!locks.compareAndSet(index, existingRef, newRef)) {
366         // we raced, we need to re-read and try again
367         existingRef = locks.get(index);
368         existing = existingRef == null ? null : existingRef.get();
369         if (existing != null) {
370           return existing;
371         }
372       }
373       drainQueue();
374       return created;
375     }
376 
377     // N.B. Draining the queue is only necessary to ensure that we don't accumulate empty references
378     // in the array.  We could skip this if we decide we don't care about holding on to Reference
379     // objects indefinitely.
380     private void drainQueue() {
381       Reference<? extends L> ref;
382       while ((ref = queue.poll()) != null) {
383         // We only ever register ArrayReferences with the queue so this is always safe.
384         ArrayReference<? extends L> arrayRef = (ArrayReference<? extends L>) ref;
385         // Try to clear out the array slot, n.b. if we fail that is fine, in either case the
386         // arrayRef will be out of the array after this step.
387         locks.compareAndSet(arrayRef.index, arrayRef, null);
388       }
389     }
390 
391     @Override public int size() {
392       return size;
393     }
394 
395     private static final class ArrayReference<L> extends WeakReference<L> {
396       final int index;
397 
398       ArrayReference(L referent, int index, ReferenceQueue<L> queue) {
399         super(referent, queue);
400         this.index = index;
401       }
402     }
403   }
404 
405   /**
406    * Implementation of Striped where up to 2^k stripes can be represented, using a ConcurrentMap
407    * where the key domain is [0..2^k). To map a user key into a stripe, we take a k-bit slice of the
408    * user key's (smeared) hashCode(). The stripes are lazily initialized and are weakly referenced.
409    */
410   @VisibleForTesting static class LargeLazyStriped<L> extends PowerOfTwoStriped<L> {
411     final ConcurrentMap<Integer, L> locks;
412     final Supplier<L> supplier;
413     final int size;
414 
415     LargeLazyStriped(int stripes, Supplier<L> supplier) {
416       super(stripes);
417       this.size = (mask == ALL_SET) ? Integer.MAX_VALUE : mask + 1;
418       this.supplier = supplier;
419       this.locks = new MapMaker().weakValues().makeMap();
420     }
421 
422     @Override public L getAt(int index) {
423       if (size != Integer.MAX_VALUE) {
424         Preconditions.checkElementIndex(index, size());
425       } // else no check necessary, all index values are valid
426       L existing = locks.get(index);
427       if (existing != null) {
428         return existing;
429       }
430       L created = supplier.get();
431       existing = locks.putIfAbsent(index, created);
432       return MoreObjects.firstNonNull(existing, created);
433     }
434 
435     @Override public int size() {
436       return size;
437     }
438   }
439 
440   /**
441    * A bit mask were all bits are set.
442    */
443   private static final int ALL_SET = ~0;
444 
445   private static int ceilToPowerOfTwo(int x) {
446     return 1 << IntMath.log2(x, RoundingMode.CEILING);
447   }
448 
449   /*
450    * This method was written by Doug Lea with assistance from members of JCP
451    * JSR-166 Expert Group and released to the public domain, as explained at
452    * http://creativecommons.org/licenses/publicdomain
453    *
454    * As of 2010/06/11, this method is identical to the (package private) hash
455    * method in OpenJDK 7's java.util.HashMap class.
456    */
457   // Copied from java/com/google/common/collect/Hashing.java
458   private static int smear(int hashCode) {
459     hashCode ^= (hashCode >>> 20) ^ (hashCode >>> 12);
460     return hashCode ^ (hashCode >>> 7) ^ (hashCode >>> 4);
461   }
462 
463   private static class PaddedLock extends ReentrantLock {
464     /*
465      * Padding from 40 into 64 bytes, same size as cache line. Might be beneficial to add
466      * a fourth long here, to minimize chance of interference between consecutive locks,
467      * but I couldn't observe any benefit from that.
468      */
469     @SuppressWarnings("unused")
470     long q1, q2, q3;
471 
472     PaddedLock() {
473       super(false);
474     }
475   }
476 
477   private static class PaddedSemaphore extends Semaphore {
478     // See PaddedReentrantLock comment
479     @SuppressWarnings("unused")
480     long q1, q2, q3;
481 
482     PaddedSemaphore(int permits) {
483       super(permits, false);
484     }
485   }
486 }
487