1 // © 2018 and later: Unicode, Inc. and others. 2 // License & terms of use: http://www.unicode.org/copyright.html 3 // 4 // From the double-conversion library. Original license: 5 // 6 // Copyright 2012 the V8 project authors. All rights reserved. 7 // Redistribution and use in source and binary forms, with or without 8 // modification, are permitted provided that the following conditions are 9 // met: 10 // 11 // * Redistributions of source code must retain the above copyright 12 // notice, this list of conditions and the following disclaimer. 13 // * Redistributions in binary form must reproduce the above 14 // copyright notice, this list of conditions and the following 15 // disclaimer in the documentation and/or other materials provided 16 // with the distribution. 17 // * Neither the name of Google Inc. nor the names of its 18 // contributors may be used to endorse or promote products derived 19 // from this software without specific prior written permission. 20 // 21 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 22 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 23 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 24 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 25 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 26 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 27 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 28 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 29 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 30 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 31 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 32 33 // ICU PATCH: ifdef around UCONFIG_NO_FORMATTING 34 #include "unicode/utypes.h" 35 #if !UCONFIG_NO_FORMATTING 36 37 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 38 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 39 40 // ICU PATCH: Customize header file paths for ICU. 41 42 #include "double-conversion-utils.h" 43 44 // ICU PATCH: Wrap in ICU namespace 45 U_NAMESPACE_BEGIN 46 47 namespace double_conversion { 48 49 class DoubleToStringConverter { 50 public: 51 #if 0 // not needed for ICU 52 // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint 53 // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the 54 // function returns false. 55 static const int kMaxFixedDigitsBeforePoint = 60; 56 static const int kMaxFixedDigitsAfterPoint = 60; 57 58 // When calling ToExponential with a requested_digits 59 // parameter > kMaxExponentialDigits then the function returns false. 60 static const int kMaxExponentialDigits = 120; 61 62 // When calling ToPrecision with a requested_digits 63 // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits 64 // then the function returns false. 65 static const int kMinPrecisionDigits = 1; 66 static const int kMaxPrecisionDigits = 120; 67 68 enum Flags { 69 NO_FLAGS = 0, 70 EMIT_POSITIVE_EXPONENT_SIGN = 1, 71 EMIT_TRAILING_DECIMAL_POINT = 2, 72 EMIT_TRAILING_ZERO_AFTER_POINT = 4, 73 UNIQUE_ZERO = 8 74 }; 75 76 // Flags should be a bit-or combination of the possible Flags-enum. 77 // - NO_FLAGS: no special flags. 78 // - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent 79 // form, emits a '+' for positive exponents. Example: 1.2e+2. 80 // - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is 81 // converted into decimal format then a trailing decimal point is appended. 82 // Example: 2345.0 is converted to "2345.". 83 // - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point 84 // emits a trailing '0'-character. This flag requires the 85 // EXMIT_TRAILING_DECIMAL_POINT flag. 86 // Example: 2345.0 is converted to "2345.0". 87 // - UNIQUE_ZERO: "-0.0" is converted to "0.0". 88 // 89 // Infinity symbol and nan_symbol provide the string representation for these 90 // special values. If the string is NULL and the special value is encountered 91 // then the conversion functions return false. 92 // 93 // The exponent_character is used in exponential representations. It is 94 // usually 'e' or 'E'. 95 // 96 // When converting to the shortest representation the converter will 97 // represent input numbers in decimal format if they are in the interval 98 // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[ 99 // (lower boundary included, greater boundary excluded). 100 // Example: with decimal_in_shortest_low = -6 and 101 // decimal_in_shortest_high = 21: 102 // ToShortest(0.000001) -> "0.000001" 103 // ToShortest(0.0000001) -> "1e-7" 104 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 105 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 106 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 107 // 108 // When converting to precision mode the converter may add 109 // max_leading_padding_zeroes before returning the number in exponential 110 // format. 111 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 112 // ToPrecision(0.0000012345, 2) -> "0.0000012" 113 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 114 // Similarily the converter may add up to 115 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 116 // returning an exponential representation. A zero added by the 117 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 118 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 119 // ToPrecision(230.0, 2) -> "230" 120 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 121 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 122 DoubleToStringConverter(int flags, 123 const char* infinity_symbol, 124 const char* nan_symbol, 125 char exponent_character, 126 int decimal_in_shortest_low, 127 int decimal_in_shortest_high, 128 int max_leading_padding_zeroes_in_precision_mode, 129 int max_trailing_padding_zeroes_in_precision_mode) 130 : flags_(flags), 131 infinity_symbol_(infinity_symbol), 132 nan_symbol_(nan_symbol), 133 exponent_character_(exponent_character), 134 decimal_in_shortest_low_(decimal_in_shortest_low), 135 decimal_in_shortest_high_(decimal_in_shortest_high), 136 max_leading_padding_zeroes_in_precision_mode_( 137 max_leading_padding_zeroes_in_precision_mode), 138 max_trailing_padding_zeroes_in_precision_mode_( 139 max_trailing_padding_zeroes_in_precision_mode) { 140 // When 'trailing zero after the point' is set, then 'trailing point' 141 // must be set too. 142 ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) || 143 !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0)); 144 } 145 146 // Returns a converter following the EcmaScript specification. 147 static const DoubleToStringConverter& EcmaScriptConverter(); 148 149 // Computes the shortest string of digits that correctly represent the input 150 // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high 151 // (see constructor) it then either returns a decimal representation, or an 152 // exponential representation. 153 // Example with decimal_in_shortest_low = -6, 154 // decimal_in_shortest_high = 21, 155 // EMIT_POSITIVE_EXPONENT_SIGN activated, and 156 // EMIT_TRAILING_DECIMAL_POINT deactived: 157 // ToShortest(0.000001) -> "0.000001" 158 // ToShortest(0.0000001) -> "1e-7" 159 // ToShortest(111111111111111111111.0) -> "111111111111111110000" 160 // ToShortest(100000000000000000000.0) -> "100000000000000000000" 161 // ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21" 162 // 163 // Note: the conversion may round the output if the returned string 164 // is accurate enough to uniquely identify the input-number. 165 // For example the most precise representation of the double 9e59 equals 166 // "899999999999999918767229449717619953810131273674690656206848", but 167 // the converter will return the shorter (but still correct) "9e59". 168 // 169 // Returns true if the conversion succeeds. The conversion always succeeds 170 // except when the input value is special and no infinity_symbol or 171 // nan_symbol has been given to the constructor. 172 bool ToShortest(double value, StringBuilder* result_builder) const { 173 return ToShortestIeeeNumber(value, result_builder, SHORTEST); 174 } 175 176 // Same as ToShortest, but for single-precision floats. 177 bool ToShortestSingle(float value, StringBuilder* result_builder) const { 178 return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE); 179 } 180 181 182 // Computes a decimal representation with a fixed number of digits after the 183 // decimal point. The last emitted digit is rounded. 184 // 185 // Examples: 186 // ToFixed(3.12, 1) -> "3.1" 187 // ToFixed(3.1415, 3) -> "3.142" 188 // ToFixed(1234.56789, 4) -> "1234.5679" 189 // ToFixed(1.23, 5) -> "1.23000" 190 // ToFixed(0.1, 4) -> "0.1000" 191 // ToFixed(1e30, 2) -> "1000000000000000019884624838656.00" 192 // ToFixed(0.1, 30) -> "0.100000000000000005551115123126" 193 // ToFixed(0.1, 17) -> "0.10000000000000001" 194 // 195 // If requested_digits equals 0, then the tail of the result depends on 196 // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT. 197 // Examples, for requested_digits == 0, 198 // let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be 199 // - false and false: then 123.45 -> 123 200 // 0.678 -> 1 201 // - true and false: then 123.45 -> 123. 202 // 0.678 -> 1. 203 // - true and true: then 123.45 -> 123.0 204 // 0.678 -> 1.0 205 // 206 // Returns true if the conversion succeeds. The conversion always succeeds 207 // except for the following cases: 208 // - the input value is special and no infinity_symbol or nan_symbol has 209 // been provided to the constructor, 210 // - 'value' > 10^kMaxFixedDigitsBeforePoint, or 211 // - 'requested_digits' > kMaxFixedDigitsAfterPoint. 212 // The last two conditions imply that the result will never contain more than 213 // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters 214 // (one additional character for the sign, and one for the decimal point). 215 bool ToFixed(double value, 216 int requested_digits, 217 StringBuilder* result_builder) const; 218 219 // Computes a representation in exponential format with requested_digits 220 // after the decimal point. The last emitted digit is rounded. 221 // If requested_digits equals -1, then the shortest exponential representation 222 // is computed. 223 // 224 // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and 225 // exponent_character set to 'e'. 226 // ToExponential(3.12, 1) -> "3.1e0" 227 // ToExponential(5.0, 3) -> "5.000e0" 228 // ToExponential(0.001, 2) -> "1.00e-3" 229 // ToExponential(3.1415, -1) -> "3.1415e0" 230 // ToExponential(3.1415, 4) -> "3.1415e0" 231 // ToExponential(3.1415, 3) -> "3.142e0" 232 // ToExponential(123456789000000, 3) -> "1.235e14" 233 // ToExponential(1000000000000000019884624838656.0, -1) -> "1e30" 234 // ToExponential(1000000000000000019884624838656.0, 32) -> 235 // "1.00000000000000001988462483865600e30" 236 // ToExponential(1234, 0) -> "1e3" 237 // 238 // Returns true if the conversion succeeds. The conversion always succeeds 239 // except for the following cases: 240 // - the input value is special and no infinity_symbol or nan_symbol has 241 // been provided to the constructor, 242 // - 'requested_digits' > kMaxExponentialDigits. 243 // The last condition implies that the result will never contain more than 244 // kMaxExponentialDigits + 8 characters (the sign, the digit before the 245 // decimal point, the decimal point, the exponent character, the 246 // exponent's sign, and at most 3 exponent digits). 247 bool ToExponential(double value, 248 int requested_digits, 249 StringBuilder* result_builder) const; 250 251 // Computes 'precision' leading digits of the given 'value' and returns them 252 // either in exponential or decimal format, depending on 253 // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the 254 // constructor). 255 // The last computed digit is rounded. 256 // 257 // Example with max_leading_padding_zeroes_in_precision_mode = 6. 258 // ToPrecision(0.0000012345, 2) -> "0.0000012" 259 // ToPrecision(0.00000012345, 2) -> "1.2e-7" 260 // Similarily the converter may add up to 261 // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid 262 // returning an exponential representation. A zero added by the 263 // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit. 264 // Examples for max_trailing_padding_zeroes_in_precision_mode = 1: 265 // ToPrecision(230.0, 2) -> "230" 266 // ToPrecision(230.0, 2) -> "230." with EMIT_TRAILING_DECIMAL_POINT. 267 // ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT. 268 // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no 269 // EMIT_TRAILING_ZERO_AFTER_POINT: 270 // ToPrecision(123450.0, 6) -> "123450" 271 // ToPrecision(123450.0, 5) -> "123450" 272 // ToPrecision(123450.0, 4) -> "123500" 273 // ToPrecision(123450.0, 3) -> "123000" 274 // ToPrecision(123450.0, 2) -> "1.2e5" 275 // 276 // Returns true if the conversion succeeds. The conversion always succeeds 277 // except for the following cases: 278 // - the input value is special and no infinity_symbol or nan_symbol has 279 // been provided to the constructor, 280 // - precision < kMinPericisionDigits 281 // - precision > kMaxPrecisionDigits 282 // The last condition implies that the result will never contain more than 283 // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the 284 // exponent character, the exponent's sign, and at most 3 exponent digits). 285 bool ToPrecision(double value, 286 int precision, 287 StringBuilder* result_builder) const; 288 #endif // not needed for ICU 289 290 enum DtoaMode { 291 // Produce the shortest correct representation. 292 // For example the output of 0.299999999999999988897 is (the less accurate 293 // but correct) 0.3. 294 SHORTEST, 295 // Same as SHORTEST, but for single-precision floats. 296 SHORTEST_SINGLE, 297 // Produce a fixed number of digits after the decimal point. 298 // For instance fixed(0.1, 4) becomes 0.1000 299 // If the input number is big, the output will be big. 300 FIXED, 301 // Fixed number of digits (independent of the decimal point). 302 PRECISION 303 }; 304 305 // The maximal number of digits that are needed to emit a double in base 10. 306 // A higher precision can be achieved by using more digits, but the shortest 307 // accurate representation of any double will never use more digits than 308 // kBase10MaximalLength. 309 // Note that DoubleToAscii null-terminates its input. So the given buffer 310 // should be at least kBase10MaximalLength + 1 characters long. 311 static const int kBase10MaximalLength = 17; 312 313 // Converts the given double 'v' to ascii. 'v' must not be NaN, +Infinity, or 314 // -Infinity. In SHORTEST_SINGLE-mode this restriction also applies to 'v' 315 // after it has been casted to a single-precision float. That is, in this 316 // mode static_cast<float>(v) must not be NaN, +Infinity or -Infinity. 317 // 318 // The result should be interpreted as buffer * 10^(point-length). 319 // 320 // The output depends on the given mode: 321 // - SHORTEST: produce the least amount of digits for which the internal 322 // identity requirement is still satisfied. If the digits are printed 323 // (together with the correct exponent) then reading this number will give 324 // 'v' again. The buffer will choose the representation that is closest to 325 // 'v'. If there are two at the same distance, than the one farther away 326 // from 0 is chosen (halfway cases - ending with 5 - are rounded up). 327 // In this mode the 'requested_digits' parameter is ignored. 328 // - SHORTEST_SINGLE: same as SHORTEST but with single-precision. 329 // - FIXED: produces digits necessary to print a given number with 330 // 'requested_digits' digits after the decimal point. The produced digits 331 // might be too short in which case the caller has to fill the remainder 332 // with '0's. 333 // Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2. 334 // Halfway cases are rounded towards +/-Infinity (away from 0). The call 335 // toFixed(0.15, 2) thus returns buffer="2", point=0. 336 // The returned buffer may contain digits that would be truncated from the 337 // shortest representation of the input. 338 // - PRECISION: produces 'requested_digits' where the first digit is not '0'. 339 // Even though the length of produced digits usually equals 340 // 'requested_digits', the function is allowed to return fewer digits, in 341 // which case the caller has to fill the missing digits with '0's. 342 // Halfway cases are again rounded away from 0. 343 // DoubleToAscii expects the given buffer to be big enough to hold all 344 // digits and a terminating null-character. In SHORTEST-mode it expects a 345 // buffer of at least kBase10MaximalLength + 1. In all other modes the 346 // requested_digits parameter and the padding-zeroes limit the size of the 347 // output. Don't forget the decimal point, the exponent character and the 348 // terminating null-character when computing the maximal output size. 349 // The given length is only used in debug mode to ensure the buffer is big 350 // enough. 351 // ICU PATCH: Export this as U_I18N_API for unit tests. 352 static void U_I18N_API DoubleToAscii(double v, 353 DtoaMode mode, 354 int requested_digits, 355 char* buffer, 356 int buffer_length, 357 bool* sign, 358 int* length, 359 int* point); 360 361 #if 0 // not needed for ICU 362 private: 363 // Implementation for ToShortest and ToShortestSingle. 364 bool ToShortestIeeeNumber(double value, 365 StringBuilder* result_builder, 366 DtoaMode mode) const; 367 368 // If the value is a special value (NaN or Infinity) constructs the 369 // corresponding string using the configured infinity/nan-symbol. 370 // If either of them is NULL or the value is not special then the 371 // function returns false. 372 bool HandleSpecialValues(double value, StringBuilder* result_builder) const; 373 // Constructs an exponential representation (i.e. 1.234e56). 374 // The given exponent assumes a decimal point after the first decimal digit. 375 void CreateExponentialRepresentation(const char* decimal_digits, 376 int length, 377 int exponent, 378 StringBuilder* result_builder) const; 379 // Creates a decimal representation (i.e 1234.5678). 380 void CreateDecimalRepresentation(const char* decimal_digits, 381 int length, 382 int decimal_point, 383 int digits_after_point, 384 StringBuilder* result_builder) const; 385 386 const int flags_; 387 const char* const infinity_symbol_; 388 const char* const nan_symbol_; 389 const char exponent_character_; 390 const int decimal_in_shortest_low_; 391 const int decimal_in_shortest_high_; 392 const int max_leading_padding_zeroes_in_precision_mode_; 393 const int max_trailing_padding_zeroes_in_precision_mode_; 394 #endif // not needed for ICU 395 396 DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter); 397 }; 398 399 400 class StringToDoubleConverter { 401 public: 402 // Enumeration for allowing octals and ignoring junk when converting 403 // strings to numbers. 404 enum Flags { 405 NO_FLAGS = 0, 406 ALLOW_HEX = 1, 407 ALLOW_OCTALS = 2, 408 ALLOW_TRAILING_JUNK = 4, 409 ALLOW_LEADING_SPACES = 8, 410 ALLOW_TRAILING_SPACES = 16, 411 ALLOW_SPACES_AFTER_SIGN = 32 412 }; 413 414 // Flags should be a bit-or combination of the possible Flags-enum. 415 // - NO_FLAGS: no special flags. 416 // - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers. 417 // Ex: StringToDouble("0x1234") -> 4660.0 418 // In StringToDouble("0x1234.56") the characters ".56" are trailing 419 // junk. The result of the call is hence dependent on 420 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 421 // With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK, 422 // the string will not be parsed as "0" followed by junk. 423 // 424 // - ALLOW_OCTALS: recognizes the prefix "0" for octals: 425 // If a sequence of octal digits starts with '0', then the number is 426 // read as octal integer. Octal numbers may only be integers. 427 // Ex: StringToDouble("01234") -> 668.0 428 // StringToDouble("012349") -> 12349.0 // Not a sequence of octal 429 // // digits. 430 // In StringToDouble("01234.56") the characters ".56" are trailing 431 // junk. The result of the call is hence dependent on 432 // the ALLOW_TRAILING_JUNK flag and/or the junk value. 433 // In StringToDouble("01234e56") the characters "e56" are trailing 434 // junk, too. 435 // - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of 436 // a double literal. 437 // - ALLOW_LEADING_SPACES: skip over leading whitespace, including spaces, 438 // new-lines, and tabs. 439 // - ALLOW_TRAILING_SPACES: ignore trailing whitespace. 440 // - ALLOW_SPACES_AFTER_SIGN: ignore whitespace after the sign. 441 // Ex: StringToDouble("- 123.2") -> -123.2. 442 // StringToDouble("+ 123.2") -> 123.2 443 // 444 // empty_string_value is returned when an empty string is given as input. 445 // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string 446 // containing only spaces is converted to the 'empty_string_value', too. 447 // 448 // junk_string_value is returned when 449 // a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not 450 // part of a double-literal) is found. 451 // b) ALLOW_TRAILING_JUNK is set, but the string does not start with a 452 // double literal. 453 // 454 // infinity_symbol and nan_symbol are strings that are used to detect 455 // inputs that represent infinity and NaN. They can be null, in which case 456 // they are ignored. 457 // The conversion routine first reads any possible signs. Then it compares the 458 // following character of the input-string with the first character of 459 // the infinity, and nan-symbol. If either matches, the function assumes, that 460 // a match has been found, and expects the following input characters to match 461 // the remaining characters of the special-value symbol. 462 // This means that the following restrictions apply to special-value symbols: 463 // - they must not start with signs ('+', or '-'), 464 // - they must not have the same first character. 465 // - they must not start with digits. 466 // 467 // Examples: 468 // flags = ALLOW_HEX | ALLOW_TRAILING_JUNK, 469 // empty_string_value = 0.0, 470 // junk_string_value = NaN, 471 // infinity_symbol = "infinity", 472 // nan_symbol = "nan": 473 // StringToDouble("0x1234") -> 4660.0. 474 // StringToDouble("0x1234K") -> 4660.0. 475 // StringToDouble("") -> 0.0 // empty_string_value. 476 // StringToDouble(" ") -> NaN // junk_string_value. 477 // StringToDouble(" 1") -> NaN // junk_string_value. 478 // StringToDouble("0x") -> NaN // junk_string_value. 479 // StringToDouble("-123.45") -> -123.45. 480 // StringToDouble("--123.45") -> NaN // junk_string_value. 481 // StringToDouble("123e45") -> 123e45. 482 // StringToDouble("123E45") -> 123e45. 483 // StringToDouble("123e+45") -> 123e45. 484 // StringToDouble("123E-45") -> 123e-45. 485 // StringToDouble("123e") -> 123.0 // trailing junk ignored. 486 // StringToDouble("123e-") -> 123.0 // trailing junk ignored. 487 // StringToDouble("+NaN") -> NaN // NaN string literal. 488 // StringToDouble("-infinity") -> -inf. // infinity literal. 489 // StringToDouble("Infinity") -> NaN // junk_string_value. 490 // 491 // flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES, 492 // empty_string_value = 0.0, 493 // junk_string_value = NaN, 494 // infinity_symbol = NULL, 495 // nan_symbol = NULL: 496 // StringToDouble("0x1234") -> NaN // junk_string_value. 497 // StringToDouble("01234") -> 668.0. 498 // StringToDouble("") -> 0.0 // empty_string_value. 499 // StringToDouble(" ") -> 0.0 // empty_string_value. 500 // StringToDouble(" 1") -> 1.0 501 // StringToDouble("0x") -> NaN // junk_string_value. 502 // StringToDouble("0123e45") -> NaN // junk_string_value. 503 // StringToDouble("01239E45") -> 1239e45. 504 // StringToDouble("-infinity") -> NaN // junk_string_value. 505 // StringToDouble("NaN") -> NaN // junk_string_value. StringToDoubleConverter(int flags,double empty_string_value,double junk_string_value,const char * infinity_symbol,const char * nan_symbol)506 StringToDoubleConverter(int flags, 507 double empty_string_value, 508 double junk_string_value, 509 const char* infinity_symbol, 510 const char* nan_symbol) 511 : flags_(flags), 512 empty_string_value_(empty_string_value), 513 junk_string_value_(junk_string_value), 514 infinity_symbol_(infinity_symbol), 515 nan_symbol_(nan_symbol) { 516 } 517 518 // Performs the conversion. 519 // The output parameter 'processed_characters_count' is set to the number 520 // of characters that have been processed to read the number. 521 // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included 522 // in the 'processed_characters_count'. Trailing junk is never included. 523 double StringToDouble(const char* buffer, 524 int length, 525 int* processed_characters_count) const; 526 527 // Same as StringToDouble above but for 16 bit characters. 528 double StringToDouble(const uc16* buffer, 529 int length, 530 int* processed_characters_count) const; 531 532 // Same as StringToDouble but reads a float. 533 // Note that this is not equivalent to static_cast<float>(StringToDouble(...)) 534 // due to potential double-rounding. 535 float StringToFloat(const char* buffer, 536 int length, 537 int* processed_characters_count) const; 538 539 // Same as StringToFloat above but for 16 bit characters. 540 float StringToFloat(const uc16* buffer, 541 int length, 542 int* processed_characters_count) const; 543 544 private: 545 const int flags_; 546 const double empty_string_value_; 547 const double junk_string_value_; 548 const char* const infinity_symbol_; 549 const char* const nan_symbol_; 550 551 template <class Iterator> 552 double StringToIeee(Iterator start_pointer, 553 int length, 554 bool read_as_double, 555 int* processed_characters_count) const; 556 557 DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter); 558 }; 559 560 } // namespace double_conversion 561 562 // ICU PATCH: Close ICU namespace 563 U_NAMESPACE_END 564 565 #endif // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_ 566 #endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING 567