• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2010-2015, NVIDIA CORPORATION.  All rights reserved.
4  */
5 
6 #include <common.h>
7 #include <asm/io.h>
8 #include <asm/arch/clock.h>
9 #include <asm/arch/gp_padctrl.h>
10 #include <asm/arch/pinmux.h>
11 #include <asm/arch/tegra.h>
12 #include <asm/arch-tegra/clk_rst.h>
13 #include <asm/arch-tegra/pmc.h>
14 #include <asm/arch-tegra/scu.h>
15 #include "cpu.h"
16 
get_num_cpus(void)17 int get_num_cpus(void)
18 {
19 	struct apb_misc_gp_ctlr *gp;
20 	uint rev;
21 	debug("%s entry\n", __func__);
22 
23 	gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE;
24 	rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT;
25 
26 	switch (rev) {
27 	case CHIPID_TEGRA20:
28 		return 2;
29 		break;
30 	case CHIPID_TEGRA30:
31 	case CHIPID_TEGRA114:
32 	case CHIPID_TEGRA124:
33 	case CHIPID_TEGRA210:
34 	default:
35 		return 4;
36 		break;
37 	}
38 }
39 
40 /*
41  * Timing tables for each SOC for all four oscillator options.
42  */
43 struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = {
44 	/*
45 	 * T20: 1 GHz
46 	 *
47 	 * Register   Field  Bits   Width
48 	 * ------------------------------
49 	 * PLLX_BASE  p      22:20    3
50 	 * PLLX_BASE  n      17: 8   10
51 	 * PLLX_BASE  m       4: 0    5
52 	 * PLLX_MISC  cpcon  11: 8    4
53 	 */
54 	{
55 		{ .n = 1000, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
56 		{ .n =  625, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
57 		{ .n = 1000, .m = 12, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
58 		{ .n = 1000, .m = 26, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
59 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
60 		{ .n =    0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
61 	},
62 	/*
63 	 * T25: 1.2 GHz
64 	 *
65 	 * Register   Field  Bits   Width
66 	 * ------------------------------
67 	 * PLLX_BASE  p      22:20    3
68 	 * PLLX_BASE  n      17: 8   10
69 	 * PLLX_BASE  m       4: 0    5
70 	 * PLLX_MISC  cpcon  11: 8    4
71 	 */
72 	{
73 		{ .n = 923, .m = 10, .p = 0, .cpcon = 12 }, /* OSC: 13.0 MHz */
74 		{ .n = 750, .m = 12, .p = 0, .cpcon =  8 }, /* OSC: 19.2 MHz */
75 		{ .n = 600, .m =  6, .p = 0, .cpcon = 12 }, /* OSC: 12.0 MHz */
76 		{ .n = 600, .m = 13, .p = 0, .cpcon = 12 }, /* OSC: 26.0 MHz */
77 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 38.4 MHz (N/A) */
78 		{ .n =   0, .m =  0, .p = 0, .cpcon =  0 }, /* OSC: 48.0 MHz (N/A) */
79 	},
80 	/*
81 	 * T30: 600 MHz
82 	 *
83 	 * Register   Field  Bits   Width
84 	 * ------------------------------
85 	 * PLLX_BASE  p      22:20    3
86 	 * PLLX_BASE  n      17: 8   10
87 	 * PLLX_BASE  m       4: 0    5
88 	 * PLLX_MISC  cpcon  11: 8    4
89 	 */
90 	{
91 		{ .n = 600, .m = 13, .p = 0, .cpcon = 8 }, /* OSC: 13.0 MHz */
92 		{ .n = 500, .m = 16, .p = 0, .cpcon = 8 }, /* OSC: 19.2 MHz */
93 		{ .n = 600, .m = 12, .p = 0, .cpcon = 8 }, /* OSC: 12.0 MHz */
94 		{ .n = 600, .m = 26, .p = 0, .cpcon = 8 }, /* OSC: 26.0 MHz */
95 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 38.4 MHz (N/A) */
96 		{ .n =   0, .m =  0, .p = 0, .cpcon = 0 }, /* OSC: 48.0 MHz (N/A) */
97 	},
98 	/*
99 	 * T114: 700 MHz
100 	 *
101 	 * Register   Field  Bits   Width
102 	 * ------------------------------
103 	 * PLLX_BASE  p      23:20    4
104 	 * PLLX_BASE  n      15: 8    8
105 	 * PLLX_BASE  m       7: 0    8
106 	 */
107 	{
108 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
109 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
110 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
111 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
112 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
113 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
114 	},
115 
116 	/*
117 	 * T124: 700 MHz
118 	 *
119 	 * Register   Field  Bits   Width
120 	 * ------------------------------
121 	 * PLLX_BASE  p      23:20    4
122 	 * PLLX_BASE  n      15: 8    8
123 	 * PLLX_BASE  m       7: 0    8
124 	 */
125 	{
126 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz */
127 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz */
128 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz */
129 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz */
130 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 38.4 MHz (N/A) */
131 		{ .n =   0, .m = 0, .p = 0 }, /* OSC: 48.0 MHz (N/A) */
132 	},
133 
134 	/*
135 	 * T210: 700 MHz
136 	 *
137 	 * Register   Field  Bits   Width
138 	 * ------------------------------
139 	 * PLLX_BASE  p      24:20    5
140 	 * PLLX_BASE  n      15: 8    8
141 	 * PLLX_BASE  m       7: 0    8
142 	 */
143 	{
144 		{ .n = 108, .m = 1, .p = 1 }, /* OSC: 13.0 MHz = 702   MHz*/
145 		{ .n =  73, .m = 1, .p = 1 }, /* OSC: 19.2 MHz = 700.8 MHz*/
146 		{ .n = 116, .m = 1, .p = 1 }, /* OSC: 12.0 MHz = 696   MHz*/
147 		{ .n = 108, .m = 2, .p = 1 }, /* OSC: 26.0 MHz = 702   MHz*/
148 		{ .n =  36, .m = 1, .p = 1 }, /* OSC: 38.4 MHz = 691.2 MHz */
149 		{ .n =  58, .m = 2, .p = 1 }, /* OSC: 48.0 MHz = 696   MHz */
150 	},
151 };
152 
pllx_set_iddq(void)153 static inline void pllx_set_iddq(void)
154 {
155 #if defined(CONFIG_TEGRA124) || defined(CONFIG_TEGRA210)
156 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
157 	u32 reg;
158 	debug("%s entry\n", __func__);
159 
160 	/* Disable IDDQ */
161 	reg = readl(&clkrst->crc_pllx_misc3);
162 	reg &= ~PLLX_IDDQ_MASK;
163 	writel(reg, &clkrst->crc_pllx_misc3);
164 	udelay(2);
165 	debug("%s: IDDQ: PLLX IDDQ = 0x%08X\n", __func__,
166 	      readl(&clkrst->crc_pllx_misc3));
167 #endif
168 }
169 
pllx_set_rate(struct clk_pll_simple * pll,u32 divn,u32 divm,u32 divp,u32 cpcon)170 int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm,
171 		u32 divp, u32 cpcon)
172 {
173 	struct clk_pll_info *pllinfo = &tegra_pll_info_table[CLOCK_ID_XCPU];
174 	int chip = tegra_get_chip();
175 	u32 reg;
176 	debug("%s entry\n", __func__);
177 
178 	/* If PLLX is already enabled, just return */
179 	if (readl(&pll->pll_base) & PLL_ENABLE_MASK) {
180 		debug("%s: PLLX already enabled, returning\n", __func__);
181 		return 0;
182 	}
183 
184 	pllx_set_iddq();
185 
186 	/* Set BYPASS, m, n and p to PLLX_BASE */
187 	reg = PLL_BYPASS_MASK | (divm << pllinfo->m_shift);
188 	reg |= (divn << pllinfo->n_shift) | (divp << pllinfo->p_shift);
189 	writel(reg, &pll->pll_base);
190 
191 	/* Set cpcon to PLLX_MISC */
192 	if (chip == CHIPID_TEGRA20 || chip == CHIPID_TEGRA30)
193 		reg = (cpcon << pllinfo->kcp_shift);
194 	else
195 		reg = 0;
196 
197 	/*
198 	 * TODO(twarren@nvidia.com) Check which SoCs use DCCON
199 	 * and add to pllinfo table if needed!
200 	 */
201 	 /* Set dccon to PLLX_MISC if freq > 600MHz */
202 	if (divn > 600)
203 		reg |= (1 << PLL_DCCON_SHIFT);
204 	writel(reg, &pll->pll_misc);
205 
206 	/* Disable BYPASS */
207 	reg = readl(&pll->pll_base);
208 	reg &= ~PLL_BYPASS_MASK;
209 	writel(reg, &pll->pll_base);
210 	debug("%s: base = 0x%08X\n", __func__, reg);
211 
212 	/* Set lock_enable to PLLX_MISC if lock_ena is valid (i.e. 0-31) */
213 	reg = readl(&pll->pll_misc);
214 	if (pllinfo->lock_ena < 32)
215 		reg |= (1 << pllinfo->lock_ena);
216 	writel(reg, &pll->pll_misc);
217 	debug("%s: misc = 0x%08X\n", __func__, reg);
218 
219 	/* Enable PLLX last, once it's all configured */
220 	reg = readl(&pll->pll_base);
221 	reg |= PLL_ENABLE_MASK;
222 	writel(reg, &pll->pll_base);
223 	debug("%s: base final = 0x%08X\n", __func__, reg);
224 
225 	return 0;
226 }
227 
init_pllx(void)228 void init_pllx(void)
229 {
230 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
231 	struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX];
232 	int soc_type, sku_info, chip_sku;
233 	enum clock_osc_freq osc;
234 	struct clk_pll_table *sel;
235 	debug("%s entry\n", __func__);
236 
237 	/* get SOC (chip) type */
238 	soc_type = tegra_get_chip();
239 	debug("%s: SoC = 0x%02X\n", __func__, soc_type);
240 
241 	/* get SKU info */
242 	sku_info = tegra_get_sku_info();
243 	debug("%s: SKU info byte = 0x%02X\n", __func__, sku_info);
244 
245 	/* get chip SKU, combo of the above info */
246 	chip_sku = tegra_get_chip_sku();
247 	debug("%s: Chip SKU = %d\n", __func__, chip_sku);
248 
249 	/* get osc freq */
250 	osc = clock_get_osc_freq();
251 	debug("%s: osc = %d\n", __func__, osc);
252 
253 	/* set pllx */
254 	sel = &tegra_pll_x_table[chip_sku][osc];
255 	pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon);
256 }
257 
enable_cpu_clock(int enable)258 void enable_cpu_clock(int enable)
259 {
260 	struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
261 	u32 clk;
262 	debug("%s entry\n", __func__);
263 
264 	/*
265 	 * NOTE:
266 	 * Regardless of whether the request is to enable or disable the CPU
267 	 * clock, every processor in the CPU complex except the master (CPU 0)
268 	 * will have it's clock stopped because the AVP only talks to the
269 	 * master.
270 	 */
271 
272 	if (enable) {
273 		/* Initialize PLLX */
274 		init_pllx();
275 
276 		/* Wait until all clocks are stable */
277 		udelay(PLL_STABILIZATION_DELAY);
278 
279 		writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol);
280 		writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div);
281 	}
282 
283 	/*
284 	 * Read the register containing the individual CPU clock enables and
285 	 * always stop the clocks to CPUs > 0.
286 	 */
287 	clk = readl(&clkrst->crc_clk_cpu_cmplx);
288 	clk |= 1 << CPU1_CLK_STP_SHIFT;
289 	if (get_num_cpus() == 4)
290 		clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT);
291 
292 	/* Stop/Unstop the CPU clock */
293 	clk &= ~CPU0_CLK_STP_MASK;
294 	clk |= !enable << CPU0_CLK_STP_SHIFT;
295 	writel(clk, &clkrst->crc_clk_cpu_cmplx);
296 
297 	clock_enable(PERIPH_ID_CPU);
298 }
299 
is_cpu_powered(void)300 static int is_cpu_powered(void)
301 {
302 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
303 
304 	return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0;
305 }
306 
remove_cpu_io_clamps(void)307 static void remove_cpu_io_clamps(void)
308 {
309 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
310 	u32 reg;
311 	debug("%s entry\n", __func__);
312 
313 	/* Remove the clamps on the CPU I/O signals */
314 	reg = readl(&pmc->pmc_remove_clamping);
315 	reg |= CPU_CLMP;
316 	writel(reg, &pmc->pmc_remove_clamping);
317 
318 	/* Give I/O signals time to stabilize */
319 	udelay(IO_STABILIZATION_DELAY);
320 }
321 
powerup_cpu(void)322 void powerup_cpu(void)
323 {
324 	struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE;
325 	u32 reg;
326 	int timeout = IO_STABILIZATION_DELAY;
327 	debug("%s entry\n", __func__);
328 
329 	if (!is_cpu_powered()) {
330 		/* Toggle the CPU power state (OFF -> ON) */
331 		reg = readl(&pmc->pmc_pwrgate_toggle);
332 		reg &= PARTID_CP;
333 		reg |= START_CP;
334 		writel(reg, &pmc->pmc_pwrgate_toggle);
335 
336 		/* Wait for the power to come up */
337 		while (!is_cpu_powered()) {
338 			if (timeout-- == 0)
339 				printf("CPU failed to power up!\n");
340 			else
341 				udelay(10);
342 		}
343 
344 		/*
345 		 * Remove the I/O clamps from CPU power partition.
346 		 * Recommended only on a Warm boot, if the CPU partition gets
347 		 * power gated. Shouldn't cause any harm when called after a
348 		 * cold boot according to HW, probably just redundant.
349 		 */
350 		remove_cpu_io_clamps();
351 	}
352 }
353 
reset_A9_cpu(int reset)354 void reset_A9_cpu(int reset)
355 {
356 	/*
357 	* NOTE:  Regardless of whether the request is to hold the CPU in reset
358 	*        or take it out of reset, every processor in the CPU complex
359 	*        except the master (CPU 0) will be held in reset because the
360 	*        AVP only talks to the master. The AVP does not know that there
361 	*        are multiple processors in the CPU complex.
362 	*/
363 	int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug;
364 	int num_cpus = get_num_cpus();
365 	int cpu;
366 
367 	debug("%s entry\n", __func__);
368 	/* Hold CPUs 1 onwards in reset, and CPU 0 if asked */
369 	for (cpu = 1; cpu < num_cpus; cpu++)
370 		reset_cmplx_set_enable(cpu, mask, 1);
371 	reset_cmplx_set_enable(0, mask, reset);
372 
373 	/* Enable/Disable master CPU reset */
374 	reset_set_enable(PERIPH_ID_CPU, reset);
375 }
376 
clock_enable_coresight(int enable)377 void clock_enable_coresight(int enable)
378 {
379 	u32 rst, src = 2;
380 
381 	debug("%s entry\n", __func__);
382 	clock_set_enable(PERIPH_ID_CORESIGHT, enable);
383 	reset_set_enable(PERIPH_ID_CORESIGHT, !enable);
384 
385 	if (enable) {
386 		/*
387 		 * Put CoreSight on PLLP_OUT0 and divide it down as per
388 		 * PLLP base frequency based on SoC type (T20/T30+).
389 		 * Clock divider request would setup CSITE clock as 144MHz
390 		 * for PLLP base 216MHz and 204MHz for PLLP base 408MHz
391 		 */
392 		src = CLK_DIVIDER(NVBL_PLLP_KHZ, CSITE_KHZ);
393 		clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src);
394 
395 		/* Unlock the CPU CoreSight interfaces */
396 		rst = CORESIGHT_UNLOCK;
397 		writel(rst, CSITE_CPU_DBG0_LAR);
398 		writel(rst, CSITE_CPU_DBG1_LAR);
399 		if (get_num_cpus() == 4) {
400 			writel(rst, CSITE_CPU_DBG2_LAR);
401 			writel(rst, CSITE_CPU_DBG3_LAR);
402 		}
403 	}
404 }
405 
halt_avp(void)406 void halt_avp(void)
407 {
408 	debug("%s entry\n", __func__);
409 
410 	for (;;) {
411 		writel(HALT_COP_EVENT_JTAG | (FLOW_MODE_STOP << 29),
412 		       FLOW_CTLR_HALT_COP_EVENTS);
413 	}
414 }
415