1 //===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// This tablegen backend emits code for use by the GlobalISel instruction
12 /// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
13 ///
14 /// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
15 /// backend, filters out the ones that are unsupported, maps
16 /// SelectionDAG-specific constructs to their GlobalISel counterpart
17 /// (when applicable: MVT to LLT; SDNode to generic Instruction).
18 ///
19 /// Not all patterns are supported: pass the tablegen invocation
20 /// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
21 /// as well as why.
22 ///
23 /// The generated file defines a single method:
24 /// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
25 /// intended to be used in InstructionSelector::select as the first-step
26 /// selector for the patterns that don't require complex C++.
27 ///
28 /// FIXME: We'll probably want to eventually define a base
29 /// "TargetGenInstructionSelector" class.
30 ///
31 //===----------------------------------------------------------------------===//
32
33 #include "CodeGenDAGPatterns.h"
34 #include "SubtargetFeatureInfo.h"
35 #include "llvm/ADT/Optional.h"
36 #include "llvm/ADT/SmallSet.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/Support/CodeGenCoverage.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Support/Error.h"
41 #include "llvm/Support/LowLevelTypeImpl.h"
42 #include "llvm/Support/MachineValueType.h"
43 #include "llvm/Support/ScopedPrinter.h"
44 #include "llvm/TableGen/Error.h"
45 #include "llvm/TableGen/Record.h"
46 #include "llvm/TableGen/TableGenBackend.h"
47 #include <numeric>
48 #include <string>
49 using namespace llvm;
50
51 #define DEBUG_TYPE "gisel-emitter"
52
53 STATISTIC(NumPatternTotal, "Total number of patterns");
54 STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
55 STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
56 STATISTIC(NumPatternsTested, "Number of patterns executed according to coverage information");
57 STATISTIC(NumPatternEmitted, "Number of patterns emitted");
58
59 cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
60
61 static cl::opt<bool> WarnOnSkippedPatterns(
62 "warn-on-skipped-patterns",
63 cl::desc("Explain why a pattern was skipped for inclusion "
64 "in the GlobalISel selector"),
65 cl::init(false), cl::cat(GlobalISelEmitterCat));
66
67 static cl::opt<bool> GenerateCoverage(
68 "instrument-gisel-coverage",
69 cl::desc("Generate coverage instrumentation for GlobalISel"),
70 cl::init(false), cl::cat(GlobalISelEmitterCat));
71
72 static cl::opt<std::string> UseCoverageFile(
73 "gisel-coverage-file", cl::init(""),
74 cl::desc("Specify file to retrieve coverage information from"),
75 cl::cat(GlobalISelEmitterCat));
76
77 static cl::opt<bool> OptimizeMatchTable(
78 "optimize-match-table",
79 cl::desc("Generate an optimized version of the match table"),
80 cl::init(true), cl::cat(GlobalISelEmitterCat));
81
82 namespace {
83 //===- Helper functions ---------------------------------------------------===//
84
85 /// Get the name of the enum value used to number the predicate function.
getEnumNameForPredicate(const TreePredicateFn & Predicate)86 std::string getEnumNameForPredicate(const TreePredicateFn &Predicate) {
87 if (Predicate.hasGISelPredicateCode())
88 return "GIPFP_MI_" + Predicate.getFnName();
89 return "GIPFP_" + Predicate.getImmTypeIdentifier().str() + "_" +
90 Predicate.getFnName();
91 }
92
93 /// Get the opcode used to check this predicate.
getMatchOpcodeForPredicate(const TreePredicateFn & Predicate)94 std::string getMatchOpcodeForPredicate(const TreePredicateFn &Predicate) {
95 return "GIM_Check" + Predicate.getImmTypeIdentifier().str() + "ImmPredicate";
96 }
97
98 /// This class stands in for LLT wherever we want to tablegen-erate an
99 /// equivalent at compiler run-time.
100 class LLTCodeGen {
101 private:
102 LLT Ty;
103
104 public:
105 LLTCodeGen() = default;
LLTCodeGen(const LLT & Ty)106 LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
107
getCxxEnumValue() const108 std::string getCxxEnumValue() const {
109 std::string Str;
110 raw_string_ostream OS(Str);
111
112 emitCxxEnumValue(OS);
113 return OS.str();
114 }
115
emitCxxEnumValue(raw_ostream & OS) const116 void emitCxxEnumValue(raw_ostream &OS) const {
117 if (Ty.isScalar()) {
118 OS << "GILLT_s" << Ty.getSizeInBits();
119 return;
120 }
121 if (Ty.isVector()) {
122 OS << "GILLT_v" << Ty.getNumElements() << "s" << Ty.getScalarSizeInBits();
123 return;
124 }
125 if (Ty.isPointer()) {
126 OS << "GILLT_p" << Ty.getAddressSpace();
127 if (Ty.getSizeInBits() > 0)
128 OS << "s" << Ty.getSizeInBits();
129 return;
130 }
131 llvm_unreachable("Unhandled LLT");
132 }
133
emitCxxConstructorCall(raw_ostream & OS) const134 void emitCxxConstructorCall(raw_ostream &OS) const {
135 if (Ty.isScalar()) {
136 OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
137 return;
138 }
139 if (Ty.isVector()) {
140 OS << "LLT::vector(" << Ty.getNumElements() << ", "
141 << Ty.getScalarSizeInBits() << ")";
142 return;
143 }
144 if (Ty.isPointer() && Ty.getSizeInBits() > 0) {
145 OS << "LLT::pointer(" << Ty.getAddressSpace() << ", "
146 << Ty.getSizeInBits() << ")";
147 return;
148 }
149 llvm_unreachable("Unhandled LLT");
150 }
151
get() const152 const LLT &get() const { return Ty; }
153
154 /// This ordering is used for std::unique() and llvm::sort(). There's no
155 /// particular logic behind the order but either A < B or B < A must be
156 /// true if A != B.
operator <(const LLTCodeGen & Other) const157 bool operator<(const LLTCodeGen &Other) const {
158 if (Ty.isValid() != Other.Ty.isValid())
159 return Ty.isValid() < Other.Ty.isValid();
160 if (!Ty.isValid())
161 return false;
162
163 if (Ty.isVector() != Other.Ty.isVector())
164 return Ty.isVector() < Other.Ty.isVector();
165 if (Ty.isScalar() != Other.Ty.isScalar())
166 return Ty.isScalar() < Other.Ty.isScalar();
167 if (Ty.isPointer() != Other.Ty.isPointer())
168 return Ty.isPointer() < Other.Ty.isPointer();
169
170 if (Ty.isPointer() && Ty.getAddressSpace() != Other.Ty.getAddressSpace())
171 return Ty.getAddressSpace() < Other.Ty.getAddressSpace();
172
173 if (Ty.isVector() && Ty.getNumElements() != Other.Ty.getNumElements())
174 return Ty.getNumElements() < Other.Ty.getNumElements();
175
176 return Ty.getSizeInBits() < Other.Ty.getSizeInBits();
177 }
178
operator ==(const LLTCodeGen & B) const179 bool operator==(const LLTCodeGen &B) const { return Ty == B.Ty; }
180 };
181
182 // Track all types that are used so we can emit the corresponding enum.
183 std::set<LLTCodeGen> KnownTypes;
184
185 class InstructionMatcher;
186 /// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
187 /// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
MVTToLLT(MVT::SimpleValueType SVT)188 static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
189 MVT VT(SVT);
190
191 if (VT.isVector() && VT.getVectorNumElements() != 1)
192 return LLTCodeGen(
193 LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
194
195 if (VT.isInteger() || VT.isFloatingPoint())
196 return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
197 return None;
198 }
199
explainPredicates(const TreePatternNode * N)200 static std::string explainPredicates(const TreePatternNode *N) {
201 std::string Explanation = "";
202 StringRef Separator = "";
203 for (const auto &P : N->getPredicateFns()) {
204 Explanation +=
205 (Separator + P.getOrigPatFragRecord()->getRecord()->getName()).str();
206 Separator = ", ";
207
208 if (P.isAlwaysTrue())
209 Explanation += " always-true";
210 if (P.isImmediatePattern())
211 Explanation += " immediate";
212
213 if (P.isUnindexed())
214 Explanation += " unindexed";
215
216 if (P.isNonExtLoad())
217 Explanation += " non-extload";
218 if (P.isAnyExtLoad())
219 Explanation += " extload";
220 if (P.isSignExtLoad())
221 Explanation += " sextload";
222 if (P.isZeroExtLoad())
223 Explanation += " zextload";
224
225 if (P.isNonTruncStore())
226 Explanation += " non-truncstore";
227 if (P.isTruncStore())
228 Explanation += " truncstore";
229
230 if (Record *VT = P.getMemoryVT())
231 Explanation += (" MemVT=" + VT->getName()).str();
232 if (Record *VT = P.getScalarMemoryVT())
233 Explanation += (" ScalarVT(MemVT)=" + VT->getName()).str();
234
235 if (P.isAtomicOrderingMonotonic())
236 Explanation += " monotonic";
237 if (P.isAtomicOrderingAcquire())
238 Explanation += " acquire";
239 if (P.isAtomicOrderingRelease())
240 Explanation += " release";
241 if (P.isAtomicOrderingAcquireRelease())
242 Explanation += " acq_rel";
243 if (P.isAtomicOrderingSequentiallyConsistent())
244 Explanation += " seq_cst";
245 if (P.isAtomicOrderingAcquireOrStronger())
246 Explanation += " >=acquire";
247 if (P.isAtomicOrderingWeakerThanAcquire())
248 Explanation += " <acquire";
249 if (P.isAtomicOrderingReleaseOrStronger())
250 Explanation += " >=release";
251 if (P.isAtomicOrderingWeakerThanRelease())
252 Explanation += " <release";
253 }
254 return Explanation;
255 }
256
explainOperator(Record * Operator)257 std::string explainOperator(Record *Operator) {
258 if (Operator->isSubClassOf("SDNode"))
259 return (" (" + Operator->getValueAsString("Opcode") + ")").str();
260
261 if (Operator->isSubClassOf("Intrinsic"))
262 return (" (Operator is an Intrinsic, " + Operator->getName() + ")").str();
263
264 if (Operator->isSubClassOf("ComplexPattern"))
265 return (" (Operator is an unmapped ComplexPattern, " + Operator->getName() +
266 ")")
267 .str();
268
269 if (Operator->isSubClassOf("SDNodeXForm"))
270 return (" (Operator is an unmapped SDNodeXForm, " + Operator->getName() +
271 ")")
272 .str();
273
274 return (" (Operator " + Operator->getName() + " not understood)").str();
275 }
276
277 /// Helper function to let the emitter report skip reason error messages.
failedImport(const Twine & Reason)278 static Error failedImport(const Twine &Reason) {
279 return make_error<StringError>(Reason, inconvertibleErrorCode());
280 }
281
isTrivialOperatorNode(const TreePatternNode * N)282 static Error isTrivialOperatorNode(const TreePatternNode *N) {
283 std::string Explanation = "";
284 std::string Separator = "";
285
286 bool HasUnsupportedPredicate = false;
287 for (const auto &Predicate : N->getPredicateFns()) {
288 if (Predicate.isAlwaysTrue())
289 continue;
290
291 if (Predicate.isImmediatePattern())
292 continue;
293
294 if (Predicate.isNonExtLoad() || Predicate.isAnyExtLoad() ||
295 Predicate.isSignExtLoad() || Predicate.isZeroExtLoad())
296 continue;
297
298 if (Predicate.isNonTruncStore())
299 continue;
300
301 if (Predicate.isLoad() && Predicate.getMemoryVT())
302 continue;
303
304 if (Predicate.isLoad() || Predicate.isStore()) {
305 if (Predicate.isUnindexed())
306 continue;
307 }
308
309 if (Predicate.isAtomic() && Predicate.getMemoryVT())
310 continue;
311
312 if (Predicate.isAtomic() &&
313 (Predicate.isAtomicOrderingMonotonic() ||
314 Predicate.isAtomicOrderingAcquire() ||
315 Predicate.isAtomicOrderingRelease() ||
316 Predicate.isAtomicOrderingAcquireRelease() ||
317 Predicate.isAtomicOrderingSequentiallyConsistent() ||
318 Predicate.isAtomicOrderingAcquireOrStronger() ||
319 Predicate.isAtomicOrderingWeakerThanAcquire() ||
320 Predicate.isAtomicOrderingReleaseOrStronger() ||
321 Predicate.isAtomicOrderingWeakerThanRelease()))
322 continue;
323
324 if (Predicate.hasGISelPredicateCode())
325 continue;
326
327 HasUnsupportedPredicate = true;
328 Explanation = Separator + "Has a predicate (" + explainPredicates(N) + ")";
329 Separator = ", ";
330 Explanation += (Separator + "first-failing:" +
331 Predicate.getOrigPatFragRecord()->getRecord()->getName())
332 .str();
333 break;
334 }
335
336 if (!HasUnsupportedPredicate)
337 return Error::success();
338
339 return failedImport(Explanation);
340 }
341
getInitValueAsRegClass(Init * V)342 static Record *getInitValueAsRegClass(Init *V) {
343 if (DefInit *VDefInit = dyn_cast<DefInit>(V)) {
344 if (VDefInit->getDef()->isSubClassOf("RegisterOperand"))
345 return VDefInit->getDef()->getValueAsDef("RegClass");
346 if (VDefInit->getDef()->isSubClassOf("RegisterClass"))
347 return VDefInit->getDef();
348 }
349 return nullptr;
350 }
351
352 std::string
getNameForFeatureBitset(const std::vector<Record * > & FeatureBitset)353 getNameForFeatureBitset(const std::vector<Record *> &FeatureBitset) {
354 std::string Name = "GIFBS";
355 for (const auto &Feature : FeatureBitset)
356 Name += ("_" + Feature->getName()).str();
357 return Name;
358 }
359
360 //===- MatchTable Helpers -------------------------------------------------===//
361
362 class MatchTable;
363
364 /// A record to be stored in a MatchTable.
365 ///
366 /// This class represents any and all output that may be required to emit the
367 /// MatchTable. Instances are most often configured to represent an opcode or
368 /// value that will be emitted to the table with some formatting but it can also
369 /// represent commas, comments, and other formatting instructions.
370 struct MatchTableRecord {
371 enum RecordFlagsBits {
372 MTRF_None = 0x0,
373 /// Causes EmitStr to be formatted as comment when emitted.
374 MTRF_Comment = 0x1,
375 /// Causes the record value to be followed by a comma when emitted.
376 MTRF_CommaFollows = 0x2,
377 /// Causes the record value to be followed by a line break when emitted.
378 MTRF_LineBreakFollows = 0x4,
379 /// Indicates that the record defines a label and causes an additional
380 /// comment to be emitted containing the index of the label.
381 MTRF_Label = 0x8,
382 /// Causes the record to be emitted as the index of the label specified by
383 /// LabelID along with a comment indicating where that label is.
384 MTRF_JumpTarget = 0x10,
385 /// Causes the formatter to add a level of indentation before emitting the
386 /// record.
387 MTRF_Indent = 0x20,
388 /// Causes the formatter to remove a level of indentation after emitting the
389 /// record.
390 MTRF_Outdent = 0x40,
391 };
392
393 /// When MTRF_Label or MTRF_JumpTarget is used, indicates a label id to
394 /// reference or define.
395 unsigned LabelID;
396 /// The string to emit. Depending on the MTRF_* flags it may be a comment, a
397 /// value, a label name.
398 std::string EmitStr;
399
400 private:
401 /// The number of MatchTable elements described by this record. Comments are 0
402 /// while values are typically 1. Values >1 may occur when we need to emit
403 /// values that exceed the size of a MatchTable element.
404 unsigned NumElements;
405
406 public:
407 /// A bitfield of RecordFlagsBits flags.
408 unsigned Flags;
409
410 /// The actual run-time value, if known
411 int64_t RawValue;
412
MatchTableRecord__anon685cc1160111::MatchTableRecord413 MatchTableRecord(Optional<unsigned> LabelID_, StringRef EmitStr,
414 unsigned NumElements, unsigned Flags,
415 int64_t RawValue = std::numeric_limits<int64_t>::min())
416 : LabelID(LabelID_.hasValue() ? LabelID_.getValue() : ~0u),
417 EmitStr(EmitStr), NumElements(NumElements), Flags(Flags),
418 RawValue(RawValue) {
419
420 assert((!LabelID_.hasValue() || LabelID != ~0u) &&
421 "This value is reserved for non-labels");
422 }
423 MatchTableRecord(const MatchTableRecord &Other) = default;
424 MatchTableRecord(MatchTableRecord &&Other) = default;
425
426 /// Useful if a Match Table Record gets optimized out
turnIntoComment__anon685cc1160111::MatchTableRecord427 void turnIntoComment() {
428 Flags |= MTRF_Comment;
429 Flags &= ~MTRF_CommaFollows;
430 NumElements = 0;
431 }
432
433 /// For Jump Table generation purposes
operator <__anon685cc1160111::MatchTableRecord434 bool operator<(const MatchTableRecord &Other) const {
435 return RawValue < Other.RawValue;
436 }
getRawValue__anon685cc1160111::MatchTableRecord437 int64_t getRawValue() const { return RawValue; }
438
439 void emit(raw_ostream &OS, bool LineBreakNextAfterThis,
440 const MatchTable &Table) const;
size__anon685cc1160111::MatchTableRecord441 unsigned size() const { return NumElements; }
442 };
443
444 class Matcher;
445
446 /// Holds the contents of a generated MatchTable to enable formatting and the
447 /// necessary index tracking needed to support GIM_Try.
448 class MatchTable {
449 /// An unique identifier for the table. The generated table will be named
450 /// MatchTable${ID}.
451 unsigned ID;
452 /// The records that make up the table. Also includes comments describing the
453 /// values being emitted and line breaks to format it.
454 std::vector<MatchTableRecord> Contents;
455 /// The currently defined labels.
456 DenseMap<unsigned, unsigned> LabelMap;
457 /// Tracks the sum of MatchTableRecord::NumElements as the table is built.
458 unsigned CurrentSize = 0;
459 /// A unique identifier for a MatchTable label.
460 unsigned CurrentLabelID = 0;
461 /// Determines if the table should be instrumented for rule coverage tracking.
462 bool IsWithCoverage;
463
464 public:
465 static MatchTableRecord LineBreak;
Comment(StringRef Comment)466 static MatchTableRecord Comment(StringRef Comment) {
467 return MatchTableRecord(None, Comment, 0, MatchTableRecord::MTRF_Comment);
468 }
Opcode(StringRef Opcode,int IndentAdjust=0)469 static MatchTableRecord Opcode(StringRef Opcode, int IndentAdjust = 0) {
470 unsigned ExtraFlags = 0;
471 if (IndentAdjust > 0)
472 ExtraFlags |= MatchTableRecord::MTRF_Indent;
473 if (IndentAdjust < 0)
474 ExtraFlags |= MatchTableRecord::MTRF_Outdent;
475
476 return MatchTableRecord(None, Opcode, 1,
477 MatchTableRecord::MTRF_CommaFollows | ExtraFlags);
478 }
NamedValue(StringRef NamedValue)479 static MatchTableRecord NamedValue(StringRef NamedValue) {
480 return MatchTableRecord(None, NamedValue, 1,
481 MatchTableRecord::MTRF_CommaFollows);
482 }
NamedValue(StringRef NamedValue,int64_t RawValue)483 static MatchTableRecord NamedValue(StringRef NamedValue, int64_t RawValue) {
484 return MatchTableRecord(None, NamedValue, 1,
485 MatchTableRecord::MTRF_CommaFollows, RawValue);
486 }
NamedValue(StringRef Namespace,StringRef NamedValue)487 static MatchTableRecord NamedValue(StringRef Namespace,
488 StringRef NamedValue) {
489 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
490 MatchTableRecord::MTRF_CommaFollows);
491 }
NamedValue(StringRef Namespace,StringRef NamedValue,int64_t RawValue)492 static MatchTableRecord NamedValue(StringRef Namespace, StringRef NamedValue,
493 int64_t RawValue) {
494 return MatchTableRecord(None, (Namespace + "::" + NamedValue).str(), 1,
495 MatchTableRecord::MTRF_CommaFollows, RawValue);
496 }
IntValue(int64_t IntValue)497 static MatchTableRecord IntValue(int64_t IntValue) {
498 return MatchTableRecord(None, llvm::to_string(IntValue), 1,
499 MatchTableRecord::MTRF_CommaFollows);
500 }
Label(unsigned LabelID)501 static MatchTableRecord Label(unsigned LabelID) {
502 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 0,
503 MatchTableRecord::MTRF_Label |
504 MatchTableRecord::MTRF_Comment |
505 MatchTableRecord::MTRF_LineBreakFollows);
506 }
JumpTarget(unsigned LabelID)507 static MatchTableRecord JumpTarget(unsigned LabelID) {
508 return MatchTableRecord(LabelID, "Label " + llvm::to_string(LabelID), 1,
509 MatchTableRecord::MTRF_JumpTarget |
510 MatchTableRecord::MTRF_Comment |
511 MatchTableRecord::MTRF_CommaFollows);
512 }
513
514 static MatchTable buildTable(ArrayRef<Matcher *> Rules, bool WithCoverage);
515
MatchTable(bool WithCoverage,unsigned ID=0)516 MatchTable(bool WithCoverage, unsigned ID = 0)
517 : ID(ID), IsWithCoverage(WithCoverage) {}
518
isWithCoverage() const519 bool isWithCoverage() const { return IsWithCoverage; }
520
push_back(const MatchTableRecord & Value)521 void push_back(const MatchTableRecord &Value) {
522 if (Value.Flags & MatchTableRecord::MTRF_Label)
523 defineLabel(Value.LabelID);
524 Contents.push_back(Value);
525 CurrentSize += Value.size();
526 }
527
allocateLabelID()528 unsigned allocateLabelID() { return CurrentLabelID++; }
529
defineLabel(unsigned LabelID)530 void defineLabel(unsigned LabelID) {
531 LabelMap.insert(std::make_pair(LabelID, CurrentSize));
532 }
533
getLabelIndex(unsigned LabelID) const534 unsigned getLabelIndex(unsigned LabelID) const {
535 const auto I = LabelMap.find(LabelID);
536 assert(I != LabelMap.end() && "Use of undeclared label");
537 return I->second;
538 }
539
emitUse(raw_ostream & OS) const540 void emitUse(raw_ostream &OS) const { OS << "MatchTable" << ID; }
541
emitDeclaration(raw_ostream & OS) const542 void emitDeclaration(raw_ostream &OS) const {
543 unsigned Indentation = 4;
544 OS << " constexpr static int64_t MatchTable" << ID << "[] = {";
545 LineBreak.emit(OS, true, *this);
546 OS << std::string(Indentation, ' ');
547
548 for (auto I = Contents.begin(), E = Contents.end(); I != E;
549 ++I) {
550 bool LineBreakIsNext = false;
551 const auto &NextI = std::next(I);
552
553 if (NextI != E) {
554 if (NextI->EmitStr == "" &&
555 NextI->Flags == MatchTableRecord::MTRF_LineBreakFollows)
556 LineBreakIsNext = true;
557 }
558
559 if (I->Flags & MatchTableRecord::MTRF_Indent)
560 Indentation += 2;
561
562 I->emit(OS, LineBreakIsNext, *this);
563 if (I->Flags & MatchTableRecord::MTRF_LineBreakFollows)
564 OS << std::string(Indentation, ' ');
565
566 if (I->Flags & MatchTableRecord::MTRF_Outdent)
567 Indentation -= 2;
568 }
569 OS << "};\n";
570 }
571 };
572
573 MatchTableRecord MatchTable::LineBreak = {
574 None, "" /* Emit String */, 0 /* Elements */,
575 MatchTableRecord::MTRF_LineBreakFollows};
576
emit(raw_ostream & OS,bool LineBreakIsNextAfterThis,const MatchTable & Table) const577 void MatchTableRecord::emit(raw_ostream &OS, bool LineBreakIsNextAfterThis,
578 const MatchTable &Table) const {
579 bool UseLineComment =
580 LineBreakIsNextAfterThis | (Flags & MTRF_LineBreakFollows);
581 if (Flags & (MTRF_JumpTarget | MTRF_CommaFollows))
582 UseLineComment = false;
583
584 if (Flags & MTRF_Comment)
585 OS << (UseLineComment ? "// " : "/*");
586
587 OS << EmitStr;
588 if (Flags & MTRF_Label)
589 OS << ": @" << Table.getLabelIndex(LabelID);
590
591 if (Flags & MTRF_Comment && !UseLineComment)
592 OS << "*/";
593
594 if (Flags & MTRF_JumpTarget) {
595 if (Flags & MTRF_Comment)
596 OS << " ";
597 OS << Table.getLabelIndex(LabelID);
598 }
599
600 if (Flags & MTRF_CommaFollows) {
601 OS << ",";
602 if (!LineBreakIsNextAfterThis && !(Flags & MTRF_LineBreakFollows))
603 OS << " ";
604 }
605
606 if (Flags & MTRF_LineBreakFollows)
607 OS << "\n";
608 }
609
operator <<(MatchTable & Table,const MatchTableRecord & Value)610 MatchTable &operator<<(MatchTable &Table, const MatchTableRecord &Value) {
611 Table.push_back(Value);
612 return Table;
613 }
614
615 //===- Matchers -----------------------------------------------------------===//
616
617 class OperandMatcher;
618 class MatchAction;
619 class PredicateMatcher;
620 class RuleMatcher;
621
622 class Matcher {
623 public:
624 virtual ~Matcher() = default;
optimize()625 virtual void optimize() {}
626 virtual void emit(MatchTable &Table) = 0;
627
628 virtual bool hasFirstCondition() const = 0;
629 virtual const PredicateMatcher &getFirstCondition() const = 0;
630 virtual std::unique_ptr<PredicateMatcher> popFirstCondition() = 0;
631 };
632
buildTable(ArrayRef<Matcher * > Rules,bool WithCoverage)633 MatchTable MatchTable::buildTable(ArrayRef<Matcher *> Rules,
634 bool WithCoverage) {
635 MatchTable Table(WithCoverage);
636 for (Matcher *Rule : Rules)
637 Rule->emit(Table);
638
639 return Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
640 }
641
642 class GroupMatcher final : public Matcher {
643 /// Conditions that form a common prefix of all the matchers contained.
644 SmallVector<std::unique_ptr<PredicateMatcher>, 1> Conditions;
645
646 /// All the nested matchers, sharing a common prefix.
647 std::vector<Matcher *> Matchers;
648
649 /// An owning collection for any auxiliary matchers created while optimizing
650 /// nested matchers contained.
651 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
652
653 public:
654 /// Add a matcher to the collection of nested matchers if it meets the
655 /// requirements, and return true. If it doesn't, do nothing and return false.
656 ///
657 /// Expected to preserve its argument, so it could be moved out later on.
658 bool addMatcher(Matcher &Candidate);
659
660 /// Mark the matcher as fully-built and ensure any invariants expected by both
661 /// optimize() and emit(...) methods. Generally, both sequences of calls
662 /// are expected to lead to a sensible result:
663 ///
664 /// addMatcher(...)*; finalize(); optimize(); emit(...); and
665 /// addMatcher(...)*; finalize(); emit(...);
666 ///
667 /// or generally
668 ///
669 /// addMatcher(...)*; finalize(); { optimize()*; emit(...); }*
670 ///
671 /// Multiple calls to optimize() are expected to be handled gracefully, though
672 /// optimize() is not expected to be idempotent. Multiple calls to finalize()
673 /// aren't generally supported. emit(...) is expected to be non-mutating and
674 /// producing the exact same results upon repeated calls.
675 ///
676 /// addMatcher() calls after the finalize() call are not supported.
677 ///
678 /// finalize() and optimize() are both allowed to mutate the contained
679 /// matchers, so moving them out after finalize() is not supported.
680 void finalize();
681 void optimize() override;
682 void emit(MatchTable &Table) override;
683
684 /// Could be used to move out the matchers added previously, unless finalize()
685 /// has been already called. If any of the matchers are moved out, the group
686 /// becomes safe to destroy, but not safe to re-use for anything else.
matchers()687 iterator_range<std::vector<Matcher *>::iterator> matchers() {
688 return make_range(Matchers.begin(), Matchers.end());
689 }
size() const690 size_t size() const { return Matchers.size(); }
empty() const691 bool empty() const { return Matchers.empty(); }
692
popFirstCondition()693 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
694 assert(!Conditions.empty() &&
695 "Trying to pop a condition from a condition-less group");
696 std::unique_ptr<PredicateMatcher> P = std::move(Conditions.front());
697 Conditions.erase(Conditions.begin());
698 return P;
699 }
getFirstCondition() const700 const PredicateMatcher &getFirstCondition() const override {
701 assert(!Conditions.empty() &&
702 "Trying to get a condition from a condition-less group");
703 return *Conditions.front();
704 }
hasFirstCondition() const705 bool hasFirstCondition() const override { return !Conditions.empty(); }
706
707 private:
708 /// See if a candidate matcher could be added to this group solely by
709 /// analyzing its first condition.
710 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
711 };
712
713 class SwitchMatcher : public Matcher {
714 /// All the nested matchers, representing distinct switch-cases. The first
715 /// conditions (as Matcher::getFirstCondition() reports) of all the nested
716 /// matchers must share the same type and path to a value they check, in other
717 /// words, be isIdenticalDownToValue, but have different values they check
718 /// against.
719 std::vector<Matcher *> Matchers;
720
721 /// The representative condition, with a type and a path (InsnVarID and OpIdx
722 /// in most cases) shared by all the matchers contained.
723 std::unique_ptr<PredicateMatcher> Condition = nullptr;
724
725 /// Temporary set used to check that the case values don't repeat within the
726 /// same switch.
727 std::set<MatchTableRecord> Values;
728
729 /// An owning collection for any auxiliary matchers created while optimizing
730 /// nested matchers contained.
731 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
732
733 public:
734 bool addMatcher(Matcher &Candidate);
735
736 void finalize();
737 void emit(MatchTable &Table) override;
738
matchers()739 iterator_range<std::vector<Matcher *>::iterator> matchers() {
740 return make_range(Matchers.begin(), Matchers.end());
741 }
size() const742 size_t size() const { return Matchers.size(); }
empty() const743 bool empty() const { return Matchers.empty(); }
744
popFirstCondition()745 std::unique_ptr<PredicateMatcher> popFirstCondition() override {
746 // SwitchMatcher doesn't have a common first condition for its cases, as all
747 // the cases only share a kind of a value (a type and a path to it) they
748 // match, but deliberately differ in the actual value they match.
749 llvm_unreachable("Trying to pop a condition from a condition-less group");
750 }
getFirstCondition() const751 const PredicateMatcher &getFirstCondition() const override {
752 llvm_unreachable("Trying to pop a condition from a condition-less group");
753 }
hasFirstCondition() const754 bool hasFirstCondition() const override { return false; }
755
756 private:
757 /// See if the predicate type has a Switch-implementation for it.
758 static bool isSupportedPredicateType(const PredicateMatcher &Predicate);
759
760 bool candidateConditionMatches(const PredicateMatcher &Predicate) const;
761
762 /// emit()-helper
763 static void emitPredicateSpecificOpcodes(const PredicateMatcher &P,
764 MatchTable &Table);
765 };
766
767 /// Generates code to check that a match rule matches.
768 class RuleMatcher : public Matcher {
769 public:
770 using ActionList = std::list<std::unique_ptr<MatchAction>>;
771 using action_iterator = ActionList::iterator;
772
773 protected:
774 /// A list of matchers that all need to succeed for the current rule to match.
775 /// FIXME: This currently supports a single match position but could be
776 /// extended to support multiple positions to support div/rem fusion or
777 /// load-multiple instructions.
778 using MatchersTy = std::vector<std::unique_ptr<InstructionMatcher>> ;
779 MatchersTy Matchers;
780
781 /// A list of actions that need to be taken when all predicates in this rule
782 /// have succeeded.
783 ActionList Actions;
784
785 using DefinedInsnVariablesMap = std::map<InstructionMatcher *, unsigned>;
786
787 /// A map of instruction matchers to the local variables
788 DefinedInsnVariablesMap InsnVariableIDs;
789
790 using MutatableInsnSet = SmallPtrSet<InstructionMatcher *, 4>;
791
792 // The set of instruction matchers that have not yet been claimed for mutation
793 // by a BuildMI.
794 MutatableInsnSet MutatableInsns;
795
796 /// A map of named operands defined by the matchers that may be referenced by
797 /// the renderers.
798 StringMap<OperandMatcher *> DefinedOperands;
799
800 /// ID for the next instruction variable defined with implicitlyDefineInsnVar()
801 unsigned NextInsnVarID;
802
803 /// ID for the next output instruction allocated with allocateOutputInsnID()
804 unsigned NextOutputInsnID;
805
806 /// ID for the next temporary register ID allocated with allocateTempRegID()
807 unsigned NextTempRegID;
808
809 std::vector<Record *> RequiredFeatures;
810 std::vector<std::unique_ptr<PredicateMatcher>> EpilogueMatchers;
811
812 ArrayRef<SMLoc> SrcLoc;
813
814 typedef std::tuple<Record *, unsigned, unsigned>
815 DefinedComplexPatternSubOperand;
816 typedef StringMap<DefinedComplexPatternSubOperand>
817 DefinedComplexPatternSubOperandMap;
818 /// A map of Symbolic Names to ComplexPattern sub-operands.
819 DefinedComplexPatternSubOperandMap ComplexSubOperands;
820
821 uint64_t RuleID;
822 static uint64_t NextRuleID;
823
824 public:
RuleMatcher(ArrayRef<SMLoc> SrcLoc)825 RuleMatcher(ArrayRef<SMLoc> SrcLoc)
826 : Matchers(), Actions(), InsnVariableIDs(), MutatableInsns(),
827 DefinedOperands(), NextInsnVarID(0), NextOutputInsnID(0),
828 NextTempRegID(0), SrcLoc(SrcLoc), ComplexSubOperands(),
829 RuleID(NextRuleID++) {}
830 RuleMatcher(RuleMatcher &&Other) = default;
831 RuleMatcher &operator=(RuleMatcher &&Other) = default;
832
getRuleID() const833 uint64_t getRuleID() const { return RuleID; }
834
835 InstructionMatcher &addInstructionMatcher(StringRef SymbolicName);
836 void addRequiredFeature(Record *Feature);
837 const std::vector<Record *> &getRequiredFeatures() const;
838
839 template <class Kind, class... Args> Kind &addAction(Args &&... args);
840 template <class Kind, class... Args>
841 action_iterator insertAction(action_iterator InsertPt, Args &&... args);
842
843 /// Define an instruction without emitting any code to do so.
844 unsigned implicitlyDefineInsnVar(InstructionMatcher &Matcher);
845
846 unsigned getInsnVarID(InstructionMatcher &InsnMatcher) const;
defined_insn_vars_begin() const847 DefinedInsnVariablesMap::const_iterator defined_insn_vars_begin() const {
848 return InsnVariableIDs.begin();
849 }
defined_insn_vars_end() const850 DefinedInsnVariablesMap::const_iterator defined_insn_vars_end() const {
851 return InsnVariableIDs.end();
852 }
853 iterator_range<typename DefinedInsnVariablesMap::const_iterator>
defined_insn_vars() const854 defined_insn_vars() const {
855 return make_range(defined_insn_vars_begin(), defined_insn_vars_end());
856 }
857
mutatable_insns_begin() const858 MutatableInsnSet::const_iterator mutatable_insns_begin() const {
859 return MutatableInsns.begin();
860 }
mutatable_insns_end() const861 MutatableInsnSet::const_iterator mutatable_insns_end() const {
862 return MutatableInsns.end();
863 }
864 iterator_range<typename MutatableInsnSet::const_iterator>
mutatable_insns() const865 mutatable_insns() const {
866 return make_range(mutatable_insns_begin(), mutatable_insns_end());
867 }
reserveInsnMatcherForMutation(InstructionMatcher * InsnMatcher)868 void reserveInsnMatcherForMutation(InstructionMatcher *InsnMatcher) {
869 bool R = MutatableInsns.erase(InsnMatcher);
870 assert(R && "Reserving a mutatable insn that isn't available");
871 (void)R;
872 }
873
actions_begin()874 action_iterator actions_begin() { return Actions.begin(); }
actions_end()875 action_iterator actions_end() { return Actions.end(); }
actions()876 iterator_range<action_iterator> actions() {
877 return make_range(actions_begin(), actions_end());
878 }
879
880 void defineOperand(StringRef SymbolicName, OperandMatcher &OM);
881
defineComplexSubOperand(StringRef SymbolicName,Record * ComplexPattern,unsigned RendererID,unsigned SubOperandID)882 void defineComplexSubOperand(StringRef SymbolicName, Record *ComplexPattern,
883 unsigned RendererID, unsigned SubOperandID) {
884 assert(ComplexSubOperands.count(SymbolicName) == 0 && "Already defined");
885 ComplexSubOperands[SymbolicName] =
886 std::make_tuple(ComplexPattern, RendererID, SubOperandID);
887 }
888 Optional<DefinedComplexPatternSubOperand>
getComplexSubOperand(StringRef SymbolicName) const889 getComplexSubOperand(StringRef SymbolicName) const {
890 const auto &I = ComplexSubOperands.find(SymbolicName);
891 if (I == ComplexSubOperands.end())
892 return None;
893 return I->second;
894 }
895
896 InstructionMatcher &getInstructionMatcher(StringRef SymbolicName) const;
897 const OperandMatcher &getOperandMatcher(StringRef Name) const;
898
899 void optimize() override;
900 void emit(MatchTable &Table) override;
901
902 /// Compare the priority of this object and B.
903 ///
904 /// Returns true if this object is more important than B.
905 bool isHigherPriorityThan(const RuleMatcher &B) const;
906
907 /// Report the maximum number of temporary operands needed by the rule
908 /// matcher.
909 unsigned countRendererFns() const;
910
911 std::unique_ptr<PredicateMatcher> popFirstCondition() override;
912 const PredicateMatcher &getFirstCondition() const override;
913 LLTCodeGen getFirstConditionAsRootType();
914 bool hasFirstCondition() const override;
915 unsigned getNumOperands() const;
916 StringRef getOpcode() const;
917
918 // FIXME: Remove this as soon as possible
insnmatchers_front() const919 InstructionMatcher &insnmatchers_front() const { return *Matchers.front(); }
920
allocateOutputInsnID()921 unsigned allocateOutputInsnID() { return NextOutputInsnID++; }
allocateTempRegID()922 unsigned allocateTempRegID() { return NextTempRegID++; }
923
insnmatchers()924 iterator_range<MatchersTy::iterator> insnmatchers() {
925 return make_range(Matchers.begin(), Matchers.end());
926 }
insnmatchers_empty() const927 bool insnmatchers_empty() const { return Matchers.empty(); }
insnmatchers_pop_front()928 void insnmatchers_pop_front() { Matchers.erase(Matchers.begin()); }
929 };
930
931 uint64_t RuleMatcher::NextRuleID = 0;
932
933 using action_iterator = RuleMatcher::action_iterator;
934
935 template <class PredicateTy> class PredicateListMatcher {
936 private:
937 /// Template instantiations should specialize this to return a string to use
938 /// for the comment emitted when there are no predicates.
939 std::string getNoPredicateComment() const;
940
941 protected:
942 using PredicatesTy = std::deque<std::unique_ptr<PredicateTy>>;
943 PredicatesTy Predicates;
944
945 /// Track if the list of predicates was manipulated by one of the optimization
946 /// methods.
947 bool Optimized = false;
948
949 public:
950 /// Construct a new predicate and add it to the matcher.
951 template <class Kind, class... Args>
952 Optional<Kind *> addPredicate(Args &&... args);
953
predicates_begin()954 typename PredicatesTy::iterator predicates_begin() {
955 return Predicates.begin();
956 }
predicates_end()957 typename PredicatesTy::iterator predicates_end() {
958 return Predicates.end();
959 }
predicates()960 iterator_range<typename PredicatesTy::iterator> predicates() {
961 return make_range(predicates_begin(), predicates_end());
962 }
predicates_size() const963 typename PredicatesTy::size_type predicates_size() const {
964 return Predicates.size();
965 }
predicates_empty() const966 bool predicates_empty() const { return Predicates.empty(); }
967
predicates_pop_front()968 std::unique_ptr<PredicateTy> predicates_pop_front() {
969 std::unique_ptr<PredicateTy> Front = std::move(Predicates.front());
970 Predicates.pop_front();
971 Optimized = true;
972 return Front;
973 }
974
prependPredicate(std::unique_ptr<PredicateTy> && Predicate)975 void prependPredicate(std::unique_ptr<PredicateTy> &&Predicate) {
976 Predicates.push_front(std::move(Predicate));
977 }
978
eraseNullPredicates()979 void eraseNullPredicates() {
980 const auto NewEnd =
981 std::stable_partition(Predicates.begin(), Predicates.end(),
982 std::logical_not<std::unique_ptr<PredicateTy>>());
983 if (NewEnd != Predicates.begin()) {
984 Predicates.erase(Predicates.begin(), NewEnd);
985 Optimized = true;
986 }
987 }
988
989 /// Emit MatchTable opcodes that tests whether all the predicates are met.
990 template <class... Args>
emitPredicateListOpcodes(MatchTable & Table,Args &&...args)991 void emitPredicateListOpcodes(MatchTable &Table, Args &&... args) {
992 if (Predicates.empty() && !Optimized) {
993 Table << MatchTable::Comment(getNoPredicateComment())
994 << MatchTable::LineBreak;
995 return;
996 }
997
998 for (const auto &Predicate : predicates())
999 Predicate->emitPredicateOpcodes(Table, std::forward<Args>(args)...);
1000 }
1001 };
1002
1003 class PredicateMatcher {
1004 public:
1005 /// This enum is used for RTTI and also defines the priority that is given to
1006 /// the predicate when generating the matcher code. Kinds with higher priority
1007 /// must be tested first.
1008 ///
1009 /// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
1010 /// but OPM_Int must have priority over OPM_RegBank since constant integers
1011 /// are represented by a virtual register defined by a G_CONSTANT instruction.
1012 ///
1013 /// Note: The relative priority between IPM_ and OPM_ does not matter, they
1014 /// are currently not compared between each other.
1015 enum PredicateKind {
1016 IPM_Opcode,
1017 IPM_NumOperands,
1018 IPM_ImmPredicate,
1019 IPM_AtomicOrderingMMO,
1020 IPM_MemoryLLTSize,
1021 IPM_MemoryVsLLTSize,
1022 IPM_GenericPredicate,
1023 OPM_SameOperand,
1024 OPM_ComplexPattern,
1025 OPM_IntrinsicID,
1026 OPM_Instruction,
1027 OPM_Int,
1028 OPM_LiteralInt,
1029 OPM_LLT,
1030 OPM_PointerToAny,
1031 OPM_RegBank,
1032 OPM_MBB,
1033 };
1034
1035 protected:
1036 PredicateKind Kind;
1037 unsigned InsnVarID;
1038 unsigned OpIdx;
1039
1040 public:
PredicateMatcher(PredicateKind Kind,unsigned InsnVarID,unsigned OpIdx=~0)1041 PredicateMatcher(PredicateKind Kind, unsigned InsnVarID, unsigned OpIdx = ~0)
1042 : Kind(Kind), InsnVarID(InsnVarID), OpIdx(OpIdx) {}
1043
getInsnVarID() const1044 unsigned getInsnVarID() const { return InsnVarID; }
getOpIdx() const1045 unsigned getOpIdx() const { return OpIdx; }
1046
1047 virtual ~PredicateMatcher() = default;
1048 /// Emit MatchTable opcodes that check the predicate for the given operand.
1049 virtual void emitPredicateOpcodes(MatchTable &Table,
1050 RuleMatcher &Rule) const = 0;
1051
getKind() const1052 PredicateKind getKind() const { return Kind; }
1053
isIdentical(const PredicateMatcher & B) const1054 virtual bool isIdentical(const PredicateMatcher &B) const {
1055 return B.getKind() == getKind() && InsnVarID == B.InsnVarID &&
1056 OpIdx == B.OpIdx;
1057 }
1058
isIdenticalDownToValue(const PredicateMatcher & B) const1059 virtual bool isIdenticalDownToValue(const PredicateMatcher &B) const {
1060 return hasValue() && PredicateMatcher::isIdentical(B);
1061 }
1062
getValue() const1063 virtual MatchTableRecord getValue() const {
1064 assert(hasValue() && "Can not get a value of a value-less predicate!");
1065 llvm_unreachable("Not implemented yet");
1066 }
hasValue() const1067 virtual bool hasValue() const { return false; }
1068
1069 /// Report the maximum number of temporary operands needed by the predicate
1070 /// matcher.
countRendererFns() const1071 virtual unsigned countRendererFns() const { return 0; }
1072 };
1073
1074 /// Generates code to check a predicate of an operand.
1075 ///
1076 /// Typical predicates include:
1077 /// * Operand is a particular register.
1078 /// * Operand is assigned a particular register bank.
1079 /// * Operand is an MBB.
1080 class OperandPredicateMatcher : public PredicateMatcher {
1081 public:
OperandPredicateMatcher(PredicateKind Kind,unsigned InsnVarID,unsigned OpIdx)1082 OperandPredicateMatcher(PredicateKind Kind, unsigned InsnVarID,
1083 unsigned OpIdx)
1084 : PredicateMatcher(Kind, InsnVarID, OpIdx) {}
~OperandPredicateMatcher()1085 virtual ~OperandPredicateMatcher() {}
1086
1087 /// Compare the priority of this object and B.
1088 ///
1089 /// Returns true if this object is more important than B.
1090 virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const;
1091 };
1092
1093 template <>
1094 std::string
getNoPredicateComment() const1095 PredicateListMatcher<OperandPredicateMatcher>::getNoPredicateComment() const {
1096 return "No operand predicates";
1097 }
1098
1099 /// Generates code to check that a register operand is defined by the same exact
1100 /// one as another.
1101 class SameOperandMatcher : public OperandPredicateMatcher {
1102 std::string MatchingName;
1103
1104 public:
SameOperandMatcher(unsigned InsnVarID,unsigned OpIdx,StringRef MatchingName)1105 SameOperandMatcher(unsigned InsnVarID, unsigned OpIdx, StringRef MatchingName)
1106 : OperandPredicateMatcher(OPM_SameOperand, InsnVarID, OpIdx),
1107 MatchingName(MatchingName) {}
1108
classof(const PredicateMatcher * P)1109 static bool classof(const PredicateMatcher *P) {
1110 return P->getKind() == OPM_SameOperand;
1111 }
1112
1113 void emitPredicateOpcodes(MatchTable &Table,
1114 RuleMatcher &Rule) const override;
1115
isIdentical(const PredicateMatcher & B) const1116 bool isIdentical(const PredicateMatcher &B) const override {
1117 return OperandPredicateMatcher::isIdentical(B) &&
1118 MatchingName == cast<SameOperandMatcher>(&B)->MatchingName;
1119 }
1120 };
1121
1122 /// Generates code to check that an operand is a particular LLT.
1123 class LLTOperandMatcher : public OperandPredicateMatcher {
1124 protected:
1125 LLTCodeGen Ty;
1126
1127 public:
1128 static std::map<LLTCodeGen, unsigned> TypeIDValues;
1129
initTypeIDValuesMap()1130 static void initTypeIDValuesMap() {
1131 TypeIDValues.clear();
1132
1133 unsigned ID = 0;
1134 for (const LLTCodeGen LLTy : KnownTypes)
1135 TypeIDValues[LLTy] = ID++;
1136 }
1137
LLTOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const LLTCodeGen & Ty)1138 LLTOperandMatcher(unsigned InsnVarID, unsigned OpIdx, const LLTCodeGen &Ty)
1139 : OperandPredicateMatcher(OPM_LLT, InsnVarID, OpIdx), Ty(Ty) {
1140 KnownTypes.insert(Ty);
1141 }
1142
classof(const PredicateMatcher * P)1143 static bool classof(const PredicateMatcher *P) {
1144 return P->getKind() == OPM_LLT;
1145 }
isIdentical(const PredicateMatcher & B) const1146 bool isIdentical(const PredicateMatcher &B) const override {
1147 return OperandPredicateMatcher::isIdentical(B) &&
1148 Ty == cast<LLTOperandMatcher>(&B)->Ty;
1149 }
getValue() const1150 MatchTableRecord getValue() const override {
1151 const auto VI = TypeIDValues.find(Ty);
1152 if (VI == TypeIDValues.end())
1153 return MatchTable::NamedValue(getTy().getCxxEnumValue());
1154 return MatchTable::NamedValue(getTy().getCxxEnumValue(), VI->second);
1155 }
hasValue() const1156 bool hasValue() const override {
1157 if (TypeIDValues.size() != KnownTypes.size())
1158 initTypeIDValuesMap();
1159 return TypeIDValues.count(Ty);
1160 }
1161
getTy() const1162 LLTCodeGen getTy() const { return Ty; }
1163
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1164 void emitPredicateOpcodes(MatchTable &Table,
1165 RuleMatcher &Rule) const override {
1166 Table << MatchTable::Opcode("GIM_CheckType") << MatchTable::Comment("MI")
1167 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1168 << MatchTable::IntValue(OpIdx) << MatchTable::Comment("Type")
1169 << getValue() << MatchTable::LineBreak;
1170 }
1171 };
1172
1173 std::map<LLTCodeGen, unsigned> LLTOperandMatcher::TypeIDValues;
1174
1175 /// Generates code to check that an operand is a pointer to any address space.
1176 ///
1177 /// In SelectionDAG, the types did not describe pointers or address spaces. As a
1178 /// result, iN is used to describe a pointer of N bits to any address space and
1179 /// PatFrag predicates are typically used to constrain the address space. There's
1180 /// no reliable means to derive the missing type information from the pattern so
1181 /// imported rules must test the components of a pointer separately.
1182 ///
1183 /// If SizeInBits is zero, then the pointer size will be obtained from the
1184 /// subtarget.
1185 class PointerToAnyOperandMatcher : public OperandPredicateMatcher {
1186 protected:
1187 unsigned SizeInBits;
1188
1189 public:
PointerToAnyOperandMatcher(unsigned InsnVarID,unsigned OpIdx,unsigned SizeInBits)1190 PointerToAnyOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1191 unsigned SizeInBits)
1192 : OperandPredicateMatcher(OPM_PointerToAny, InsnVarID, OpIdx),
1193 SizeInBits(SizeInBits) {}
1194
classof(const OperandPredicateMatcher * P)1195 static bool classof(const OperandPredicateMatcher *P) {
1196 return P->getKind() == OPM_PointerToAny;
1197 }
1198
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1199 void emitPredicateOpcodes(MatchTable &Table,
1200 RuleMatcher &Rule) const override {
1201 Table << MatchTable::Opcode("GIM_CheckPointerToAny")
1202 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1203 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1204 << MatchTable::Comment("SizeInBits")
1205 << MatchTable::IntValue(SizeInBits) << MatchTable::LineBreak;
1206 }
1207 };
1208
1209 /// Generates code to check that an operand is a particular target constant.
1210 class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
1211 protected:
1212 const OperandMatcher &Operand;
1213 const Record &TheDef;
1214
1215 unsigned getAllocatedTemporariesBaseID() const;
1216
1217 public:
isIdentical(const PredicateMatcher & B) const1218 bool isIdentical(const PredicateMatcher &B) const override { return false; }
1219
ComplexPatternOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const OperandMatcher & Operand,const Record & TheDef)1220 ComplexPatternOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1221 const OperandMatcher &Operand,
1222 const Record &TheDef)
1223 : OperandPredicateMatcher(OPM_ComplexPattern, InsnVarID, OpIdx),
1224 Operand(Operand), TheDef(TheDef) {}
1225
classof(const PredicateMatcher * P)1226 static bool classof(const PredicateMatcher *P) {
1227 return P->getKind() == OPM_ComplexPattern;
1228 }
1229
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1230 void emitPredicateOpcodes(MatchTable &Table,
1231 RuleMatcher &Rule) const override {
1232 unsigned ID = getAllocatedTemporariesBaseID();
1233 Table << MatchTable::Opcode("GIM_CheckComplexPattern")
1234 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1235 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1236 << MatchTable::Comment("Renderer") << MatchTable::IntValue(ID)
1237 << MatchTable::NamedValue(("GICP_" + TheDef.getName()).str())
1238 << MatchTable::LineBreak;
1239 }
1240
countRendererFns() const1241 unsigned countRendererFns() const override {
1242 return 1;
1243 }
1244 };
1245
1246 /// Generates code to check that an operand is in a particular register bank.
1247 class RegisterBankOperandMatcher : public OperandPredicateMatcher {
1248 protected:
1249 const CodeGenRegisterClass &RC;
1250
1251 public:
RegisterBankOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const CodeGenRegisterClass & RC)1252 RegisterBankOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1253 const CodeGenRegisterClass &RC)
1254 : OperandPredicateMatcher(OPM_RegBank, InsnVarID, OpIdx), RC(RC) {}
1255
isIdentical(const PredicateMatcher & B) const1256 bool isIdentical(const PredicateMatcher &B) const override {
1257 return OperandPredicateMatcher::isIdentical(B) &&
1258 RC.getDef() == cast<RegisterBankOperandMatcher>(&B)->RC.getDef();
1259 }
1260
classof(const PredicateMatcher * P)1261 static bool classof(const PredicateMatcher *P) {
1262 return P->getKind() == OPM_RegBank;
1263 }
1264
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1265 void emitPredicateOpcodes(MatchTable &Table,
1266 RuleMatcher &Rule) const override {
1267 Table << MatchTable::Opcode("GIM_CheckRegBankForClass")
1268 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1269 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1270 << MatchTable::Comment("RC")
1271 << MatchTable::NamedValue(RC.getQualifiedName() + "RegClassID")
1272 << MatchTable::LineBreak;
1273 }
1274 };
1275
1276 /// Generates code to check that an operand is a basic block.
1277 class MBBOperandMatcher : public OperandPredicateMatcher {
1278 public:
MBBOperandMatcher(unsigned InsnVarID,unsigned OpIdx)1279 MBBOperandMatcher(unsigned InsnVarID, unsigned OpIdx)
1280 : OperandPredicateMatcher(OPM_MBB, InsnVarID, OpIdx) {}
1281
classof(const PredicateMatcher * P)1282 static bool classof(const PredicateMatcher *P) {
1283 return P->getKind() == OPM_MBB;
1284 }
1285
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1286 void emitPredicateOpcodes(MatchTable &Table,
1287 RuleMatcher &Rule) const override {
1288 Table << MatchTable::Opcode("GIM_CheckIsMBB") << MatchTable::Comment("MI")
1289 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Op")
1290 << MatchTable::IntValue(OpIdx) << MatchTable::LineBreak;
1291 }
1292 };
1293
1294 /// Generates code to check that an operand is a G_CONSTANT with a particular
1295 /// int.
1296 class ConstantIntOperandMatcher : public OperandPredicateMatcher {
1297 protected:
1298 int64_t Value;
1299
1300 public:
ConstantIntOperandMatcher(unsigned InsnVarID,unsigned OpIdx,int64_t Value)1301 ConstantIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1302 : OperandPredicateMatcher(OPM_Int, InsnVarID, OpIdx), Value(Value) {}
1303
isIdentical(const PredicateMatcher & B) const1304 bool isIdentical(const PredicateMatcher &B) const override {
1305 return OperandPredicateMatcher::isIdentical(B) &&
1306 Value == cast<ConstantIntOperandMatcher>(&B)->Value;
1307 }
1308
classof(const PredicateMatcher * P)1309 static bool classof(const PredicateMatcher *P) {
1310 return P->getKind() == OPM_Int;
1311 }
1312
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1313 void emitPredicateOpcodes(MatchTable &Table,
1314 RuleMatcher &Rule) const override {
1315 Table << MatchTable::Opcode("GIM_CheckConstantInt")
1316 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1317 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1318 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1319 }
1320 };
1321
1322 /// Generates code to check that an operand is a raw int (where MO.isImm() or
1323 /// MO.isCImm() is true).
1324 class LiteralIntOperandMatcher : public OperandPredicateMatcher {
1325 protected:
1326 int64_t Value;
1327
1328 public:
LiteralIntOperandMatcher(unsigned InsnVarID,unsigned OpIdx,int64_t Value)1329 LiteralIntOperandMatcher(unsigned InsnVarID, unsigned OpIdx, int64_t Value)
1330 : OperandPredicateMatcher(OPM_LiteralInt, InsnVarID, OpIdx),
1331 Value(Value) {}
1332
isIdentical(const PredicateMatcher & B) const1333 bool isIdentical(const PredicateMatcher &B) const override {
1334 return OperandPredicateMatcher::isIdentical(B) &&
1335 Value == cast<LiteralIntOperandMatcher>(&B)->Value;
1336 }
1337
classof(const PredicateMatcher * P)1338 static bool classof(const PredicateMatcher *P) {
1339 return P->getKind() == OPM_LiteralInt;
1340 }
1341
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1342 void emitPredicateOpcodes(MatchTable &Table,
1343 RuleMatcher &Rule) const override {
1344 Table << MatchTable::Opcode("GIM_CheckLiteralInt")
1345 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1346 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1347 << MatchTable::IntValue(Value) << MatchTable::LineBreak;
1348 }
1349 };
1350
1351 /// Generates code to check that an operand is an intrinsic ID.
1352 class IntrinsicIDOperandMatcher : public OperandPredicateMatcher {
1353 protected:
1354 const CodeGenIntrinsic *II;
1355
1356 public:
IntrinsicIDOperandMatcher(unsigned InsnVarID,unsigned OpIdx,const CodeGenIntrinsic * II)1357 IntrinsicIDOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
1358 const CodeGenIntrinsic *II)
1359 : OperandPredicateMatcher(OPM_IntrinsicID, InsnVarID, OpIdx), II(II) {}
1360
isIdentical(const PredicateMatcher & B) const1361 bool isIdentical(const PredicateMatcher &B) const override {
1362 return OperandPredicateMatcher::isIdentical(B) &&
1363 II == cast<IntrinsicIDOperandMatcher>(&B)->II;
1364 }
1365
classof(const PredicateMatcher * P)1366 static bool classof(const PredicateMatcher *P) {
1367 return P->getKind() == OPM_IntrinsicID;
1368 }
1369
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1370 void emitPredicateOpcodes(MatchTable &Table,
1371 RuleMatcher &Rule) const override {
1372 Table << MatchTable::Opcode("GIM_CheckIntrinsicID")
1373 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1374 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
1375 << MatchTable::NamedValue("Intrinsic::" + II->EnumName)
1376 << MatchTable::LineBreak;
1377 }
1378 };
1379
1380 /// Generates code to check that a set of predicates match for a particular
1381 /// operand.
1382 class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
1383 protected:
1384 InstructionMatcher &Insn;
1385 unsigned OpIdx;
1386 std::string SymbolicName;
1387
1388 /// The index of the first temporary variable allocated to this operand. The
1389 /// number of allocated temporaries can be found with
1390 /// countRendererFns().
1391 unsigned AllocatedTemporariesBaseID;
1392
1393 public:
OperandMatcher(InstructionMatcher & Insn,unsigned OpIdx,const std::string & SymbolicName,unsigned AllocatedTemporariesBaseID)1394 OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
1395 const std::string &SymbolicName,
1396 unsigned AllocatedTemporariesBaseID)
1397 : Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
1398 AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
1399
hasSymbolicName() const1400 bool hasSymbolicName() const { return !SymbolicName.empty(); }
getSymbolicName() const1401 const StringRef getSymbolicName() const { return SymbolicName; }
setSymbolicName(StringRef Name)1402 void setSymbolicName(StringRef Name) {
1403 assert(SymbolicName.empty() && "Operand already has a symbolic name");
1404 SymbolicName = Name;
1405 }
1406
1407 /// Construct a new operand predicate and add it to the matcher.
1408 template <class Kind, class... Args>
addPredicate(Args &&...args)1409 Optional<Kind *> addPredicate(Args &&... args) {
1410 if (isSameAsAnotherOperand())
1411 return None;
1412 Predicates.emplace_back(llvm::make_unique<Kind>(
1413 getInsnVarID(), getOpIdx(), std::forward<Args>(args)...));
1414 return static_cast<Kind *>(Predicates.back().get());
1415 }
1416
getOpIdx() const1417 unsigned getOpIdx() const { return OpIdx; }
1418 unsigned getInsnVarID() const;
1419
getOperandExpr(unsigned InsnVarID) const1420 std::string getOperandExpr(unsigned InsnVarID) const {
1421 return "State.MIs[" + llvm::to_string(InsnVarID) + "]->getOperand(" +
1422 llvm::to_string(OpIdx) + ")";
1423 }
1424
getInstructionMatcher() const1425 InstructionMatcher &getInstructionMatcher() const { return Insn; }
1426
1427 Error addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1428 bool OperandIsAPointer);
1429
1430 /// Emit MatchTable opcodes that test whether the instruction named in
1431 /// InsnVarID matches all the predicates and all the operands.
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule)1432 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1433 if (!Optimized) {
1434 std::string Comment;
1435 raw_string_ostream CommentOS(Comment);
1436 CommentOS << "MIs[" << getInsnVarID() << "] ";
1437 if (SymbolicName.empty())
1438 CommentOS << "Operand " << OpIdx;
1439 else
1440 CommentOS << SymbolicName;
1441 Table << MatchTable::Comment(CommentOS.str()) << MatchTable::LineBreak;
1442 }
1443
1444 emitPredicateListOpcodes(Table, Rule);
1445 }
1446
1447 /// Compare the priority of this object and B.
1448 ///
1449 /// Returns true if this object is more important than B.
isHigherPriorityThan(OperandMatcher & B)1450 bool isHigherPriorityThan(OperandMatcher &B) {
1451 // Operand matchers involving more predicates have higher priority.
1452 if (predicates_size() > B.predicates_size())
1453 return true;
1454 if (predicates_size() < B.predicates_size())
1455 return false;
1456
1457 // This assumes that predicates are added in a consistent order.
1458 for (auto &&Predicate : zip(predicates(), B.predicates())) {
1459 if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
1460 return true;
1461 if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
1462 return false;
1463 }
1464
1465 return false;
1466 };
1467
1468 /// Report the maximum number of temporary operands needed by the operand
1469 /// matcher.
countRendererFns()1470 unsigned countRendererFns() {
1471 return std::accumulate(
1472 predicates().begin(), predicates().end(), 0,
1473 [](unsigned A,
1474 const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
1475 return A + Predicate->countRendererFns();
1476 });
1477 }
1478
getAllocatedTemporariesBaseID() const1479 unsigned getAllocatedTemporariesBaseID() const {
1480 return AllocatedTemporariesBaseID;
1481 }
1482
isSameAsAnotherOperand()1483 bool isSameAsAnotherOperand() {
1484 for (const auto &Predicate : predicates())
1485 if (isa<SameOperandMatcher>(Predicate))
1486 return true;
1487 return false;
1488 }
1489 };
1490
addTypeCheckPredicate(const TypeSetByHwMode & VTy,bool OperandIsAPointer)1491 Error OperandMatcher::addTypeCheckPredicate(const TypeSetByHwMode &VTy,
1492 bool OperandIsAPointer) {
1493 if (!VTy.isMachineValueType())
1494 return failedImport("unsupported typeset");
1495
1496 if (VTy.getMachineValueType() == MVT::iPTR && OperandIsAPointer) {
1497 addPredicate<PointerToAnyOperandMatcher>(0);
1498 return Error::success();
1499 }
1500
1501 auto OpTyOrNone = MVTToLLT(VTy.getMachineValueType().SimpleTy);
1502 if (!OpTyOrNone)
1503 return failedImport("unsupported type");
1504
1505 if (OperandIsAPointer)
1506 addPredicate<PointerToAnyOperandMatcher>(OpTyOrNone->get().getSizeInBits());
1507 else
1508 addPredicate<LLTOperandMatcher>(*OpTyOrNone);
1509 return Error::success();
1510 }
1511
getAllocatedTemporariesBaseID() const1512 unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
1513 return Operand.getAllocatedTemporariesBaseID();
1514 }
1515
1516 /// Generates code to check a predicate on an instruction.
1517 ///
1518 /// Typical predicates include:
1519 /// * The opcode of the instruction is a particular value.
1520 /// * The nsw/nuw flag is/isn't set.
1521 class InstructionPredicateMatcher : public PredicateMatcher {
1522 public:
InstructionPredicateMatcher(PredicateKind Kind,unsigned InsnVarID)1523 InstructionPredicateMatcher(PredicateKind Kind, unsigned InsnVarID)
1524 : PredicateMatcher(Kind, InsnVarID) {}
~InstructionPredicateMatcher()1525 virtual ~InstructionPredicateMatcher() {}
1526
1527 /// Compare the priority of this object and B.
1528 ///
1529 /// Returns true if this object is more important than B.
1530 virtual bool
isHigherPriorityThan(const InstructionPredicateMatcher & B) const1531 isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
1532 return Kind < B.Kind;
1533 };
1534 };
1535
1536 template <>
1537 std::string
getNoPredicateComment() const1538 PredicateListMatcher<PredicateMatcher>::getNoPredicateComment() const {
1539 return "No instruction predicates";
1540 }
1541
1542 /// Generates code to check the opcode of an instruction.
1543 class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
1544 protected:
1545 const CodeGenInstruction *I;
1546
1547 static DenseMap<const CodeGenInstruction *, unsigned> OpcodeValues;
1548
1549 public:
initOpcodeValuesMap(const CodeGenTarget & Target)1550 static void initOpcodeValuesMap(const CodeGenTarget &Target) {
1551 OpcodeValues.clear();
1552
1553 unsigned OpcodeValue = 0;
1554 for (const CodeGenInstruction *I : Target.getInstructionsByEnumValue())
1555 OpcodeValues[I] = OpcodeValue++;
1556 }
1557
InstructionOpcodeMatcher(unsigned InsnVarID,const CodeGenInstruction * I)1558 InstructionOpcodeMatcher(unsigned InsnVarID, const CodeGenInstruction *I)
1559 : InstructionPredicateMatcher(IPM_Opcode, InsnVarID), I(I) {}
1560
classof(const PredicateMatcher * P)1561 static bool classof(const PredicateMatcher *P) {
1562 return P->getKind() == IPM_Opcode;
1563 }
1564
isIdentical(const PredicateMatcher & B) const1565 bool isIdentical(const PredicateMatcher &B) const override {
1566 return InstructionPredicateMatcher::isIdentical(B) &&
1567 I == cast<InstructionOpcodeMatcher>(&B)->I;
1568 }
getValue() const1569 MatchTableRecord getValue() const override {
1570 const auto VI = OpcodeValues.find(I);
1571 if (VI != OpcodeValues.end())
1572 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName(),
1573 VI->second);
1574 return MatchTable::NamedValue(I->Namespace, I->TheDef->getName());
1575 }
hasValue() const1576 bool hasValue() const override { return OpcodeValues.count(I); }
1577
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1578 void emitPredicateOpcodes(MatchTable &Table,
1579 RuleMatcher &Rule) const override {
1580 Table << MatchTable::Opcode("GIM_CheckOpcode") << MatchTable::Comment("MI")
1581 << MatchTable::IntValue(InsnVarID) << getValue()
1582 << MatchTable::LineBreak;
1583 }
1584
1585 /// Compare the priority of this object and B.
1586 ///
1587 /// Returns true if this object is more important than B.
1588 bool
isHigherPriorityThan(const InstructionPredicateMatcher & B) const1589 isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
1590 if (InstructionPredicateMatcher::isHigherPriorityThan(B))
1591 return true;
1592 if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
1593 return false;
1594
1595 // Prioritize opcodes for cosmetic reasons in the generated source. Although
1596 // this is cosmetic at the moment, we may want to drive a similar ordering
1597 // using instruction frequency information to improve compile time.
1598 if (const InstructionOpcodeMatcher *BO =
1599 dyn_cast<InstructionOpcodeMatcher>(&B))
1600 return I->TheDef->getName() < BO->I->TheDef->getName();
1601
1602 return false;
1603 };
1604
isConstantInstruction() const1605 bool isConstantInstruction() const {
1606 return I->TheDef->getName() == "G_CONSTANT";
1607 }
1608
getOpcode() const1609 StringRef getOpcode() const { return I->TheDef->getName(); }
getNumOperands() const1610 unsigned getNumOperands() const { return I->Operands.size(); }
1611
getOperandType(unsigned OpIdx) const1612 StringRef getOperandType(unsigned OpIdx) const {
1613 return I->Operands[OpIdx].OperandType;
1614 }
1615 };
1616
1617 DenseMap<const CodeGenInstruction *, unsigned>
1618 InstructionOpcodeMatcher::OpcodeValues;
1619
1620 class InstructionNumOperandsMatcher final : public InstructionPredicateMatcher {
1621 unsigned NumOperands = 0;
1622
1623 public:
InstructionNumOperandsMatcher(unsigned InsnVarID,unsigned NumOperands)1624 InstructionNumOperandsMatcher(unsigned InsnVarID, unsigned NumOperands)
1625 : InstructionPredicateMatcher(IPM_NumOperands, InsnVarID),
1626 NumOperands(NumOperands) {}
1627
classof(const PredicateMatcher * P)1628 static bool classof(const PredicateMatcher *P) {
1629 return P->getKind() == IPM_NumOperands;
1630 }
1631
isIdentical(const PredicateMatcher & B) const1632 bool isIdentical(const PredicateMatcher &B) const override {
1633 return InstructionPredicateMatcher::isIdentical(B) &&
1634 NumOperands == cast<InstructionNumOperandsMatcher>(&B)->NumOperands;
1635 }
1636
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1637 void emitPredicateOpcodes(MatchTable &Table,
1638 RuleMatcher &Rule) const override {
1639 Table << MatchTable::Opcode("GIM_CheckNumOperands")
1640 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1641 << MatchTable::Comment("Expected")
1642 << MatchTable::IntValue(NumOperands) << MatchTable::LineBreak;
1643 }
1644 };
1645
1646 /// Generates code to check that this instruction is a constant whose value
1647 /// meets an immediate predicate.
1648 ///
1649 /// Immediates are slightly odd since they are typically used like an operand
1650 /// but are represented as an operator internally. We typically write simm8:$src
1651 /// in a tablegen pattern, but this is just syntactic sugar for
1652 /// (imm:i32)<<P:Predicate_simm8>>:$imm which more directly describes the nodes
1653 /// that will be matched and the predicate (which is attached to the imm
1654 /// operator) that will be tested. In SelectionDAG this describes a
1655 /// ConstantSDNode whose internal value will be tested using the simm8 predicate.
1656 ///
1657 /// The corresponding GlobalISel representation is %1 = G_CONSTANT iN Value. In
1658 /// this representation, the immediate could be tested with an
1659 /// InstructionMatcher, InstructionOpcodeMatcher, OperandMatcher, and a
1660 /// OperandPredicateMatcher-subclass to check the Value meets the predicate but
1661 /// there are two implementation issues with producing that matcher
1662 /// configuration from the SelectionDAG pattern:
1663 /// * ImmLeaf is a PatFrag whose root is an InstructionMatcher. This means that
1664 /// were we to sink the immediate predicate to the operand we would have to
1665 /// have two partial implementations of PatFrag support, one for immediates
1666 /// and one for non-immediates.
1667 /// * At the point we handle the predicate, the OperandMatcher hasn't been
1668 /// created yet. If we were to sink the predicate to the OperandMatcher we
1669 /// would also have to complicate (or duplicate) the code that descends and
1670 /// creates matchers for the subtree.
1671 /// Overall, it's simpler to handle it in the place it was found.
1672 class InstructionImmPredicateMatcher : public InstructionPredicateMatcher {
1673 protected:
1674 TreePredicateFn Predicate;
1675
1676 public:
InstructionImmPredicateMatcher(unsigned InsnVarID,const TreePredicateFn & Predicate)1677 InstructionImmPredicateMatcher(unsigned InsnVarID,
1678 const TreePredicateFn &Predicate)
1679 : InstructionPredicateMatcher(IPM_ImmPredicate, InsnVarID),
1680 Predicate(Predicate) {}
1681
isIdentical(const PredicateMatcher & B) const1682 bool isIdentical(const PredicateMatcher &B) const override {
1683 return InstructionPredicateMatcher::isIdentical(B) &&
1684 Predicate.getOrigPatFragRecord() ==
1685 cast<InstructionImmPredicateMatcher>(&B)
1686 ->Predicate.getOrigPatFragRecord();
1687 }
1688
classof(const PredicateMatcher * P)1689 static bool classof(const PredicateMatcher *P) {
1690 return P->getKind() == IPM_ImmPredicate;
1691 }
1692
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1693 void emitPredicateOpcodes(MatchTable &Table,
1694 RuleMatcher &Rule) const override {
1695 Table << MatchTable::Opcode(getMatchOpcodeForPredicate(Predicate))
1696 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1697 << MatchTable::Comment("Predicate")
1698 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1699 << MatchTable::LineBreak;
1700 }
1701 };
1702
1703 /// Generates code to check that a memory instruction has a atomic ordering
1704 /// MachineMemoryOperand.
1705 class AtomicOrderingMMOPredicateMatcher : public InstructionPredicateMatcher {
1706 public:
1707 enum AOComparator {
1708 AO_Exactly,
1709 AO_OrStronger,
1710 AO_WeakerThan,
1711 };
1712
1713 protected:
1714 StringRef Order;
1715 AOComparator Comparator;
1716
1717 public:
AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID,StringRef Order,AOComparator Comparator=AO_Exactly)1718 AtomicOrderingMMOPredicateMatcher(unsigned InsnVarID, StringRef Order,
1719 AOComparator Comparator = AO_Exactly)
1720 : InstructionPredicateMatcher(IPM_AtomicOrderingMMO, InsnVarID),
1721 Order(Order), Comparator(Comparator) {}
1722
classof(const PredicateMatcher * P)1723 static bool classof(const PredicateMatcher *P) {
1724 return P->getKind() == IPM_AtomicOrderingMMO;
1725 }
1726
isIdentical(const PredicateMatcher & B) const1727 bool isIdentical(const PredicateMatcher &B) const override {
1728 if (!InstructionPredicateMatcher::isIdentical(B))
1729 return false;
1730 const auto &R = *cast<AtomicOrderingMMOPredicateMatcher>(&B);
1731 return Order == R.Order && Comparator == R.Comparator;
1732 }
1733
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1734 void emitPredicateOpcodes(MatchTable &Table,
1735 RuleMatcher &Rule) const override {
1736 StringRef Opcode = "GIM_CheckAtomicOrdering";
1737
1738 if (Comparator == AO_OrStronger)
1739 Opcode = "GIM_CheckAtomicOrderingOrStrongerThan";
1740 if (Comparator == AO_WeakerThan)
1741 Opcode = "GIM_CheckAtomicOrderingWeakerThan";
1742
1743 Table << MatchTable::Opcode(Opcode) << MatchTable::Comment("MI")
1744 << MatchTable::IntValue(InsnVarID) << MatchTable::Comment("Order")
1745 << MatchTable::NamedValue(("(int64_t)AtomicOrdering::" + Order).str())
1746 << MatchTable::LineBreak;
1747 }
1748 };
1749
1750 /// Generates code to check that the size of an MMO is exactly N bytes.
1751 class MemorySizePredicateMatcher : public InstructionPredicateMatcher {
1752 protected:
1753 unsigned MMOIdx;
1754 uint64_t Size;
1755
1756 public:
MemorySizePredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,unsigned Size)1757 MemorySizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx, unsigned Size)
1758 : InstructionPredicateMatcher(IPM_MemoryLLTSize, InsnVarID),
1759 MMOIdx(MMOIdx), Size(Size) {}
1760
classof(const PredicateMatcher * P)1761 static bool classof(const PredicateMatcher *P) {
1762 return P->getKind() == IPM_MemoryLLTSize;
1763 }
isIdentical(const PredicateMatcher & B) const1764 bool isIdentical(const PredicateMatcher &B) const override {
1765 return InstructionPredicateMatcher::isIdentical(B) &&
1766 MMOIdx == cast<MemorySizePredicateMatcher>(&B)->MMOIdx &&
1767 Size == cast<MemorySizePredicateMatcher>(&B)->Size;
1768 }
1769
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1770 void emitPredicateOpcodes(MatchTable &Table,
1771 RuleMatcher &Rule) const override {
1772 Table << MatchTable::Opcode("GIM_CheckMemorySizeEqualTo")
1773 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1774 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1775 << MatchTable::Comment("Size") << MatchTable::IntValue(Size)
1776 << MatchTable::LineBreak;
1777 }
1778 };
1779
1780 /// Generates code to check that the size of an MMO is less-than, equal-to, or
1781 /// greater than a given LLT.
1782 class MemoryVsLLTSizePredicateMatcher : public InstructionPredicateMatcher {
1783 public:
1784 enum RelationKind {
1785 GreaterThan,
1786 EqualTo,
1787 LessThan,
1788 };
1789
1790 protected:
1791 unsigned MMOIdx;
1792 RelationKind Relation;
1793 unsigned OpIdx;
1794
1795 public:
MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID,unsigned MMOIdx,enum RelationKind Relation,unsigned OpIdx)1796 MemoryVsLLTSizePredicateMatcher(unsigned InsnVarID, unsigned MMOIdx,
1797 enum RelationKind Relation,
1798 unsigned OpIdx)
1799 : InstructionPredicateMatcher(IPM_MemoryVsLLTSize, InsnVarID),
1800 MMOIdx(MMOIdx), Relation(Relation), OpIdx(OpIdx) {}
1801
classof(const PredicateMatcher * P)1802 static bool classof(const PredicateMatcher *P) {
1803 return P->getKind() == IPM_MemoryVsLLTSize;
1804 }
isIdentical(const PredicateMatcher & B) const1805 bool isIdentical(const PredicateMatcher &B) const override {
1806 return InstructionPredicateMatcher::isIdentical(B) &&
1807 MMOIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->MMOIdx &&
1808 Relation == cast<MemoryVsLLTSizePredicateMatcher>(&B)->Relation &&
1809 OpIdx == cast<MemoryVsLLTSizePredicateMatcher>(&B)->OpIdx;
1810 }
1811
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1812 void emitPredicateOpcodes(MatchTable &Table,
1813 RuleMatcher &Rule) const override {
1814 Table << MatchTable::Opcode(Relation == EqualTo
1815 ? "GIM_CheckMemorySizeEqualToLLT"
1816 : Relation == GreaterThan
1817 ? "GIM_CheckMemorySizeGreaterThanLLT"
1818 : "GIM_CheckMemorySizeLessThanLLT")
1819 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1820 << MatchTable::Comment("MMO") << MatchTable::IntValue(MMOIdx)
1821 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
1822 << MatchTable::LineBreak;
1823 }
1824 };
1825
1826 /// Generates code to check an arbitrary C++ instruction predicate.
1827 class GenericInstructionPredicateMatcher : public InstructionPredicateMatcher {
1828 protected:
1829 TreePredicateFn Predicate;
1830
1831 public:
GenericInstructionPredicateMatcher(unsigned InsnVarID,TreePredicateFn Predicate)1832 GenericInstructionPredicateMatcher(unsigned InsnVarID,
1833 TreePredicateFn Predicate)
1834 : InstructionPredicateMatcher(IPM_GenericPredicate, InsnVarID),
1835 Predicate(Predicate) {}
1836
classof(const InstructionPredicateMatcher * P)1837 static bool classof(const InstructionPredicateMatcher *P) {
1838 return P->getKind() == IPM_GenericPredicate;
1839 }
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const1840 void emitPredicateOpcodes(MatchTable &Table,
1841 RuleMatcher &Rule) const override {
1842 Table << MatchTable::Opcode("GIM_CheckCxxInsnPredicate")
1843 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
1844 << MatchTable::Comment("FnId")
1845 << MatchTable::NamedValue(getEnumNameForPredicate(Predicate))
1846 << MatchTable::LineBreak;
1847 }
1848 };
1849
1850 /// Generates code to check that a set of predicates and operands match for a
1851 /// particular instruction.
1852 ///
1853 /// Typical predicates include:
1854 /// * Has a specific opcode.
1855 /// * Has an nsw/nuw flag or doesn't.
1856 class InstructionMatcher final : public PredicateListMatcher<PredicateMatcher> {
1857 protected:
1858 typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
1859
1860 RuleMatcher &Rule;
1861
1862 /// The operands to match. All rendered operands must be present even if the
1863 /// condition is always true.
1864 OperandVec Operands;
1865 bool NumOperandsCheck = true;
1866
1867 std::string SymbolicName;
1868 unsigned InsnVarID;
1869
1870 public:
InstructionMatcher(RuleMatcher & Rule,StringRef SymbolicName)1871 InstructionMatcher(RuleMatcher &Rule, StringRef SymbolicName)
1872 : Rule(Rule), SymbolicName(SymbolicName) {
1873 // We create a new instruction matcher.
1874 // Get a new ID for that instruction.
1875 InsnVarID = Rule.implicitlyDefineInsnVar(*this);
1876 }
1877
1878 /// Construct a new instruction predicate and add it to the matcher.
1879 template <class Kind, class... Args>
addPredicate(Args &&...args)1880 Optional<Kind *> addPredicate(Args &&... args) {
1881 Predicates.emplace_back(
1882 llvm::make_unique<Kind>(getInsnVarID(), std::forward<Args>(args)...));
1883 return static_cast<Kind *>(Predicates.back().get());
1884 }
1885
getRuleMatcher() const1886 RuleMatcher &getRuleMatcher() const { return Rule; }
1887
getInsnVarID() const1888 unsigned getInsnVarID() const { return InsnVarID; }
1889
1890 /// Add an operand to the matcher.
addOperand(unsigned OpIdx,const std::string & SymbolicName,unsigned AllocatedTemporariesBaseID)1891 OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
1892 unsigned AllocatedTemporariesBaseID) {
1893 Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
1894 AllocatedTemporariesBaseID));
1895 if (!SymbolicName.empty())
1896 Rule.defineOperand(SymbolicName, *Operands.back());
1897
1898 return *Operands.back();
1899 }
1900
getOperand(unsigned OpIdx)1901 OperandMatcher &getOperand(unsigned OpIdx) {
1902 auto I = std::find_if(Operands.begin(), Operands.end(),
1903 [&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
1904 return X->getOpIdx() == OpIdx;
1905 });
1906 if (I != Operands.end())
1907 return **I;
1908 llvm_unreachable("Failed to lookup operand");
1909 }
1910
getSymbolicName() const1911 StringRef getSymbolicName() const { return SymbolicName; }
getNumOperands() const1912 unsigned getNumOperands() const { return Operands.size(); }
operands_begin()1913 OperandVec::iterator operands_begin() { return Operands.begin(); }
operands_end()1914 OperandVec::iterator operands_end() { return Operands.end(); }
operands()1915 iterator_range<OperandVec::iterator> operands() {
1916 return make_range(operands_begin(), operands_end());
1917 }
operands_begin() const1918 OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
operands_end() const1919 OperandVec::const_iterator operands_end() const { return Operands.end(); }
operands() const1920 iterator_range<OperandVec::const_iterator> operands() const {
1921 return make_range(operands_begin(), operands_end());
1922 }
operands_empty() const1923 bool operands_empty() const { return Operands.empty(); }
1924
pop_front()1925 void pop_front() { Operands.erase(Operands.begin()); }
1926
1927 void optimize();
1928
1929 /// Emit MatchTable opcodes that test whether the instruction named in
1930 /// InsnVarName matches all the predicates and all the operands.
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule)1931 void emitPredicateOpcodes(MatchTable &Table, RuleMatcher &Rule) {
1932 if (NumOperandsCheck)
1933 InstructionNumOperandsMatcher(InsnVarID, getNumOperands())
1934 .emitPredicateOpcodes(Table, Rule);
1935
1936 emitPredicateListOpcodes(Table, Rule);
1937
1938 for (const auto &Operand : Operands)
1939 Operand->emitPredicateOpcodes(Table, Rule);
1940 }
1941
1942 /// Compare the priority of this object and B.
1943 ///
1944 /// Returns true if this object is more important than B.
isHigherPriorityThan(InstructionMatcher & B)1945 bool isHigherPriorityThan(InstructionMatcher &B) {
1946 // Instruction matchers involving more operands have higher priority.
1947 if (Operands.size() > B.Operands.size())
1948 return true;
1949 if (Operands.size() < B.Operands.size())
1950 return false;
1951
1952 for (auto &&P : zip(predicates(), B.predicates())) {
1953 auto L = static_cast<InstructionPredicateMatcher *>(std::get<0>(P).get());
1954 auto R = static_cast<InstructionPredicateMatcher *>(std::get<1>(P).get());
1955 if (L->isHigherPriorityThan(*R))
1956 return true;
1957 if (R->isHigherPriorityThan(*L))
1958 return false;
1959 }
1960
1961 for (const auto &Operand : zip(Operands, B.Operands)) {
1962 if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
1963 return true;
1964 if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
1965 return false;
1966 }
1967
1968 return false;
1969 };
1970
1971 /// Report the maximum number of temporary operands needed by the instruction
1972 /// matcher.
countRendererFns()1973 unsigned countRendererFns() {
1974 return std::accumulate(
1975 predicates().begin(), predicates().end(), 0,
1976 [](unsigned A,
1977 const std::unique_ptr<PredicateMatcher> &Predicate) {
1978 return A + Predicate->countRendererFns();
1979 }) +
1980 std::accumulate(
1981 Operands.begin(), Operands.end(), 0,
1982 [](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
1983 return A + Operand->countRendererFns();
1984 });
1985 }
1986
getOpcodeMatcher()1987 InstructionOpcodeMatcher &getOpcodeMatcher() {
1988 for (auto &P : predicates())
1989 if (auto *OpMatcher = dyn_cast<InstructionOpcodeMatcher>(P.get()))
1990 return *OpMatcher;
1991 llvm_unreachable("Didn't find an opcode matcher");
1992 }
1993
isConstantInstruction()1994 bool isConstantInstruction() {
1995 return getOpcodeMatcher().isConstantInstruction();
1996 }
1997
getOpcode()1998 StringRef getOpcode() { return getOpcodeMatcher().getOpcode(); }
1999 };
2000
getOpcode() const2001 StringRef RuleMatcher::getOpcode() const {
2002 return Matchers.front()->getOpcode();
2003 }
2004
getNumOperands() const2005 unsigned RuleMatcher::getNumOperands() const {
2006 return Matchers.front()->getNumOperands();
2007 }
2008
getFirstConditionAsRootType()2009 LLTCodeGen RuleMatcher::getFirstConditionAsRootType() {
2010 InstructionMatcher &InsnMatcher = *Matchers.front();
2011 if (!InsnMatcher.predicates_empty())
2012 if (const auto *TM =
2013 dyn_cast<LLTOperandMatcher>(&**InsnMatcher.predicates_begin()))
2014 if (TM->getInsnVarID() == 0 && TM->getOpIdx() == 0)
2015 return TM->getTy();
2016 return {};
2017 }
2018
2019 /// Generates code to check that the operand is a register defined by an
2020 /// instruction that matches the given instruction matcher.
2021 ///
2022 /// For example, the pattern:
2023 /// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
2024 /// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
2025 /// the:
2026 /// (G_ADD $src1, $src2)
2027 /// subpattern.
2028 class InstructionOperandMatcher : public OperandPredicateMatcher {
2029 protected:
2030 std::unique_ptr<InstructionMatcher> InsnMatcher;
2031
2032 public:
InstructionOperandMatcher(unsigned InsnVarID,unsigned OpIdx,RuleMatcher & Rule,StringRef SymbolicName)2033 InstructionOperandMatcher(unsigned InsnVarID, unsigned OpIdx,
2034 RuleMatcher &Rule, StringRef SymbolicName)
2035 : OperandPredicateMatcher(OPM_Instruction, InsnVarID, OpIdx),
2036 InsnMatcher(new InstructionMatcher(Rule, SymbolicName)) {}
2037
classof(const PredicateMatcher * P)2038 static bool classof(const PredicateMatcher *P) {
2039 return P->getKind() == OPM_Instruction;
2040 }
2041
getInsnMatcher() const2042 InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
2043
emitCaptureOpcodes(MatchTable & Table,RuleMatcher & Rule) const2044 void emitCaptureOpcodes(MatchTable &Table, RuleMatcher &Rule) const {
2045 const unsigned NewInsnVarID = InsnMatcher->getInsnVarID();
2046 Table << MatchTable::Opcode("GIM_RecordInsn")
2047 << MatchTable::Comment("DefineMI")
2048 << MatchTable::IntValue(NewInsnVarID) << MatchTable::Comment("MI")
2049 << MatchTable::IntValue(getInsnVarID())
2050 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(getOpIdx())
2051 << MatchTable::Comment("MIs[" + llvm::to_string(NewInsnVarID) + "]")
2052 << MatchTable::LineBreak;
2053 }
2054
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2055 void emitPredicateOpcodes(MatchTable &Table,
2056 RuleMatcher &Rule) const override {
2057 emitCaptureOpcodes(Table, Rule);
2058 InsnMatcher->emitPredicateOpcodes(Table, Rule);
2059 }
2060
isHigherPriorityThan(const OperandPredicateMatcher & B) const2061 bool isHigherPriorityThan(const OperandPredicateMatcher &B) const override {
2062 if (OperandPredicateMatcher::isHigherPriorityThan(B))
2063 return true;
2064 if (B.OperandPredicateMatcher::isHigherPriorityThan(*this))
2065 return false;
2066
2067 if (const InstructionOperandMatcher *BP =
2068 dyn_cast<InstructionOperandMatcher>(&B))
2069 if (InsnMatcher->isHigherPriorityThan(*BP->InsnMatcher))
2070 return true;
2071 return false;
2072 }
2073 };
2074
optimize()2075 void InstructionMatcher::optimize() {
2076 SmallVector<std::unique_ptr<PredicateMatcher>, 8> Stash;
2077 const auto &OpcMatcher = getOpcodeMatcher();
2078
2079 Stash.push_back(predicates_pop_front());
2080 if (Stash.back().get() == &OpcMatcher) {
2081 if (NumOperandsCheck && OpcMatcher.getNumOperands() < getNumOperands())
2082 Stash.emplace_back(
2083 new InstructionNumOperandsMatcher(InsnVarID, getNumOperands()));
2084 NumOperandsCheck = false;
2085
2086 for (auto &OM : Operands)
2087 for (auto &OP : OM->predicates())
2088 if (isa<IntrinsicIDOperandMatcher>(OP)) {
2089 Stash.push_back(std::move(OP));
2090 OM->eraseNullPredicates();
2091 break;
2092 }
2093 }
2094
2095 if (InsnVarID > 0) {
2096 assert(!Operands.empty() && "Nested instruction is expected to def a vreg");
2097 for (auto &OP : Operands[0]->predicates())
2098 OP.reset();
2099 Operands[0]->eraseNullPredicates();
2100 }
2101 for (auto &OM : Operands) {
2102 for (auto &OP : OM->predicates())
2103 if (isa<LLTOperandMatcher>(OP))
2104 Stash.push_back(std::move(OP));
2105 OM->eraseNullPredicates();
2106 }
2107 while (!Stash.empty())
2108 prependPredicate(Stash.pop_back_val());
2109 }
2110
2111 //===- Actions ------------------------------------------------------------===//
2112 class OperandRenderer {
2113 public:
2114 enum RendererKind {
2115 OR_Copy,
2116 OR_CopyOrAddZeroReg,
2117 OR_CopySubReg,
2118 OR_CopyConstantAsImm,
2119 OR_CopyFConstantAsFPImm,
2120 OR_Imm,
2121 OR_Register,
2122 OR_TempRegister,
2123 OR_ComplexPattern,
2124 OR_Custom
2125 };
2126
2127 protected:
2128 RendererKind Kind;
2129
2130 public:
OperandRenderer(RendererKind Kind)2131 OperandRenderer(RendererKind Kind) : Kind(Kind) {}
~OperandRenderer()2132 virtual ~OperandRenderer() {}
2133
getKind() const2134 RendererKind getKind() const { return Kind; }
2135
2136 virtual void emitRenderOpcodes(MatchTable &Table,
2137 RuleMatcher &Rule) const = 0;
2138 };
2139
2140 /// A CopyRenderer emits code to copy a single operand from an existing
2141 /// instruction to the one being built.
2142 class CopyRenderer : public OperandRenderer {
2143 protected:
2144 unsigned NewInsnID;
2145 /// The name of the operand.
2146 const StringRef SymbolicName;
2147
2148 public:
CopyRenderer(unsigned NewInsnID,StringRef SymbolicName)2149 CopyRenderer(unsigned NewInsnID, StringRef SymbolicName)
2150 : OperandRenderer(OR_Copy), NewInsnID(NewInsnID),
2151 SymbolicName(SymbolicName) {
2152 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2153 }
2154
classof(const OperandRenderer * R)2155 static bool classof(const OperandRenderer *R) {
2156 return R->getKind() == OR_Copy;
2157 }
2158
getSymbolicName() const2159 const StringRef getSymbolicName() const { return SymbolicName; }
2160
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2161 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2162 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2163 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2164 Table << MatchTable::Opcode("GIR_Copy") << MatchTable::Comment("NewInsnID")
2165 << MatchTable::IntValue(NewInsnID) << MatchTable::Comment("OldInsnID")
2166 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2167 << MatchTable::IntValue(Operand.getOpIdx())
2168 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2169 }
2170 };
2171
2172 /// A CopyOrAddZeroRegRenderer emits code to copy a single operand from an
2173 /// existing instruction to the one being built. If the operand turns out to be
2174 /// a 'G_CONSTANT 0' then it replaces the operand with a zero register.
2175 class CopyOrAddZeroRegRenderer : public OperandRenderer {
2176 protected:
2177 unsigned NewInsnID;
2178 /// The name of the operand.
2179 const StringRef SymbolicName;
2180 const Record *ZeroRegisterDef;
2181
2182 public:
CopyOrAddZeroRegRenderer(unsigned NewInsnID,StringRef SymbolicName,Record * ZeroRegisterDef)2183 CopyOrAddZeroRegRenderer(unsigned NewInsnID,
2184 StringRef SymbolicName, Record *ZeroRegisterDef)
2185 : OperandRenderer(OR_CopyOrAddZeroReg), NewInsnID(NewInsnID),
2186 SymbolicName(SymbolicName), ZeroRegisterDef(ZeroRegisterDef) {
2187 assert(!SymbolicName.empty() && "Cannot copy from an unspecified source");
2188 }
2189
classof(const OperandRenderer * R)2190 static bool classof(const OperandRenderer *R) {
2191 return R->getKind() == OR_CopyOrAddZeroReg;
2192 }
2193
getSymbolicName() const2194 const StringRef getSymbolicName() const { return SymbolicName; }
2195
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2196 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2197 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2198 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2199 Table << MatchTable::Opcode("GIR_CopyOrAddZeroReg")
2200 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2201 << MatchTable::Comment("OldInsnID")
2202 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2203 << MatchTable::IntValue(Operand.getOpIdx())
2204 << MatchTable::NamedValue(
2205 (ZeroRegisterDef->getValue("Namespace")
2206 ? ZeroRegisterDef->getValueAsString("Namespace")
2207 : ""),
2208 ZeroRegisterDef->getName())
2209 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2210 }
2211 };
2212
2213 /// A CopyConstantAsImmRenderer emits code to render a G_CONSTANT instruction to
2214 /// an extended immediate operand.
2215 class CopyConstantAsImmRenderer : public OperandRenderer {
2216 protected:
2217 unsigned NewInsnID;
2218 /// The name of the operand.
2219 const std::string SymbolicName;
2220 bool Signed;
2221
2222 public:
CopyConstantAsImmRenderer(unsigned NewInsnID,StringRef SymbolicName)2223 CopyConstantAsImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2224 : OperandRenderer(OR_CopyConstantAsImm), NewInsnID(NewInsnID),
2225 SymbolicName(SymbolicName), Signed(true) {}
2226
classof(const OperandRenderer * R)2227 static bool classof(const OperandRenderer *R) {
2228 return R->getKind() == OR_CopyConstantAsImm;
2229 }
2230
getSymbolicName() const2231 const StringRef getSymbolicName() const { return SymbolicName; }
2232
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2233 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2234 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2235 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2236 Table << MatchTable::Opcode(Signed ? "GIR_CopyConstantAsSImm"
2237 : "GIR_CopyConstantAsUImm")
2238 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2239 << MatchTable::Comment("OldInsnID")
2240 << MatchTable::IntValue(OldInsnVarID)
2241 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2242 }
2243 };
2244
2245 /// A CopyFConstantAsFPImmRenderer emits code to render a G_FCONSTANT
2246 /// instruction to an extended immediate operand.
2247 class CopyFConstantAsFPImmRenderer : public OperandRenderer {
2248 protected:
2249 unsigned NewInsnID;
2250 /// The name of the operand.
2251 const std::string SymbolicName;
2252
2253 public:
CopyFConstantAsFPImmRenderer(unsigned NewInsnID,StringRef SymbolicName)2254 CopyFConstantAsFPImmRenderer(unsigned NewInsnID, StringRef SymbolicName)
2255 : OperandRenderer(OR_CopyFConstantAsFPImm), NewInsnID(NewInsnID),
2256 SymbolicName(SymbolicName) {}
2257
classof(const OperandRenderer * R)2258 static bool classof(const OperandRenderer *R) {
2259 return R->getKind() == OR_CopyFConstantAsFPImm;
2260 }
2261
getSymbolicName() const2262 const StringRef getSymbolicName() const { return SymbolicName; }
2263
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2264 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2265 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2266 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2267 Table << MatchTable::Opcode("GIR_CopyFConstantAsFPImm")
2268 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2269 << MatchTable::Comment("OldInsnID")
2270 << MatchTable::IntValue(OldInsnVarID)
2271 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2272 }
2273 };
2274
2275 /// A CopySubRegRenderer emits code to copy a single register operand from an
2276 /// existing instruction to the one being built and indicate that only a
2277 /// subregister should be copied.
2278 class CopySubRegRenderer : public OperandRenderer {
2279 protected:
2280 unsigned NewInsnID;
2281 /// The name of the operand.
2282 const StringRef SymbolicName;
2283 /// The subregister to extract.
2284 const CodeGenSubRegIndex *SubReg;
2285
2286 public:
CopySubRegRenderer(unsigned NewInsnID,StringRef SymbolicName,const CodeGenSubRegIndex * SubReg)2287 CopySubRegRenderer(unsigned NewInsnID, StringRef SymbolicName,
2288 const CodeGenSubRegIndex *SubReg)
2289 : OperandRenderer(OR_CopySubReg), NewInsnID(NewInsnID),
2290 SymbolicName(SymbolicName), SubReg(SubReg) {}
2291
classof(const OperandRenderer * R)2292 static bool classof(const OperandRenderer *R) {
2293 return R->getKind() == OR_CopySubReg;
2294 }
2295
getSymbolicName() const2296 const StringRef getSymbolicName() const { return SymbolicName; }
2297
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2298 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2299 const OperandMatcher &Operand = Rule.getOperandMatcher(SymbolicName);
2300 unsigned OldInsnVarID = Rule.getInsnVarID(Operand.getInstructionMatcher());
2301 Table << MatchTable::Opcode("GIR_CopySubReg")
2302 << MatchTable::Comment("NewInsnID") << MatchTable::IntValue(NewInsnID)
2303 << MatchTable::Comment("OldInsnID")
2304 << MatchTable::IntValue(OldInsnVarID) << MatchTable::Comment("OpIdx")
2305 << MatchTable::IntValue(Operand.getOpIdx())
2306 << MatchTable::Comment("SubRegIdx")
2307 << MatchTable::IntValue(SubReg->EnumValue)
2308 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2309 }
2310 };
2311
2312 /// Adds a specific physical register to the instruction being built.
2313 /// This is typically useful for WZR/XZR on AArch64.
2314 class AddRegisterRenderer : public OperandRenderer {
2315 protected:
2316 unsigned InsnID;
2317 const Record *RegisterDef;
2318
2319 public:
AddRegisterRenderer(unsigned InsnID,const Record * RegisterDef)2320 AddRegisterRenderer(unsigned InsnID, const Record *RegisterDef)
2321 : OperandRenderer(OR_Register), InsnID(InsnID), RegisterDef(RegisterDef) {
2322 }
2323
classof(const OperandRenderer * R)2324 static bool classof(const OperandRenderer *R) {
2325 return R->getKind() == OR_Register;
2326 }
2327
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2328 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2329 Table << MatchTable::Opcode("GIR_AddRegister")
2330 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2331 << MatchTable::NamedValue(
2332 (RegisterDef->getValue("Namespace")
2333 ? RegisterDef->getValueAsString("Namespace")
2334 : ""),
2335 RegisterDef->getName())
2336 << MatchTable::LineBreak;
2337 }
2338 };
2339
2340 /// Adds a specific temporary virtual register to the instruction being built.
2341 /// This is used to chain instructions together when emitting multiple
2342 /// instructions.
2343 class TempRegRenderer : public OperandRenderer {
2344 protected:
2345 unsigned InsnID;
2346 unsigned TempRegID;
2347 bool IsDef;
2348
2349 public:
TempRegRenderer(unsigned InsnID,unsigned TempRegID,bool IsDef=false)2350 TempRegRenderer(unsigned InsnID, unsigned TempRegID, bool IsDef = false)
2351 : OperandRenderer(OR_Register), InsnID(InsnID), TempRegID(TempRegID),
2352 IsDef(IsDef) {}
2353
classof(const OperandRenderer * R)2354 static bool classof(const OperandRenderer *R) {
2355 return R->getKind() == OR_TempRegister;
2356 }
2357
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2358 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2359 Table << MatchTable::Opcode("GIR_AddTempRegister")
2360 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2361 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2362 << MatchTable::Comment("TempRegFlags");
2363 if (IsDef)
2364 Table << MatchTable::NamedValue("RegState::Define");
2365 else
2366 Table << MatchTable::IntValue(0);
2367 Table << MatchTable::LineBreak;
2368 }
2369 };
2370
2371 /// Adds a specific immediate to the instruction being built.
2372 class ImmRenderer : public OperandRenderer {
2373 protected:
2374 unsigned InsnID;
2375 int64_t Imm;
2376
2377 public:
ImmRenderer(unsigned InsnID,int64_t Imm)2378 ImmRenderer(unsigned InsnID, int64_t Imm)
2379 : OperandRenderer(OR_Imm), InsnID(InsnID), Imm(Imm) {}
2380
classof(const OperandRenderer * R)2381 static bool classof(const OperandRenderer *R) {
2382 return R->getKind() == OR_Imm;
2383 }
2384
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2385 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2386 Table << MatchTable::Opcode("GIR_AddImm") << MatchTable::Comment("InsnID")
2387 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Imm")
2388 << MatchTable::IntValue(Imm) << MatchTable::LineBreak;
2389 }
2390 };
2391
2392 /// Adds operands by calling a renderer function supplied by the ComplexPattern
2393 /// matcher function.
2394 class RenderComplexPatternOperand : public OperandRenderer {
2395 private:
2396 unsigned InsnID;
2397 const Record &TheDef;
2398 /// The name of the operand.
2399 const StringRef SymbolicName;
2400 /// The renderer number. This must be unique within a rule since it's used to
2401 /// identify a temporary variable to hold the renderer function.
2402 unsigned RendererID;
2403 /// When provided, this is the suboperand of the ComplexPattern operand to
2404 /// render. Otherwise all the suboperands will be rendered.
2405 Optional<unsigned> SubOperand;
2406
getNumOperands() const2407 unsigned getNumOperands() const {
2408 return TheDef.getValueAsDag("Operands")->getNumArgs();
2409 }
2410
2411 public:
RenderComplexPatternOperand(unsigned InsnID,const Record & TheDef,StringRef SymbolicName,unsigned RendererID,Optional<unsigned> SubOperand=None)2412 RenderComplexPatternOperand(unsigned InsnID, const Record &TheDef,
2413 StringRef SymbolicName, unsigned RendererID,
2414 Optional<unsigned> SubOperand = None)
2415 : OperandRenderer(OR_ComplexPattern), InsnID(InsnID), TheDef(TheDef),
2416 SymbolicName(SymbolicName), RendererID(RendererID),
2417 SubOperand(SubOperand) {}
2418
classof(const OperandRenderer * R)2419 static bool classof(const OperandRenderer *R) {
2420 return R->getKind() == OR_ComplexPattern;
2421 }
2422
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2423 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2424 Table << MatchTable::Opcode(SubOperand.hasValue() ? "GIR_ComplexSubOperandRenderer"
2425 : "GIR_ComplexRenderer")
2426 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2427 << MatchTable::Comment("RendererID")
2428 << MatchTable::IntValue(RendererID);
2429 if (SubOperand.hasValue())
2430 Table << MatchTable::Comment("SubOperand")
2431 << MatchTable::IntValue(SubOperand.getValue());
2432 Table << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2433 }
2434 };
2435
2436 class CustomRenderer : public OperandRenderer {
2437 protected:
2438 unsigned InsnID;
2439 const Record &Renderer;
2440 /// The name of the operand.
2441 const std::string SymbolicName;
2442
2443 public:
CustomRenderer(unsigned InsnID,const Record & Renderer,StringRef SymbolicName)2444 CustomRenderer(unsigned InsnID, const Record &Renderer,
2445 StringRef SymbolicName)
2446 : OperandRenderer(OR_Custom), InsnID(InsnID), Renderer(Renderer),
2447 SymbolicName(SymbolicName) {}
2448
classof(const OperandRenderer * R)2449 static bool classof(const OperandRenderer *R) {
2450 return R->getKind() == OR_Custom;
2451 }
2452
emitRenderOpcodes(MatchTable & Table,RuleMatcher & Rule) const2453 void emitRenderOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2454 InstructionMatcher &InsnMatcher = Rule.getInstructionMatcher(SymbolicName);
2455 unsigned OldInsnVarID = Rule.getInsnVarID(InsnMatcher);
2456 Table << MatchTable::Opcode("GIR_CustomRenderer")
2457 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2458 << MatchTable::Comment("OldInsnID")
2459 << MatchTable::IntValue(OldInsnVarID)
2460 << MatchTable::Comment("Renderer")
2461 << MatchTable::NamedValue(
2462 "GICR_" + Renderer.getValueAsString("RendererFn").str())
2463 << MatchTable::Comment(SymbolicName) << MatchTable::LineBreak;
2464 }
2465 };
2466
2467 /// An action taken when all Matcher predicates succeeded for a parent rule.
2468 ///
2469 /// Typical actions include:
2470 /// * Changing the opcode of an instruction.
2471 /// * Adding an operand to an instruction.
2472 class MatchAction {
2473 public:
~MatchAction()2474 virtual ~MatchAction() {}
2475
2476 /// Emit the MatchTable opcodes to implement the action.
2477 virtual void emitActionOpcodes(MatchTable &Table,
2478 RuleMatcher &Rule) const = 0;
2479 };
2480
2481 /// Generates a comment describing the matched rule being acted upon.
2482 class DebugCommentAction : public MatchAction {
2483 private:
2484 std::string S;
2485
2486 public:
DebugCommentAction(StringRef S)2487 DebugCommentAction(StringRef S) : S(S) {}
2488
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const2489 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2490 Table << MatchTable::Comment(S) << MatchTable::LineBreak;
2491 }
2492 };
2493
2494 /// Generates code to build an instruction or mutate an existing instruction
2495 /// into the desired instruction when this is possible.
2496 class BuildMIAction : public MatchAction {
2497 private:
2498 unsigned InsnID;
2499 const CodeGenInstruction *I;
2500 InstructionMatcher *Matched;
2501 std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
2502
2503 /// True if the instruction can be built solely by mutating the opcode.
canMutate(RuleMatcher & Rule,const InstructionMatcher * Insn) const2504 bool canMutate(RuleMatcher &Rule, const InstructionMatcher *Insn) const {
2505 if (!Insn)
2506 return false;
2507
2508 if (OperandRenderers.size() != Insn->getNumOperands())
2509 return false;
2510
2511 for (const auto &Renderer : enumerate(OperandRenderers)) {
2512 if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
2513 const OperandMatcher &OM = Rule.getOperandMatcher(Copy->getSymbolicName());
2514 if (Insn != &OM.getInstructionMatcher() ||
2515 OM.getOpIdx() != Renderer.index())
2516 return false;
2517 } else
2518 return false;
2519 }
2520
2521 return true;
2522 }
2523
2524 public:
BuildMIAction(unsigned InsnID,const CodeGenInstruction * I)2525 BuildMIAction(unsigned InsnID, const CodeGenInstruction *I)
2526 : InsnID(InsnID), I(I), Matched(nullptr) {}
2527
getInsnID() const2528 unsigned getInsnID() const { return InsnID; }
getCGI() const2529 const CodeGenInstruction *getCGI() const { return I; }
2530
chooseInsnToMutate(RuleMatcher & Rule)2531 void chooseInsnToMutate(RuleMatcher &Rule) {
2532 for (auto *MutateCandidate : Rule.mutatable_insns()) {
2533 if (canMutate(Rule, MutateCandidate)) {
2534 // Take the first one we're offered that we're able to mutate.
2535 Rule.reserveInsnMatcherForMutation(MutateCandidate);
2536 Matched = MutateCandidate;
2537 return;
2538 }
2539 }
2540 }
2541
2542 template <class Kind, class... Args>
addRenderer(Args &&...args)2543 Kind &addRenderer(Args&&... args) {
2544 OperandRenderers.emplace_back(
2545 llvm::make_unique<Kind>(InsnID, std::forward<Args>(args)...));
2546 return *static_cast<Kind *>(OperandRenderers.back().get());
2547 }
2548
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const2549 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2550 if (Matched) {
2551 assert(canMutate(Rule, Matched) &&
2552 "Arranged to mutate an insn that isn't mutatable");
2553
2554 unsigned RecycleInsnID = Rule.getInsnVarID(*Matched);
2555 Table << MatchTable::Opcode("GIR_MutateOpcode")
2556 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2557 << MatchTable::Comment("RecycleInsnID")
2558 << MatchTable::IntValue(RecycleInsnID)
2559 << MatchTable::Comment("Opcode")
2560 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2561 << MatchTable::LineBreak;
2562
2563 if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
2564 for (auto Def : I->ImplicitDefs) {
2565 auto Namespace = Def->getValue("Namespace")
2566 ? Def->getValueAsString("Namespace")
2567 : "";
2568 Table << MatchTable::Opcode("GIR_AddImplicitDef")
2569 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2570 << MatchTable::NamedValue(Namespace, Def->getName())
2571 << MatchTable::LineBreak;
2572 }
2573 for (auto Use : I->ImplicitUses) {
2574 auto Namespace = Use->getValue("Namespace")
2575 ? Use->getValueAsString("Namespace")
2576 : "";
2577 Table << MatchTable::Opcode("GIR_AddImplicitUse")
2578 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2579 << MatchTable::NamedValue(Namespace, Use->getName())
2580 << MatchTable::LineBreak;
2581 }
2582 }
2583 return;
2584 }
2585
2586 // TODO: Simple permutation looks like it could be almost as common as
2587 // mutation due to commutative operations.
2588
2589 Table << MatchTable::Opcode("GIR_BuildMI") << MatchTable::Comment("InsnID")
2590 << MatchTable::IntValue(InsnID) << MatchTable::Comment("Opcode")
2591 << MatchTable::NamedValue(I->Namespace, I->TheDef->getName())
2592 << MatchTable::LineBreak;
2593 for (const auto &Renderer : OperandRenderers)
2594 Renderer->emitRenderOpcodes(Table, Rule);
2595
2596 if (I->mayLoad || I->mayStore) {
2597 Table << MatchTable::Opcode("GIR_MergeMemOperands")
2598 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2599 << MatchTable::Comment("MergeInsnID's");
2600 // Emit the ID's for all the instructions that are matched by this rule.
2601 // TODO: Limit this to matched instructions that mayLoad/mayStore or have
2602 // some other means of having a memoperand. Also limit this to
2603 // emitted instructions that expect to have a memoperand too. For
2604 // example, (G_SEXT (G_LOAD x)) that results in separate load and
2605 // sign-extend instructions shouldn't put the memoperand on the
2606 // sign-extend since it has no effect there.
2607 std::vector<unsigned> MergeInsnIDs;
2608 for (const auto &IDMatcherPair : Rule.defined_insn_vars())
2609 MergeInsnIDs.push_back(IDMatcherPair.second);
2610 llvm::sort(MergeInsnIDs.begin(), MergeInsnIDs.end());
2611 for (const auto &MergeInsnID : MergeInsnIDs)
2612 Table << MatchTable::IntValue(MergeInsnID);
2613 Table << MatchTable::NamedValue("GIU_MergeMemOperands_EndOfList")
2614 << MatchTable::LineBreak;
2615 }
2616
2617 // FIXME: This is a hack but it's sufficient for ISel. We'll need to do
2618 // better for combines. Particularly when there are multiple match
2619 // roots.
2620 if (InsnID == 0)
2621 Table << MatchTable::Opcode("GIR_EraseFromParent")
2622 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2623 << MatchTable::LineBreak;
2624 }
2625 };
2626
2627 /// Generates code to constrain the operands of an output instruction to the
2628 /// register classes specified by the definition of that instruction.
2629 class ConstrainOperandsToDefinitionAction : public MatchAction {
2630 unsigned InsnID;
2631
2632 public:
ConstrainOperandsToDefinitionAction(unsigned InsnID)2633 ConstrainOperandsToDefinitionAction(unsigned InsnID) : InsnID(InsnID) {}
2634
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const2635 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2636 Table << MatchTable::Opcode("GIR_ConstrainSelectedInstOperands")
2637 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2638 << MatchTable::LineBreak;
2639 }
2640 };
2641
2642 /// Generates code to constrain the specified operand of an output instruction
2643 /// to the specified register class.
2644 class ConstrainOperandToRegClassAction : public MatchAction {
2645 unsigned InsnID;
2646 unsigned OpIdx;
2647 const CodeGenRegisterClass &RC;
2648
2649 public:
ConstrainOperandToRegClassAction(unsigned InsnID,unsigned OpIdx,const CodeGenRegisterClass & RC)2650 ConstrainOperandToRegClassAction(unsigned InsnID, unsigned OpIdx,
2651 const CodeGenRegisterClass &RC)
2652 : InsnID(InsnID), OpIdx(OpIdx), RC(RC) {}
2653
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const2654 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2655 Table << MatchTable::Opcode("GIR_ConstrainOperandRC")
2656 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2657 << MatchTable::Comment("Op") << MatchTable::IntValue(OpIdx)
2658 << MatchTable::Comment("RC " + RC.getName())
2659 << MatchTable::IntValue(RC.EnumValue) << MatchTable::LineBreak;
2660 }
2661 };
2662
2663 /// Generates code to create a temporary register which can be used to chain
2664 /// instructions together.
2665 class MakeTempRegisterAction : public MatchAction {
2666 private:
2667 LLTCodeGen Ty;
2668 unsigned TempRegID;
2669
2670 public:
MakeTempRegisterAction(const LLTCodeGen & Ty,unsigned TempRegID)2671 MakeTempRegisterAction(const LLTCodeGen &Ty, unsigned TempRegID)
2672 : Ty(Ty), TempRegID(TempRegID) {}
2673
emitActionOpcodes(MatchTable & Table,RuleMatcher & Rule) const2674 void emitActionOpcodes(MatchTable &Table, RuleMatcher &Rule) const override {
2675 Table << MatchTable::Opcode("GIR_MakeTempReg")
2676 << MatchTable::Comment("TempRegID") << MatchTable::IntValue(TempRegID)
2677 << MatchTable::Comment("TypeID")
2678 << MatchTable::NamedValue(Ty.getCxxEnumValue())
2679 << MatchTable::LineBreak;
2680 }
2681 };
2682
addInstructionMatcher(StringRef SymbolicName)2683 InstructionMatcher &RuleMatcher::addInstructionMatcher(StringRef SymbolicName) {
2684 Matchers.emplace_back(new InstructionMatcher(*this, SymbolicName));
2685 MutatableInsns.insert(Matchers.back().get());
2686 return *Matchers.back();
2687 }
2688
addRequiredFeature(Record * Feature)2689 void RuleMatcher::addRequiredFeature(Record *Feature) {
2690 RequiredFeatures.push_back(Feature);
2691 }
2692
getRequiredFeatures() const2693 const std::vector<Record *> &RuleMatcher::getRequiredFeatures() const {
2694 return RequiredFeatures;
2695 }
2696
2697 // Emplaces an action of the specified Kind at the end of the action list.
2698 //
2699 // Returns a reference to the newly created action.
2700 //
2701 // Like std::vector::emplace_back(), may invalidate all iterators if the new
2702 // size exceeds the capacity. Otherwise, only invalidates the past-the-end
2703 // iterator.
2704 template <class Kind, class... Args>
addAction(Args &&...args)2705 Kind &RuleMatcher::addAction(Args &&... args) {
2706 Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
2707 return *static_cast<Kind *>(Actions.back().get());
2708 }
2709
2710 // Emplaces an action of the specified Kind before the given insertion point.
2711 //
2712 // Returns an iterator pointing at the newly created instruction.
2713 //
2714 // Like std::vector::insert(), may invalidate all iterators if the new size
2715 // exceeds the capacity. Otherwise, only invalidates the iterators from the
2716 // insertion point onwards.
2717 template <class Kind, class... Args>
insertAction(action_iterator InsertPt,Args &&...args)2718 action_iterator RuleMatcher::insertAction(action_iterator InsertPt,
2719 Args &&... args) {
2720 return Actions.emplace(InsertPt,
2721 llvm::make_unique<Kind>(std::forward<Args>(args)...));
2722 }
2723
implicitlyDefineInsnVar(InstructionMatcher & Matcher)2724 unsigned RuleMatcher::implicitlyDefineInsnVar(InstructionMatcher &Matcher) {
2725 unsigned NewInsnVarID = NextInsnVarID++;
2726 InsnVariableIDs[&Matcher] = NewInsnVarID;
2727 return NewInsnVarID;
2728 }
2729
getInsnVarID(InstructionMatcher & InsnMatcher) const2730 unsigned RuleMatcher::getInsnVarID(InstructionMatcher &InsnMatcher) const {
2731 const auto &I = InsnVariableIDs.find(&InsnMatcher);
2732 if (I != InsnVariableIDs.end())
2733 return I->second;
2734 llvm_unreachable("Matched Insn was not captured in a local variable");
2735 }
2736
defineOperand(StringRef SymbolicName,OperandMatcher & OM)2737 void RuleMatcher::defineOperand(StringRef SymbolicName, OperandMatcher &OM) {
2738 if (DefinedOperands.find(SymbolicName) == DefinedOperands.end()) {
2739 DefinedOperands[SymbolicName] = &OM;
2740 return;
2741 }
2742
2743 // If the operand is already defined, then we must ensure both references in
2744 // the matcher have the exact same node.
2745 OM.addPredicate<SameOperandMatcher>(OM.getSymbolicName());
2746 }
2747
2748 InstructionMatcher &
getInstructionMatcher(StringRef SymbolicName) const2749 RuleMatcher::getInstructionMatcher(StringRef SymbolicName) const {
2750 for (const auto &I : InsnVariableIDs)
2751 if (I.first->getSymbolicName() == SymbolicName)
2752 return *I.first;
2753 llvm_unreachable(
2754 ("Failed to lookup instruction " + SymbolicName).str().c_str());
2755 }
2756
2757 const OperandMatcher &
getOperandMatcher(StringRef Name) const2758 RuleMatcher::getOperandMatcher(StringRef Name) const {
2759 const auto &I = DefinedOperands.find(Name);
2760
2761 if (I == DefinedOperands.end())
2762 PrintFatalError(SrcLoc, "Operand " + Name + " was not declared in matcher");
2763
2764 return *I->second;
2765 }
2766
emit(MatchTable & Table)2767 void RuleMatcher::emit(MatchTable &Table) {
2768 if (Matchers.empty())
2769 llvm_unreachable("Unexpected empty matcher!");
2770
2771 // The representation supports rules that require multiple roots such as:
2772 // %ptr(p0) = ...
2773 // %elt0(s32) = G_LOAD %ptr
2774 // %1(p0) = G_ADD %ptr, 4
2775 // %elt1(s32) = G_LOAD p0 %1
2776 // which could be usefully folded into:
2777 // %ptr(p0) = ...
2778 // %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
2779 // on some targets but we don't need to make use of that yet.
2780 assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
2781
2782 unsigned LabelID = Table.allocateLabelID();
2783 Table << MatchTable::Opcode("GIM_Try", +1)
2784 << MatchTable::Comment("On fail goto")
2785 << MatchTable::JumpTarget(LabelID)
2786 << MatchTable::Comment(("Rule ID " + Twine(RuleID) + " //").str())
2787 << MatchTable::LineBreak;
2788
2789 if (!RequiredFeatures.empty()) {
2790 Table << MatchTable::Opcode("GIM_CheckFeatures")
2791 << MatchTable::NamedValue(getNameForFeatureBitset(RequiredFeatures))
2792 << MatchTable::LineBreak;
2793 }
2794
2795 Matchers.front()->emitPredicateOpcodes(Table, *this);
2796
2797 // We must also check if it's safe to fold the matched instructions.
2798 if (InsnVariableIDs.size() >= 2) {
2799 // Invert the map to create stable ordering (by var names)
2800 SmallVector<unsigned, 2> InsnIDs;
2801 for (const auto &Pair : InsnVariableIDs) {
2802 // Skip the root node since it isn't moving anywhere. Everything else is
2803 // sinking to meet it.
2804 if (Pair.first == Matchers.front().get())
2805 continue;
2806
2807 InsnIDs.push_back(Pair.second);
2808 }
2809 llvm::sort(InsnIDs.begin(), InsnIDs.end());
2810
2811 for (const auto &InsnID : InsnIDs) {
2812 // Reject the difficult cases until we have a more accurate check.
2813 Table << MatchTable::Opcode("GIM_CheckIsSafeToFold")
2814 << MatchTable::Comment("InsnID") << MatchTable::IntValue(InsnID)
2815 << MatchTable::LineBreak;
2816
2817 // FIXME: Emit checks to determine it's _actually_ safe to fold and/or
2818 // account for unsafe cases.
2819 //
2820 // Example:
2821 // MI1--> %0 = ...
2822 // %1 = ... %0
2823 // MI0--> %2 = ... %0
2824 // It's not safe to erase MI1. We currently handle this by not
2825 // erasing %0 (even when it's dead).
2826 //
2827 // Example:
2828 // MI1--> %0 = load volatile @a
2829 // %1 = load volatile @a
2830 // MI0--> %2 = ... %0
2831 // It's not safe to sink %0's def past %1. We currently handle
2832 // this by rejecting all loads.
2833 //
2834 // Example:
2835 // MI1--> %0 = load @a
2836 // %1 = store @a
2837 // MI0--> %2 = ... %0
2838 // It's not safe to sink %0's def past %1. We currently handle
2839 // this by rejecting all loads.
2840 //
2841 // Example:
2842 // G_CONDBR %cond, @BB1
2843 // BB0:
2844 // MI1--> %0 = load @a
2845 // G_BR @BB1
2846 // BB1:
2847 // MI0--> %2 = ... %0
2848 // It's not always safe to sink %0 across control flow. In this
2849 // case it may introduce a memory fault. We currentl handle this
2850 // by rejecting all loads.
2851 }
2852 }
2853
2854 for (const auto &PM : EpilogueMatchers)
2855 PM->emitPredicateOpcodes(Table, *this);
2856
2857 for (const auto &MA : Actions)
2858 MA->emitActionOpcodes(Table, *this);
2859
2860 if (Table.isWithCoverage())
2861 Table << MatchTable::Opcode("GIR_Coverage") << MatchTable::IntValue(RuleID)
2862 << MatchTable::LineBreak;
2863 else
2864 Table << MatchTable::Comment(("GIR_Coverage, " + Twine(RuleID) + ",").str())
2865 << MatchTable::LineBreak;
2866
2867 Table << MatchTable::Opcode("GIR_Done", -1) << MatchTable::LineBreak
2868 << MatchTable::Label(LabelID);
2869 ++NumPatternEmitted;
2870 }
2871
isHigherPriorityThan(const RuleMatcher & B) const2872 bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
2873 // Rules involving more match roots have higher priority.
2874 if (Matchers.size() > B.Matchers.size())
2875 return true;
2876 if (Matchers.size() < B.Matchers.size())
2877 return false;
2878
2879 for (const auto &Matcher : zip(Matchers, B.Matchers)) {
2880 if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
2881 return true;
2882 if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
2883 return false;
2884 }
2885
2886 return false;
2887 }
2888
countRendererFns() const2889 unsigned RuleMatcher::countRendererFns() const {
2890 return std::accumulate(
2891 Matchers.begin(), Matchers.end(), 0,
2892 [](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
2893 return A + Matcher->countRendererFns();
2894 });
2895 }
2896
isHigherPriorityThan(const OperandPredicateMatcher & B) const2897 bool OperandPredicateMatcher::isHigherPriorityThan(
2898 const OperandPredicateMatcher &B) const {
2899 // Generally speaking, an instruction is more important than an Int or a
2900 // LiteralInt because it can cover more nodes but theres an exception to
2901 // this. G_CONSTANT's are less important than either of those two because they
2902 // are more permissive.
2903
2904 const InstructionOperandMatcher *AOM =
2905 dyn_cast<InstructionOperandMatcher>(this);
2906 const InstructionOperandMatcher *BOM =
2907 dyn_cast<InstructionOperandMatcher>(&B);
2908 bool AIsConstantInsn = AOM && AOM->getInsnMatcher().isConstantInstruction();
2909 bool BIsConstantInsn = BOM && BOM->getInsnMatcher().isConstantInstruction();
2910
2911 if (AOM && BOM) {
2912 // The relative priorities between a G_CONSTANT and any other instruction
2913 // don't actually matter but this code is needed to ensure a strict weak
2914 // ordering. This is particularly important on Windows where the rules will
2915 // be incorrectly sorted without it.
2916 if (AIsConstantInsn != BIsConstantInsn)
2917 return AIsConstantInsn < BIsConstantInsn;
2918 return false;
2919 }
2920
2921 if (AOM && AIsConstantInsn && (B.Kind == OPM_Int || B.Kind == OPM_LiteralInt))
2922 return false;
2923 if (BOM && BIsConstantInsn && (Kind == OPM_Int || Kind == OPM_LiteralInt))
2924 return true;
2925
2926 return Kind < B.Kind;
2927 }
2928
emitPredicateOpcodes(MatchTable & Table,RuleMatcher & Rule) const2929 void SameOperandMatcher::emitPredicateOpcodes(MatchTable &Table,
2930 RuleMatcher &Rule) const {
2931 const OperandMatcher &OtherOM = Rule.getOperandMatcher(MatchingName);
2932 unsigned OtherInsnVarID = Rule.getInsnVarID(OtherOM.getInstructionMatcher());
2933 assert(OtherInsnVarID == OtherOM.getInstructionMatcher().getInsnVarID());
2934
2935 Table << MatchTable::Opcode("GIM_CheckIsSameOperand")
2936 << MatchTable::Comment("MI") << MatchTable::IntValue(InsnVarID)
2937 << MatchTable::Comment("OpIdx") << MatchTable::IntValue(OpIdx)
2938 << MatchTable::Comment("OtherMI")
2939 << MatchTable::IntValue(OtherInsnVarID)
2940 << MatchTable::Comment("OtherOpIdx")
2941 << MatchTable::IntValue(OtherOM.getOpIdx())
2942 << MatchTable::LineBreak;
2943 }
2944
2945 //===- GlobalISelEmitter class --------------------------------------------===//
2946
2947 class GlobalISelEmitter {
2948 public:
2949 explicit GlobalISelEmitter(RecordKeeper &RK);
2950 void run(raw_ostream &OS);
2951
2952 private:
2953 const RecordKeeper &RK;
2954 const CodeGenDAGPatterns CGP;
2955 const CodeGenTarget &Target;
2956 CodeGenRegBank CGRegs;
2957
2958 /// Keep track of the equivalence between SDNodes and Instruction by mapping
2959 /// SDNodes to the GINodeEquiv mapping. We need to map to the GINodeEquiv to
2960 /// check for attributes on the relation such as CheckMMOIsNonAtomic.
2961 /// This is defined using 'GINodeEquiv' in the target description.
2962 DenseMap<Record *, Record *> NodeEquivs;
2963
2964 /// Keep track of the equivalence between ComplexPattern's and
2965 /// GIComplexOperandMatcher. Map entries are specified by subclassing
2966 /// GIComplexPatternEquiv.
2967 DenseMap<const Record *, const Record *> ComplexPatternEquivs;
2968
2969 /// Keep track of the equivalence between SDNodeXForm's and
2970 /// GICustomOperandRenderer. Map entries are specified by subclassing
2971 /// GISDNodeXFormEquiv.
2972 DenseMap<const Record *, const Record *> SDNodeXFormEquivs;
2973
2974 /// Keep track of Scores of PatternsToMatch similar to how the DAG does.
2975 /// This adds compatibility for RuleMatchers to use this for ordering rules.
2976 DenseMap<uint64_t, int> RuleMatcherScores;
2977
2978 // Map of predicates to their subtarget features.
2979 SubtargetFeatureInfoMap SubtargetFeatures;
2980
2981 // Rule coverage information.
2982 Optional<CodeGenCoverage> RuleCoverage;
2983
2984 void gatherOpcodeValues();
2985 void gatherTypeIDValues();
2986 void gatherNodeEquivs();
2987 // Instruction predicate code that will be emitted in generated functions.
2988 SmallVector<std::string, 2> InstructionPredicateCodes;
2989 unsigned getOrCreateInstructionPredicateFnId(StringRef Code);
2990
2991 Record *findNodeEquiv(Record *N) const;
2992 const CodeGenInstruction *getEquivNode(Record &Equiv,
2993 const TreePatternNode *N) const;
2994
2995 Error importRulePredicates(RuleMatcher &M, ArrayRef<Predicate> Predicates);
2996 Expected<InstructionMatcher &>
2997 createAndImportSelDAGMatcher(RuleMatcher &Rule,
2998 InstructionMatcher &InsnMatcher,
2999 const TreePatternNode *Src, unsigned &TempOpIdx);
3000 Error importComplexPatternOperandMatcher(OperandMatcher &OM, Record *R,
3001 unsigned &TempOpIdx) const;
3002 Error importChildMatcher(RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3003 const TreePatternNode *SrcChild,
3004 bool OperandIsAPointer, unsigned OpIdx,
3005 unsigned &TempOpIdx);
3006
3007 Expected<BuildMIAction &>
3008 createAndImportInstructionRenderer(RuleMatcher &M,
3009 const TreePatternNode *Dst);
3010 Expected<action_iterator> createAndImportSubInstructionRenderer(
3011 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3012 unsigned TempReg);
3013 Expected<action_iterator>
3014 createInstructionRenderer(action_iterator InsertPt, RuleMatcher &M,
3015 const TreePatternNode *Dst);
3016 void importExplicitDefRenderers(BuildMIAction &DstMIBuilder);
3017 Expected<action_iterator>
3018 importExplicitUseRenderers(action_iterator InsertPt, RuleMatcher &M,
3019 BuildMIAction &DstMIBuilder,
3020 const llvm::TreePatternNode *Dst);
3021 Expected<action_iterator>
3022 importExplicitUseRenderer(action_iterator InsertPt, RuleMatcher &Rule,
3023 BuildMIAction &DstMIBuilder,
3024 TreePatternNode *DstChild);
3025 Error importDefaultOperandRenderers(BuildMIAction &DstMIBuilder,
3026 DagInit *DefaultOps) const;
3027 Error
3028 importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
3029 const std::vector<Record *> &ImplicitDefs) const;
3030
3031 void emitCxxPredicateFns(raw_ostream &OS, StringRef CodeFieldName,
3032 StringRef TypeIdentifier, StringRef ArgType,
3033 StringRef ArgName, StringRef AdditionalDeclarations,
3034 std::function<bool(const Record *R)> Filter);
3035 void emitImmPredicateFns(raw_ostream &OS, StringRef TypeIdentifier,
3036 StringRef ArgType,
3037 std::function<bool(const Record *R)> Filter);
3038 void emitMIPredicateFns(raw_ostream &OS);
3039
3040 /// Analyze pattern \p P, returning a matcher for it if possible.
3041 /// Otherwise, return an Error explaining why we don't support it.
3042 Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
3043
3044 void declareSubtargetFeature(Record *Predicate);
3045
3046 MatchTable buildMatchTable(MutableArrayRef<RuleMatcher> Rules, bool Optimize,
3047 bool WithCoverage);
3048
3049 public:
3050 /// Takes a sequence of \p Rules and group them based on the predicates
3051 /// they share. \p MatcherStorage is used as a memory container
3052 /// for the group that are created as part of this process.
3053 ///
3054 /// What this optimization does looks like if GroupT = GroupMatcher:
3055 /// Output without optimization:
3056 /// \verbatim
3057 /// # R1
3058 /// # predicate A
3059 /// # predicate B
3060 /// ...
3061 /// # R2
3062 /// # predicate A // <-- effectively this is going to be checked twice.
3063 /// // Once in R1 and once in R2.
3064 /// # predicate C
3065 /// \endverbatim
3066 /// Output with optimization:
3067 /// \verbatim
3068 /// # Group1_2
3069 /// # predicate A // <-- Check is now shared.
3070 /// # R1
3071 /// # predicate B
3072 /// # R2
3073 /// # predicate C
3074 /// \endverbatim
3075 template <class GroupT>
3076 static std::vector<Matcher *> optimizeRules(
3077 ArrayRef<Matcher *> Rules,
3078 std::vector<std::unique_ptr<Matcher>> &MatcherStorage);
3079 };
3080
gatherOpcodeValues()3081 void GlobalISelEmitter::gatherOpcodeValues() {
3082 InstructionOpcodeMatcher::initOpcodeValuesMap(Target);
3083 }
3084
gatherTypeIDValues()3085 void GlobalISelEmitter::gatherTypeIDValues() {
3086 LLTOperandMatcher::initTypeIDValuesMap();
3087 }
getOrCreateInstructionPredicateFnId(StringRef Code)3088 unsigned GlobalISelEmitter::getOrCreateInstructionPredicateFnId(StringRef Code) {
3089 // There's not very many predicates that need to be here at the moment so we
3090 // just maintain a simple set-like vector. If it grows then we'll need to do
3091 // something more efficient.
3092 const auto &I = std::find(InstructionPredicateCodes.begin(),
3093 InstructionPredicateCodes.end(),
3094 Code);
3095 if (I == InstructionPredicateCodes.end()) {
3096 unsigned ID = InstructionPredicateCodes.size();
3097 InstructionPredicateCodes.push_back(Code);
3098 return ID;
3099 }
3100 return std::distance(InstructionPredicateCodes.begin(), I);
3101 }
3102
gatherNodeEquivs()3103 void GlobalISelEmitter::gatherNodeEquivs() {
3104 assert(NodeEquivs.empty());
3105 for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
3106 NodeEquivs[Equiv->getValueAsDef("Node")] = Equiv;
3107
3108 assert(ComplexPatternEquivs.empty());
3109 for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
3110 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3111 if (!SelDAGEquiv)
3112 continue;
3113 ComplexPatternEquivs[SelDAGEquiv] = Equiv;
3114 }
3115
3116 assert(SDNodeXFormEquivs.empty());
3117 for (Record *Equiv : RK.getAllDerivedDefinitions("GISDNodeXFormEquiv")) {
3118 Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
3119 if (!SelDAGEquiv)
3120 continue;
3121 SDNodeXFormEquivs[SelDAGEquiv] = Equiv;
3122 }
3123 }
3124
findNodeEquiv(Record * N) const3125 Record *GlobalISelEmitter::findNodeEquiv(Record *N) const {
3126 return NodeEquivs.lookup(N);
3127 }
3128
3129 const CodeGenInstruction *
getEquivNode(Record & Equiv,const TreePatternNode * N) const3130 GlobalISelEmitter::getEquivNode(Record &Equiv, const TreePatternNode *N) const {
3131 for (const auto &Predicate : N->getPredicateFns()) {
3132 if (!Equiv.isValueUnset("IfSignExtend") && Predicate.isLoad() &&
3133 Predicate.isSignExtLoad())
3134 return &Target.getInstruction(Equiv.getValueAsDef("IfSignExtend"));
3135 if (!Equiv.isValueUnset("IfZeroExtend") && Predicate.isLoad() &&
3136 Predicate.isZeroExtLoad())
3137 return &Target.getInstruction(Equiv.getValueAsDef("IfZeroExtend"));
3138 }
3139 return &Target.getInstruction(Equiv.getValueAsDef("I"));
3140 }
3141
GlobalISelEmitter(RecordKeeper & RK)3142 GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
3143 : RK(RK), CGP(RK), Target(CGP.getTargetInfo()),
3144 CGRegs(RK, Target.getHwModes()) {}
3145
3146 //===- Emitter ------------------------------------------------------------===//
3147
3148 Error
importRulePredicates(RuleMatcher & M,ArrayRef<Predicate> Predicates)3149 GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
3150 ArrayRef<Predicate> Predicates) {
3151 for (const Predicate &P : Predicates) {
3152 if (!P.Def)
3153 continue;
3154 declareSubtargetFeature(P.Def);
3155 M.addRequiredFeature(P.Def);
3156 }
3157
3158 return Error::success();
3159 }
3160
createAndImportSelDAGMatcher(RuleMatcher & Rule,InstructionMatcher & InsnMatcher,const TreePatternNode * Src,unsigned & TempOpIdx)3161 Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
3162 RuleMatcher &Rule, InstructionMatcher &InsnMatcher,
3163 const TreePatternNode *Src, unsigned &TempOpIdx) {
3164 Record *SrcGIEquivOrNull = nullptr;
3165 const CodeGenInstruction *SrcGIOrNull = nullptr;
3166
3167 // Start with the defined operands (i.e., the results of the root operator).
3168 if (Src->getExtTypes().size() > 1)
3169 return failedImport("Src pattern has multiple results");
3170
3171 if (Src->isLeaf()) {
3172 Init *SrcInit = Src->getLeafValue();
3173 if (isa<IntInit>(SrcInit)) {
3174 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
3175 &Target.getInstruction(RK.getDef("G_CONSTANT")));
3176 } else
3177 return failedImport(
3178 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3179 } else {
3180 SrcGIEquivOrNull = findNodeEquiv(Src->getOperator());
3181 if (!SrcGIEquivOrNull)
3182 return failedImport("Pattern operator lacks an equivalent Instruction" +
3183 explainOperator(Src->getOperator()));
3184 SrcGIOrNull = getEquivNode(*SrcGIEquivOrNull, Src);
3185
3186 // The operators look good: match the opcode
3187 InsnMatcher.addPredicate<InstructionOpcodeMatcher>(SrcGIOrNull);
3188 }
3189
3190 unsigned OpIdx = 0;
3191 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3192 // Results don't have a name unless they are the root node. The caller will
3193 // set the name if appropriate.
3194 OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3195 if (auto Error = OM.addTypeCheckPredicate(VTy, false /* OperandIsAPointer */))
3196 return failedImport(toString(std::move(Error)) +
3197 " for result of Src pattern operator");
3198 }
3199
3200 for (const auto &Predicate : Src->getPredicateFns()) {
3201 if (Predicate.isAlwaysTrue())
3202 continue;
3203
3204 if (Predicate.isImmediatePattern()) {
3205 InsnMatcher.addPredicate<InstructionImmPredicateMatcher>(Predicate);
3206 continue;
3207 }
3208
3209 // G_LOAD is used for both non-extending and any-extending loads.
3210 if (Predicate.isLoad() && Predicate.isNonExtLoad()) {
3211 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3212 0, MemoryVsLLTSizePredicateMatcher::EqualTo, 0);
3213 continue;
3214 }
3215 if (Predicate.isLoad() && Predicate.isAnyExtLoad()) {
3216 InsnMatcher.addPredicate<MemoryVsLLTSizePredicateMatcher>(
3217 0, MemoryVsLLTSizePredicateMatcher::LessThan, 0);
3218 continue;
3219 }
3220
3221 // No check required. We already did it by swapping the opcode.
3222 if (!SrcGIEquivOrNull->isValueUnset("IfSignExtend") &&
3223 Predicate.isSignExtLoad())
3224 continue;
3225
3226 // No check required. We already did it by swapping the opcode.
3227 if (!SrcGIEquivOrNull->isValueUnset("IfZeroExtend") &&
3228 Predicate.isZeroExtLoad())
3229 continue;
3230
3231 // No check required. G_STORE by itself is a non-extending store.
3232 if (Predicate.isNonTruncStore())
3233 continue;
3234
3235 if (Predicate.isLoad() || Predicate.isStore() || Predicate.isAtomic()) {
3236 if (Predicate.getMemoryVT() != nullptr) {
3237 Optional<LLTCodeGen> MemTyOrNone =
3238 MVTToLLT(getValueType(Predicate.getMemoryVT()));
3239
3240 if (!MemTyOrNone)
3241 return failedImport("MemVT could not be converted to LLT");
3242
3243 // MMO's work in bytes so we must take care of unusual types like i1
3244 // don't round down.
3245 unsigned MemSizeInBits =
3246 llvm::alignTo(MemTyOrNone->get().getSizeInBits(), 8);
3247
3248 InsnMatcher.addPredicate<MemorySizePredicateMatcher>(
3249 0, MemSizeInBits / 8);
3250 continue;
3251 }
3252 }
3253
3254 if (Predicate.isLoad() || Predicate.isStore()) {
3255 // No check required. A G_LOAD/G_STORE is an unindexed load.
3256 if (Predicate.isUnindexed())
3257 continue;
3258 }
3259
3260 if (Predicate.isAtomic()) {
3261 if (Predicate.isAtomicOrderingMonotonic()) {
3262 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3263 "Monotonic");
3264 continue;
3265 }
3266 if (Predicate.isAtomicOrderingAcquire()) {
3267 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Acquire");
3268 continue;
3269 }
3270 if (Predicate.isAtomicOrderingRelease()) {
3271 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("Release");
3272 continue;
3273 }
3274 if (Predicate.isAtomicOrderingAcquireRelease()) {
3275 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3276 "AcquireRelease");
3277 continue;
3278 }
3279 if (Predicate.isAtomicOrderingSequentiallyConsistent()) {
3280 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3281 "SequentiallyConsistent");
3282 continue;
3283 }
3284
3285 if (Predicate.isAtomicOrderingAcquireOrStronger()) {
3286 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3287 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3288 continue;
3289 }
3290 if (Predicate.isAtomicOrderingWeakerThanAcquire()) {
3291 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3292 "Acquire", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3293 continue;
3294 }
3295
3296 if (Predicate.isAtomicOrderingReleaseOrStronger()) {
3297 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3298 "Release", AtomicOrderingMMOPredicateMatcher::AO_OrStronger);
3299 continue;
3300 }
3301 if (Predicate.isAtomicOrderingWeakerThanRelease()) {
3302 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>(
3303 "Release", AtomicOrderingMMOPredicateMatcher::AO_WeakerThan);
3304 continue;
3305 }
3306 }
3307
3308 if (Predicate.hasGISelPredicateCode()) {
3309 InsnMatcher.addPredicate<GenericInstructionPredicateMatcher>(Predicate);
3310 continue;
3311 }
3312
3313 return failedImport("Src pattern child has predicate (" +
3314 explainPredicates(Src) + ")");
3315 }
3316 if (SrcGIEquivOrNull && SrcGIEquivOrNull->getValueAsBit("CheckMMOIsNonAtomic"))
3317 InsnMatcher.addPredicate<AtomicOrderingMMOPredicateMatcher>("NotAtomic");
3318
3319 if (Src->isLeaf()) {
3320 Init *SrcInit = Src->getLeafValue();
3321 if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
3322 OperandMatcher &OM =
3323 InsnMatcher.addOperand(OpIdx++, Src->getName(), TempOpIdx);
3324 OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
3325 } else
3326 return failedImport(
3327 "Unable to deduce gMIR opcode to handle Src (which is a leaf)");
3328 } else {
3329 assert(SrcGIOrNull &&
3330 "Expected to have already found an equivalent Instruction");
3331 if (SrcGIOrNull->TheDef->getName() == "G_CONSTANT" ||
3332 SrcGIOrNull->TheDef->getName() == "G_FCONSTANT") {
3333 // imm/fpimm still have operands but we don't need to do anything with it
3334 // here since we don't support ImmLeaf predicates yet. However, we still
3335 // need to note the hidden operand to get GIM_CheckNumOperands correct.
3336 InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
3337 return InsnMatcher;
3338 }
3339
3340 // Match the used operands (i.e. the children of the operator).
3341 for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
3342 TreePatternNode *SrcChild = Src->getChild(i);
3343
3344 // SelectionDAG allows pointers to be represented with iN since it doesn't
3345 // distinguish between pointers and integers but they are different types in GlobalISel.
3346 // Coerce integers to pointers to address space 0 if the context indicates a pointer.
3347 bool OperandIsAPointer = SrcGIOrNull->isOperandAPointer(i);
3348
3349 // For G_INTRINSIC/G_INTRINSIC_W_SIDE_EFFECTS, the operand immediately
3350 // following the defs is an intrinsic ID.
3351 if ((SrcGIOrNull->TheDef->getName() == "G_INTRINSIC" ||
3352 SrcGIOrNull->TheDef->getName() == "G_INTRINSIC_W_SIDE_EFFECTS") &&
3353 i == 0) {
3354 if (const CodeGenIntrinsic *II = Src->getIntrinsicInfo(CGP)) {
3355 OperandMatcher &OM =
3356 InsnMatcher.addOperand(OpIdx++, SrcChild->getName(), TempOpIdx);
3357 OM.addPredicate<IntrinsicIDOperandMatcher>(II);
3358 continue;
3359 }
3360
3361 return failedImport("Expected IntInit containing instrinsic ID)");
3362 }
3363
3364 if (auto Error =
3365 importChildMatcher(Rule, InsnMatcher, SrcChild, OperandIsAPointer,
3366 OpIdx++, TempOpIdx))
3367 return std::move(Error);
3368 }
3369 }
3370
3371 return InsnMatcher;
3372 }
3373
importComplexPatternOperandMatcher(OperandMatcher & OM,Record * R,unsigned & TempOpIdx) const3374 Error GlobalISelEmitter::importComplexPatternOperandMatcher(
3375 OperandMatcher &OM, Record *R, unsigned &TempOpIdx) const {
3376 const auto &ComplexPattern = ComplexPatternEquivs.find(R);
3377 if (ComplexPattern == ComplexPatternEquivs.end())
3378 return failedImport("SelectionDAG ComplexPattern (" + R->getName() +
3379 ") not mapped to GlobalISel");
3380
3381 OM.addPredicate<ComplexPatternOperandMatcher>(OM, *ComplexPattern->second);
3382 TempOpIdx++;
3383 return Error::success();
3384 }
3385
importChildMatcher(RuleMatcher & Rule,InstructionMatcher & InsnMatcher,const TreePatternNode * SrcChild,bool OperandIsAPointer,unsigned OpIdx,unsigned & TempOpIdx)3386 Error GlobalISelEmitter::importChildMatcher(RuleMatcher &Rule,
3387 InstructionMatcher &InsnMatcher,
3388 const TreePatternNode *SrcChild,
3389 bool OperandIsAPointer,
3390 unsigned OpIdx,
3391 unsigned &TempOpIdx) {
3392 OperandMatcher &OM =
3393 InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
3394 if (OM.isSameAsAnotherOperand())
3395 return Error::success();
3396
3397 ArrayRef<TypeSetByHwMode> ChildTypes = SrcChild->getExtTypes();
3398 if (ChildTypes.size() != 1)
3399 return failedImport("Src pattern child has multiple results");
3400
3401 // Check MBB's before the type check since they are not a known type.
3402 if (!SrcChild->isLeaf()) {
3403 if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
3404 auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
3405 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3406 OM.addPredicate<MBBOperandMatcher>();
3407 return Error::success();
3408 }
3409 }
3410 }
3411
3412 if (auto Error =
3413 OM.addTypeCheckPredicate(ChildTypes.front(), OperandIsAPointer))
3414 return failedImport(toString(std::move(Error)) + " for Src operand (" +
3415 to_string(*SrcChild) + ")");
3416
3417 // Check for nested instructions.
3418 if (!SrcChild->isLeaf()) {
3419 if (SrcChild->getOperator()->isSubClassOf("ComplexPattern")) {
3420 // When a ComplexPattern is used as an operator, it should do the same
3421 // thing as when used as a leaf. However, the children of the operator
3422 // name the sub-operands that make up the complex operand and we must
3423 // prepare to reference them in the renderer too.
3424 unsigned RendererID = TempOpIdx;
3425 if (auto Error = importComplexPatternOperandMatcher(
3426 OM, SrcChild->getOperator(), TempOpIdx))
3427 return Error;
3428
3429 for (unsigned i = 0, e = SrcChild->getNumChildren(); i != e; ++i) {
3430 auto *SubOperand = SrcChild->getChild(i);
3431 if (!SubOperand->getName().empty())
3432 Rule.defineComplexSubOperand(SubOperand->getName(),
3433 SrcChild->getOperator(), RendererID, i);
3434 }
3435
3436 return Error::success();
3437 }
3438
3439 auto MaybeInsnOperand = OM.addPredicate<InstructionOperandMatcher>(
3440 InsnMatcher.getRuleMatcher(), SrcChild->getName());
3441 if (!MaybeInsnOperand.hasValue()) {
3442 // This isn't strictly true. If the user were to provide exactly the same
3443 // matchers as the original operand then we could allow it. However, it's
3444 // simpler to not permit the redundant specification.
3445 return failedImport("Nested instruction cannot be the same as another operand");
3446 }
3447
3448 // Map the node to a gMIR instruction.
3449 InstructionOperandMatcher &InsnOperand = **MaybeInsnOperand;
3450 auto InsnMatcherOrError = createAndImportSelDAGMatcher(
3451 Rule, InsnOperand.getInsnMatcher(), SrcChild, TempOpIdx);
3452 if (auto Error = InsnMatcherOrError.takeError())
3453 return Error;
3454
3455 return Error::success();
3456 }
3457
3458 if (SrcChild->hasAnyPredicate())
3459 return failedImport("Src pattern child has unsupported predicate");
3460
3461 // Check for constant immediates.
3462 if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
3463 OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
3464 return Error::success();
3465 }
3466
3467 // Check for def's like register classes or ComplexPattern's.
3468 if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
3469 auto *ChildRec = ChildDefInit->getDef();
3470
3471 // Check for register classes.
3472 if (ChildRec->isSubClassOf("RegisterClass") ||
3473 ChildRec->isSubClassOf("RegisterOperand")) {
3474 OM.addPredicate<RegisterBankOperandMatcher>(
3475 Target.getRegisterClass(getInitValueAsRegClass(ChildDefInit)));
3476 return Error::success();
3477 }
3478
3479 // Check for ValueType.
3480 if (ChildRec->isSubClassOf("ValueType")) {
3481 // We already added a type check as standard practice so this doesn't need
3482 // to do anything.
3483 return Error::success();
3484 }
3485
3486 // Check for ComplexPattern's.
3487 if (ChildRec->isSubClassOf("ComplexPattern"))
3488 return importComplexPatternOperandMatcher(OM, ChildRec, TempOpIdx);
3489
3490 if (ChildRec->isSubClassOf("ImmLeaf")) {
3491 return failedImport(
3492 "Src pattern child def is an unsupported tablegen class (ImmLeaf)");
3493 }
3494
3495 return failedImport(
3496 "Src pattern child def is an unsupported tablegen class");
3497 }
3498
3499 return failedImport("Src pattern child is an unsupported kind");
3500 }
3501
importExplicitUseRenderer(action_iterator InsertPt,RuleMatcher & Rule,BuildMIAction & DstMIBuilder,TreePatternNode * DstChild)3502 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderer(
3503 action_iterator InsertPt, RuleMatcher &Rule, BuildMIAction &DstMIBuilder,
3504 TreePatternNode *DstChild) {
3505
3506 const auto &SubOperand = Rule.getComplexSubOperand(DstChild->getName());
3507 if (SubOperand.hasValue()) {
3508 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3509 *std::get<0>(*SubOperand), DstChild->getName(),
3510 std::get<1>(*SubOperand), std::get<2>(*SubOperand));
3511 return InsertPt;
3512 }
3513
3514 if (!DstChild->isLeaf()) {
3515
3516 if (DstChild->getOperator()->isSubClassOf("SDNodeXForm")) {
3517 auto Child = DstChild->getChild(0);
3518 auto I = SDNodeXFormEquivs.find(DstChild->getOperator());
3519 if (I != SDNodeXFormEquivs.end()) {
3520 DstMIBuilder.addRenderer<CustomRenderer>(*I->second, Child->getName());
3521 return InsertPt;
3522 }
3523 return failedImport("SDNodeXForm " + Child->getName() +
3524 " has no custom renderer");
3525 }
3526
3527 // We accept 'bb' here. It's an operator because BasicBlockSDNode isn't
3528 // inline, but in MI it's just another operand.
3529 if (DstChild->getOperator()->isSubClassOf("SDNode")) {
3530 auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
3531 if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
3532 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3533 return InsertPt;
3534 }
3535 }
3536
3537 // Similarly, imm is an operator in TreePatternNode's view but must be
3538 // rendered as operands.
3539 // FIXME: The target should be able to choose sign-extended when appropriate
3540 // (e.g. on Mips).
3541 if (DstChild->getOperator()->getName() == "imm") {
3542 DstMIBuilder.addRenderer<CopyConstantAsImmRenderer>(DstChild->getName());
3543 return InsertPt;
3544 } else if (DstChild->getOperator()->getName() == "fpimm") {
3545 DstMIBuilder.addRenderer<CopyFConstantAsFPImmRenderer>(
3546 DstChild->getName());
3547 return InsertPt;
3548 }
3549
3550 if (DstChild->getOperator()->isSubClassOf("Instruction")) {
3551 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3552 if (ChildTypes.size() != 1)
3553 return failedImport("Dst pattern child has multiple results");
3554
3555 Optional<LLTCodeGen> OpTyOrNone = None;
3556 if (ChildTypes.front().isMachineValueType())
3557 OpTyOrNone =
3558 MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3559 if (!OpTyOrNone)
3560 return failedImport("Dst operand has an unsupported type");
3561
3562 unsigned TempRegID = Rule.allocateTempRegID();
3563 InsertPt = Rule.insertAction<MakeTempRegisterAction>(
3564 InsertPt, OpTyOrNone.getValue(), TempRegID);
3565 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID);
3566
3567 auto InsertPtOrError = createAndImportSubInstructionRenderer(
3568 ++InsertPt, Rule, DstChild, TempRegID);
3569 if (auto Error = InsertPtOrError.takeError())
3570 return std::move(Error);
3571 return InsertPtOrError.get();
3572 }
3573
3574 return failedImport("Dst pattern child isn't a leaf node or an MBB" + llvm::to_string(*DstChild));
3575 }
3576
3577 // It could be a specific immediate in which case we should just check for
3578 // that immediate.
3579 if (const IntInit *ChildIntInit =
3580 dyn_cast<IntInit>(DstChild->getLeafValue())) {
3581 DstMIBuilder.addRenderer<ImmRenderer>(ChildIntInit->getValue());
3582 return InsertPt;
3583 }
3584
3585 // Otherwise, we're looking for a bog-standard RegisterClass operand.
3586 if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
3587 auto *ChildRec = ChildDefInit->getDef();
3588
3589 ArrayRef<TypeSetByHwMode> ChildTypes = DstChild->getExtTypes();
3590 if (ChildTypes.size() != 1)
3591 return failedImport("Dst pattern child has multiple results");
3592
3593 Optional<LLTCodeGen> OpTyOrNone = None;
3594 if (ChildTypes.front().isMachineValueType())
3595 OpTyOrNone = MVTToLLT(ChildTypes.front().getMachineValueType().SimpleTy);
3596 if (!OpTyOrNone)
3597 return failedImport("Dst operand has an unsupported type");
3598
3599 if (ChildRec->isSubClassOf("Register")) {
3600 DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
3601 return InsertPt;
3602 }
3603
3604 if (ChildRec->isSubClassOf("RegisterClass") ||
3605 ChildRec->isSubClassOf("RegisterOperand") ||
3606 ChildRec->isSubClassOf("ValueType")) {
3607 if (ChildRec->isSubClassOf("RegisterOperand") &&
3608 !ChildRec->isValueUnset("GIZeroRegister")) {
3609 DstMIBuilder.addRenderer<CopyOrAddZeroRegRenderer>(
3610 DstChild->getName(), ChildRec->getValueAsDef("GIZeroRegister"));
3611 return InsertPt;
3612 }
3613
3614 DstMIBuilder.addRenderer<CopyRenderer>(DstChild->getName());
3615 return InsertPt;
3616 }
3617
3618 if (ChildRec->isSubClassOf("ComplexPattern")) {
3619 const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
3620 if (ComplexPattern == ComplexPatternEquivs.end())
3621 return failedImport(
3622 "SelectionDAG ComplexPattern not mapped to GlobalISel");
3623
3624 const OperandMatcher &OM = Rule.getOperandMatcher(DstChild->getName());
3625 DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
3626 *ComplexPattern->second, DstChild->getName(),
3627 OM.getAllocatedTemporariesBaseID());
3628 return InsertPt;
3629 }
3630
3631 return failedImport(
3632 "Dst pattern child def is an unsupported tablegen class");
3633 }
3634
3635 return failedImport("Dst pattern child is an unsupported kind");
3636 }
3637
createAndImportInstructionRenderer(RuleMatcher & M,const TreePatternNode * Dst)3638 Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
3639 RuleMatcher &M, const TreePatternNode *Dst) {
3640 auto InsertPtOrError = createInstructionRenderer(M.actions_end(), M, Dst);
3641 if (auto Error = InsertPtOrError.takeError())
3642 return std::move(Error);
3643
3644 action_iterator InsertPt = InsertPtOrError.get();
3645 BuildMIAction &DstMIBuilder = *static_cast<BuildMIAction *>(InsertPt->get());
3646
3647 importExplicitDefRenderers(DstMIBuilder);
3648
3649 if (auto Error = importExplicitUseRenderers(InsertPt, M, DstMIBuilder, Dst)
3650 .takeError())
3651 return std::move(Error);
3652
3653 return DstMIBuilder;
3654 }
3655
3656 Expected<action_iterator>
createAndImportSubInstructionRenderer(const action_iterator InsertPt,RuleMatcher & M,const TreePatternNode * Dst,unsigned TempRegID)3657 GlobalISelEmitter::createAndImportSubInstructionRenderer(
3658 const action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst,
3659 unsigned TempRegID) {
3660 auto InsertPtOrError = createInstructionRenderer(InsertPt, M, Dst);
3661
3662 // TODO: Assert there's exactly one result.
3663
3664 if (auto Error = InsertPtOrError.takeError())
3665 return std::move(Error);
3666
3667 BuildMIAction &DstMIBuilder =
3668 *static_cast<BuildMIAction *>(InsertPtOrError.get()->get());
3669
3670 // Assign the result to TempReg.
3671 DstMIBuilder.addRenderer<TempRegRenderer>(TempRegID, true);
3672
3673 InsertPtOrError =
3674 importExplicitUseRenderers(InsertPtOrError.get(), M, DstMIBuilder, Dst);
3675 if (auto Error = InsertPtOrError.takeError())
3676 return std::move(Error);
3677
3678 M.insertAction<ConstrainOperandsToDefinitionAction>(InsertPt,
3679 DstMIBuilder.getInsnID());
3680 return InsertPtOrError.get();
3681 }
3682
createInstructionRenderer(action_iterator InsertPt,RuleMatcher & M,const TreePatternNode * Dst)3683 Expected<action_iterator> GlobalISelEmitter::createInstructionRenderer(
3684 action_iterator InsertPt, RuleMatcher &M, const TreePatternNode *Dst) {
3685 Record *DstOp = Dst->getOperator();
3686 if (!DstOp->isSubClassOf("Instruction")) {
3687 if (DstOp->isSubClassOf("ValueType"))
3688 return failedImport(
3689 "Pattern operator isn't an instruction (it's a ValueType)");
3690 return failedImport("Pattern operator isn't an instruction");
3691 }
3692 CodeGenInstruction *DstI = &Target.getInstruction(DstOp);
3693
3694 // COPY_TO_REGCLASS is just a copy with a ConstrainOperandToRegClassAction
3695 // attached. Similarly for EXTRACT_SUBREG except that's a subregister copy.
3696 if (DstI->TheDef->getName() == "COPY_TO_REGCLASS")
3697 DstI = &Target.getInstruction(RK.getDef("COPY"));
3698 else if (DstI->TheDef->getName() == "EXTRACT_SUBREG")
3699 DstI = &Target.getInstruction(RK.getDef("COPY"));
3700 else if (DstI->TheDef->getName() == "REG_SEQUENCE")
3701 return failedImport("Unable to emit REG_SEQUENCE");
3702
3703 return M.insertAction<BuildMIAction>(InsertPt, M.allocateOutputInsnID(),
3704 DstI);
3705 }
3706
importExplicitDefRenderers(BuildMIAction & DstMIBuilder)3707 void GlobalISelEmitter::importExplicitDefRenderers(
3708 BuildMIAction &DstMIBuilder) {
3709 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3710 for (unsigned I = 0; I < DstI->Operands.NumDefs; ++I) {
3711 const CGIOperandList::OperandInfo &DstIOperand = DstI->Operands[I];
3712 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3713 }
3714 }
3715
importExplicitUseRenderers(action_iterator InsertPt,RuleMatcher & M,BuildMIAction & DstMIBuilder,const llvm::TreePatternNode * Dst)3716 Expected<action_iterator> GlobalISelEmitter::importExplicitUseRenderers(
3717 action_iterator InsertPt, RuleMatcher &M, BuildMIAction &DstMIBuilder,
3718 const llvm::TreePatternNode *Dst) {
3719 const CodeGenInstruction *DstI = DstMIBuilder.getCGI();
3720 CodeGenInstruction *OrigDstI = &Target.getInstruction(Dst->getOperator());
3721
3722 // EXTRACT_SUBREG needs to use a subregister COPY.
3723 if (OrigDstI->TheDef->getName() == "EXTRACT_SUBREG") {
3724 if (!Dst->getChild(0)->isLeaf())
3725 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
3726
3727 if (DefInit *SubRegInit =
3728 dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue())) {
3729 Record *RCDef = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3730 if (!RCDef)
3731 return failedImport("EXTRACT_SUBREG child #0 could not "
3732 "be coerced to a register class");
3733
3734 CodeGenRegisterClass *RC = CGRegs.getRegClass(RCDef);
3735 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
3736
3737 const auto &SrcRCDstRCPair =
3738 RC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
3739 if (SrcRCDstRCPair.hasValue()) {
3740 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
3741 if (SrcRCDstRCPair->first != RC)
3742 return failedImport("EXTRACT_SUBREG requires an additional COPY");
3743 }
3744
3745 DstMIBuilder.addRenderer<CopySubRegRenderer>(Dst->getChild(0)->getName(),
3746 SubIdx);
3747 return InsertPt;
3748 }
3749
3750 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
3751 }
3752
3753 // Render the explicit uses.
3754 unsigned DstINumUses = OrigDstI->Operands.size() - OrigDstI->Operands.NumDefs;
3755 unsigned ExpectedDstINumUses = Dst->getNumChildren();
3756 if (OrigDstI->TheDef->getName() == "COPY_TO_REGCLASS") {
3757 DstINumUses--; // Ignore the class constraint.
3758 ExpectedDstINumUses--;
3759 }
3760
3761 unsigned Child = 0;
3762 unsigned NumDefaultOps = 0;
3763 for (unsigned I = 0; I != DstINumUses; ++I) {
3764 const CGIOperandList::OperandInfo &DstIOperand =
3765 DstI->Operands[DstI->Operands.NumDefs + I];
3766
3767 // If the operand has default values, introduce them now.
3768 // FIXME: Until we have a decent test case that dictates we should do
3769 // otherwise, we're going to assume that operands with default values cannot
3770 // be specified in the patterns. Therefore, adding them will not cause us to
3771 // end up with too many rendered operands.
3772 if (DstIOperand.Rec->isSubClassOf("OperandWithDefaultOps")) {
3773 DagInit *DefaultOps = DstIOperand.Rec->getValueAsDag("DefaultOps");
3774 if (auto Error = importDefaultOperandRenderers(DstMIBuilder, DefaultOps))
3775 return std::move(Error);
3776 ++NumDefaultOps;
3777 continue;
3778 }
3779
3780 auto InsertPtOrError = importExplicitUseRenderer(InsertPt, M, DstMIBuilder,
3781 Dst->getChild(Child));
3782 if (auto Error = InsertPtOrError.takeError())
3783 return std::move(Error);
3784 InsertPt = InsertPtOrError.get();
3785 ++Child;
3786 }
3787
3788 if (NumDefaultOps + ExpectedDstINumUses != DstINumUses)
3789 return failedImport("Expected " + llvm::to_string(DstINumUses) +
3790 " used operands but found " +
3791 llvm::to_string(ExpectedDstINumUses) +
3792 " explicit ones and " + llvm::to_string(NumDefaultOps) +
3793 " default ones");
3794
3795 return InsertPt;
3796 }
3797
importDefaultOperandRenderers(BuildMIAction & DstMIBuilder,DagInit * DefaultOps) const3798 Error GlobalISelEmitter::importDefaultOperandRenderers(
3799 BuildMIAction &DstMIBuilder, DagInit *DefaultOps) const {
3800 for (const auto *DefaultOp : DefaultOps->getArgs()) {
3801 // Look through ValueType operators.
3802 if (const DagInit *DefaultDagOp = dyn_cast<DagInit>(DefaultOp)) {
3803 if (const DefInit *DefaultDagOperator =
3804 dyn_cast<DefInit>(DefaultDagOp->getOperator())) {
3805 if (DefaultDagOperator->getDef()->isSubClassOf("ValueType"))
3806 DefaultOp = DefaultDagOp->getArg(0);
3807 }
3808 }
3809
3810 if (const DefInit *DefaultDefOp = dyn_cast<DefInit>(DefaultOp)) {
3811 DstMIBuilder.addRenderer<AddRegisterRenderer>(DefaultDefOp->getDef());
3812 continue;
3813 }
3814
3815 if (const IntInit *DefaultIntOp = dyn_cast<IntInit>(DefaultOp)) {
3816 DstMIBuilder.addRenderer<ImmRenderer>(DefaultIntOp->getValue());
3817 continue;
3818 }
3819
3820 return failedImport("Could not add default op");
3821 }
3822
3823 return Error::success();
3824 }
3825
importImplicitDefRenderers(BuildMIAction & DstMIBuilder,const std::vector<Record * > & ImplicitDefs) const3826 Error GlobalISelEmitter::importImplicitDefRenderers(
3827 BuildMIAction &DstMIBuilder,
3828 const std::vector<Record *> &ImplicitDefs) const {
3829 if (!ImplicitDefs.empty())
3830 return failedImport("Pattern defines a physical register");
3831 return Error::success();
3832 }
3833
runOnPattern(const PatternToMatch & P)3834 Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
3835 // Keep track of the matchers and actions to emit.
3836 int Score = P.getPatternComplexity(CGP);
3837 RuleMatcher M(P.getSrcRecord()->getLoc());
3838 RuleMatcherScores[M.getRuleID()] = Score;
3839 M.addAction<DebugCommentAction>(llvm::to_string(*P.getSrcPattern()) +
3840 " => " +
3841 llvm::to_string(*P.getDstPattern()));
3842
3843 if (auto Error = importRulePredicates(M, P.getPredicates()))
3844 return std::move(Error);
3845
3846 // Next, analyze the pattern operators.
3847 TreePatternNode *Src = P.getSrcPattern();
3848 TreePatternNode *Dst = P.getDstPattern();
3849
3850 // If the root of either pattern isn't a simple operator, ignore it.
3851 if (auto Err = isTrivialOperatorNode(Dst))
3852 return failedImport("Dst pattern root isn't a trivial operator (" +
3853 toString(std::move(Err)) + ")");
3854 if (auto Err = isTrivialOperatorNode(Src))
3855 return failedImport("Src pattern root isn't a trivial operator (" +
3856 toString(std::move(Err)) + ")");
3857
3858 // The different predicates and matchers created during
3859 // addInstructionMatcher use the RuleMatcher M to set up their
3860 // instruction ID (InsnVarID) that are going to be used when
3861 // M is going to be emitted.
3862 // However, the code doing the emission still relies on the IDs
3863 // returned during that process by the RuleMatcher when issuing
3864 // the recordInsn opcodes.
3865 // Because of that:
3866 // 1. The order in which we created the predicates
3867 // and such must be the same as the order in which we emit them,
3868 // and
3869 // 2. We need to reset the generation of the IDs in M somewhere between
3870 // addInstructionMatcher and emit
3871 //
3872 // FIXME: Long term, we don't want to have to rely on this implicit
3873 // naming being the same. One possible solution would be to have
3874 // explicit operator for operation capture and reference those.
3875 // The plus side is that it would expose opportunities to share
3876 // the capture accross rules. The downside is that it would
3877 // introduce a dependency between predicates (captures must happen
3878 // before their first use.)
3879 InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher(Src->getName());
3880 unsigned TempOpIdx = 0;
3881 auto InsnMatcherOrError =
3882 createAndImportSelDAGMatcher(M, InsnMatcherTemp, Src, TempOpIdx);
3883 if (auto Error = InsnMatcherOrError.takeError())
3884 return std::move(Error);
3885 InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
3886
3887 if (Dst->isLeaf()) {
3888 Record *RCDef = getInitValueAsRegClass(Dst->getLeafValue());
3889
3890 const CodeGenRegisterClass &RC = Target.getRegisterClass(RCDef);
3891 if (RCDef) {
3892 // We need to replace the def and all its uses with the specified
3893 // operand. However, we must also insert COPY's wherever needed.
3894 // For now, emit a copy and let the register allocator clean up.
3895 auto &DstI = Target.getInstruction(RK.getDef("COPY"));
3896 const auto &DstIOperand = DstI.Operands[0];
3897
3898 OperandMatcher &OM0 = InsnMatcher.getOperand(0);
3899 OM0.setSymbolicName(DstIOperand.Name);
3900 M.defineOperand(OM0.getSymbolicName(), OM0);
3901 OM0.addPredicate<RegisterBankOperandMatcher>(RC);
3902
3903 auto &DstMIBuilder =
3904 M.addAction<BuildMIAction>(M.allocateOutputInsnID(), &DstI);
3905 DstMIBuilder.addRenderer<CopyRenderer>(DstIOperand.Name);
3906 DstMIBuilder.addRenderer<CopyRenderer>(Dst->getName());
3907 M.addAction<ConstrainOperandToRegClassAction>(0, 0, RC);
3908
3909 // We're done with this pattern! It's eligible for GISel emission; return
3910 // it.
3911 ++NumPatternImported;
3912 return std::move(M);
3913 }
3914
3915 return failedImport("Dst pattern root isn't a known leaf");
3916 }
3917
3918 // Start with the defined operands (i.e., the results of the root operator).
3919 Record *DstOp = Dst->getOperator();
3920 if (!DstOp->isSubClassOf("Instruction"))
3921 return failedImport("Pattern operator isn't an instruction");
3922
3923 auto &DstI = Target.getInstruction(DstOp);
3924 if (DstI.Operands.NumDefs != Src->getExtTypes().size())
3925 return failedImport("Src pattern results and dst MI defs are different (" +
3926 to_string(Src->getExtTypes().size()) + " def(s) vs " +
3927 to_string(DstI.Operands.NumDefs) + " def(s))");
3928
3929 // The root of the match also has constraints on the register bank so that it
3930 // matches the result instruction.
3931 unsigned OpIdx = 0;
3932 for (const TypeSetByHwMode &VTy : Src->getExtTypes()) {
3933 (void)VTy;
3934
3935 const auto &DstIOperand = DstI.Operands[OpIdx];
3936 Record *DstIOpRec = DstIOperand.Rec;
3937 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
3938 DstIOpRec = getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
3939
3940 if (DstIOpRec == nullptr)
3941 return failedImport(
3942 "COPY_TO_REGCLASS operand #1 isn't a register class");
3943 } else if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
3944 if (!Dst->getChild(0)->isLeaf())
3945 return failedImport("EXTRACT_SUBREG operand #0 isn't a leaf");
3946
3947 // We can assume that a subregister is in the same bank as it's super
3948 // register.
3949 DstIOpRec = getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
3950
3951 if (DstIOpRec == nullptr)
3952 return failedImport(
3953 "EXTRACT_SUBREG operand #0 isn't a register class");
3954 } else if (DstIOpRec->isSubClassOf("RegisterOperand"))
3955 DstIOpRec = DstIOpRec->getValueAsDef("RegClass");
3956 else if (!DstIOpRec->isSubClassOf("RegisterClass"))
3957 return failedImport("Dst MI def isn't a register class" +
3958 to_string(*Dst));
3959
3960 OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
3961 OM.setSymbolicName(DstIOperand.Name);
3962 M.defineOperand(OM.getSymbolicName(), OM);
3963 OM.addPredicate<RegisterBankOperandMatcher>(
3964 Target.getRegisterClass(DstIOpRec));
3965 ++OpIdx;
3966 }
3967
3968 auto DstMIBuilderOrError = createAndImportInstructionRenderer(M, Dst);
3969 if (auto Error = DstMIBuilderOrError.takeError())
3970 return std::move(Error);
3971 BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
3972
3973 // Render the implicit defs.
3974 // These are only added to the root of the result.
3975 if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
3976 return std::move(Error);
3977
3978 DstMIBuilder.chooseInsnToMutate(M);
3979
3980 // Constrain the registers to classes. This is normally derived from the
3981 // emitted instruction but a few instructions require special handling.
3982 if (DstI.TheDef->getName() == "COPY_TO_REGCLASS") {
3983 // COPY_TO_REGCLASS does not provide operand constraints itself but the
3984 // result is constrained to the class given by the second child.
3985 Record *DstIOpRec =
3986 getInitValueAsRegClass(Dst->getChild(1)->getLeafValue());
3987
3988 if (DstIOpRec == nullptr)
3989 return failedImport("COPY_TO_REGCLASS operand #1 isn't a register class");
3990
3991 M.addAction<ConstrainOperandToRegClassAction>(
3992 0, 0, Target.getRegisterClass(DstIOpRec));
3993
3994 // We're done with this pattern! It's eligible for GISel emission; return
3995 // it.
3996 ++NumPatternImported;
3997 return std::move(M);
3998 }
3999
4000 if (DstI.TheDef->getName() == "EXTRACT_SUBREG") {
4001 // EXTRACT_SUBREG selects into a subregister COPY but unlike most
4002 // instructions, the result register class is controlled by the
4003 // subregisters of the operand. As a result, we must constrain the result
4004 // class rather than check that it's already the right one.
4005 if (!Dst->getChild(0)->isLeaf())
4006 return failedImport("EXTRACT_SUBREG child #1 is not a leaf");
4007
4008 DefInit *SubRegInit = dyn_cast<DefInit>(Dst->getChild(1)->getLeafValue());
4009 if (!SubRegInit)
4010 return failedImport("EXTRACT_SUBREG child #1 is not a subreg index");
4011
4012 // Constrain the result to the same register bank as the operand.
4013 Record *DstIOpRec =
4014 getInitValueAsRegClass(Dst->getChild(0)->getLeafValue());
4015
4016 if (DstIOpRec == nullptr)
4017 return failedImport("EXTRACT_SUBREG operand #1 isn't a register class");
4018
4019 CodeGenSubRegIndex *SubIdx = CGRegs.getSubRegIdx(SubRegInit->getDef());
4020 CodeGenRegisterClass *SrcRC = CGRegs.getRegClass(DstIOpRec);
4021
4022 // It would be nice to leave this constraint implicit but we're required
4023 // to pick a register class so constrain the result to a register class
4024 // that can hold the correct MVT.
4025 //
4026 // FIXME: This may introduce an extra copy if the chosen class doesn't
4027 // actually contain the subregisters.
4028 assert(Src->getExtTypes().size() == 1 &&
4029 "Expected Src of EXTRACT_SUBREG to have one result type");
4030
4031 const auto &SrcRCDstRCPair =
4032 SrcRC->getMatchingSubClassWithSubRegs(CGRegs, SubIdx);
4033 assert(SrcRCDstRCPair->second && "Couldn't find a matching subclass");
4034 M.addAction<ConstrainOperandToRegClassAction>(0, 0, *SrcRCDstRCPair->second);
4035 M.addAction<ConstrainOperandToRegClassAction>(0, 1, *SrcRCDstRCPair->first);
4036
4037 // We're done with this pattern! It's eligible for GISel emission; return
4038 // it.
4039 ++NumPatternImported;
4040 return std::move(M);
4041 }
4042
4043 M.addAction<ConstrainOperandsToDefinitionAction>(0);
4044
4045 // We're done with this pattern! It's eligible for GISel emission; return it.
4046 ++NumPatternImported;
4047 return std::move(M);
4048 }
4049
4050 // Emit imm predicate table and an enum to reference them with.
4051 // The 'Predicate_' part of the name is redundant but eliminating it is more
4052 // trouble than it's worth.
emitCxxPredicateFns(raw_ostream & OS,StringRef CodeFieldName,StringRef TypeIdentifier,StringRef ArgType,StringRef ArgName,StringRef AdditionalDeclarations,std::function<bool (const Record * R)> Filter)4053 void GlobalISelEmitter::emitCxxPredicateFns(
4054 raw_ostream &OS, StringRef CodeFieldName, StringRef TypeIdentifier,
4055 StringRef ArgType, StringRef ArgName, StringRef AdditionalDeclarations,
4056 std::function<bool(const Record *R)> Filter) {
4057 std::vector<const Record *> MatchedRecords;
4058 const auto &Defs = RK.getAllDerivedDefinitions("PatFrag");
4059 std::copy_if(Defs.begin(), Defs.end(), std::back_inserter(MatchedRecords),
4060 [&](Record *Record) {
4061 return !Record->getValueAsString(CodeFieldName).empty() &&
4062 Filter(Record);
4063 });
4064
4065 if (!MatchedRecords.empty()) {
4066 OS << "// PatFrag predicates.\n"
4067 << "enum {\n";
4068 std::string EnumeratorSeparator =
4069 (" = GIPFP_" + TypeIdentifier + "_Invalid + 1,\n").str();
4070 for (const auto *Record : MatchedRecords) {
4071 OS << " GIPFP_" << TypeIdentifier << "_Predicate_" << Record->getName()
4072 << EnumeratorSeparator;
4073 EnumeratorSeparator = ",\n";
4074 }
4075 OS << "};\n";
4076 }
4077
4078 OS << "bool " << Target.getName() << "InstructionSelector::test" << ArgName
4079 << "Predicate_" << TypeIdentifier << "(unsigned PredicateID, " << ArgType << " "
4080 << ArgName << ") const {\n"
4081 << AdditionalDeclarations;
4082 if (!AdditionalDeclarations.empty())
4083 OS << "\n";
4084 if (!MatchedRecords.empty())
4085 OS << " switch (PredicateID) {\n";
4086 for (const auto *Record : MatchedRecords) {
4087 OS << " case GIPFP_" << TypeIdentifier << "_Predicate_"
4088 << Record->getName() << ": {\n"
4089 << " " << Record->getValueAsString(CodeFieldName) << "\n"
4090 << " llvm_unreachable(\"" << CodeFieldName
4091 << " should have returned\");\n"
4092 << " return false;\n"
4093 << " }\n";
4094 }
4095 if (!MatchedRecords.empty())
4096 OS << " }\n";
4097 OS << " llvm_unreachable(\"Unknown predicate\");\n"
4098 << " return false;\n"
4099 << "}\n";
4100 }
4101
emitImmPredicateFns(raw_ostream & OS,StringRef TypeIdentifier,StringRef ArgType,std::function<bool (const Record * R)> Filter)4102 void GlobalISelEmitter::emitImmPredicateFns(
4103 raw_ostream &OS, StringRef TypeIdentifier, StringRef ArgType,
4104 std::function<bool(const Record *R)> Filter) {
4105 return emitCxxPredicateFns(OS, "ImmediateCode", TypeIdentifier, ArgType,
4106 "Imm", "", Filter);
4107 }
4108
emitMIPredicateFns(raw_ostream & OS)4109 void GlobalISelEmitter::emitMIPredicateFns(raw_ostream &OS) {
4110 return emitCxxPredicateFns(
4111 OS, "GISelPredicateCode", "MI", "const MachineInstr &", "MI",
4112 " const MachineFunction &MF = *MI.getParent()->getParent();\n"
4113 " const MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4114 " (void)MRI;",
4115 [](const Record *R) { return true; });
4116 }
4117
4118 template <class GroupT>
optimizeRules(ArrayRef<Matcher * > Rules,std::vector<std::unique_ptr<Matcher>> & MatcherStorage)4119 std::vector<Matcher *> GlobalISelEmitter::optimizeRules(
4120 ArrayRef<Matcher *> Rules,
4121 std::vector<std::unique_ptr<Matcher>> &MatcherStorage) {
4122
4123 std::vector<Matcher *> OptRules;
4124 std::unique_ptr<GroupT> CurrentGroup = make_unique<GroupT>();
4125 assert(CurrentGroup->empty() && "Newly created group isn't empty!");
4126 unsigned NumGroups = 0;
4127
4128 auto ProcessCurrentGroup = [&]() {
4129 if (CurrentGroup->empty())
4130 // An empty group is good to be reused:
4131 return;
4132
4133 // If the group isn't large enough to provide any benefit, move all the
4134 // added rules out of it and make sure to re-create the group to properly
4135 // re-initialize it:
4136 if (CurrentGroup->size() < 2)
4137 for (Matcher *M : CurrentGroup->matchers())
4138 OptRules.push_back(M);
4139 else {
4140 CurrentGroup->finalize();
4141 OptRules.push_back(CurrentGroup.get());
4142 MatcherStorage.emplace_back(std::move(CurrentGroup));
4143 ++NumGroups;
4144 }
4145 CurrentGroup = make_unique<GroupT>();
4146 };
4147 for (Matcher *Rule : Rules) {
4148 // Greedily add as many matchers as possible to the current group:
4149 if (CurrentGroup->addMatcher(*Rule))
4150 continue;
4151
4152 ProcessCurrentGroup();
4153 assert(CurrentGroup->empty() && "A group wasn't properly re-initialized");
4154
4155 // Try to add the pending matcher to a newly created empty group:
4156 if (!CurrentGroup->addMatcher(*Rule))
4157 // If we couldn't add the matcher to an empty group, that group type
4158 // doesn't support that kind of matchers at all, so just skip it:
4159 OptRules.push_back(Rule);
4160 }
4161 ProcessCurrentGroup();
4162
4163 LLVM_DEBUG(dbgs() << "NumGroups: " << NumGroups << "\n");
4164 assert(CurrentGroup->empty() && "The last group wasn't properly processed");
4165 return OptRules;
4166 }
4167
4168 MatchTable
buildMatchTable(MutableArrayRef<RuleMatcher> Rules,bool Optimize,bool WithCoverage)4169 GlobalISelEmitter::buildMatchTable(MutableArrayRef<RuleMatcher> Rules,
4170 bool Optimize, bool WithCoverage) {
4171 std::vector<Matcher *> InputRules;
4172 for (Matcher &Rule : Rules)
4173 InputRules.push_back(&Rule);
4174
4175 if (!Optimize)
4176 return MatchTable::buildTable(InputRules, WithCoverage);
4177
4178 unsigned CurrentOrdering = 0;
4179 StringMap<unsigned> OpcodeOrder;
4180 for (RuleMatcher &Rule : Rules) {
4181 const StringRef Opcode = Rule.getOpcode();
4182 assert(!Opcode.empty() && "Didn't expect an undefined opcode");
4183 if (OpcodeOrder.count(Opcode) == 0)
4184 OpcodeOrder[Opcode] = CurrentOrdering++;
4185 }
4186
4187 std::stable_sort(InputRules.begin(), InputRules.end(),
4188 [&OpcodeOrder](const Matcher *A, const Matcher *B) {
4189 auto *L = static_cast<const RuleMatcher *>(A);
4190 auto *R = static_cast<const RuleMatcher *>(B);
4191 return std::make_tuple(OpcodeOrder[L->getOpcode()],
4192 L->getNumOperands()) <
4193 std::make_tuple(OpcodeOrder[R->getOpcode()],
4194 R->getNumOperands());
4195 });
4196
4197 for (Matcher *Rule : InputRules)
4198 Rule->optimize();
4199
4200 std::vector<std::unique_ptr<Matcher>> MatcherStorage;
4201 std::vector<Matcher *> OptRules =
4202 optimizeRules<GroupMatcher>(InputRules, MatcherStorage);
4203
4204 for (Matcher *Rule : OptRules)
4205 Rule->optimize();
4206
4207 OptRules = optimizeRules<SwitchMatcher>(OptRules, MatcherStorage);
4208
4209 return MatchTable::buildTable(OptRules, WithCoverage);
4210 }
4211
optimize()4212 void GroupMatcher::optimize() {
4213 // Make sure we only sort by a specific predicate within a range of rules that
4214 // all have that predicate checked against a specific value (not a wildcard):
4215 auto F = Matchers.begin();
4216 auto T = F;
4217 auto E = Matchers.end();
4218 while (T != E) {
4219 while (T != E) {
4220 auto *R = static_cast<RuleMatcher *>(*T);
4221 if (!R->getFirstConditionAsRootType().get().isValid())
4222 break;
4223 ++T;
4224 }
4225 std::stable_sort(F, T, [](Matcher *A, Matcher *B) {
4226 auto *L = static_cast<RuleMatcher *>(A);
4227 auto *R = static_cast<RuleMatcher *>(B);
4228 return L->getFirstConditionAsRootType() <
4229 R->getFirstConditionAsRootType();
4230 });
4231 if (T != E)
4232 F = ++T;
4233 }
4234 GlobalISelEmitter::optimizeRules<GroupMatcher>(Matchers, MatcherStorage)
4235 .swap(Matchers);
4236 GlobalISelEmitter::optimizeRules<SwitchMatcher>(Matchers, MatcherStorage)
4237 .swap(Matchers);
4238 }
4239
run(raw_ostream & OS)4240 void GlobalISelEmitter::run(raw_ostream &OS) {
4241 if (!UseCoverageFile.empty()) {
4242 RuleCoverage = CodeGenCoverage();
4243 auto RuleCoverageBufOrErr = MemoryBuffer::getFile(UseCoverageFile);
4244 if (!RuleCoverageBufOrErr) {
4245 PrintWarning(SMLoc(), "Missing rule coverage data");
4246 RuleCoverage = None;
4247 } else {
4248 if (!RuleCoverage->parse(*RuleCoverageBufOrErr.get(), Target.getName())) {
4249 PrintWarning(SMLoc(), "Ignoring invalid or missing rule coverage data");
4250 RuleCoverage = None;
4251 }
4252 }
4253 }
4254
4255 // Track the run-time opcode values
4256 gatherOpcodeValues();
4257 // Track the run-time LLT ID values
4258 gatherTypeIDValues();
4259
4260 // Track the GINodeEquiv definitions.
4261 gatherNodeEquivs();
4262
4263 emitSourceFileHeader(("Global Instruction Selector for the " +
4264 Target.getName() + " target").str(), OS);
4265 std::vector<RuleMatcher> Rules;
4266 // Look through the SelectionDAG patterns we found, possibly emitting some.
4267 for (const PatternToMatch &Pat : CGP.ptms()) {
4268 ++NumPatternTotal;
4269
4270 auto MatcherOrErr = runOnPattern(Pat);
4271
4272 // The pattern analysis can fail, indicating an unsupported pattern.
4273 // Report that if we've been asked to do so.
4274 if (auto Err = MatcherOrErr.takeError()) {
4275 if (WarnOnSkippedPatterns) {
4276 PrintWarning(Pat.getSrcRecord()->getLoc(),
4277 "Skipped pattern: " + toString(std::move(Err)));
4278 } else {
4279 consumeError(std::move(Err));
4280 }
4281 ++NumPatternImportsSkipped;
4282 continue;
4283 }
4284
4285 if (RuleCoverage) {
4286 if (RuleCoverage->isCovered(MatcherOrErr->getRuleID()))
4287 ++NumPatternsTested;
4288 else
4289 PrintWarning(Pat.getSrcRecord()->getLoc(),
4290 "Pattern is not covered by a test");
4291 }
4292 Rules.push_back(std::move(MatcherOrErr.get()));
4293 }
4294
4295 // Comparison function to order records by name.
4296 auto orderByName = [](const Record *A, const Record *B) {
4297 return A->getName() < B->getName();
4298 };
4299
4300 std::vector<Record *> ComplexPredicates =
4301 RK.getAllDerivedDefinitions("GIComplexOperandMatcher");
4302 llvm::sort(ComplexPredicates.begin(), ComplexPredicates.end(), orderByName);
4303
4304 std::vector<Record *> CustomRendererFns =
4305 RK.getAllDerivedDefinitions("GICustomOperandRenderer");
4306 llvm::sort(CustomRendererFns.begin(), CustomRendererFns.end(), orderByName);
4307
4308 unsigned MaxTemporaries = 0;
4309 for (const auto &Rule : Rules)
4310 MaxTemporaries = std::max(MaxTemporaries, Rule.countRendererFns());
4311
4312 OS << "#ifdef GET_GLOBALISEL_PREDICATE_BITSET\n"
4313 << "const unsigned MAX_SUBTARGET_PREDICATES = " << SubtargetFeatures.size()
4314 << ";\n"
4315 << "using PredicateBitset = "
4316 "llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;\n"
4317 << "#endif // ifdef GET_GLOBALISEL_PREDICATE_BITSET\n\n";
4318
4319 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n"
4320 << " mutable MatcherState State;\n"
4321 << " typedef "
4322 "ComplexRendererFns("
4323 << Target.getName()
4324 << "InstructionSelector::*ComplexMatcherMemFn)(MachineOperand &) const;\n"
4325
4326 << " typedef void(" << Target.getName()
4327 << "InstructionSelector::*CustomRendererFn)(MachineInstrBuilder &, const "
4328 "MachineInstr&) "
4329 "const;\n"
4330 << " const ISelInfoTy<PredicateBitset, ComplexMatcherMemFn, "
4331 "CustomRendererFn> "
4332 "ISelInfo;\n";
4333 OS << " static " << Target.getName()
4334 << "InstructionSelector::ComplexMatcherMemFn ComplexPredicateFns[];\n"
4335 << " static " << Target.getName()
4336 << "InstructionSelector::CustomRendererFn CustomRenderers[];\n"
4337 << " bool testImmPredicate_I64(unsigned PredicateID, int64_t Imm) const "
4338 "override;\n"
4339 << " bool testImmPredicate_APInt(unsigned PredicateID, const APInt &Imm) "
4340 "const override;\n"
4341 << " bool testImmPredicate_APFloat(unsigned PredicateID, const APFloat "
4342 "&Imm) const override;\n"
4343 << " const int64_t *getMatchTable() const override;\n"
4344 << " bool testMIPredicate_MI(unsigned PredicateID, const MachineInstr &MI) "
4345 "const override;\n"
4346 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
4347
4348 OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n"
4349 << ", State(" << MaxTemporaries << "),\n"
4350 << "ISelInfo(TypeObjects, NumTypeObjects, FeatureBitsets"
4351 << ", ComplexPredicateFns, CustomRenderers)\n"
4352 << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
4353
4354 OS << "#ifdef GET_GLOBALISEL_IMPL\n";
4355 SubtargetFeatureInfo::emitSubtargetFeatureBitEnumeration(SubtargetFeatures,
4356 OS);
4357
4358 // Separate subtarget features by how often they must be recomputed.
4359 SubtargetFeatureInfoMap ModuleFeatures;
4360 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4361 std::inserter(ModuleFeatures, ModuleFeatures.end()),
4362 [](const SubtargetFeatureInfoMap::value_type &X) {
4363 return !X.second.mustRecomputePerFunction();
4364 });
4365 SubtargetFeatureInfoMap FunctionFeatures;
4366 std::copy_if(SubtargetFeatures.begin(), SubtargetFeatures.end(),
4367 std::inserter(FunctionFeatures, FunctionFeatures.end()),
4368 [](const SubtargetFeatureInfoMap::value_type &X) {
4369 return X.second.mustRecomputePerFunction();
4370 });
4371
4372 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4373 Target.getName(), "InstructionSelector", "computeAvailableModuleFeatures",
4374 ModuleFeatures, OS);
4375 SubtargetFeatureInfo::emitComputeAvailableFeatures(
4376 Target.getName(), "InstructionSelector",
4377 "computeAvailableFunctionFeatures", FunctionFeatures, OS,
4378 "const MachineFunction *MF");
4379
4380 // Emit a table containing the LLT objects needed by the matcher and an enum
4381 // for the matcher to reference them with.
4382 std::vector<LLTCodeGen> TypeObjects;
4383 for (const auto &Ty : KnownTypes)
4384 TypeObjects.push_back(Ty);
4385 llvm::sort(TypeObjects.begin(), TypeObjects.end());
4386 OS << "// LLT Objects.\n"
4387 << "enum {\n";
4388 for (const auto &TypeObject : TypeObjects) {
4389 OS << " ";
4390 TypeObject.emitCxxEnumValue(OS);
4391 OS << ",\n";
4392 }
4393 OS << "};\n";
4394 OS << "const static size_t NumTypeObjects = " << TypeObjects.size() << ";\n"
4395 << "const static LLT TypeObjects[] = {\n";
4396 for (const auto &TypeObject : TypeObjects) {
4397 OS << " ";
4398 TypeObject.emitCxxConstructorCall(OS);
4399 OS << ",\n";
4400 }
4401 OS << "};\n\n";
4402
4403 // Emit a table containing the PredicateBitsets objects needed by the matcher
4404 // and an enum for the matcher to reference them with.
4405 std::vector<std::vector<Record *>> FeatureBitsets;
4406 for (auto &Rule : Rules)
4407 FeatureBitsets.push_back(Rule.getRequiredFeatures());
4408 llvm::sort(
4409 FeatureBitsets.begin(), FeatureBitsets.end(),
4410 [&](const std::vector<Record *> &A, const std::vector<Record *> &B) {
4411 if (A.size() < B.size())
4412 return true;
4413 if (A.size() > B.size())
4414 return false;
4415 for (const auto &Pair : zip(A, B)) {
4416 if (std::get<0>(Pair)->getName() < std::get<1>(Pair)->getName())
4417 return true;
4418 if (std::get<0>(Pair)->getName() > std::get<1>(Pair)->getName())
4419 return false;
4420 }
4421 return false;
4422 });
4423 FeatureBitsets.erase(
4424 std::unique(FeatureBitsets.begin(), FeatureBitsets.end()),
4425 FeatureBitsets.end());
4426 OS << "// Feature bitsets.\n"
4427 << "enum {\n"
4428 << " GIFBS_Invalid,\n";
4429 for (const auto &FeatureBitset : FeatureBitsets) {
4430 if (FeatureBitset.empty())
4431 continue;
4432 OS << " " << getNameForFeatureBitset(FeatureBitset) << ",\n";
4433 }
4434 OS << "};\n"
4435 << "const static PredicateBitset FeatureBitsets[] {\n"
4436 << " {}, // GIFBS_Invalid\n";
4437 for (const auto &FeatureBitset : FeatureBitsets) {
4438 if (FeatureBitset.empty())
4439 continue;
4440 OS << " {";
4441 for (const auto &Feature : FeatureBitset) {
4442 const auto &I = SubtargetFeatures.find(Feature);
4443 assert(I != SubtargetFeatures.end() && "Didn't import predicate?");
4444 OS << I->second.getEnumBitName() << ", ";
4445 }
4446 OS << "},\n";
4447 }
4448 OS << "};\n\n";
4449
4450 // Emit complex predicate table and an enum to reference them with.
4451 OS << "// ComplexPattern predicates.\n"
4452 << "enum {\n"
4453 << " GICP_Invalid,\n";
4454 for (const auto &Record : ComplexPredicates)
4455 OS << " GICP_" << Record->getName() << ",\n";
4456 OS << "};\n"
4457 << "// See constructor for table contents\n\n";
4458
4459 emitImmPredicateFns(OS, "I64", "int64_t", [](const Record *R) {
4460 bool Unset;
4461 return !R->getValueAsBitOrUnset("IsAPFloat", Unset) &&
4462 !R->getValueAsBit("IsAPInt");
4463 });
4464 emitImmPredicateFns(OS, "APFloat", "const APFloat &", [](const Record *R) {
4465 bool Unset;
4466 return R->getValueAsBitOrUnset("IsAPFloat", Unset);
4467 });
4468 emitImmPredicateFns(OS, "APInt", "const APInt &", [](const Record *R) {
4469 return R->getValueAsBit("IsAPInt");
4470 });
4471 emitMIPredicateFns(OS);
4472 OS << "\n";
4473
4474 OS << Target.getName() << "InstructionSelector::ComplexMatcherMemFn\n"
4475 << Target.getName() << "InstructionSelector::ComplexPredicateFns[] = {\n"
4476 << " nullptr, // GICP_Invalid\n";
4477 for (const auto &Record : ComplexPredicates)
4478 OS << " &" << Target.getName()
4479 << "InstructionSelector::" << Record->getValueAsString("MatcherFn")
4480 << ", // " << Record->getName() << "\n";
4481 OS << "};\n\n";
4482
4483 OS << "// Custom renderers.\n"
4484 << "enum {\n"
4485 << " GICR_Invalid,\n";
4486 for (const auto &Record : CustomRendererFns)
4487 OS << " GICR_" << Record->getValueAsString("RendererFn") << ", \n";
4488 OS << "};\n";
4489
4490 OS << Target.getName() << "InstructionSelector::CustomRendererFn\n"
4491 << Target.getName() << "InstructionSelector::CustomRenderers[] = {\n"
4492 << " nullptr, // GICP_Invalid\n";
4493 for (const auto &Record : CustomRendererFns)
4494 OS << " &" << Target.getName()
4495 << "InstructionSelector::" << Record->getValueAsString("RendererFn")
4496 << ", // " << Record->getName() << "\n";
4497 OS << "};\n\n";
4498
4499 std::stable_sort(Rules.begin(), Rules.end(), [&](const RuleMatcher &A,
4500 const RuleMatcher &B) {
4501 int ScoreA = RuleMatcherScores[A.getRuleID()];
4502 int ScoreB = RuleMatcherScores[B.getRuleID()];
4503 if (ScoreA > ScoreB)
4504 return true;
4505 if (ScoreB > ScoreA)
4506 return false;
4507 if (A.isHigherPriorityThan(B)) {
4508 assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
4509 "and less important at "
4510 "the same time");
4511 return true;
4512 }
4513 return false;
4514 });
4515
4516 OS << "bool " << Target.getName()
4517 << "InstructionSelector::selectImpl(MachineInstr &I, CodeGenCoverage "
4518 "&CoverageInfo) const {\n"
4519 << " MachineFunction &MF = *I.getParent()->getParent();\n"
4520 << " MachineRegisterInfo &MRI = MF.getRegInfo();\n"
4521 << " // FIXME: This should be computed on a per-function basis rather "
4522 "than per-insn.\n"
4523 << " AvailableFunctionFeatures = computeAvailableFunctionFeatures(&STI, "
4524 "&MF);\n"
4525 << " const PredicateBitset AvailableFeatures = getAvailableFeatures();\n"
4526 << " NewMIVector OutMIs;\n"
4527 << " State.MIs.clear();\n"
4528 << " State.MIs.push_back(&I);\n\n"
4529 << " if (executeMatchTable(*this, OutMIs, State, ISelInfo"
4530 << ", getMatchTable(), TII, MRI, TRI, RBI, AvailableFeatures"
4531 << ", CoverageInfo)) {\n"
4532 << " return true;\n"
4533 << " }\n\n"
4534 << " return false;\n"
4535 << "}\n\n";
4536
4537 const MatchTable Table =
4538 buildMatchTable(Rules, OptimizeMatchTable, GenerateCoverage);
4539 OS << "const int64_t *" << Target.getName()
4540 << "InstructionSelector::getMatchTable() const {\n";
4541 Table.emitDeclaration(OS);
4542 OS << " return ";
4543 Table.emitUse(OS);
4544 OS << ";\n}\n";
4545 OS << "#endif // ifdef GET_GLOBALISEL_IMPL\n";
4546
4547 OS << "#ifdef GET_GLOBALISEL_PREDICATES_DECL\n"
4548 << "PredicateBitset AvailableModuleFeatures;\n"
4549 << "mutable PredicateBitset AvailableFunctionFeatures;\n"
4550 << "PredicateBitset getAvailableFeatures() const {\n"
4551 << " return AvailableModuleFeatures | AvailableFunctionFeatures;\n"
4552 << "}\n"
4553 << "PredicateBitset\n"
4554 << "computeAvailableModuleFeatures(const " << Target.getName()
4555 << "Subtarget *Subtarget) const;\n"
4556 << "PredicateBitset\n"
4557 << "computeAvailableFunctionFeatures(const " << Target.getName()
4558 << "Subtarget *Subtarget,\n"
4559 << " const MachineFunction *MF) const;\n"
4560 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_DECL\n";
4561
4562 OS << "#ifdef GET_GLOBALISEL_PREDICATES_INIT\n"
4563 << "AvailableModuleFeatures(computeAvailableModuleFeatures(&STI)),\n"
4564 << "AvailableFunctionFeatures()\n"
4565 << "#endif // ifdef GET_GLOBALISEL_PREDICATES_INIT\n";
4566 }
4567
declareSubtargetFeature(Record * Predicate)4568 void GlobalISelEmitter::declareSubtargetFeature(Record *Predicate) {
4569 if (SubtargetFeatures.count(Predicate) == 0)
4570 SubtargetFeatures.emplace(
4571 Predicate, SubtargetFeatureInfo(Predicate, SubtargetFeatures.size()));
4572 }
4573
optimize()4574 void RuleMatcher::optimize() {
4575 for (auto &Item : InsnVariableIDs) {
4576 InstructionMatcher &InsnMatcher = *Item.first;
4577 for (auto &OM : InsnMatcher.operands()) {
4578 // Complex Patterns are usually expensive and they relatively rarely fail
4579 // on their own: more often we end up throwing away all the work done by a
4580 // matching part of a complex pattern because some other part of the
4581 // enclosing pattern didn't match. All of this makes it beneficial to
4582 // delay complex patterns until the very end of the rule matching,
4583 // especially for targets having lots of complex patterns.
4584 for (auto &OP : OM->predicates())
4585 if (isa<ComplexPatternOperandMatcher>(OP))
4586 EpilogueMatchers.emplace_back(std::move(OP));
4587 OM->eraseNullPredicates();
4588 }
4589 InsnMatcher.optimize();
4590 }
4591 llvm::sort(
4592 EpilogueMatchers.begin(), EpilogueMatchers.end(),
4593 [](const std::unique_ptr<PredicateMatcher> &L,
4594 const std::unique_ptr<PredicateMatcher> &R) {
4595 return std::make_tuple(L->getKind(), L->getInsnVarID(), L->getOpIdx()) <
4596 std::make_tuple(R->getKind(), R->getInsnVarID(), R->getOpIdx());
4597 });
4598 }
4599
hasFirstCondition() const4600 bool RuleMatcher::hasFirstCondition() const {
4601 if (insnmatchers_empty())
4602 return false;
4603 InstructionMatcher &Matcher = insnmatchers_front();
4604 if (!Matcher.predicates_empty())
4605 return true;
4606 for (auto &OM : Matcher.operands())
4607 for (auto &OP : OM->predicates())
4608 if (!isa<InstructionOperandMatcher>(OP))
4609 return true;
4610 return false;
4611 }
4612
getFirstCondition() const4613 const PredicateMatcher &RuleMatcher::getFirstCondition() const {
4614 assert(!insnmatchers_empty() &&
4615 "Trying to get a condition from an empty RuleMatcher");
4616
4617 InstructionMatcher &Matcher = insnmatchers_front();
4618 if (!Matcher.predicates_empty())
4619 return **Matcher.predicates_begin();
4620 // If there is no more predicate on the instruction itself, look at its
4621 // operands.
4622 for (auto &OM : Matcher.operands())
4623 for (auto &OP : OM->predicates())
4624 if (!isa<InstructionOperandMatcher>(OP))
4625 return *OP;
4626
4627 llvm_unreachable("Trying to get a condition from an InstructionMatcher with "
4628 "no conditions");
4629 }
4630
popFirstCondition()4631 std::unique_ptr<PredicateMatcher> RuleMatcher::popFirstCondition() {
4632 assert(!insnmatchers_empty() &&
4633 "Trying to pop a condition from an empty RuleMatcher");
4634
4635 InstructionMatcher &Matcher = insnmatchers_front();
4636 if (!Matcher.predicates_empty())
4637 return Matcher.predicates_pop_front();
4638 // If there is no more predicate on the instruction itself, look at its
4639 // operands.
4640 for (auto &OM : Matcher.operands())
4641 for (auto &OP : OM->predicates())
4642 if (!isa<InstructionOperandMatcher>(OP)) {
4643 std::unique_ptr<PredicateMatcher> Result = std::move(OP);
4644 OM->eraseNullPredicates();
4645 return Result;
4646 }
4647
4648 llvm_unreachable("Trying to pop a condition from an InstructionMatcher with "
4649 "no conditions");
4650 }
4651
candidateConditionMatches(const PredicateMatcher & Predicate) const4652 bool GroupMatcher::candidateConditionMatches(
4653 const PredicateMatcher &Predicate) const {
4654
4655 if (empty()) {
4656 // Sharing predicates for nested instructions is not supported yet as we
4657 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4658 // only work on the original root instruction (InsnVarID == 0):
4659 if (Predicate.getInsnVarID() != 0)
4660 return false;
4661 // ... otherwise an empty group can handle any predicate with no specific
4662 // requirements:
4663 return true;
4664 }
4665
4666 const Matcher &Representative = **Matchers.begin();
4667 const auto &RepresentativeCondition = Representative.getFirstCondition();
4668 // ... if not empty, the group can only accomodate matchers with the exact
4669 // same first condition:
4670 return Predicate.isIdentical(RepresentativeCondition);
4671 }
4672
addMatcher(Matcher & Candidate)4673 bool GroupMatcher::addMatcher(Matcher &Candidate) {
4674 if (!Candidate.hasFirstCondition())
4675 return false;
4676
4677 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4678 if (!candidateConditionMatches(Predicate))
4679 return false;
4680
4681 Matchers.push_back(&Candidate);
4682 return true;
4683 }
4684
finalize()4685 void GroupMatcher::finalize() {
4686 assert(Conditions.empty() && "Already finalized?");
4687 if (empty())
4688 return;
4689
4690 Matcher &FirstRule = **Matchers.begin();
4691 for (;;) {
4692 // All the checks are expected to succeed during the first iteration:
4693 for (const auto &Rule : Matchers)
4694 if (!Rule->hasFirstCondition())
4695 return;
4696 const auto &FirstCondition = FirstRule.getFirstCondition();
4697 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4698 if (!Matchers[I]->getFirstCondition().isIdentical(FirstCondition))
4699 return;
4700
4701 Conditions.push_back(FirstRule.popFirstCondition());
4702 for (unsigned I = 1, E = Matchers.size(); I < E; ++I)
4703 Matchers[I]->popFirstCondition();
4704 }
4705 }
4706
emit(MatchTable & Table)4707 void GroupMatcher::emit(MatchTable &Table) {
4708 unsigned LabelID = ~0U;
4709 if (!Conditions.empty()) {
4710 LabelID = Table.allocateLabelID();
4711 Table << MatchTable::Opcode("GIM_Try", +1)
4712 << MatchTable::Comment("On fail goto")
4713 << MatchTable::JumpTarget(LabelID) << MatchTable::LineBreak;
4714 }
4715 for (auto &Condition : Conditions)
4716 Condition->emitPredicateOpcodes(
4717 Table, *static_cast<RuleMatcher *>(*Matchers.begin()));
4718
4719 for (const auto &M : Matchers)
4720 M->emit(Table);
4721
4722 // Exit the group
4723 if (!Conditions.empty())
4724 Table << MatchTable::Opcode("GIM_Reject", -1) << MatchTable::LineBreak
4725 << MatchTable::Label(LabelID);
4726 }
4727
isSupportedPredicateType(const PredicateMatcher & P)4728 bool SwitchMatcher::isSupportedPredicateType(const PredicateMatcher &P) {
4729 return isa<InstructionOpcodeMatcher>(P) || isa<LLTOperandMatcher>(P);
4730 }
4731
candidateConditionMatches(const PredicateMatcher & Predicate) const4732 bool SwitchMatcher::candidateConditionMatches(
4733 const PredicateMatcher &Predicate) const {
4734
4735 if (empty()) {
4736 // Sharing predicates for nested instructions is not supported yet as we
4737 // currently don't hoist the GIM_RecordInsn's properly, therefore we can
4738 // only work on the original root instruction (InsnVarID == 0):
4739 if (Predicate.getInsnVarID() != 0)
4740 return false;
4741 // ... while an attempt to add even a root matcher to an empty SwitchMatcher
4742 // could fail as not all the types of conditions are supported:
4743 if (!isSupportedPredicateType(Predicate))
4744 return false;
4745 // ... or the condition might not have a proper implementation of
4746 // getValue() / isIdenticalDownToValue() yet:
4747 if (!Predicate.hasValue())
4748 return false;
4749 // ... otherwise an empty Switch can accomodate the condition with no
4750 // further requirements:
4751 return true;
4752 }
4753
4754 const Matcher &CaseRepresentative = **Matchers.begin();
4755 const auto &RepresentativeCondition = CaseRepresentative.getFirstCondition();
4756 // Switch-cases must share the same kind of condition and path to the value it
4757 // checks:
4758 if (!Predicate.isIdenticalDownToValue(RepresentativeCondition))
4759 return false;
4760
4761 const auto Value = Predicate.getValue();
4762 // ... but be unique with respect to the actual value they check:
4763 return Values.count(Value) == 0;
4764 }
4765
addMatcher(Matcher & Candidate)4766 bool SwitchMatcher::addMatcher(Matcher &Candidate) {
4767 if (!Candidate.hasFirstCondition())
4768 return false;
4769
4770 const PredicateMatcher &Predicate = Candidate.getFirstCondition();
4771 if (!candidateConditionMatches(Predicate))
4772 return false;
4773 const auto Value = Predicate.getValue();
4774 Values.insert(Value);
4775
4776 Matchers.push_back(&Candidate);
4777 return true;
4778 }
4779
finalize()4780 void SwitchMatcher::finalize() {
4781 assert(Condition == nullptr && "Already finalized");
4782 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4783 if (empty())
4784 return;
4785
4786 std::stable_sort(Matchers.begin(), Matchers.end(),
4787 [](const Matcher *L, const Matcher *R) {
4788 return L->getFirstCondition().getValue() <
4789 R->getFirstCondition().getValue();
4790 });
4791 Condition = Matchers[0]->popFirstCondition();
4792 for (unsigned I = 1, E = Values.size(); I < E; ++I)
4793 Matchers[I]->popFirstCondition();
4794 }
4795
emitPredicateSpecificOpcodes(const PredicateMatcher & P,MatchTable & Table)4796 void SwitchMatcher::emitPredicateSpecificOpcodes(const PredicateMatcher &P,
4797 MatchTable &Table) {
4798 assert(isSupportedPredicateType(P) && "Predicate type is not supported");
4799
4800 if (const auto *Condition = dyn_cast<InstructionOpcodeMatcher>(&P)) {
4801 Table << MatchTable::Opcode("GIM_SwitchOpcode") << MatchTable::Comment("MI")
4802 << MatchTable::IntValue(Condition->getInsnVarID());
4803 return;
4804 }
4805 if (const auto *Condition = dyn_cast<LLTOperandMatcher>(&P)) {
4806 Table << MatchTable::Opcode("GIM_SwitchType") << MatchTable::Comment("MI")
4807 << MatchTable::IntValue(Condition->getInsnVarID())
4808 << MatchTable::Comment("Op")
4809 << MatchTable::IntValue(Condition->getOpIdx());
4810 return;
4811 }
4812
4813 llvm_unreachable("emitPredicateSpecificOpcodes is broken: can not handle a "
4814 "predicate type that is claimed to be supported");
4815 }
4816
emit(MatchTable & Table)4817 void SwitchMatcher::emit(MatchTable &Table) {
4818 assert(Values.size() == Matchers.size() && "Broken SwitchMatcher");
4819 if (empty())
4820 return;
4821 assert(Condition != nullptr &&
4822 "Broken SwitchMatcher, hasn't been finalized?");
4823
4824 std::vector<unsigned> LabelIDs(Values.size());
4825 std::generate(LabelIDs.begin(), LabelIDs.end(),
4826 [&Table]() { return Table.allocateLabelID(); });
4827 const unsigned Default = Table.allocateLabelID();
4828
4829 const int64_t LowerBound = Values.begin()->getRawValue();
4830 const int64_t UpperBound = Values.rbegin()->getRawValue() + 1;
4831
4832 emitPredicateSpecificOpcodes(*Condition, Table);
4833
4834 Table << MatchTable::Comment("[") << MatchTable::IntValue(LowerBound)
4835 << MatchTable::IntValue(UpperBound) << MatchTable::Comment(")")
4836 << MatchTable::Comment("default:") << MatchTable::JumpTarget(Default);
4837
4838 int64_t J = LowerBound;
4839 auto VI = Values.begin();
4840 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
4841 auto V = *VI++;
4842 while (J++ < V.getRawValue())
4843 Table << MatchTable::IntValue(0);
4844 V.turnIntoComment();
4845 Table << MatchTable::LineBreak << V << MatchTable::JumpTarget(LabelIDs[I]);
4846 }
4847 Table << MatchTable::LineBreak;
4848
4849 for (unsigned I = 0, E = Values.size(); I < E; ++I) {
4850 Table << MatchTable::Label(LabelIDs[I]);
4851 Matchers[I]->emit(Table);
4852 Table << MatchTable::Opcode("GIM_Reject") << MatchTable::LineBreak;
4853 }
4854 Table << MatchTable::Label(Default);
4855 }
4856
getInsnVarID() const4857 unsigned OperandMatcher::getInsnVarID() const { return Insn.getInsnVarID(); }
4858
4859 } // end anonymous namespace
4860
4861 //===----------------------------------------------------------------------===//
4862
4863 namespace llvm {
EmitGlobalISel(RecordKeeper & RK,raw_ostream & OS)4864 void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
4865 GlobalISelEmitter(RK).run(OS);
4866 }
4867 } // End llvm namespace
4868