1 /* -*- mode: C; c-file-style: "k&r"; tab-width 4; indent-tabs-mode: t; -*- */
2
3 /*
4 * Copyright (C) 2015 Rob Clark <robclark@freedesktop.org>
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the next
14 * paragraph) shall be included in all copies or substantial portions of the
15 * Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23 * SOFTWARE.
24 *
25 * Authors:
26 * Rob Clark <robclark@freedesktop.org>
27 */
28
29 #include <stdarg.h>
30
31 #include "pipe/p_state.h"
32 #include "util/u_string.h"
33 #include "util/u_memory.h"
34 #include "util/u_inlines.h"
35
36 #include "freedreno_util.h"
37
38 #include "ir3_compiler.h"
39 #include "ir3_shader.h"
40 #include "ir3_nir.h"
41
42 #include "instr-a3xx.h"
43 #include "ir3.h"
44
45
46 struct ir3_context {
47 struct ir3_compiler *compiler;
48
49 struct nir_shader *s;
50
51 struct ir3 *ir;
52 struct ir3_shader_variant *so;
53
54 struct ir3_block *block; /* the current block */
55 struct ir3_block *in_block; /* block created for shader inputs */
56
57 nir_function_impl *impl;
58
59 /* For fragment shaders, from the hw perspective the only
60 * actual input is r0.xy position register passed to bary.f.
61 * But TGSI doesn't know that, it still declares things as
62 * IN[] registers. So we do all the input tracking normally
63 * and fix things up after compile_instructions()
64 *
65 * NOTE that frag_pos is the hardware position (possibly it
66 * is actually an index or tag or some such.. it is *not*
67 * values that can be directly used for gl_FragCoord..)
68 */
69 struct ir3_instruction *frag_pos, *frag_face, *frag_coord[4];
70
71 /* For vertex shaders, keep track of the system values sources */
72 struct ir3_instruction *vertex_id, *basevertex, *instance_id;
73
74 /* Compute shader inputs: */
75 struct ir3_instruction *local_invocation_id, *work_group_id;
76
77 /* mapping from nir_register to defining instruction: */
78 struct hash_table *def_ht;
79
80 unsigned num_arrays;
81
82 /* a common pattern for indirect addressing is to request the
83 * same address register multiple times. To avoid generating
84 * duplicate instruction sequences (which our backend does not
85 * try to clean up, since that should be done as the NIR stage)
86 * we cache the address value generated for a given src value:
87 *
88 * Note that we have to cache these per alignment, since same
89 * src used for an array of vec1 cannot be also used for an
90 * array of vec4.
91 */
92 struct hash_table *addr_ht[4];
93
94 /* last dst array, for indirect we need to insert a var-store.
95 */
96 struct ir3_instruction **last_dst;
97 unsigned last_dst_n;
98
99 /* maps nir_block to ir3_block, mostly for the purposes of
100 * figuring out the blocks successors
101 */
102 struct hash_table *block_ht;
103
104 /* a4xx (at least patchlevel 0) cannot seem to flat-interpolate
105 * so we need to use ldlv.u32 to load the varying directly:
106 */
107 bool flat_bypass;
108
109 /* on a3xx, we need to add one to # of array levels:
110 */
111 bool levels_add_one;
112
113 /* on a3xx, we need to scale up integer coords for isaml based
114 * on LoD:
115 */
116 bool unminify_coords;
117
118 /* on a4xx, for array textures we need to add 0.5 to the array
119 * index coordinate:
120 */
121 bool array_index_add_half;
122
123 /* on a4xx, bitmask of samplers which need astc+srgb workaround: */
124 unsigned astc_srgb;
125
126 unsigned max_texture_index;
127
128 /* set if we encounter something we can't handle yet, so we
129 * can bail cleanly and fallback to TGSI compiler f/e
130 */
131 bool error;
132 };
133
134 /* gpu pointer size in units of 32bit registers/slots */
pointer_size(struct ir3_context * ctx)135 static unsigned pointer_size(struct ir3_context *ctx)
136 {
137 return (ctx->compiler->gpu_id >= 500) ? 2 : 1;
138 }
139
140 static struct ir3_instruction * create_immed(struct ir3_block *block, uint32_t val);
141 static struct ir3_block * get_block(struct ir3_context *ctx, nir_block *nblock);
142
143
144 static struct ir3_context *
compile_init(struct ir3_compiler * compiler,struct ir3_shader_variant * so)145 compile_init(struct ir3_compiler *compiler,
146 struct ir3_shader_variant *so)
147 {
148 struct ir3_context *ctx = rzalloc(NULL, struct ir3_context);
149
150 if (compiler->gpu_id >= 400) {
151 /* need special handling for "flat" */
152 ctx->flat_bypass = true;
153 ctx->levels_add_one = false;
154 ctx->unminify_coords = false;
155 ctx->array_index_add_half = true;
156
157 if (so->type == SHADER_VERTEX)
158 ctx->astc_srgb = so->key.vastc_srgb;
159 else if (so->type == SHADER_FRAGMENT)
160 ctx->astc_srgb = so->key.fastc_srgb;
161
162 } else {
163 /* no special handling for "flat" */
164 ctx->flat_bypass = false;
165 ctx->levels_add_one = true;
166 ctx->unminify_coords = true;
167 ctx->array_index_add_half = false;
168 }
169
170 ctx->compiler = compiler;
171 ctx->ir = so->ir;
172 ctx->so = so;
173 ctx->def_ht = _mesa_hash_table_create(ctx,
174 _mesa_hash_pointer, _mesa_key_pointer_equal);
175 ctx->block_ht = _mesa_hash_table_create(ctx,
176 _mesa_hash_pointer, _mesa_key_pointer_equal);
177
178 /* TODO: maybe generate some sort of bitmask of what key
179 * lowers vs what shader has (ie. no need to lower
180 * texture clamp lowering if no texture sample instrs)..
181 * although should be done further up the stack to avoid
182 * creating duplicate variants..
183 */
184
185 if (ir3_key_lowers_nir(&so->key)) {
186 nir_shader *s = nir_shader_clone(ctx, so->shader->nir);
187 ctx->s = ir3_optimize_nir(so->shader, s, &so->key);
188 } else {
189 /* fast-path for shader key that lowers nothing in NIR: */
190 ctx->s = so->shader->nir;
191 }
192
193 /* this needs to be the last pass run, so do this here instead of
194 * in ir3_optimize_nir():
195 */
196 NIR_PASS_V(ctx->s, nir_lower_locals_to_regs);
197
198 if (fd_mesa_debug & FD_DBG_DISASM) {
199 DBG("dump nir%dv%d: type=%d, k={bp=%u,cts=%u,hp=%u}",
200 so->shader->id, so->id, so->type,
201 so->key.binning_pass, so->key.color_two_side,
202 so->key.half_precision);
203 nir_print_shader(ctx->s, stdout);
204 }
205
206 ir3_nir_scan_driver_consts(ctx->s, &so->const_layout);
207
208 so->num_uniforms = ctx->s->num_uniforms;
209 so->num_ubos = ctx->s->info.num_ubos;
210
211 /* Layout of constant registers, each section aligned to vec4. Note
212 * that pointer size (ubo, etc) changes depending on generation.
213 *
214 * user consts
215 * UBO addresses
216 * SSBO sizes
217 * if (vertex shader) {
218 * driver params (IR3_DP_*)
219 * if (stream_output.num_outputs > 0)
220 * stream-out addresses
221 * }
222 * immediates
223 *
224 * Immediates go last mostly because they are inserted in the CP pass
225 * after the nir -> ir3 frontend.
226 */
227 unsigned constoff = align(ctx->s->num_uniforms, 4);
228 unsigned ptrsz = pointer_size(ctx);
229
230 memset(&so->constbase, ~0, sizeof(so->constbase));
231
232 if (so->num_ubos > 0) {
233 so->constbase.ubo = constoff;
234 constoff += align(ctx->s->info.num_ubos * ptrsz, 4) / 4;
235 }
236
237 if (so->const_layout.ssbo_size.count > 0) {
238 unsigned cnt = so->const_layout.ssbo_size.count;
239 so->constbase.ssbo_sizes = constoff;
240 constoff += align(cnt, 4) / 4;
241 }
242
243 if (so->const_layout.image_dims.count > 0) {
244 unsigned cnt = so->const_layout.image_dims.count;
245 so->constbase.image_dims = constoff;
246 constoff += align(cnt, 4) / 4;
247 }
248
249 unsigned num_driver_params = 0;
250 if (so->type == SHADER_VERTEX) {
251 num_driver_params = IR3_DP_VS_COUNT;
252 } else if (so->type == SHADER_COMPUTE) {
253 num_driver_params = IR3_DP_CS_COUNT;
254 }
255
256 so->constbase.driver_param = constoff;
257 constoff += align(num_driver_params, 4) / 4;
258
259 if ((so->type == SHADER_VERTEX) &&
260 (compiler->gpu_id < 500) &&
261 so->shader->stream_output.num_outputs > 0) {
262 so->constbase.tfbo = constoff;
263 constoff += align(PIPE_MAX_SO_BUFFERS * ptrsz, 4) / 4;
264 }
265
266 so->constbase.immediate = constoff;
267
268 return ctx;
269 }
270
271 static void
compile_error(struct ir3_context * ctx,const char * format,...)272 compile_error(struct ir3_context *ctx, const char *format, ...)
273 {
274 va_list ap;
275 va_start(ap, format);
276 _debug_vprintf(format, ap);
277 va_end(ap);
278 nir_print_shader(ctx->s, stdout);
279 ctx->error = true;
280 debug_assert(0);
281 }
282
283 #define compile_assert(ctx, cond) do { \
284 if (!(cond)) compile_error((ctx), "failed assert: "#cond"\n"); \
285 } while (0)
286
287 static void
compile_free(struct ir3_context * ctx)288 compile_free(struct ir3_context *ctx)
289 {
290 ralloc_free(ctx);
291 }
292
293 static void
declare_array(struct ir3_context * ctx,nir_register * reg)294 declare_array(struct ir3_context *ctx, nir_register *reg)
295 {
296 struct ir3_array *arr = rzalloc(ctx, struct ir3_array);
297 arr->id = ++ctx->num_arrays;
298 /* NOTE: sometimes we get non array regs, for example for arrays of
299 * length 1. See fs-const-array-of-struct-of-array.shader_test. So
300 * treat a non-array as if it was an array of length 1.
301 *
302 * It would be nice if there was a nir pass to convert arrays of
303 * length 1 to ssa.
304 */
305 arr->length = reg->num_components * MAX2(1, reg->num_array_elems);
306 compile_assert(ctx, arr->length > 0);
307 arr->r = reg;
308 list_addtail(&arr->node, &ctx->ir->array_list);
309 }
310
311 static struct ir3_array *
get_array(struct ir3_context * ctx,nir_register * reg)312 get_array(struct ir3_context *ctx, nir_register *reg)
313 {
314 list_for_each_entry (struct ir3_array, arr, &ctx->ir->array_list, node) {
315 if (arr->r == reg)
316 return arr;
317 }
318 compile_error(ctx, "bogus reg: %s\n", reg->name);
319 return NULL;
320 }
321
322 /* relative (indirect) if address!=NULL */
323 static struct ir3_instruction *
create_array_load(struct ir3_context * ctx,struct ir3_array * arr,int n,struct ir3_instruction * address)324 create_array_load(struct ir3_context *ctx, struct ir3_array *arr, int n,
325 struct ir3_instruction *address)
326 {
327 struct ir3_block *block = ctx->block;
328 struct ir3_instruction *mov;
329 struct ir3_register *src;
330
331 mov = ir3_instr_create(block, OPC_MOV);
332 mov->cat1.src_type = TYPE_U32;
333 mov->cat1.dst_type = TYPE_U32;
334 mov->barrier_class = IR3_BARRIER_ARRAY_R;
335 mov->barrier_conflict = IR3_BARRIER_ARRAY_W;
336 ir3_reg_create(mov, 0, 0);
337 src = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
338 COND(address, IR3_REG_RELATIV));
339 src->instr = arr->last_write;
340 src->size = arr->length;
341 src->array.id = arr->id;
342 src->array.offset = n;
343
344 if (address)
345 ir3_instr_set_address(mov, address);
346
347 return mov;
348 }
349
350 /* relative (indirect) if address!=NULL */
351 static struct ir3_instruction *
create_array_store(struct ir3_context * ctx,struct ir3_array * arr,int n,struct ir3_instruction * src,struct ir3_instruction * address)352 create_array_store(struct ir3_context *ctx, struct ir3_array *arr, int n,
353 struct ir3_instruction *src, struct ir3_instruction *address)
354 {
355 struct ir3_block *block = ctx->block;
356 struct ir3_instruction *mov;
357 struct ir3_register *dst;
358
359 mov = ir3_instr_create(block, OPC_MOV);
360 mov->cat1.src_type = TYPE_U32;
361 mov->cat1.dst_type = TYPE_U32;
362 mov->barrier_class = IR3_BARRIER_ARRAY_W;
363 mov->barrier_conflict = IR3_BARRIER_ARRAY_R | IR3_BARRIER_ARRAY_W;
364 dst = ir3_reg_create(mov, 0, IR3_REG_ARRAY |
365 COND(address, IR3_REG_RELATIV));
366 dst->instr = arr->last_write;
367 dst->size = arr->length;
368 dst->array.id = arr->id;
369 dst->array.offset = n;
370 ir3_reg_create(mov, 0, IR3_REG_SSA)->instr = src;
371
372 if (address)
373 ir3_instr_set_address(mov, address);
374
375 arr->last_write = mov;
376
377 return mov;
378 }
379
380 /* allocate a n element value array (to be populated by caller) and
381 * insert in def_ht
382 */
383 static struct ir3_instruction **
get_dst_ssa(struct ir3_context * ctx,nir_ssa_def * dst,unsigned n)384 get_dst_ssa(struct ir3_context *ctx, nir_ssa_def *dst, unsigned n)
385 {
386 struct ir3_instruction **value =
387 ralloc_array(ctx->def_ht, struct ir3_instruction *, n);
388 _mesa_hash_table_insert(ctx->def_ht, dst, value);
389 return value;
390 }
391
392 static struct ir3_instruction **
get_dst(struct ir3_context * ctx,nir_dest * dst,unsigned n)393 get_dst(struct ir3_context *ctx, nir_dest *dst, unsigned n)
394 {
395 struct ir3_instruction **value;
396
397 if (dst->is_ssa) {
398 value = get_dst_ssa(ctx, &dst->ssa, n);
399 } else {
400 value = ralloc_array(ctx, struct ir3_instruction *, n);
401 }
402
403 /* NOTE: in non-ssa case, we don't really need to store last_dst
404 * but this helps us catch cases where put_dst() call is forgotten
405 */
406 compile_assert(ctx, !ctx->last_dst);
407 ctx->last_dst = value;
408 ctx->last_dst_n = n;
409
410 return value;
411 }
412
413 static struct ir3_instruction * get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align);
414
415 static struct ir3_instruction * const *
get_src(struct ir3_context * ctx,nir_src * src)416 get_src(struct ir3_context *ctx, nir_src *src)
417 {
418 if (src->is_ssa) {
419 struct hash_entry *entry;
420 entry = _mesa_hash_table_search(ctx->def_ht, src->ssa);
421 compile_assert(ctx, entry);
422 return entry->data;
423 } else {
424 nir_register *reg = src->reg.reg;
425 struct ir3_array *arr = get_array(ctx, reg);
426 unsigned num_components = arr->r->num_components;
427 struct ir3_instruction *addr = NULL;
428 struct ir3_instruction **value =
429 ralloc_array(ctx, struct ir3_instruction *, num_components);
430
431 if (src->reg.indirect)
432 addr = get_addr(ctx, get_src(ctx, src->reg.indirect)[0],
433 reg->num_components);
434
435 for (unsigned i = 0; i < num_components; i++) {
436 unsigned n = src->reg.base_offset * reg->num_components + i;
437 compile_assert(ctx, n < arr->length);
438 value[i] = create_array_load(ctx, arr, n, addr);
439 }
440
441 return value;
442 }
443 }
444
445 static void
put_dst(struct ir3_context * ctx,nir_dest * dst)446 put_dst(struct ir3_context *ctx, nir_dest *dst)
447 {
448 if (!dst->is_ssa) {
449 nir_register *reg = dst->reg.reg;
450 struct ir3_array *arr = get_array(ctx, reg);
451 unsigned num_components = ctx->last_dst_n;
452 struct ir3_instruction *addr = NULL;
453
454 if (dst->reg.indirect)
455 addr = get_addr(ctx, get_src(ctx, dst->reg.indirect)[0],
456 reg->num_components);
457
458 for (unsigned i = 0; i < num_components; i++) {
459 unsigned n = dst->reg.base_offset * reg->num_components + i;
460 compile_assert(ctx, n < arr->length);
461 if (!ctx->last_dst[i])
462 continue;
463 create_array_store(ctx, arr, n, ctx->last_dst[i], addr);
464 }
465
466 ralloc_free(ctx->last_dst);
467 }
468 ctx->last_dst = NULL;
469 ctx->last_dst_n = 0;
470 }
471
472 static struct ir3_instruction *
create_immed(struct ir3_block * block,uint32_t val)473 create_immed(struct ir3_block *block, uint32_t val)
474 {
475 struct ir3_instruction *mov;
476
477 mov = ir3_instr_create(block, OPC_MOV);
478 mov->cat1.src_type = TYPE_U32;
479 mov->cat1.dst_type = TYPE_U32;
480 ir3_reg_create(mov, 0, 0);
481 ir3_reg_create(mov, 0, IR3_REG_IMMED)->uim_val = val;
482
483 return mov;
484 }
485
486 static struct ir3_instruction *
create_addr(struct ir3_block * block,struct ir3_instruction * src,int align)487 create_addr(struct ir3_block *block, struct ir3_instruction *src, int align)
488 {
489 struct ir3_instruction *instr, *immed;
490
491 /* TODO in at least some cases, the backend could probably be
492 * made clever enough to propagate IR3_REG_HALF..
493 */
494 instr = ir3_COV(block, src, TYPE_U32, TYPE_S16);
495 instr->regs[0]->flags |= IR3_REG_HALF;
496
497 switch(align){
498 case 1:
499 /* src *= 1: */
500 break;
501 case 2:
502 /* src *= 2 => src <<= 1: */
503 immed = create_immed(block, 1);
504 immed->regs[0]->flags |= IR3_REG_HALF;
505
506 instr = ir3_SHL_B(block, instr, 0, immed, 0);
507 instr->regs[0]->flags |= IR3_REG_HALF;
508 instr->regs[1]->flags |= IR3_REG_HALF;
509 break;
510 case 3:
511 /* src *= 3: */
512 immed = create_immed(block, 3);
513 immed->regs[0]->flags |= IR3_REG_HALF;
514
515 instr = ir3_MULL_U(block, instr, 0, immed, 0);
516 instr->regs[0]->flags |= IR3_REG_HALF;
517 instr->regs[1]->flags |= IR3_REG_HALF;
518 break;
519 case 4:
520 /* src *= 4 => src <<= 2: */
521 immed = create_immed(block, 2);
522 immed->regs[0]->flags |= IR3_REG_HALF;
523
524 instr = ir3_SHL_B(block, instr, 0, immed, 0);
525 instr->regs[0]->flags |= IR3_REG_HALF;
526 instr->regs[1]->flags |= IR3_REG_HALF;
527 break;
528 default:
529 unreachable("bad align");
530 return NULL;
531 }
532
533 instr = ir3_MOV(block, instr, TYPE_S16);
534 instr->regs[0]->num = regid(REG_A0, 0);
535 instr->regs[0]->flags |= IR3_REG_HALF;
536 instr->regs[1]->flags |= IR3_REG_HALF;
537
538 return instr;
539 }
540
541 /* caches addr values to avoid generating multiple cov/shl/mova
542 * sequences for each use of a given NIR level src as address
543 */
544 static struct ir3_instruction *
get_addr(struct ir3_context * ctx,struct ir3_instruction * src,int align)545 get_addr(struct ir3_context *ctx, struct ir3_instruction *src, int align)
546 {
547 struct ir3_instruction *addr;
548 unsigned idx = align - 1;
549
550 compile_assert(ctx, idx < ARRAY_SIZE(ctx->addr_ht));
551
552 if (!ctx->addr_ht[idx]) {
553 ctx->addr_ht[idx] = _mesa_hash_table_create(ctx,
554 _mesa_hash_pointer, _mesa_key_pointer_equal);
555 } else {
556 struct hash_entry *entry;
557 entry = _mesa_hash_table_search(ctx->addr_ht[idx], src);
558 if (entry)
559 return entry->data;
560 }
561
562 addr = create_addr(ctx->block, src, align);
563 _mesa_hash_table_insert(ctx->addr_ht[idx], src, addr);
564
565 return addr;
566 }
567
568 static struct ir3_instruction *
get_predicate(struct ir3_context * ctx,struct ir3_instruction * src)569 get_predicate(struct ir3_context *ctx, struct ir3_instruction *src)
570 {
571 struct ir3_block *b = ctx->block;
572 struct ir3_instruction *cond;
573
574 /* NOTE: only cmps.*.* can write p0.x: */
575 cond = ir3_CMPS_S(b, src, 0, create_immed(b, 0), 0);
576 cond->cat2.condition = IR3_COND_NE;
577
578 /* condition always goes in predicate register: */
579 cond->regs[0]->num = regid(REG_P0, 0);
580
581 return cond;
582 }
583
584 static struct ir3_instruction *
create_uniform(struct ir3_context * ctx,unsigned n)585 create_uniform(struct ir3_context *ctx, unsigned n)
586 {
587 struct ir3_instruction *mov;
588
589 mov = ir3_instr_create(ctx->block, OPC_MOV);
590 /* TODO get types right? */
591 mov->cat1.src_type = TYPE_F32;
592 mov->cat1.dst_type = TYPE_F32;
593 ir3_reg_create(mov, 0, 0);
594 ir3_reg_create(mov, n, IR3_REG_CONST);
595
596 return mov;
597 }
598
599 static struct ir3_instruction *
create_uniform_indirect(struct ir3_context * ctx,int n,struct ir3_instruction * address)600 create_uniform_indirect(struct ir3_context *ctx, int n,
601 struct ir3_instruction *address)
602 {
603 struct ir3_instruction *mov;
604
605 mov = ir3_instr_create(ctx->block, OPC_MOV);
606 mov->cat1.src_type = TYPE_U32;
607 mov->cat1.dst_type = TYPE_U32;
608 ir3_reg_create(mov, 0, 0);
609 ir3_reg_create(mov, 0, IR3_REG_CONST | IR3_REG_RELATIV)->array.offset = n;
610
611 ir3_instr_set_address(mov, address);
612
613 return mov;
614 }
615
616 static struct ir3_instruction *
create_collect(struct ir3_block * block,struct ir3_instruction * const * arr,unsigned arrsz)617 create_collect(struct ir3_block *block, struct ir3_instruction *const *arr,
618 unsigned arrsz)
619 {
620 struct ir3_instruction *collect;
621
622 if (arrsz == 0)
623 return NULL;
624
625 collect = ir3_instr_create2(block, OPC_META_FI, 1 + arrsz);
626 ir3_reg_create(collect, 0, 0); /* dst */
627 for (unsigned i = 0; i < arrsz; i++)
628 ir3_reg_create(collect, 0, IR3_REG_SSA)->instr = arr[i];
629
630 return collect;
631 }
632
633 static struct ir3_instruction *
create_indirect_load(struct ir3_context * ctx,unsigned arrsz,int n,struct ir3_instruction * address,struct ir3_instruction * collect)634 create_indirect_load(struct ir3_context *ctx, unsigned arrsz, int n,
635 struct ir3_instruction *address, struct ir3_instruction *collect)
636 {
637 struct ir3_block *block = ctx->block;
638 struct ir3_instruction *mov;
639 struct ir3_register *src;
640
641 mov = ir3_instr_create(block, OPC_MOV);
642 mov->cat1.src_type = TYPE_U32;
643 mov->cat1.dst_type = TYPE_U32;
644 ir3_reg_create(mov, 0, 0);
645 src = ir3_reg_create(mov, 0, IR3_REG_SSA | IR3_REG_RELATIV);
646 src->instr = collect;
647 src->size = arrsz;
648 src->array.offset = n;
649
650 ir3_instr_set_address(mov, address);
651
652 return mov;
653 }
654
655 static struct ir3_instruction *
create_input_compmask(struct ir3_block * block,unsigned n,unsigned compmask)656 create_input_compmask(struct ir3_block *block, unsigned n, unsigned compmask)
657 {
658 struct ir3_instruction *in;
659
660 in = ir3_instr_create(block, OPC_META_INPUT);
661 in->inout.block = block;
662 ir3_reg_create(in, n, 0);
663
664 in->regs[0]->wrmask = compmask;
665
666 return in;
667 }
668
669 static struct ir3_instruction *
create_input(struct ir3_block * block,unsigned n)670 create_input(struct ir3_block *block, unsigned n)
671 {
672 return create_input_compmask(block, n, 0x1);
673 }
674
675 static struct ir3_instruction *
create_frag_input(struct ir3_context * ctx,bool use_ldlv)676 create_frag_input(struct ir3_context *ctx, bool use_ldlv)
677 {
678 struct ir3_block *block = ctx->block;
679 struct ir3_instruction *instr;
680 /* actual inloc is assigned and fixed up later: */
681 struct ir3_instruction *inloc = create_immed(block, 0);
682
683 if (use_ldlv) {
684 instr = ir3_LDLV(block, inloc, 0, create_immed(block, 1), 0);
685 instr->cat6.type = TYPE_U32;
686 instr->cat6.iim_val = 1;
687 } else {
688 instr = ir3_BARY_F(block, inloc, 0, ctx->frag_pos, 0);
689 instr->regs[2]->wrmask = 0x3;
690 }
691
692 return instr;
693 }
694
695 static struct ir3_instruction *
create_frag_coord(struct ir3_context * ctx,unsigned comp)696 create_frag_coord(struct ir3_context *ctx, unsigned comp)
697 {
698 struct ir3_block *block = ctx->block;
699 struct ir3_instruction *instr;
700
701 compile_assert(ctx, !ctx->frag_coord[comp]);
702
703 ctx->frag_coord[comp] = create_input(ctx->block, 0);
704
705 switch (comp) {
706 case 0: /* .x */
707 case 1: /* .y */
708 /* for frag_coord, we get unsigned values.. we need
709 * to subtract (integer) 8 and divide by 16 (right-
710 * shift by 4) then convert to float:
711 *
712 * sub.s tmp, src, 8
713 * shr.b tmp, tmp, 4
714 * mov.u32f32 dst, tmp
715 *
716 */
717 instr = ir3_SUB_S(block, ctx->frag_coord[comp], 0,
718 create_immed(block, 8), 0);
719 instr = ir3_SHR_B(block, instr, 0,
720 create_immed(block, 4), 0);
721 instr = ir3_COV(block, instr, TYPE_U32, TYPE_F32);
722
723 return instr;
724 case 2: /* .z */
725 case 3: /* .w */
726 default:
727 /* seems that we can use these as-is: */
728 return ctx->frag_coord[comp];
729 }
730 }
731
732 static struct ir3_instruction *
create_driver_param(struct ir3_context * ctx,enum ir3_driver_param dp)733 create_driver_param(struct ir3_context *ctx, enum ir3_driver_param dp)
734 {
735 /* first four vec4 sysval's reserved for UBOs: */
736 /* NOTE: dp is in scalar, but there can be >4 dp components: */
737 unsigned n = ctx->so->constbase.driver_param;
738 unsigned r = regid(n + dp / 4, dp % 4);
739 return create_uniform(ctx, r);
740 }
741
742 /* helper for instructions that produce multiple consecutive scalar
743 * outputs which need to have a split/fanout meta instruction inserted
744 */
745 static void
split_dest(struct ir3_block * block,struct ir3_instruction ** dst,struct ir3_instruction * src,unsigned base,unsigned n)746 split_dest(struct ir3_block *block, struct ir3_instruction **dst,
747 struct ir3_instruction *src, unsigned base, unsigned n)
748 {
749 struct ir3_instruction *prev = NULL;
750
751 if ((n == 1) && (src->regs[0]->wrmask == 0x1)) {
752 dst[0] = src;
753 return;
754 }
755
756 for (int i = 0, j = 0; i < n; i++) {
757 struct ir3_instruction *split = ir3_instr_create(block, OPC_META_FO);
758 ir3_reg_create(split, 0, IR3_REG_SSA);
759 ir3_reg_create(split, 0, IR3_REG_SSA)->instr = src;
760 split->fo.off = i + base;
761
762 if (prev) {
763 split->cp.left = prev;
764 split->cp.left_cnt++;
765 prev->cp.right = split;
766 prev->cp.right_cnt++;
767 }
768 prev = split;
769
770 if (src->regs[0]->wrmask & (1 << (i + base)))
771 dst[j++] = split;
772 }
773 }
774
775 /*
776 * Adreno uses uint rather than having dedicated bool type,
777 * which (potentially) requires some conversion, in particular
778 * when using output of an bool instr to int input, or visa
779 * versa.
780 *
781 * | Adreno | NIR |
782 * -------+---------+-------+-
783 * true | 1 | ~0 |
784 * false | 0 | 0 |
785 *
786 * To convert from an adreno bool (uint) to nir, use:
787 *
788 * absneg.s dst, (neg)src
789 *
790 * To convert back in the other direction:
791 *
792 * absneg.s dst, (abs)arc
793 *
794 * The CP step can clean up the absneg.s that cancel each other
795 * out, and with a slight bit of extra cleverness (to recognize
796 * the instructions which produce either a 0 or 1) can eliminate
797 * the absneg.s's completely when an instruction that wants
798 * 0/1 consumes the result. For example, when a nir 'bcsel'
799 * consumes the result of 'feq'. So we should be able to get by
800 * without a boolean resolve step, and without incuring any
801 * extra penalty in instruction count.
802 */
803
804 /* NIR bool -> native (adreno): */
805 static struct ir3_instruction *
ir3_b2n(struct ir3_block * block,struct ir3_instruction * instr)806 ir3_b2n(struct ir3_block *block, struct ir3_instruction *instr)
807 {
808 return ir3_ABSNEG_S(block, instr, IR3_REG_SABS);
809 }
810
811 /* native (adreno) -> NIR bool: */
812 static struct ir3_instruction *
ir3_n2b(struct ir3_block * block,struct ir3_instruction * instr)813 ir3_n2b(struct ir3_block *block, struct ir3_instruction *instr)
814 {
815 return ir3_ABSNEG_S(block, instr, IR3_REG_SNEG);
816 }
817
818 /*
819 * alu/sfu instructions:
820 */
821
822 static void
emit_alu(struct ir3_context * ctx,nir_alu_instr * alu)823 emit_alu(struct ir3_context *ctx, nir_alu_instr *alu)
824 {
825 const nir_op_info *info = &nir_op_infos[alu->op];
826 struct ir3_instruction **dst, *src[info->num_inputs];
827 struct ir3_block *b = ctx->block;
828 unsigned dst_sz, wrmask;
829
830 if (alu->dest.dest.is_ssa) {
831 dst_sz = alu->dest.dest.ssa.num_components;
832 wrmask = (1 << dst_sz) - 1;
833 } else {
834 dst_sz = alu->dest.dest.reg.reg->num_components;
835 wrmask = alu->dest.write_mask;
836 }
837
838 dst = get_dst(ctx, &alu->dest.dest, dst_sz);
839
840 /* Vectors are special in that they have non-scalarized writemasks,
841 * and just take the first swizzle channel for each argument in
842 * order into each writemask channel.
843 */
844 if ((alu->op == nir_op_vec2) ||
845 (alu->op == nir_op_vec3) ||
846 (alu->op == nir_op_vec4)) {
847
848 for (int i = 0; i < info->num_inputs; i++) {
849 nir_alu_src *asrc = &alu->src[i];
850
851 compile_assert(ctx, !asrc->abs);
852 compile_assert(ctx, !asrc->negate);
853
854 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[0]];
855 if (!src[i])
856 src[i] = create_immed(ctx->block, 0);
857 dst[i] = ir3_MOV(b, src[i], TYPE_U32);
858 }
859
860 put_dst(ctx, &alu->dest.dest);
861 return;
862 }
863
864 /* We also get mov's with more than one component for mov's so
865 * handle those specially:
866 */
867 if ((alu->op == nir_op_imov) || (alu->op == nir_op_fmov)) {
868 type_t type = (alu->op == nir_op_imov) ? TYPE_U32 : TYPE_F32;
869 nir_alu_src *asrc = &alu->src[0];
870 struct ir3_instruction *const *src0 = get_src(ctx, &asrc->src);
871
872 for (unsigned i = 0; i < dst_sz; i++) {
873 if (wrmask & (1 << i)) {
874 dst[i] = ir3_MOV(b, src0[asrc->swizzle[i]], type);
875 } else {
876 dst[i] = NULL;
877 }
878 }
879
880 put_dst(ctx, &alu->dest.dest);
881 return;
882 }
883
884 compile_assert(ctx, alu->dest.dest.is_ssa);
885
886 /* General case: We can just grab the one used channel per src. */
887 for (int i = 0; i < info->num_inputs; i++) {
888 unsigned chan = ffs(alu->dest.write_mask) - 1;
889 nir_alu_src *asrc = &alu->src[i];
890
891 compile_assert(ctx, !asrc->abs);
892 compile_assert(ctx, !asrc->negate);
893
894 src[i] = get_src(ctx, &asrc->src)[asrc->swizzle[chan]];
895
896 compile_assert(ctx, src[i]);
897 }
898
899 switch (alu->op) {
900 case nir_op_f2i32:
901 dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_S32);
902 break;
903 case nir_op_f2u32:
904 dst[0] = ir3_COV(b, src[0], TYPE_F32, TYPE_U32);
905 break;
906 case nir_op_i2f32:
907 dst[0] = ir3_COV(b, src[0], TYPE_S32, TYPE_F32);
908 break;
909 case nir_op_u2f32:
910 dst[0] = ir3_COV(b, src[0], TYPE_U32, TYPE_F32);
911 break;
912 case nir_op_f2b:
913 dst[0] = ir3_CMPS_F(b, src[0], 0, create_immed(b, fui(0.0)), 0);
914 dst[0]->cat2.condition = IR3_COND_NE;
915 dst[0] = ir3_n2b(b, dst[0]);
916 break;
917 case nir_op_b2f:
918 dst[0] = ir3_COV(b, ir3_b2n(b, src[0]), TYPE_U32, TYPE_F32);
919 break;
920 case nir_op_b2i:
921 dst[0] = ir3_b2n(b, src[0]);
922 break;
923 case nir_op_i2b:
924 dst[0] = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
925 dst[0]->cat2.condition = IR3_COND_NE;
926 dst[0] = ir3_n2b(b, dst[0]);
927 break;
928
929 case nir_op_fneg:
930 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FNEG);
931 break;
932 case nir_op_fabs:
933 dst[0] = ir3_ABSNEG_F(b, src[0], IR3_REG_FABS);
934 break;
935 case nir_op_fmax:
936 dst[0] = ir3_MAX_F(b, src[0], 0, src[1], 0);
937 break;
938 case nir_op_fmin:
939 dst[0] = ir3_MIN_F(b, src[0], 0, src[1], 0);
940 break;
941 case nir_op_fmul:
942 dst[0] = ir3_MUL_F(b, src[0], 0, src[1], 0);
943 break;
944 case nir_op_fadd:
945 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], 0);
946 break;
947 case nir_op_fsub:
948 dst[0] = ir3_ADD_F(b, src[0], 0, src[1], IR3_REG_FNEG);
949 break;
950 case nir_op_ffma:
951 dst[0] = ir3_MAD_F32(b, src[0], 0, src[1], 0, src[2], 0);
952 break;
953 case nir_op_fddx:
954 dst[0] = ir3_DSX(b, src[0], 0);
955 dst[0]->cat5.type = TYPE_F32;
956 break;
957 case nir_op_fddy:
958 dst[0] = ir3_DSY(b, src[0], 0);
959 dst[0]->cat5.type = TYPE_F32;
960 break;
961 break;
962 case nir_op_flt:
963 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
964 dst[0]->cat2.condition = IR3_COND_LT;
965 dst[0] = ir3_n2b(b, dst[0]);
966 break;
967 case nir_op_fge:
968 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
969 dst[0]->cat2.condition = IR3_COND_GE;
970 dst[0] = ir3_n2b(b, dst[0]);
971 break;
972 case nir_op_feq:
973 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
974 dst[0]->cat2.condition = IR3_COND_EQ;
975 dst[0] = ir3_n2b(b, dst[0]);
976 break;
977 case nir_op_fne:
978 dst[0] = ir3_CMPS_F(b, src[0], 0, src[1], 0);
979 dst[0]->cat2.condition = IR3_COND_NE;
980 dst[0] = ir3_n2b(b, dst[0]);
981 break;
982 case nir_op_fceil:
983 dst[0] = ir3_CEIL_F(b, src[0], 0);
984 break;
985 case nir_op_ffloor:
986 dst[0] = ir3_FLOOR_F(b, src[0], 0);
987 break;
988 case nir_op_ftrunc:
989 dst[0] = ir3_TRUNC_F(b, src[0], 0);
990 break;
991 case nir_op_fround_even:
992 dst[0] = ir3_RNDNE_F(b, src[0], 0);
993 break;
994 case nir_op_fsign:
995 dst[0] = ir3_SIGN_F(b, src[0], 0);
996 break;
997
998 case nir_op_fsin:
999 dst[0] = ir3_SIN(b, src[0], 0);
1000 break;
1001 case nir_op_fcos:
1002 dst[0] = ir3_COS(b, src[0], 0);
1003 break;
1004 case nir_op_frsq:
1005 dst[0] = ir3_RSQ(b, src[0], 0);
1006 break;
1007 case nir_op_frcp:
1008 dst[0] = ir3_RCP(b, src[0], 0);
1009 break;
1010 case nir_op_flog2:
1011 dst[0] = ir3_LOG2(b, src[0], 0);
1012 break;
1013 case nir_op_fexp2:
1014 dst[0] = ir3_EXP2(b, src[0], 0);
1015 break;
1016 case nir_op_fsqrt:
1017 dst[0] = ir3_SQRT(b, src[0], 0);
1018 break;
1019
1020 case nir_op_iabs:
1021 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SABS);
1022 break;
1023 case nir_op_iadd:
1024 dst[0] = ir3_ADD_U(b, src[0], 0, src[1], 0);
1025 break;
1026 case nir_op_iand:
1027 dst[0] = ir3_AND_B(b, src[0], 0, src[1], 0);
1028 break;
1029 case nir_op_imax:
1030 dst[0] = ir3_MAX_S(b, src[0], 0, src[1], 0);
1031 break;
1032 case nir_op_umax:
1033 dst[0] = ir3_MAX_U(b, src[0], 0, src[1], 0);
1034 break;
1035 case nir_op_imin:
1036 dst[0] = ir3_MIN_S(b, src[0], 0, src[1], 0);
1037 break;
1038 case nir_op_umin:
1039 dst[0] = ir3_MIN_U(b, src[0], 0, src[1], 0);
1040 break;
1041 case nir_op_imul:
1042 /*
1043 * dst = (al * bl) + (ah * bl << 16) + (al * bh << 16)
1044 * mull.u tmp0, a, b ; mul low, i.e. al * bl
1045 * madsh.m16 tmp1, a, b, tmp0 ; mul-add shift high mix, i.e. ah * bl << 16
1046 * madsh.m16 dst, b, a, tmp1 ; i.e. al * bh << 16
1047 */
1048 dst[0] = ir3_MADSH_M16(b, src[1], 0, src[0], 0,
1049 ir3_MADSH_M16(b, src[0], 0, src[1], 0,
1050 ir3_MULL_U(b, src[0], 0, src[1], 0), 0), 0);
1051 break;
1052 case nir_op_ineg:
1053 dst[0] = ir3_ABSNEG_S(b, src[0], IR3_REG_SNEG);
1054 break;
1055 case nir_op_inot:
1056 dst[0] = ir3_NOT_B(b, src[0], 0);
1057 break;
1058 case nir_op_ior:
1059 dst[0] = ir3_OR_B(b, src[0], 0, src[1], 0);
1060 break;
1061 case nir_op_ishl:
1062 dst[0] = ir3_SHL_B(b, src[0], 0, src[1], 0);
1063 break;
1064 case nir_op_ishr:
1065 dst[0] = ir3_ASHR_B(b, src[0], 0, src[1], 0);
1066 break;
1067 case nir_op_isign: {
1068 /* maybe this would be sane to lower in nir.. */
1069 struct ir3_instruction *neg, *pos;
1070
1071 neg = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1072 neg->cat2.condition = IR3_COND_LT;
1073
1074 pos = ir3_CMPS_S(b, src[0], 0, create_immed(b, 0), 0);
1075 pos->cat2.condition = IR3_COND_GT;
1076
1077 dst[0] = ir3_SUB_U(b, pos, 0, neg, 0);
1078
1079 break;
1080 }
1081 case nir_op_isub:
1082 dst[0] = ir3_SUB_U(b, src[0], 0, src[1], 0);
1083 break;
1084 case nir_op_ixor:
1085 dst[0] = ir3_XOR_B(b, src[0], 0, src[1], 0);
1086 break;
1087 case nir_op_ushr:
1088 dst[0] = ir3_SHR_B(b, src[0], 0, src[1], 0);
1089 break;
1090 case nir_op_ilt:
1091 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1092 dst[0]->cat2.condition = IR3_COND_LT;
1093 dst[0] = ir3_n2b(b, dst[0]);
1094 break;
1095 case nir_op_ige:
1096 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1097 dst[0]->cat2.condition = IR3_COND_GE;
1098 dst[0] = ir3_n2b(b, dst[0]);
1099 break;
1100 case nir_op_ieq:
1101 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1102 dst[0]->cat2.condition = IR3_COND_EQ;
1103 dst[0] = ir3_n2b(b, dst[0]);
1104 break;
1105 case nir_op_ine:
1106 dst[0] = ir3_CMPS_S(b, src[0], 0, src[1], 0);
1107 dst[0]->cat2.condition = IR3_COND_NE;
1108 dst[0] = ir3_n2b(b, dst[0]);
1109 break;
1110 case nir_op_ult:
1111 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1112 dst[0]->cat2.condition = IR3_COND_LT;
1113 dst[0] = ir3_n2b(b, dst[0]);
1114 break;
1115 case nir_op_uge:
1116 dst[0] = ir3_CMPS_U(b, src[0], 0, src[1], 0);
1117 dst[0]->cat2.condition = IR3_COND_GE;
1118 dst[0] = ir3_n2b(b, dst[0]);
1119 break;
1120
1121 case nir_op_bcsel:
1122 dst[0] = ir3_SEL_B32(b, src[1], 0, ir3_b2n(b, src[0]), 0, src[2], 0);
1123 break;
1124
1125 case nir_op_bit_count:
1126 dst[0] = ir3_CBITS_B(b, src[0], 0);
1127 break;
1128 case nir_op_ifind_msb: {
1129 struct ir3_instruction *cmp;
1130 dst[0] = ir3_CLZ_S(b, src[0], 0);
1131 cmp = ir3_CMPS_S(b, dst[0], 0, create_immed(b, 0), 0);
1132 cmp->cat2.condition = IR3_COND_GE;
1133 dst[0] = ir3_SEL_B32(b,
1134 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1135 cmp, 0, dst[0], 0);
1136 break;
1137 }
1138 case nir_op_ufind_msb:
1139 dst[0] = ir3_CLZ_B(b, src[0], 0);
1140 dst[0] = ir3_SEL_B32(b,
1141 ir3_SUB_U(b, create_immed(b, 31), 0, dst[0], 0), 0,
1142 src[0], 0, dst[0], 0);
1143 break;
1144 case nir_op_find_lsb:
1145 dst[0] = ir3_BFREV_B(b, src[0], 0);
1146 dst[0] = ir3_CLZ_B(b, dst[0], 0);
1147 break;
1148 case nir_op_bitfield_reverse:
1149 dst[0] = ir3_BFREV_B(b, src[0], 0);
1150 break;
1151
1152 default:
1153 compile_error(ctx, "Unhandled ALU op: %s\n",
1154 nir_op_infos[alu->op].name);
1155 break;
1156 }
1157
1158 put_dst(ctx, &alu->dest.dest);
1159 }
1160
1161 /* handles direct/indirect UBO reads: */
1162 static void
emit_intrinsic_load_ubo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1163 emit_intrinsic_load_ubo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1164 struct ir3_instruction **dst)
1165 {
1166 struct ir3_block *b = ctx->block;
1167 struct ir3_instruction *base_lo, *base_hi, *addr, *src0, *src1;
1168 nir_const_value *const_offset;
1169 /* UBO addresses are the first driver params: */
1170 unsigned ubo = regid(ctx->so->constbase.ubo, 0);
1171 const unsigned ptrsz = pointer_size(ctx);
1172
1173 int off = 0;
1174
1175 /* First src is ubo index, which could either be an immed or not: */
1176 src0 = get_src(ctx, &intr->src[0])[0];
1177 if (is_same_type_mov(src0) &&
1178 (src0->regs[1]->flags & IR3_REG_IMMED)) {
1179 base_lo = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz));
1180 base_hi = create_uniform(ctx, ubo + (src0->regs[1]->iim_val * ptrsz) + 1);
1181 } else {
1182 base_lo = create_uniform_indirect(ctx, ubo, get_addr(ctx, src0, 4));
1183 base_hi = create_uniform_indirect(ctx, ubo + 1, get_addr(ctx, src0, 4));
1184 }
1185
1186 /* note: on 32bit gpu's base_hi is ignored and DCE'd */
1187 addr = base_lo;
1188
1189 const_offset = nir_src_as_const_value(intr->src[1]);
1190 if (const_offset) {
1191 off += const_offset->u32[0];
1192 } else {
1193 /* For load_ubo_indirect, second src is indirect offset: */
1194 src1 = get_src(ctx, &intr->src[1])[0];
1195
1196 /* and add offset to addr: */
1197 addr = ir3_ADD_S(b, addr, 0, src1, 0);
1198 }
1199
1200 /* if offset is to large to encode in the ldg, split it out: */
1201 if ((off + (intr->num_components * 4)) > 1024) {
1202 /* split out the minimal amount to improve the odds that
1203 * cp can fit the immediate in the add.s instruction:
1204 */
1205 unsigned off2 = off + (intr->num_components * 4) - 1024;
1206 addr = ir3_ADD_S(b, addr, 0, create_immed(b, off2), 0);
1207 off -= off2;
1208 }
1209
1210 if (ptrsz == 2) {
1211 struct ir3_instruction *carry;
1212
1213 /* handle 32b rollover, ie:
1214 * if (addr < base_lo)
1215 * base_hi++
1216 */
1217 carry = ir3_CMPS_U(b, addr, 0, base_lo, 0);
1218 carry->cat2.condition = IR3_COND_LT;
1219 base_hi = ir3_ADD_S(b, base_hi, 0, carry, 0);
1220
1221 addr = create_collect(b, (struct ir3_instruction*[]){ addr, base_hi }, 2);
1222 }
1223
1224 for (int i = 0; i < intr->num_components; i++) {
1225 struct ir3_instruction *load =
1226 ir3_LDG(b, addr, 0, create_immed(b, 1), 0);
1227 load->cat6.type = TYPE_U32;
1228 load->cat6.src_offset = off + i * 4; /* byte offset */
1229 dst[i] = load;
1230 }
1231 }
1232
1233 /* src[] = { buffer_index, offset }. No const_index */
1234 static void
emit_intrinsic_load_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1235 emit_intrinsic_load_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1236 struct ir3_instruction **dst)
1237 {
1238 struct ir3_block *b = ctx->block;
1239 struct ir3_instruction *ldgb, *src0, *src1, *offset;
1240 nir_const_value *const_offset;
1241
1242 /* can this be non-const buffer_index? how do we handle that? */
1243 const_offset = nir_src_as_const_value(intr->src[0]);
1244 compile_assert(ctx, const_offset);
1245
1246 offset = get_src(ctx, &intr->src[1])[0];
1247
1248 /* src0 is uvec2(offset*4, 0), src1 is offset.. nir already *= 4: */
1249 src0 = create_collect(b, (struct ir3_instruction*[]){
1250 offset,
1251 create_immed(b, 0),
1252 }, 2);
1253 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1254
1255 ldgb = ir3_LDGB(b, create_immed(b, const_offset->u32[0]), 0,
1256 src0, 0, src1, 0);
1257 ldgb->regs[0]->wrmask = MASK(intr->num_components);
1258 ldgb->cat6.iim_val = intr->num_components;
1259 ldgb->cat6.d = 4;
1260 ldgb->cat6.type = TYPE_U32;
1261 ldgb->barrier_class = IR3_BARRIER_BUFFER_R;
1262 ldgb->barrier_conflict = IR3_BARRIER_BUFFER_W;
1263
1264 split_dest(b, dst, ldgb, 0, intr->num_components);
1265 }
1266
1267 /* src[] = { value, block_index, offset }. const_index[] = { write_mask } */
1268 static void
emit_intrinsic_store_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)1269 emit_intrinsic_store_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1270 {
1271 struct ir3_block *b = ctx->block;
1272 struct ir3_instruction *stgb, *src0, *src1, *src2, *offset;
1273 nir_const_value *const_offset;
1274 /* TODO handle wrmask properly, see _store_shared().. but I think
1275 * it is more a PITA than that, since blob ends up loading the
1276 * masked components and writing them back out.
1277 */
1278 unsigned wrmask = intr->const_index[0];
1279 unsigned ncomp = ffs(~wrmask) - 1;
1280
1281 /* can this be non-const buffer_index? how do we handle that? */
1282 const_offset = nir_src_as_const_value(intr->src[1]);
1283 compile_assert(ctx, const_offset);
1284
1285 offset = get_src(ctx, &intr->src[2])[0];
1286
1287 /* src0 is value, src1 is offset, src2 is uvec2(offset*4, 0)..
1288 * nir already *= 4:
1289 */
1290 src0 = create_collect(b, get_src(ctx, &intr->src[0]), ncomp);
1291 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1292 src2 = create_collect(b, (struct ir3_instruction*[]){
1293 offset,
1294 create_immed(b, 0),
1295 }, 2);
1296
1297 stgb = ir3_STGB(b, create_immed(b, const_offset->u32[0]), 0,
1298 src0, 0, src1, 0, src2, 0);
1299 stgb->cat6.iim_val = ncomp;
1300 stgb->cat6.d = 4;
1301 stgb->cat6.type = TYPE_U32;
1302 stgb->barrier_class = IR3_BARRIER_BUFFER_W;
1303 stgb->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1304
1305 array_insert(b, b->keeps, stgb);
1306 }
1307
1308 /* src[] = { block_index } */
1309 static void
emit_intrinsic_ssbo_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1310 emit_intrinsic_ssbo_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1311 struct ir3_instruction **dst)
1312 {
1313 /* SSBO size stored as a const starting at ssbo_sizes: */
1314 unsigned blk_idx = nir_src_as_const_value(intr->src[0])->u32[0];
1315 unsigned idx = regid(ctx->so->constbase.ssbo_sizes, 0) +
1316 ctx->so->const_layout.ssbo_size.off[blk_idx];
1317
1318 debug_assert(ctx->so->const_layout.ssbo_size.mask & (1 << blk_idx));
1319
1320 dst[0] = create_uniform(ctx, idx);
1321 }
1322
1323 /*
1324 * SSBO atomic intrinsics
1325 *
1326 * All of the SSBO atomic memory operations read a value from memory,
1327 * compute a new value using one of the operations below, write the new
1328 * value to memory, and return the original value read.
1329 *
1330 * All operations take 3 sources except CompSwap that takes 4. These
1331 * sources represent:
1332 *
1333 * 0: The SSBO buffer index.
1334 * 1: The offset into the SSBO buffer of the variable that the atomic
1335 * operation will operate on.
1336 * 2: The data parameter to the atomic function (i.e. the value to add
1337 * in ssbo_atomic_add, etc).
1338 * 3: For CompSwap only: the second data parameter.
1339 */
1340 static struct ir3_instruction *
emit_intrinsic_atomic_ssbo(struct ir3_context * ctx,nir_intrinsic_instr * intr)1341 emit_intrinsic_atomic_ssbo(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1342 {
1343 struct ir3_block *b = ctx->block;
1344 struct ir3_instruction *atomic, *ssbo, *src0, *src1, *src2, *offset;
1345 nir_const_value *const_offset;
1346 type_t type = TYPE_U32;
1347
1348 /* can this be non-const buffer_index? how do we handle that? */
1349 const_offset = nir_src_as_const_value(intr->src[0]);
1350 compile_assert(ctx, const_offset);
1351 ssbo = create_immed(b, const_offset->u32[0]);
1352
1353 offset = get_src(ctx, &intr->src[1])[0];
1354
1355 /* src0 is data (or uvec2(data, compare))
1356 * src1 is offset
1357 * src2 is uvec2(offset*4, 0) (appears to be 64b byte offset)
1358 *
1359 * Note that nir already multiplies the offset by four
1360 */
1361 src0 = get_src(ctx, &intr->src[2])[0];
1362 src1 = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1363 src2 = create_collect(b, (struct ir3_instruction*[]){
1364 offset,
1365 create_immed(b, 0),
1366 }, 2);
1367
1368 switch (intr->intrinsic) {
1369 case nir_intrinsic_ssbo_atomic_add:
1370 atomic = ir3_ATOMIC_ADD_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1371 break;
1372 case nir_intrinsic_ssbo_atomic_imin:
1373 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1374 type = TYPE_S32;
1375 break;
1376 case nir_intrinsic_ssbo_atomic_umin:
1377 atomic = ir3_ATOMIC_MIN_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1378 break;
1379 case nir_intrinsic_ssbo_atomic_imax:
1380 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1381 type = TYPE_S32;
1382 break;
1383 case nir_intrinsic_ssbo_atomic_umax:
1384 atomic = ir3_ATOMIC_MAX_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1385 break;
1386 case nir_intrinsic_ssbo_atomic_and:
1387 atomic = ir3_ATOMIC_AND_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1388 break;
1389 case nir_intrinsic_ssbo_atomic_or:
1390 atomic = ir3_ATOMIC_OR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1391 break;
1392 case nir_intrinsic_ssbo_atomic_xor:
1393 atomic = ir3_ATOMIC_XOR_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1394 break;
1395 case nir_intrinsic_ssbo_atomic_exchange:
1396 atomic = ir3_ATOMIC_XCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1397 break;
1398 case nir_intrinsic_ssbo_atomic_comp_swap:
1399 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
1400 src0 = create_collect(b, (struct ir3_instruction*[]){
1401 src0,
1402 get_src(ctx, &intr->src[3])[0],
1403 }, 2);
1404 atomic = ir3_ATOMIC_CMPXCHG_G(b, ssbo, 0, src0, 0, src1, 0, src2, 0);
1405 break;
1406 default:
1407 unreachable("boo");
1408 }
1409
1410 atomic->cat6.iim_val = 1;
1411 atomic->cat6.d = 4;
1412 atomic->cat6.type = type;
1413 atomic->barrier_class = IR3_BARRIER_BUFFER_W;
1414 atomic->barrier_conflict = IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1415
1416 /* even if nothing consume the result, we can't DCE the instruction: */
1417 array_insert(b, b->keeps, atomic);
1418
1419 return atomic;
1420 }
1421
1422 /* src[] = { offset }. const_index[] = { base } */
1423 static void
emit_intrinsic_load_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1424 emit_intrinsic_load_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1425 struct ir3_instruction **dst)
1426 {
1427 struct ir3_block *b = ctx->block;
1428 struct ir3_instruction *ldl, *offset;
1429 unsigned base;
1430
1431 offset = get_src(ctx, &intr->src[0])[0];
1432 base = intr->const_index[0];
1433
1434 ldl = ir3_LDL(b, offset, 0, create_immed(b, intr->num_components), 0);
1435 ldl->cat6.src_offset = base;
1436 ldl->cat6.type = TYPE_U32;
1437 ldl->regs[0]->wrmask = MASK(intr->num_components);
1438
1439 ldl->barrier_class = IR3_BARRIER_SHARED_R;
1440 ldl->barrier_conflict = IR3_BARRIER_SHARED_W;
1441
1442 split_dest(b, dst, ldl, 0, intr->num_components);
1443 }
1444
1445 /* src[] = { value, offset }. const_index[] = { base, write_mask } */
1446 static void
emit_intrinsic_store_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1447 emit_intrinsic_store_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1448 {
1449 struct ir3_block *b = ctx->block;
1450 struct ir3_instruction *stl, *offset;
1451 struct ir3_instruction * const *value;
1452 unsigned base, wrmask;
1453
1454 value = get_src(ctx, &intr->src[0]);
1455 offset = get_src(ctx, &intr->src[1])[0];
1456
1457 base = intr->const_index[0];
1458 wrmask = intr->const_index[1];
1459
1460 /* Combine groups of consecutive enabled channels in one write
1461 * message. We use ffs to find the first enabled channel and then ffs on
1462 * the bit-inverse, down-shifted writemask to determine the length of
1463 * the block of enabled bits.
1464 *
1465 * (trick stolen from i965's fs_visitor::nir_emit_cs_intrinsic())
1466 */
1467 while (wrmask) {
1468 unsigned first_component = ffs(wrmask) - 1;
1469 unsigned length = ffs(~(wrmask >> first_component)) - 1;
1470
1471 stl = ir3_STL(b, offset, 0,
1472 create_collect(b, &value[first_component], length), 0,
1473 create_immed(b, length), 0);
1474 stl->cat6.dst_offset = first_component + base;
1475 stl->cat6.type = TYPE_U32;
1476 stl->barrier_class = IR3_BARRIER_SHARED_W;
1477 stl->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1478
1479 array_insert(b, b->keeps, stl);
1480
1481 /* Clear the bits in the writemask that we just wrote, then try
1482 * again to see if more channels are left.
1483 */
1484 wrmask &= (15 << (first_component + length));
1485 }
1486 }
1487
1488 /*
1489 * CS shared variable atomic intrinsics
1490 *
1491 * All of the shared variable atomic memory operations read a value from
1492 * memory, compute a new value using one of the operations below, write the
1493 * new value to memory, and return the original value read.
1494 *
1495 * All operations take 2 sources except CompSwap that takes 3. These
1496 * sources represent:
1497 *
1498 * 0: The offset into the shared variable storage region that the atomic
1499 * operation will operate on.
1500 * 1: The data parameter to the atomic function (i.e. the value to add
1501 * in shared_atomic_add, etc).
1502 * 2: For CompSwap only: the second data parameter.
1503 */
1504 static struct ir3_instruction *
emit_intrinsic_atomic_shared(struct ir3_context * ctx,nir_intrinsic_instr * intr)1505 emit_intrinsic_atomic_shared(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1506 {
1507 struct ir3_block *b = ctx->block;
1508 struct ir3_instruction *atomic, *src0, *src1;
1509 type_t type = TYPE_U32;
1510
1511 src0 = get_src(ctx, &intr->src[0])[0]; /* offset */
1512 src1 = get_src(ctx, &intr->src[1])[0]; /* value */
1513
1514 switch (intr->intrinsic) {
1515 case nir_intrinsic_shared_atomic_add:
1516 atomic = ir3_ATOMIC_ADD(b, src0, 0, src1, 0);
1517 break;
1518 case nir_intrinsic_shared_atomic_imin:
1519 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1520 type = TYPE_S32;
1521 break;
1522 case nir_intrinsic_shared_atomic_umin:
1523 atomic = ir3_ATOMIC_MIN(b, src0, 0, src1, 0);
1524 break;
1525 case nir_intrinsic_shared_atomic_imax:
1526 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1527 type = TYPE_S32;
1528 break;
1529 case nir_intrinsic_shared_atomic_umax:
1530 atomic = ir3_ATOMIC_MAX(b, src0, 0, src1, 0);
1531 break;
1532 case nir_intrinsic_shared_atomic_and:
1533 atomic = ir3_ATOMIC_AND(b, src0, 0, src1, 0);
1534 break;
1535 case nir_intrinsic_shared_atomic_or:
1536 atomic = ir3_ATOMIC_OR(b, src0, 0, src1, 0);
1537 break;
1538 case nir_intrinsic_shared_atomic_xor:
1539 atomic = ir3_ATOMIC_XOR(b, src0, 0, src1, 0);
1540 break;
1541 case nir_intrinsic_shared_atomic_exchange:
1542 atomic = ir3_ATOMIC_XCHG(b, src0, 0, src1, 0);
1543 break;
1544 case nir_intrinsic_shared_atomic_comp_swap:
1545 /* for cmpxchg, src1 is [ui]vec2(data, compare): */
1546 src1 = create_collect(b, (struct ir3_instruction*[]){
1547 get_src(ctx, &intr->src[2])[0],
1548 src1,
1549 }, 2);
1550 atomic = ir3_ATOMIC_CMPXCHG(b, src0, 0, src1, 0);
1551 break;
1552 default:
1553 unreachable("boo");
1554 }
1555
1556 atomic->cat6.iim_val = 1;
1557 atomic->cat6.d = 1;
1558 atomic->cat6.type = type;
1559 atomic->barrier_class = IR3_BARRIER_SHARED_W;
1560 atomic->barrier_conflict = IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W;
1561
1562 /* even if nothing consume the result, we can't DCE the instruction: */
1563 array_insert(b, b->keeps, atomic);
1564
1565 return atomic;
1566 }
1567
1568 /* Images get mapped into SSBO/image state (for store/atomic) and texture
1569 * state block (for load). To simplify things, invert the image id and
1570 * map it from end of state block, ie. image 0 becomes num-1, image 1
1571 * becomes num-2, etc. This potentially avoids needing to re-emit texture
1572 * state when switching shaders.
1573 *
1574 * TODO is max # of samplers and SSBOs the same. This shouldn't be hard-
1575 * coded. Also, since all the gl shader stages (ie. everything but CS)
1576 * share the same SSBO/image state block, this might require some more
1577 * logic if we supported images in anything other than FS..
1578 */
1579 static unsigned
get_image_slot(struct ir3_context * ctx,const nir_variable * var)1580 get_image_slot(struct ir3_context *ctx, const nir_variable *var)
1581 {
1582 /* TODO figure out real limit per generation, and don't hardcode: */
1583 const unsigned max_samplers = 16;
1584 return max_samplers - var->data.driver_location - 1;
1585 }
1586
1587 static unsigned
get_image_coords(const nir_variable * var)1588 get_image_coords(const nir_variable *var)
1589 {
1590 switch (glsl_get_sampler_dim(glsl_without_array(var->type))) {
1591 case GLSL_SAMPLER_DIM_1D:
1592 case GLSL_SAMPLER_DIM_BUF:
1593 return 1;
1594 break;
1595 case GLSL_SAMPLER_DIM_2D:
1596 case GLSL_SAMPLER_DIM_RECT:
1597 case GLSL_SAMPLER_DIM_EXTERNAL:
1598 case GLSL_SAMPLER_DIM_MS:
1599 return 2;
1600 case GLSL_SAMPLER_DIM_3D:
1601 case GLSL_SAMPLER_DIM_CUBE:
1602 return 3;
1603 default:
1604 unreachable("bad sampler dim");
1605 return 0;
1606 }
1607 }
1608
1609 static type_t
get_image_type(const nir_variable * var)1610 get_image_type(const nir_variable *var)
1611 {
1612 switch (glsl_get_sampler_result_type(glsl_without_array(var->type))) {
1613 case GLSL_TYPE_UINT:
1614 return TYPE_U32;
1615 case GLSL_TYPE_INT:
1616 return TYPE_S32;
1617 case GLSL_TYPE_FLOAT:
1618 return TYPE_F32;
1619 default:
1620 unreachable("bad sampler type.");
1621 return 0;
1622 }
1623 }
1624
1625 static struct ir3_instruction *
get_image_offset(struct ir3_context * ctx,const nir_variable * var,struct ir3_instruction * const * coords,bool byteoff)1626 get_image_offset(struct ir3_context *ctx, const nir_variable *var,
1627 struct ir3_instruction * const *coords, bool byteoff)
1628 {
1629 struct ir3_block *b = ctx->block;
1630 struct ir3_instruction *offset;
1631 unsigned ncoords = get_image_coords(var);
1632
1633 /* to calculate the byte offset (yes, uggg) we need (up to) three
1634 * const values to know the bytes per pixel, and y and z stride:
1635 */
1636 unsigned cb = regid(ctx->so->constbase.image_dims, 0) +
1637 ctx->so->const_layout.image_dims.off[var->data.driver_location];
1638
1639 debug_assert(ctx->so->const_layout.image_dims.mask &
1640 (1 << var->data.driver_location));
1641
1642 /* offset = coords.x * bytes_per_pixel: */
1643 offset = ir3_MUL_S(b, coords[0], 0, create_uniform(ctx, cb + 0), 0);
1644 if (ncoords > 1) {
1645 /* offset += coords.y * y_pitch: */
1646 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 1), 0,
1647 coords[1], 0, offset, 0);
1648 }
1649 if (ncoords > 2) {
1650 /* offset += coords.z * z_pitch: */
1651 offset = ir3_MAD_S24(b, create_uniform(ctx, cb + 2), 0,
1652 coords[2], 0, offset, 0);
1653 }
1654
1655 if (!byteoff) {
1656 /* Some cases, like atomics, seem to use dword offset instead
1657 * of byte offsets.. blob just puts an extra shr.b in there
1658 * in those cases:
1659 */
1660 offset = ir3_SHR_B(b, offset, 0, create_immed(b, 2), 0);
1661 }
1662
1663 return create_collect(b, (struct ir3_instruction*[]){
1664 offset,
1665 create_immed(b, 0),
1666 }, 2);
1667 }
1668
1669 /* src[] = { coord, sample_index }. const_index[] = {} */
1670 static void
emit_intrinsic_load_image(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1671 emit_intrinsic_load_image(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1672 struct ir3_instruction **dst)
1673 {
1674 struct ir3_block *b = ctx->block;
1675 const nir_variable *var = intr->variables[0]->var;
1676 struct ir3_instruction *sam;
1677 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
1678 unsigned ncoords = get_image_coords(var);
1679 unsigned tex_idx = get_image_slot(ctx, var);
1680 type_t type = get_image_type(var);
1681 unsigned flags = 0;
1682
1683 if (ncoords == 3)
1684 flags |= IR3_INSTR_3D;
1685
1686 sam = ir3_SAM(b, OPC_ISAM, type, TGSI_WRITEMASK_XYZW, flags,
1687 tex_idx, tex_idx, create_collect(b, coords, ncoords), NULL);
1688
1689 sam->barrier_class = IR3_BARRIER_IMAGE_R;
1690 sam->barrier_conflict = IR3_BARRIER_IMAGE_W;
1691
1692 split_dest(b, dst, sam, 0, 4);
1693 }
1694
1695 /* src[] = { coord, sample_index, value }. const_index[] = {} */
1696 static void
emit_intrinsic_store_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)1697 emit_intrinsic_store_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1698 {
1699 struct ir3_block *b = ctx->block;
1700 const nir_variable *var = intr->variables[0]->var;
1701 struct ir3_instruction *stib, *offset;
1702 struct ir3_instruction * const *value = get_src(ctx, &intr->src[2]);
1703 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
1704 unsigned ncoords = get_image_coords(var);
1705 unsigned tex_idx = get_image_slot(ctx, var);
1706
1707 /* src0 is value
1708 * src1 is coords
1709 * src2 is 64b byte offset
1710 */
1711
1712 offset = get_image_offset(ctx, var, coords, true);
1713
1714 /* NOTE: stib seems to take byte offset, but stgb.typed can be used
1715 * too and takes a dword offset.. not quite sure yet why blob uses
1716 * one over the other in various cases.
1717 */
1718
1719 stib = ir3_STIB(b, create_immed(b, tex_idx), 0,
1720 create_collect(b, value, 4), 0,
1721 create_collect(b, coords, ncoords), 0,
1722 offset, 0);
1723 stib->cat6.iim_val = 4;
1724 stib->cat6.d = ncoords;
1725 stib->cat6.type = get_image_type(var);
1726 stib->cat6.typed = true;
1727 stib->barrier_class = IR3_BARRIER_IMAGE_W;
1728 stib->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
1729
1730 array_insert(b, b->keeps, stib);
1731 }
1732
1733 static void
emit_intrinsic_image_size(struct ir3_context * ctx,nir_intrinsic_instr * intr,struct ir3_instruction ** dst)1734 emit_intrinsic_image_size(struct ir3_context *ctx, nir_intrinsic_instr *intr,
1735 struct ir3_instruction **dst)
1736 {
1737 struct ir3_block *b = ctx->block;
1738 const nir_variable *var = intr->variables[0]->var;
1739 unsigned ncoords = get_image_coords(var);
1740 unsigned tex_idx = get_image_slot(ctx, var);
1741 struct ir3_instruction *sam, *lod;
1742 unsigned flags = 0;
1743
1744 if (ncoords == 3)
1745 flags = IR3_INSTR_3D;
1746
1747 lod = create_immed(b, 0);
1748 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
1749 tex_idx, tex_idx, lod, NULL);
1750
1751 split_dest(b, dst, sam, 0, ncoords);
1752 }
1753
1754 /* src[] = { coord, sample_index, value, compare }. const_index[] = {} */
1755 static struct ir3_instruction *
emit_intrinsic_atomic_image(struct ir3_context * ctx,nir_intrinsic_instr * intr)1756 emit_intrinsic_atomic_image(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1757 {
1758 struct ir3_block *b = ctx->block;
1759 const nir_variable *var = intr->variables[0]->var;
1760 struct ir3_instruction *atomic, *image, *src0, *src1, *src2;
1761 struct ir3_instruction * const *coords = get_src(ctx, &intr->src[0]);
1762 unsigned ncoords = get_image_coords(var);
1763
1764 image = create_immed(b, get_image_slot(ctx, var));
1765
1766 /* src0 is value (or uvec2(value, compare))
1767 * src1 is coords
1768 * src2 is 64b byte offset
1769 */
1770 src0 = get_src(ctx, &intr->src[2])[0];
1771 src1 = create_collect(b, coords, ncoords);
1772 src2 = get_image_offset(ctx, var, coords, false);
1773
1774 switch (intr->intrinsic) {
1775 case nir_intrinsic_image_atomic_add:
1776 atomic = ir3_ATOMIC_ADD_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1777 break;
1778 case nir_intrinsic_image_atomic_min:
1779 atomic = ir3_ATOMIC_MIN_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1780 break;
1781 case nir_intrinsic_image_atomic_max:
1782 atomic = ir3_ATOMIC_MAX_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1783 break;
1784 case nir_intrinsic_image_atomic_and:
1785 atomic = ir3_ATOMIC_AND_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1786 break;
1787 case nir_intrinsic_image_atomic_or:
1788 atomic = ir3_ATOMIC_OR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1789 break;
1790 case nir_intrinsic_image_atomic_xor:
1791 atomic = ir3_ATOMIC_XOR_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1792 break;
1793 case nir_intrinsic_image_atomic_exchange:
1794 atomic = ir3_ATOMIC_XCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1795 break;
1796 case nir_intrinsic_image_atomic_comp_swap:
1797 /* for cmpxchg, src0 is [ui]vec2(data, compare): */
1798 src0 = create_collect(b, (struct ir3_instruction*[]){
1799 src0,
1800 get_src(ctx, &intr->src[3])[0],
1801 }, 2);
1802 atomic = ir3_ATOMIC_CMPXCHG_G(b, image, 0, src0, 0, src1, 0, src2, 0);
1803 break;
1804 default:
1805 unreachable("boo");
1806 }
1807
1808 atomic->cat6.iim_val = 1;
1809 atomic->cat6.d = ncoords;
1810 atomic->cat6.type = get_image_type(var);
1811 atomic->cat6.typed = true;
1812 atomic->barrier_class = IR3_BARRIER_IMAGE_W;
1813 atomic->barrier_conflict = IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W;
1814
1815 /* even if nothing consume the result, we can't DCE the instruction: */
1816 array_insert(b, b->keeps, atomic);
1817
1818 return atomic;
1819 }
1820
1821 static void
emit_intrinsic_barrier(struct ir3_context * ctx,nir_intrinsic_instr * intr)1822 emit_intrinsic_barrier(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1823 {
1824 struct ir3_block *b = ctx->block;
1825 struct ir3_instruction *barrier;
1826
1827 switch (intr->intrinsic) {
1828 case nir_intrinsic_barrier:
1829 barrier = ir3_BAR(b);
1830 barrier->cat7.g = true;
1831 barrier->cat7.l = true;
1832 barrier->flags = IR3_INSTR_SS | IR3_INSTR_SY;
1833 barrier->barrier_class = IR3_BARRIER_EVERYTHING;
1834 break;
1835 case nir_intrinsic_memory_barrier:
1836 barrier = ir3_FENCE(b);
1837 barrier->cat7.g = true;
1838 barrier->cat7.r = true;
1839 barrier->cat7.w = true;
1840 barrier->barrier_class = IR3_BARRIER_IMAGE_W |
1841 IR3_BARRIER_BUFFER_W;
1842 barrier->barrier_conflict =
1843 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1844 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1845 break;
1846 case nir_intrinsic_memory_barrier_atomic_counter:
1847 case nir_intrinsic_memory_barrier_buffer:
1848 barrier = ir3_FENCE(b);
1849 barrier->cat7.g = true;
1850 barrier->cat7.r = true;
1851 barrier->cat7.w = true;
1852 barrier->barrier_class = IR3_BARRIER_BUFFER_W;
1853 barrier->barrier_conflict = IR3_BARRIER_BUFFER_R |
1854 IR3_BARRIER_BUFFER_W;
1855 break;
1856 case nir_intrinsic_memory_barrier_image:
1857 // TODO double check if this should have .g set
1858 barrier = ir3_FENCE(b);
1859 barrier->cat7.g = true;
1860 barrier->cat7.r = true;
1861 barrier->cat7.w = true;
1862 barrier->barrier_class = IR3_BARRIER_IMAGE_W;
1863 barrier->barrier_conflict = IR3_BARRIER_IMAGE_R |
1864 IR3_BARRIER_IMAGE_W;
1865 break;
1866 case nir_intrinsic_memory_barrier_shared:
1867 barrier = ir3_FENCE(b);
1868 barrier->cat7.g = true;
1869 barrier->cat7.l = true;
1870 barrier->cat7.r = true;
1871 barrier->cat7.w = true;
1872 barrier->barrier_class = IR3_BARRIER_SHARED_W;
1873 barrier->barrier_conflict = IR3_BARRIER_SHARED_R |
1874 IR3_BARRIER_SHARED_W;
1875 break;
1876 case nir_intrinsic_group_memory_barrier:
1877 barrier = ir3_FENCE(b);
1878 barrier->cat7.g = true;
1879 barrier->cat7.l = true;
1880 barrier->cat7.r = true;
1881 barrier->cat7.w = true;
1882 barrier->barrier_class = IR3_BARRIER_SHARED_W |
1883 IR3_BARRIER_IMAGE_W |
1884 IR3_BARRIER_BUFFER_W;
1885 barrier->barrier_conflict =
1886 IR3_BARRIER_SHARED_R | IR3_BARRIER_SHARED_W |
1887 IR3_BARRIER_IMAGE_R | IR3_BARRIER_IMAGE_W |
1888 IR3_BARRIER_BUFFER_R | IR3_BARRIER_BUFFER_W;
1889 break;
1890 default:
1891 unreachable("boo");
1892 }
1893
1894 /* make sure barrier doesn't get DCE'd */
1895 array_insert(b, b->keeps, barrier);
1896 }
1897
add_sysval_input_compmask(struct ir3_context * ctx,gl_system_value slot,unsigned compmask,struct ir3_instruction * instr)1898 static void add_sysval_input_compmask(struct ir3_context *ctx,
1899 gl_system_value slot, unsigned compmask,
1900 struct ir3_instruction *instr)
1901 {
1902 struct ir3_shader_variant *so = ctx->so;
1903 unsigned r = regid(so->inputs_count, 0);
1904 unsigned n = so->inputs_count++;
1905
1906 so->inputs[n].sysval = true;
1907 so->inputs[n].slot = slot;
1908 so->inputs[n].compmask = compmask;
1909 so->inputs[n].regid = r;
1910 so->inputs[n].interpolate = INTERP_MODE_FLAT;
1911 so->total_in++;
1912
1913 ctx->ir->ninputs = MAX2(ctx->ir->ninputs, r + 1);
1914 ctx->ir->inputs[r] = instr;
1915 }
1916
add_sysval_input(struct ir3_context * ctx,gl_system_value slot,struct ir3_instruction * instr)1917 static void add_sysval_input(struct ir3_context *ctx, gl_system_value slot,
1918 struct ir3_instruction *instr)
1919 {
1920 add_sysval_input_compmask(ctx, slot, 0x1, instr);
1921 }
1922
1923 static void
emit_intrinsic(struct ir3_context * ctx,nir_intrinsic_instr * intr)1924 emit_intrinsic(struct ir3_context *ctx, nir_intrinsic_instr *intr)
1925 {
1926 const nir_intrinsic_info *info = &nir_intrinsic_infos[intr->intrinsic];
1927 struct ir3_instruction **dst;
1928 struct ir3_instruction * const *src;
1929 struct ir3_block *b = ctx->block;
1930 nir_const_value *const_offset;
1931 int idx, comp;
1932
1933 if (info->has_dest) {
1934 unsigned n;
1935 if (info->dest_components)
1936 n = info->dest_components;
1937 else
1938 n = intr->num_components;
1939 dst = get_dst(ctx, &intr->dest, n);
1940 } else {
1941 dst = NULL;
1942 }
1943
1944 switch (intr->intrinsic) {
1945 case nir_intrinsic_load_uniform:
1946 idx = nir_intrinsic_base(intr);
1947 const_offset = nir_src_as_const_value(intr->src[0]);
1948 if (const_offset) {
1949 idx += const_offset->u32[0];
1950 for (int i = 0; i < intr->num_components; i++) {
1951 unsigned n = idx * 4 + i;
1952 dst[i] = create_uniform(ctx, n);
1953 }
1954 } else {
1955 src = get_src(ctx, &intr->src[0]);
1956 for (int i = 0; i < intr->num_components; i++) {
1957 int n = idx * 4 + i;
1958 dst[i] = create_uniform_indirect(ctx, n,
1959 get_addr(ctx, src[0], 4));
1960 }
1961 /* NOTE: if relative addressing is used, we set
1962 * constlen in the compiler (to worst-case value)
1963 * since we don't know in the assembler what the max
1964 * addr reg value can be:
1965 */
1966 ctx->so->constlen = ctx->s->num_uniforms;
1967 }
1968 break;
1969 case nir_intrinsic_load_ubo:
1970 emit_intrinsic_load_ubo(ctx, intr, dst);
1971 break;
1972 case nir_intrinsic_load_input:
1973 idx = nir_intrinsic_base(intr);
1974 comp = nir_intrinsic_component(intr);
1975 const_offset = nir_src_as_const_value(intr->src[0]);
1976 if (const_offset) {
1977 idx += const_offset->u32[0];
1978 for (int i = 0; i < intr->num_components; i++) {
1979 unsigned n = idx * 4 + i + comp;
1980 dst[i] = ctx->ir->inputs[n];
1981 }
1982 } else {
1983 src = get_src(ctx, &intr->src[0]);
1984 struct ir3_instruction *collect =
1985 create_collect(b, ctx->ir->inputs, ctx->ir->ninputs);
1986 struct ir3_instruction *addr = get_addr(ctx, src[0], 4);
1987 for (int i = 0; i < intr->num_components; i++) {
1988 unsigned n = idx * 4 + i + comp;
1989 dst[i] = create_indirect_load(ctx, ctx->ir->ninputs,
1990 n, addr, collect);
1991 }
1992 }
1993 break;
1994 case nir_intrinsic_load_ssbo:
1995 emit_intrinsic_load_ssbo(ctx, intr, dst);
1996 break;
1997 case nir_intrinsic_store_ssbo:
1998 emit_intrinsic_store_ssbo(ctx, intr);
1999 break;
2000 case nir_intrinsic_get_buffer_size:
2001 emit_intrinsic_ssbo_size(ctx, intr, dst);
2002 break;
2003 case nir_intrinsic_ssbo_atomic_add:
2004 case nir_intrinsic_ssbo_atomic_imin:
2005 case nir_intrinsic_ssbo_atomic_umin:
2006 case nir_intrinsic_ssbo_atomic_imax:
2007 case nir_intrinsic_ssbo_atomic_umax:
2008 case nir_intrinsic_ssbo_atomic_and:
2009 case nir_intrinsic_ssbo_atomic_or:
2010 case nir_intrinsic_ssbo_atomic_xor:
2011 case nir_intrinsic_ssbo_atomic_exchange:
2012 case nir_intrinsic_ssbo_atomic_comp_swap:
2013 dst[0] = emit_intrinsic_atomic_ssbo(ctx, intr);
2014 break;
2015 case nir_intrinsic_load_shared:
2016 emit_intrinsic_load_shared(ctx, intr, dst);
2017 break;
2018 case nir_intrinsic_store_shared:
2019 emit_intrinsic_store_shared(ctx, intr);
2020 break;
2021 case nir_intrinsic_shared_atomic_add:
2022 case nir_intrinsic_shared_atomic_imin:
2023 case nir_intrinsic_shared_atomic_umin:
2024 case nir_intrinsic_shared_atomic_imax:
2025 case nir_intrinsic_shared_atomic_umax:
2026 case nir_intrinsic_shared_atomic_and:
2027 case nir_intrinsic_shared_atomic_or:
2028 case nir_intrinsic_shared_atomic_xor:
2029 case nir_intrinsic_shared_atomic_exchange:
2030 case nir_intrinsic_shared_atomic_comp_swap:
2031 dst[0] = emit_intrinsic_atomic_shared(ctx, intr);
2032 break;
2033 case nir_intrinsic_image_load:
2034 emit_intrinsic_load_image(ctx, intr, dst);
2035 break;
2036 case nir_intrinsic_image_store:
2037 emit_intrinsic_store_image(ctx, intr);
2038 break;
2039 case nir_intrinsic_image_size:
2040 emit_intrinsic_image_size(ctx, intr, dst);
2041 break;
2042 case nir_intrinsic_image_atomic_add:
2043 case nir_intrinsic_image_atomic_min:
2044 case nir_intrinsic_image_atomic_max:
2045 case nir_intrinsic_image_atomic_and:
2046 case nir_intrinsic_image_atomic_or:
2047 case nir_intrinsic_image_atomic_xor:
2048 case nir_intrinsic_image_atomic_exchange:
2049 case nir_intrinsic_image_atomic_comp_swap:
2050 dst[0] = emit_intrinsic_atomic_image(ctx, intr);
2051 break;
2052 case nir_intrinsic_barrier:
2053 case nir_intrinsic_memory_barrier:
2054 case nir_intrinsic_group_memory_barrier:
2055 case nir_intrinsic_memory_barrier_atomic_counter:
2056 case nir_intrinsic_memory_barrier_buffer:
2057 case nir_intrinsic_memory_barrier_image:
2058 case nir_intrinsic_memory_barrier_shared:
2059 emit_intrinsic_barrier(ctx, intr);
2060 /* note that blk ptr no longer valid, make that obvious: */
2061 b = NULL;
2062 break;
2063 case nir_intrinsic_store_output:
2064 idx = nir_intrinsic_base(intr);
2065 comp = nir_intrinsic_component(intr);
2066 const_offset = nir_src_as_const_value(intr->src[1]);
2067 compile_assert(ctx, const_offset != NULL);
2068 idx += const_offset->u32[0];
2069
2070 src = get_src(ctx, &intr->src[0]);
2071 for (int i = 0; i < intr->num_components; i++) {
2072 unsigned n = idx * 4 + i + comp;
2073 ctx->ir->outputs[n] = src[i];
2074 }
2075 break;
2076 case nir_intrinsic_load_base_vertex:
2077 if (!ctx->basevertex) {
2078 ctx->basevertex = create_driver_param(ctx, IR3_DP_VTXID_BASE);
2079 add_sysval_input(ctx, SYSTEM_VALUE_BASE_VERTEX,
2080 ctx->basevertex);
2081 }
2082 dst[0] = ctx->basevertex;
2083 break;
2084 case nir_intrinsic_load_vertex_id_zero_base:
2085 case nir_intrinsic_load_vertex_id:
2086 if (!ctx->vertex_id) {
2087 gl_system_value sv = (intr->intrinsic == nir_intrinsic_load_vertex_id) ?
2088 SYSTEM_VALUE_VERTEX_ID : SYSTEM_VALUE_VERTEX_ID_ZERO_BASE;
2089 ctx->vertex_id = create_input(b, 0);
2090 add_sysval_input(ctx, sv, ctx->vertex_id);
2091 }
2092 dst[0] = ctx->vertex_id;
2093 break;
2094 case nir_intrinsic_load_instance_id:
2095 if (!ctx->instance_id) {
2096 ctx->instance_id = create_input(b, 0);
2097 add_sysval_input(ctx, SYSTEM_VALUE_INSTANCE_ID,
2098 ctx->instance_id);
2099 }
2100 dst[0] = ctx->instance_id;
2101 break;
2102 case nir_intrinsic_load_user_clip_plane:
2103 idx = nir_intrinsic_ucp_id(intr);
2104 for (int i = 0; i < intr->num_components; i++) {
2105 unsigned n = idx * 4 + i;
2106 dst[i] = create_driver_param(ctx, IR3_DP_UCP0_X + n);
2107 }
2108 break;
2109 case nir_intrinsic_load_front_face:
2110 if (!ctx->frag_face) {
2111 ctx->so->frag_face = true;
2112 ctx->frag_face = create_input(b, 0);
2113 ctx->frag_face->regs[0]->flags |= IR3_REG_HALF;
2114 }
2115 /* for fragface, we get -1 for back and 0 for front. However this is
2116 * the inverse of what nir expects (where ~0 is true).
2117 */
2118 dst[0] = ir3_COV(b, ctx->frag_face, TYPE_S16, TYPE_S32);
2119 dst[0] = ir3_NOT_B(b, dst[0], 0);
2120 break;
2121 case nir_intrinsic_load_local_invocation_id:
2122 if (!ctx->local_invocation_id) {
2123 ctx->local_invocation_id = create_input_compmask(b, 0, 0x7);
2124 add_sysval_input_compmask(ctx, SYSTEM_VALUE_LOCAL_INVOCATION_ID,
2125 0x7, ctx->local_invocation_id);
2126 }
2127 split_dest(b, dst, ctx->local_invocation_id, 0, 3);
2128 break;
2129 case nir_intrinsic_load_work_group_id:
2130 if (!ctx->work_group_id) {
2131 ctx->work_group_id = create_input_compmask(b, 0, 0x7);
2132 add_sysval_input_compmask(ctx, SYSTEM_VALUE_WORK_GROUP_ID,
2133 0x7, ctx->work_group_id);
2134 ctx->work_group_id->regs[0]->flags |= IR3_REG_HIGH;
2135 }
2136 split_dest(b, dst, ctx->work_group_id, 0, 3);
2137 break;
2138 case nir_intrinsic_load_num_work_groups:
2139 for (int i = 0; i < intr->num_components; i++) {
2140 dst[i] = create_driver_param(ctx, IR3_DP_NUM_WORK_GROUPS_X + i);
2141 }
2142 break;
2143 case nir_intrinsic_discard_if:
2144 case nir_intrinsic_discard: {
2145 struct ir3_instruction *cond, *kill;
2146
2147 if (intr->intrinsic == nir_intrinsic_discard_if) {
2148 /* conditional discard: */
2149 src = get_src(ctx, &intr->src[0]);
2150 cond = ir3_b2n(b, src[0]);
2151 } else {
2152 /* unconditional discard: */
2153 cond = create_immed(b, 1);
2154 }
2155
2156 /* NOTE: only cmps.*.* can write p0.x: */
2157 cond = ir3_CMPS_S(b, cond, 0, create_immed(b, 0), 0);
2158 cond->cat2.condition = IR3_COND_NE;
2159
2160 /* condition always goes in predicate register: */
2161 cond->regs[0]->num = regid(REG_P0, 0);
2162
2163 kill = ir3_KILL(b, cond, 0);
2164 array_insert(ctx->ir, ctx->ir->predicates, kill);
2165
2166 array_insert(b, b->keeps, kill);
2167 ctx->so->has_kill = true;
2168
2169 break;
2170 }
2171 default:
2172 compile_error(ctx, "Unhandled intrinsic type: %s\n",
2173 nir_intrinsic_infos[intr->intrinsic].name);
2174 break;
2175 }
2176
2177 if (info->has_dest)
2178 put_dst(ctx, &intr->dest);
2179 }
2180
2181 static void
emit_load_const(struct ir3_context * ctx,nir_load_const_instr * instr)2182 emit_load_const(struct ir3_context *ctx, nir_load_const_instr *instr)
2183 {
2184 struct ir3_instruction **dst = get_dst_ssa(ctx, &instr->def,
2185 instr->def.num_components);
2186 for (int i = 0; i < instr->def.num_components; i++)
2187 dst[i] = create_immed(ctx->block, instr->value.u32[i]);
2188 }
2189
2190 static void
emit_undef(struct ir3_context * ctx,nir_ssa_undef_instr * undef)2191 emit_undef(struct ir3_context *ctx, nir_ssa_undef_instr *undef)
2192 {
2193 struct ir3_instruction **dst = get_dst_ssa(ctx, &undef->def,
2194 undef->def.num_components);
2195 /* backend doesn't want undefined instructions, so just plug
2196 * in 0.0..
2197 */
2198 for (int i = 0; i < undef->def.num_components; i++)
2199 dst[i] = create_immed(ctx->block, fui(0.0));
2200 }
2201
2202 /*
2203 * texture fetch/sample instructions:
2204 */
2205
2206 static void
tex_info(nir_tex_instr * tex,unsigned * flagsp,unsigned * coordsp)2207 tex_info(nir_tex_instr *tex, unsigned *flagsp, unsigned *coordsp)
2208 {
2209 unsigned coords, flags = 0;
2210
2211 /* note: would use tex->coord_components.. except txs.. also,
2212 * since array index goes after shadow ref, we don't want to
2213 * count it:
2214 */
2215 switch (tex->sampler_dim) {
2216 case GLSL_SAMPLER_DIM_1D:
2217 case GLSL_SAMPLER_DIM_BUF:
2218 coords = 1;
2219 break;
2220 case GLSL_SAMPLER_DIM_2D:
2221 case GLSL_SAMPLER_DIM_RECT:
2222 case GLSL_SAMPLER_DIM_EXTERNAL:
2223 case GLSL_SAMPLER_DIM_MS:
2224 coords = 2;
2225 break;
2226 case GLSL_SAMPLER_DIM_3D:
2227 case GLSL_SAMPLER_DIM_CUBE:
2228 coords = 3;
2229 flags |= IR3_INSTR_3D;
2230 break;
2231 default:
2232 unreachable("bad sampler_dim");
2233 }
2234
2235 if (tex->is_shadow && tex->op != nir_texop_lod)
2236 flags |= IR3_INSTR_S;
2237
2238 if (tex->is_array && tex->op != nir_texop_lod)
2239 flags |= IR3_INSTR_A;
2240
2241 *flagsp = flags;
2242 *coordsp = coords;
2243 }
2244
2245 static void
emit_tex(struct ir3_context * ctx,nir_tex_instr * tex)2246 emit_tex(struct ir3_context *ctx, nir_tex_instr *tex)
2247 {
2248 struct ir3_block *b = ctx->block;
2249 struct ir3_instruction **dst, *sam, *src0[12], *src1[4];
2250 struct ir3_instruction * const *coord, * const *off, * const *ddx, * const *ddy;
2251 struct ir3_instruction *lod, *compare, *proj;
2252 bool has_bias = false, has_lod = false, has_proj = false, has_off = false;
2253 unsigned i, coords, flags;
2254 unsigned nsrc0 = 0, nsrc1 = 0;
2255 type_t type;
2256 opc_t opc = 0;
2257
2258 coord = off = ddx = ddy = NULL;
2259 lod = proj = compare = NULL;
2260
2261 /* TODO: might just be one component for gathers? */
2262 dst = get_dst(ctx, &tex->dest, 4);
2263
2264 for (unsigned i = 0; i < tex->num_srcs; i++) {
2265 switch (tex->src[i].src_type) {
2266 case nir_tex_src_coord:
2267 coord = get_src(ctx, &tex->src[i].src);
2268 break;
2269 case nir_tex_src_bias:
2270 lod = get_src(ctx, &tex->src[i].src)[0];
2271 has_bias = true;
2272 break;
2273 case nir_tex_src_lod:
2274 lod = get_src(ctx, &tex->src[i].src)[0];
2275 has_lod = true;
2276 break;
2277 case nir_tex_src_comparator: /* shadow comparator */
2278 compare = get_src(ctx, &tex->src[i].src)[0];
2279 break;
2280 case nir_tex_src_projector:
2281 proj = get_src(ctx, &tex->src[i].src)[0];
2282 has_proj = true;
2283 break;
2284 case nir_tex_src_offset:
2285 off = get_src(ctx, &tex->src[i].src);
2286 has_off = true;
2287 break;
2288 case nir_tex_src_ddx:
2289 ddx = get_src(ctx, &tex->src[i].src);
2290 break;
2291 case nir_tex_src_ddy:
2292 ddy = get_src(ctx, &tex->src[i].src);
2293 break;
2294 default:
2295 compile_error(ctx, "Unhandled NIR tex src type: %d\n",
2296 tex->src[i].src_type);
2297 return;
2298 }
2299 }
2300
2301 switch (tex->op) {
2302 case nir_texop_tex: opc = OPC_SAM; break;
2303 case nir_texop_txb: opc = OPC_SAMB; break;
2304 case nir_texop_txl: opc = OPC_SAML; break;
2305 case nir_texop_txd: opc = OPC_SAMGQ; break;
2306 case nir_texop_txf: opc = OPC_ISAML; break;
2307 case nir_texop_lod: opc = OPC_GETLOD; break;
2308 case nir_texop_tg4:
2309 /* NOTE: a4xx might need to emulate gather w/ txf (this is
2310 * what blob does, seems gather is broken?), and a3xx did
2311 * not support it (but probably could also emulate).
2312 */
2313 switch (tex->component) {
2314 case 0: opc = OPC_GATHER4R; break;
2315 case 1: opc = OPC_GATHER4G; break;
2316 case 2: opc = OPC_GATHER4B; break;
2317 case 3: opc = OPC_GATHER4A; break;
2318 }
2319 break;
2320 case nir_texop_txf_ms:
2321 case nir_texop_txs:
2322 case nir_texop_query_levels:
2323 case nir_texop_texture_samples:
2324 case nir_texop_samples_identical:
2325 case nir_texop_txf_ms_mcs:
2326 compile_error(ctx, "Unhandled NIR tex type: %d\n", tex->op);
2327 return;
2328 }
2329
2330 tex_info(tex, &flags, &coords);
2331
2332 /*
2333 * lay out the first argument in the proper order:
2334 * - actual coordinates first
2335 * - shadow reference
2336 * - array index
2337 * - projection w
2338 * - starting at offset 4, dpdx.xy, dpdy.xy
2339 *
2340 * bias/lod go into the second arg
2341 */
2342
2343 /* insert tex coords: */
2344 for (i = 0; i < coords; i++)
2345 src0[i] = coord[i];
2346
2347 nsrc0 = i;
2348
2349 /* scale up integer coords for TXF based on the LOD */
2350 if (ctx->unminify_coords && (opc == OPC_ISAML)) {
2351 assert(has_lod);
2352 for (i = 0; i < coords; i++)
2353 src0[i] = ir3_SHL_B(b, src0[i], 0, lod, 0);
2354 }
2355
2356 if (coords == 1) {
2357 /* hw doesn't do 1d, so we treat it as 2d with
2358 * height of 1, and patch up the y coord.
2359 * TODO: y coord should be (int)0 in some cases..
2360 */
2361 src0[nsrc0++] = create_immed(b, fui(0.5));
2362 }
2363
2364 if (tex->is_shadow && tex->op != nir_texop_lod)
2365 src0[nsrc0++] = compare;
2366
2367 if (tex->is_array && tex->op != nir_texop_lod) {
2368 struct ir3_instruction *idx = coord[coords];
2369
2370 /* the array coord for cube arrays needs 0.5 added to it */
2371 if (ctx->array_index_add_half && (opc != OPC_ISAML))
2372 idx = ir3_ADD_F(b, idx, 0, create_immed(b, fui(0.5)), 0);
2373
2374 src0[nsrc0++] = idx;
2375 }
2376
2377 if (has_proj) {
2378 src0[nsrc0++] = proj;
2379 flags |= IR3_INSTR_P;
2380 }
2381
2382 /* pad to 4, then ddx/ddy: */
2383 if (tex->op == nir_texop_txd) {
2384 while (nsrc0 < 4)
2385 src0[nsrc0++] = create_immed(b, fui(0.0));
2386 for (i = 0; i < coords; i++)
2387 src0[nsrc0++] = ddx[i];
2388 if (coords < 2)
2389 src0[nsrc0++] = create_immed(b, fui(0.0));
2390 for (i = 0; i < coords; i++)
2391 src0[nsrc0++] = ddy[i];
2392 if (coords < 2)
2393 src0[nsrc0++] = create_immed(b, fui(0.0));
2394 }
2395
2396 /*
2397 * second argument (if applicable):
2398 * - offsets
2399 * - lod
2400 * - bias
2401 */
2402 if (has_off | has_lod | has_bias) {
2403 if (has_off) {
2404 unsigned off_coords = coords;
2405 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2406 off_coords--;
2407 for (i = 0; i < off_coords; i++)
2408 src1[nsrc1++] = off[i];
2409 if (off_coords < 2)
2410 src1[nsrc1++] = create_immed(b, fui(0.0));
2411 flags |= IR3_INSTR_O;
2412 }
2413
2414 if (has_lod | has_bias)
2415 src1[nsrc1++] = lod;
2416 }
2417
2418 switch (tex->dest_type) {
2419 case nir_type_invalid:
2420 case nir_type_float:
2421 type = TYPE_F32;
2422 break;
2423 case nir_type_int:
2424 type = TYPE_S32;
2425 break;
2426 case nir_type_uint:
2427 case nir_type_bool:
2428 type = TYPE_U32;
2429 break;
2430 default:
2431 unreachable("bad dest_type");
2432 }
2433
2434 if (opc == OPC_GETLOD)
2435 type = TYPE_U32;
2436
2437 unsigned tex_idx = tex->texture_index;
2438
2439 ctx->max_texture_index = MAX2(ctx->max_texture_index, tex_idx);
2440
2441 struct ir3_instruction *col0 = create_collect(b, src0, nsrc0);
2442 struct ir3_instruction *col1 = create_collect(b, src1, nsrc1);
2443
2444 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_XYZW, flags,
2445 tex_idx, tex_idx, col0, col1);
2446
2447 if ((ctx->astc_srgb & (1 << tex_idx)) && !nir_tex_instr_is_query(tex)) {
2448 /* only need first 3 components: */
2449 sam->regs[0]->wrmask = 0x7;
2450 split_dest(b, dst, sam, 0, 3);
2451
2452 /* we need to sample the alpha separately with a non-ASTC
2453 * texture state:
2454 */
2455 sam = ir3_SAM(b, opc, type, TGSI_WRITEMASK_W, flags,
2456 tex_idx, tex_idx, col0, col1);
2457
2458 array_insert(ctx->ir, ctx->ir->astc_srgb, sam);
2459
2460 /* fixup .w component: */
2461 split_dest(b, &dst[3], sam, 3, 1);
2462 } else {
2463 /* normal (non-workaround) case: */
2464 split_dest(b, dst, sam, 0, 4);
2465 }
2466
2467 /* GETLOD returns results in 4.8 fixed point */
2468 if (opc == OPC_GETLOD) {
2469 struct ir3_instruction *factor = create_immed(b, fui(1.0 / 256));
2470
2471 compile_assert(ctx, tex->dest_type == nir_type_float);
2472 for (i = 0; i < 2; i++) {
2473 dst[i] = ir3_MUL_F(b, ir3_COV(b, dst[i], TYPE_U32, TYPE_F32), 0,
2474 factor, 0);
2475 }
2476 }
2477
2478 put_dst(ctx, &tex->dest);
2479 }
2480
2481 static void
emit_tex_query_levels(struct ir3_context * ctx,nir_tex_instr * tex)2482 emit_tex_query_levels(struct ir3_context *ctx, nir_tex_instr *tex)
2483 {
2484 struct ir3_block *b = ctx->block;
2485 struct ir3_instruction **dst, *sam;
2486
2487 dst = get_dst(ctx, &tex->dest, 1);
2488
2489 sam = ir3_SAM(b, OPC_GETINFO, TYPE_U32, TGSI_WRITEMASK_Z, 0,
2490 tex->texture_index, tex->texture_index, NULL, NULL);
2491
2492 /* even though there is only one component, since it ends
2493 * up in .z rather than .x, we need a split_dest()
2494 */
2495 split_dest(b, dst, sam, 0, 3);
2496
2497 /* The # of levels comes from getinfo.z. We need to add 1 to it, since
2498 * the value in TEX_CONST_0 is zero-based.
2499 */
2500 if (ctx->levels_add_one)
2501 dst[0] = ir3_ADD_U(b, dst[0], 0, create_immed(b, 1), 0);
2502
2503 put_dst(ctx, &tex->dest);
2504 }
2505
2506 static void
emit_tex_txs(struct ir3_context * ctx,nir_tex_instr * tex)2507 emit_tex_txs(struct ir3_context *ctx, nir_tex_instr *tex)
2508 {
2509 struct ir3_block *b = ctx->block;
2510 struct ir3_instruction **dst, *sam;
2511 struct ir3_instruction *lod;
2512 unsigned flags, coords;
2513
2514 tex_info(tex, &flags, &coords);
2515
2516 /* Actually we want the number of dimensions, not coordinates. This
2517 * distinction only matters for cubes.
2518 */
2519 if (tex->sampler_dim == GLSL_SAMPLER_DIM_CUBE)
2520 coords = 2;
2521
2522 dst = get_dst(ctx, &tex->dest, 4);
2523
2524 compile_assert(ctx, tex->num_srcs == 1);
2525 compile_assert(ctx, tex->src[0].src_type == nir_tex_src_lod);
2526
2527 lod = get_src(ctx, &tex->src[0].src)[0];
2528
2529 sam = ir3_SAM(b, OPC_GETSIZE, TYPE_U32, TGSI_WRITEMASK_XYZW, flags,
2530 tex->texture_index, tex->texture_index, lod, NULL);
2531
2532 split_dest(b, dst, sam, 0, 4);
2533
2534 /* Array size actually ends up in .w rather than .z. This doesn't
2535 * matter for miplevel 0, but for higher mips the value in z is
2536 * minified whereas w stays. Also, the value in TEX_CONST_3_DEPTH is
2537 * returned, which means that we have to add 1 to it for arrays.
2538 */
2539 if (tex->is_array) {
2540 if (ctx->levels_add_one) {
2541 dst[coords] = ir3_ADD_U(b, dst[3], 0, create_immed(b, 1), 0);
2542 } else {
2543 dst[coords] = ir3_MOV(b, dst[3], TYPE_U32);
2544 }
2545 }
2546
2547 put_dst(ctx, &tex->dest);
2548 }
2549
2550 static void
emit_phi(struct ir3_context * ctx,nir_phi_instr * nphi)2551 emit_phi(struct ir3_context *ctx, nir_phi_instr *nphi)
2552 {
2553 struct ir3_instruction *phi, **dst;
2554
2555 /* NOTE: phi's should be lowered to scalar at this point */
2556 compile_assert(ctx, nphi->dest.ssa.num_components == 1);
2557
2558 dst = get_dst(ctx, &nphi->dest, 1);
2559
2560 phi = ir3_instr_create2(ctx->block, OPC_META_PHI,
2561 1 + exec_list_length(&nphi->srcs));
2562 ir3_reg_create(phi, 0, 0); /* dst */
2563 phi->phi.nphi = nphi;
2564
2565 dst[0] = phi;
2566
2567 put_dst(ctx, &nphi->dest);
2568 }
2569
2570 /* phi instructions are left partially constructed. We don't resolve
2571 * their srcs until the end of the block, since (eg. loops) one of
2572 * the phi's srcs might be defined after the phi due to back edges in
2573 * the CFG.
2574 */
2575 static void
resolve_phis(struct ir3_context * ctx,struct ir3_block * block)2576 resolve_phis(struct ir3_context *ctx, struct ir3_block *block)
2577 {
2578 list_for_each_entry (struct ir3_instruction, instr, &block->instr_list, node) {
2579 nir_phi_instr *nphi;
2580
2581 /* phi's only come at start of block: */
2582 if (instr->opc != OPC_META_PHI)
2583 break;
2584
2585 if (!instr->phi.nphi)
2586 break;
2587
2588 nphi = instr->phi.nphi;
2589 instr->phi.nphi = NULL;
2590
2591 foreach_list_typed(nir_phi_src, nsrc, node, &nphi->srcs) {
2592 struct ir3_instruction *src = get_src(ctx, &nsrc->src)[0];
2593
2594 /* NOTE: src might not be in the same block as it comes from
2595 * according to the phi.. but in the end the backend assumes
2596 * it will be able to assign the same register to each (which
2597 * only works if it is assigned in the src block), so insert
2598 * an extra mov to make sure the phi src is assigned in the
2599 * block it comes from:
2600 */
2601 src = ir3_MOV(get_block(ctx, nsrc->pred), src, TYPE_U32);
2602
2603 ir3_reg_create(instr, 0, IR3_REG_SSA)->instr = src;
2604 }
2605 }
2606 }
2607
2608 static void
emit_jump(struct ir3_context * ctx,nir_jump_instr * jump)2609 emit_jump(struct ir3_context *ctx, nir_jump_instr *jump)
2610 {
2611 switch (jump->type) {
2612 case nir_jump_break:
2613 case nir_jump_continue:
2614 /* I *think* we can simply just ignore this, and use the
2615 * successor block link to figure out where we need to
2616 * jump to for break/continue
2617 */
2618 break;
2619 default:
2620 compile_error(ctx, "Unhandled NIR jump type: %d\n", jump->type);
2621 break;
2622 }
2623 }
2624
2625 static void
emit_instr(struct ir3_context * ctx,nir_instr * instr)2626 emit_instr(struct ir3_context *ctx, nir_instr *instr)
2627 {
2628 switch (instr->type) {
2629 case nir_instr_type_alu:
2630 emit_alu(ctx, nir_instr_as_alu(instr));
2631 break;
2632 case nir_instr_type_intrinsic:
2633 emit_intrinsic(ctx, nir_instr_as_intrinsic(instr));
2634 break;
2635 case nir_instr_type_load_const:
2636 emit_load_const(ctx, nir_instr_as_load_const(instr));
2637 break;
2638 case nir_instr_type_ssa_undef:
2639 emit_undef(ctx, nir_instr_as_ssa_undef(instr));
2640 break;
2641 case nir_instr_type_tex: {
2642 nir_tex_instr *tex = nir_instr_as_tex(instr);
2643 /* couple tex instructions get special-cased:
2644 */
2645 switch (tex->op) {
2646 case nir_texop_txs:
2647 emit_tex_txs(ctx, tex);
2648 break;
2649 case nir_texop_query_levels:
2650 emit_tex_query_levels(ctx, tex);
2651 break;
2652 default:
2653 emit_tex(ctx, tex);
2654 break;
2655 }
2656 break;
2657 }
2658 case nir_instr_type_phi:
2659 emit_phi(ctx, nir_instr_as_phi(instr));
2660 break;
2661 case nir_instr_type_jump:
2662 emit_jump(ctx, nir_instr_as_jump(instr));
2663 break;
2664 case nir_instr_type_call:
2665 case nir_instr_type_parallel_copy:
2666 compile_error(ctx, "Unhandled NIR instruction type: %d\n", instr->type);
2667 break;
2668 }
2669 }
2670
2671 static struct ir3_block *
get_block(struct ir3_context * ctx,nir_block * nblock)2672 get_block(struct ir3_context *ctx, nir_block *nblock)
2673 {
2674 struct ir3_block *block;
2675 struct hash_entry *entry;
2676 entry = _mesa_hash_table_search(ctx->block_ht, nblock);
2677 if (entry)
2678 return entry->data;
2679
2680 block = ir3_block_create(ctx->ir);
2681 block->nblock = nblock;
2682 _mesa_hash_table_insert(ctx->block_ht, nblock, block);
2683
2684 return block;
2685 }
2686
2687 static void
emit_block(struct ir3_context * ctx,nir_block * nblock)2688 emit_block(struct ir3_context *ctx, nir_block *nblock)
2689 {
2690 struct ir3_block *block = get_block(ctx, nblock);
2691
2692 for (int i = 0; i < ARRAY_SIZE(block->successors); i++) {
2693 if (nblock->successors[i]) {
2694 block->successors[i] =
2695 get_block(ctx, nblock->successors[i]);
2696 }
2697 }
2698
2699 ctx->block = block;
2700 list_addtail(&block->node, &ctx->ir->block_list);
2701
2702 /* re-emit addr register in each block if needed: */
2703 for (int i = 0; i < ARRAY_SIZE(ctx->addr_ht); i++) {
2704 _mesa_hash_table_destroy(ctx->addr_ht[i], NULL);
2705 ctx->addr_ht[i] = NULL;
2706 }
2707
2708 nir_foreach_instr(instr, nblock) {
2709 emit_instr(ctx, instr);
2710 if (ctx->error)
2711 return;
2712 }
2713 }
2714
2715 static void emit_cf_list(struct ir3_context *ctx, struct exec_list *list);
2716
2717 static void
emit_if(struct ir3_context * ctx,nir_if * nif)2718 emit_if(struct ir3_context *ctx, nir_if *nif)
2719 {
2720 struct ir3_instruction *condition = get_src(ctx, &nif->condition)[0];
2721
2722 ctx->block->condition =
2723 get_predicate(ctx, ir3_b2n(condition->block, condition));
2724
2725 emit_cf_list(ctx, &nif->then_list);
2726 emit_cf_list(ctx, &nif->else_list);
2727 }
2728
2729 static void
emit_loop(struct ir3_context * ctx,nir_loop * nloop)2730 emit_loop(struct ir3_context *ctx, nir_loop *nloop)
2731 {
2732 emit_cf_list(ctx, &nloop->body);
2733 }
2734
2735 static void
emit_cf_list(struct ir3_context * ctx,struct exec_list * list)2736 emit_cf_list(struct ir3_context *ctx, struct exec_list *list)
2737 {
2738 foreach_list_typed(nir_cf_node, node, node, list) {
2739 switch (node->type) {
2740 case nir_cf_node_block:
2741 emit_block(ctx, nir_cf_node_as_block(node));
2742 break;
2743 case nir_cf_node_if:
2744 emit_if(ctx, nir_cf_node_as_if(node));
2745 break;
2746 case nir_cf_node_loop:
2747 emit_loop(ctx, nir_cf_node_as_loop(node));
2748 break;
2749 case nir_cf_node_function:
2750 compile_error(ctx, "TODO\n");
2751 break;
2752 }
2753 }
2754 }
2755
2756 /* emit stream-out code. At this point, the current block is the original
2757 * (nir) end block, and nir ensures that all flow control paths terminate
2758 * into the end block. We re-purpose the original end block to generate
2759 * the 'if (vtxcnt < maxvtxcnt)' condition, then append the conditional
2760 * block holding stream-out write instructions, followed by the new end
2761 * block:
2762 *
2763 * blockOrigEnd {
2764 * p0.x = (vtxcnt < maxvtxcnt)
2765 * // succs: blockStreamOut, blockNewEnd
2766 * }
2767 * blockStreamOut {
2768 * ... stream-out instructions ...
2769 * // succs: blockNewEnd
2770 * }
2771 * blockNewEnd {
2772 * }
2773 */
2774 static void
emit_stream_out(struct ir3_context * ctx)2775 emit_stream_out(struct ir3_context *ctx)
2776 {
2777 struct ir3_shader_variant *v = ctx->so;
2778 struct ir3 *ir = ctx->ir;
2779 struct pipe_stream_output_info *strmout =
2780 &ctx->so->shader->stream_output;
2781 struct ir3_block *orig_end_block, *stream_out_block, *new_end_block;
2782 struct ir3_instruction *vtxcnt, *maxvtxcnt, *cond;
2783 struct ir3_instruction *bases[PIPE_MAX_SO_BUFFERS];
2784
2785 /* create vtxcnt input in input block at top of shader,
2786 * so that it is seen as live over the entire duration
2787 * of the shader:
2788 */
2789 vtxcnt = create_input(ctx->in_block, 0);
2790 add_sysval_input(ctx, SYSTEM_VALUE_VERTEX_CNT, vtxcnt);
2791
2792 maxvtxcnt = create_driver_param(ctx, IR3_DP_VTXCNT_MAX);
2793
2794 /* at this point, we are at the original 'end' block,
2795 * re-purpose this block to stream-out condition, then
2796 * append stream-out block and new-end block
2797 */
2798 orig_end_block = ctx->block;
2799
2800 stream_out_block = ir3_block_create(ir);
2801 list_addtail(&stream_out_block->node, &ir->block_list);
2802
2803 new_end_block = ir3_block_create(ir);
2804 list_addtail(&new_end_block->node, &ir->block_list);
2805
2806 orig_end_block->successors[0] = stream_out_block;
2807 orig_end_block->successors[1] = new_end_block;
2808 stream_out_block->successors[0] = new_end_block;
2809
2810 /* setup 'if (vtxcnt < maxvtxcnt)' condition: */
2811 cond = ir3_CMPS_S(ctx->block, vtxcnt, 0, maxvtxcnt, 0);
2812 cond->regs[0]->num = regid(REG_P0, 0);
2813 cond->cat2.condition = IR3_COND_LT;
2814
2815 /* condition goes on previous block to the conditional,
2816 * since it is used to pick which of the two successor
2817 * paths to take:
2818 */
2819 orig_end_block->condition = cond;
2820
2821 /* switch to stream_out_block to generate the stream-out
2822 * instructions:
2823 */
2824 ctx->block = stream_out_block;
2825
2826 /* Calculate base addresses based on vtxcnt. Instructions
2827 * generated for bases not used in following loop will be
2828 * stripped out in the backend.
2829 */
2830 for (unsigned i = 0; i < PIPE_MAX_SO_BUFFERS; i++) {
2831 unsigned stride = strmout->stride[i];
2832 struct ir3_instruction *base, *off;
2833
2834 base = create_uniform(ctx, regid(v->constbase.tfbo, i));
2835
2836 /* 24-bit should be enough: */
2837 off = ir3_MUL_U(ctx->block, vtxcnt, 0,
2838 create_immed(ctx->block, stride * 4), 0);
2839
2840 bases[i] = ir3_ADD_S(ctx->block, off, 0, base, 0);
2841 }
2842
2843 /* Generate the per-output store instructions: */
2844 for (unsigned i = 0; i < strmout->num_outputs; i++) {
2845 for (unsigned j = 0; j < strmout->output[i].num_components; j++) {
2846 unsigned c = j + strmout->output[i].start_component;
2847 struct ir3_instruction *base, *out, *stg;
2848
2849 base = bases[strmout->output[i].output_buffer];
2850 out = ctx->ir->outputs[regid(strmout->output[i].register_index, c)];
2851
2852 stg = ir3_STG(ctx->block, base, 0, out, 0,
2853 create_immed(ctx->block, 1), 0);
2854 stg->cat6.type = TYPE_U32;
2855 stg->cat6.dst_offset = (strmout->output[i].dst_offset + j) * 4;
2856
2857 array_insert(ctx->block, ctx->block->keeps, stg);
2858 }
2859 }
2860
2861 /* and finally switch to the new_end_block: */
2862 ctx->block = new_end_block;
2863 }
2864
2865 static void
emit_function(struct ir3_context * ctx,nir_function_impl * impl)2866 emit_function(struct ir3_context *ctx, nir_function_impl *impl)
2867 {
2868 nir_metadata_require(impl, nir_metadata_block_index);
2869
2870 emit_cf_list(ctx, &impl->body);
2871 emit_block(ctx, impl->end_block);
2872
2873 /* at this point, we should have a single empty block,
2874 * into which we emit the 'end' instruction.
2875 */
2876 compile_assert(ctx, list_empty(&ctx->block->instr_list));
2877
2878 /* If stream-out (aka transform-feedback) enabled, emit the
2879 * stream-out instructions, followed by a new empty block (into
2880 * which the 'end' instruction lands).
2881 *
2882 * NOTE: it is done in this order, rather than inserting before
2883 * we emit end_block, because NIR guarantees that all blocks
2884 * flow into end_block, and that end_block has no successors.
2885 * So by re-purposing end_block as the first block of stream-
2886 * out, we guarantee that all exit paths flow into the stream-
2887 * out instructions.
2888 */
2889 if ((ctx->compiler->gpu_id < 500) &&
2890 (ctx->so->shader->stream_output.num_outputs > 0) &&
2891 !ctx->so->key.binning_pass) {
2892 debug_assert(ctx->so->type == SHADER_VERTEX);
2893 emit_stream_out(ctx);
2894 }
2895
2896 ir3_END(ctx->block);
2897 }
2898
2899 static void
setup_input(struct ir3_context * ctx,nir_variable * in)2900 setup_input(struct ir3_context *ctx, nir_variable *in)
2901 {
2902 struct ir3_shader_variant *so = ctx->so;
2903 unsigned array_len = MAX2(glsl_get_length(in->type), 1);
2904 unsigned ncomp = glsl_get_components(in->type);
2905 unsigned n = in->data.driver_location;
2906 unsigned slot = in->data.location;
2907
2908 DBG("; in: slot=%u, len=%ux%u, drvloc=%u",
2909 slot, array_len, ncomp, n);
2910
2911 /* let's pretend things other than vec4 don't exist: */
2912 ncomp = MAX2(ncomp, 4);
2913 compile_assert(ctx, ncomp == 4);
2914
2915 so->inputs[n].slot = slot;
2916 so->inputs[n].compmask = (1 << ncomp) - 1;
2917 so->inputs_count = MAX2(so->inputs_count, n + 1);
2918 so->inputs[n].interpolate = in->data.interpolation;
2919
2920 if (ctx->so->type == SHADER_FRAGMENT) {
2921 for (int i = 0; i < ncomp; i++) {
2922 struct ir3_instruction *instr = NULL;
2923 unsigned idx = (n * 4) + i;
2924
2925 if (slot == VARYING_SLOT_POS) {
2926 so->inputs[n].bary = false;
2927 so->frag_coord = true;
2928 instr = create_frag_coord(ctx, i);
2929 } else if (slot == VARYING_SLOT_PNTC) {
2930 /* see for example st_get_generic_varying_index().. this is
2931 * maybe a bit mesa/st specific. But we need things to line
2932 * up for this in fdN_program:
2933 * unsigned texmask = 1 << (slot - VARYING_SLOT_VAR0);
2934 * if (emit->sprite_coord_enable & texmask) {
2935 * ...
2936 * }
2937 */
2938 so->inputs[n].slot = VARYING_SLOT_VAR8;
2939 so->inputs[n].bary = true;
2940 instr = create_frag_input(ctx, false);
2941 } else {
2942 bool use_ldlv = false;
2943
2944 /* detect the special case for front/back colors where
2945 * we need to do flat vs smooth shading depending on
2946 * rast state:
2947 */
2948 if (in->data.interpolation == INTERP_MODE_NONE) {
2949 switch (slot) {
2950 case VARYING_SLOT_COL0:
2951 case VARYING_SLOT_COL1:
2952 case VARYING_SLOT_BFC0:
2953 case VARYING_SLOT_BFC1:
2954 so->inputs[n].rasterflat = true;
2955 break;
2956 default:
2957 break;
2958 }
2959 }
2960
2961 if (ctx->flat_bypass) {
2962 if ((so->inputs[n].interpolate == INTERP_MODE_FLAT) ||
2963 (so->inputs[n].rasterflat && ctx->so->key.rasterflat))
2964 use_ldlv = true;
2965 }
2966
2967 so->inputs[n].bary = true;
2968
2969 instr = create_frag_input(ctx, use_ldlv);
2970 }
2971
2972 compile_assert(ctx, idx < ctx->ir->ninputs);
2973
2974 ctx->ir->inputs[idx] = instr;
2975 }
2976 } else if (ctx->so->type == SHADER_VERTEX) {
2977 for (int i = 0; i < ncomp; i++) {
2978 unsigned idx = (n * 4) + i;
2979 compile_assert(ctx, idx < ctx->ir->ninputs);
2980 ctx->ir->inputs[idx] = create_input(ctx->block, idx);
2981 }
2982 } else {
2983 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
2984 }
2985
2986 if (so->inputs[n].bary || (ctx->so->type == SHADER_VERTEX)) {
2987 so->total_in += ncomp;
2988 }
2989 }
2990
2991 static void
setup_output(struct ir3_context * ctx,nir_variable * out)2992 setup_output(struct ir3_context *ctx, nir_variable *out)
2993 {
2994 struct ir3_shader_variant *so = ctx->so;
2995 unsigned array_len = MAX2(glsl_get_length(out->type), 1);
2996 unsigned ncomp = glsl_get_components(out->type);
2997 unsigned n = out->data.driver_location;
2998 unsigned slot = out->data.location;
2999 unsigned comp = 0;
3000
3001 DBG("; out: slot=%u, len=%ux%u, drvloc=%u",
3002 slot, array_len, ncomp, n);
3003
3004 /* let's pretend things other than vec4 don't exist: */
3005 ncomp = MAX2(ncomp, 4);
3006 compile_assert(ctx, ncomp == 4);
3007
3008 if (ctx->so->type == SHADER_FRAGMENT) {
3009 switch (slot) {
3010 case FRAG_RESULT_DEPTH:
3011 comp = 2; /* tgsi will write to .z component */
3012 so->writes_pos = true;
3013 break;
3014 case FRAG_RESULT_COLOR:
3015 so->color0_mrt = 1;
3016 break;
3017 default:
3018 if (slot >= FRAG_RESULT_DATA0)
3019 break;
3020 compile_error(ctx, "unknown FS output name: %s\n",
3021 gl_frag_result_name(slot));
3022 }
3023 } else if (ctx->so->type == SHADER_VERTEX) {
3024 switch (slot) {
3025 case VARYING_SLOT_POS:
3026 so->writes_pos = true;
3027 break;
3028 case VARYING_SLOT_PSIZ:
3029 so->writes_psize = true;
3030 break;
3031 case VARYING_SLOT_COL0:
3032 case VARYING_SLOT_COL1:
3033 case VARYING_SLOT_BFC0:
3034 case VARYING_SLOT_BFC1:
3035 case VARYING_SLOT_FOGC:
3036 case VARYING_SLOT_CLIP_DIST0:
3037 case VARYING_SLOT_CLIP_DIST1:
3038 case VARYING_SLOT_CLIP_VERTEX:
3039 break;
3040 default:
3041 if (slot >= VARYING_SLOT_VAR0)
3042 break;
3043 if ((VARYING_SLOT_TEX0 <= slot) && (slot <= VARYING_SLOT_TEX7))
3044 break;
3045 compile_error(ctx, "unknown VS output name: %s\n",
3046 gl_varying_slot_name(slot));
3047 }
3048 } else {
3049 compile_error(ctx, "unknown shader type: %d\n", ctx->so->type);
3050 }
3051
3052 compile_assert(ctx, n < ARRAY_SIZE(so->outputs));
3053
3054 so->outputs[n].slot = slot;
3055 so->outputs[n].regid = regid(n, comp);
3056 so->outputs_count = MAX2(so->outputs_count, n + 1);
3057
3058 for (int i = 0; i < ncomp; i++) {
3059 unsigned idx = (n * 4) + i;
3060 compile_assert(ctx, idx < ctx->ir->noutputs);
3061 ctx->ir->outputs[idx] = create_immed(ctx->block, fui(0.0));
3062 }
3063 }
3064
3065 static int
max_drvloc(struct exec_list * vars)3066 max_drvloc(struct exec_list *vars)
3067 {
3068 int drvloc = -1;
3069 nir_foreach_variable(var, vars) {
3070 drvloc = MAX2(drvloc, (int)var->data.driver_location);
3071 }
3072 return drvloc;
3073 }
3074
3075 static const unsigned max_sysvals[SHADER_MAX] = {
3076 [SHADER_VERTEX] = 16,
3077 [SHADER_COMPUTE] = 16, // TODO how many do we actually need?
3078 };
3079
3080 static void
emit_instructions(struct ir3_context * ctx)3081 emit_instructions(struct ir3_context *ctx)
3082 {
3083 unsigned ninputs, noutputs;
3084 nir_function_impl *fxn = nir_shader_get_entrypoint(ctx->s);
3085
3086 ninputs = (max_drvloc(&ctx->s->inputs) + 1) * 4;
3087 noutputs = (max_drvloc(&ctx->s->outputs) + 1) * 4;
3088
3089 /* we need to leave room for sysvals:
3090 */
3091 ninputs += max_sysvals[ctx->so->type];
3092
3093 ctx->ir = ir3_create(ctx->compiler, ninputs, noutputs);
3094
3095 /* Create inputs in first block: */
3096 ctx->block = get_block(ctx, nir_start_block(fxn));
3097 ctx->in_block = ctx->block;
3098 list_addtail(&ctx->block->node, &ctx->ir->block_list);
3099
3100 ninputs -= max_sysvals[ctx->so->type];
3101
3102 /* for fragment shader, we have a single input register (usually
3103 * r0.xy) which is used as the base for bary.f varying fetch instrs:
3104 */
3105 if (ctx->so->type == SHADER_FRAGMENT) {
3106 // TODO maybe a helper for fi since we need it a few places..
3107 struct ir3_instruction *instr;
3108 instr = ir3_instr_create(ctx->block, OPC_META_FI);
3109 ir3_reg_create(instr, 0, 0);
3110 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.x */
3111 ir3_reg_create(instr, 0, IR3_REG_SSA); /* r0.y */
3112 ctx->frag_pos = instr;
3113 }
3114
3115 /* Setup inputs: */
3116 nir_foreach_variable(var, &ctx->s->inputs) {
3117 setup_input(ctx, var);
3118 }
3119
3120 /* Setup outputs: */
3121 nir_foreach_variable(var, &ctx->s->outputs) {
3122 setup_output(ctx, var);
3123 }
3124
3125 /* Setup registers (which should only be arrays): */
3126 nir_foreach_register(reg, &ctx->s->registers) {
3127 declare_array(ctx, reg);
3128 }
3129
3130 /* NOTE: need to do something more clever when we support >1 fxn */
3131 nir_foreach_register(reg, &fxn->registers) {
3132 declare_array(ctx, reg);
3133 }
3134 /* And emit the body: */
3135 ctx->impl = fxn;
3136 emit_function(ctx, fxn);
3137
3138 list_for_each_entry (struct ir3_block, block, &ctx->ir->block_list, node) {
3139 resolve_phis(ctx, block);
3140 }
3141 }
3142
3143 /* from NIR perspective, we actually have inputs. But most of the "inputs"
3144 * for a fragment shader are just bary.f instructions. The *actual* inputs
3145 * from the hw perspective are the frag_pos and optionally frag_coord and
3146 * frag_face.
3147 */
3148 static void
fixup_frag_inputs(struct ir3_context * ctx)3149 fixup_frag_inputs(struct ir3_context *ctx)
3150 {
3151 struct ir3_shader_variant *so = ctx->so;
3152 struct ir3 *ir = ctx->ir;
3153 struct ir3_instruction **inputs;
3154 struct ir3_instruction *instr;
3155 int n, regid = 0;
3156
3157 ir->ninputs = 0;
3158
3159 n = 4; /* always have frag_pos */
3160 n += COND(so->frag_face, 4);
3161 n += COND(so->frag_coord, 4);
3162
3163 inputs = ir3_alloc(ctx->ir, n * (sizeof(struct ir3_instruction *)));
3164
3165 if (so->frag_face) {
3166 /* this ultimately gets assigned to hr0.x so doesn't conflict
3167 * with frag_coord/frag_pos..
3168 */
3169 inputs[ir->ninputs++] = ctx->frag_face;
3170 ctx->frag_face->regs[0]->num = 0;
3171
3172 /* remaining channels not used, but let's avoid confusing
3173 * other parts that expect inputs to come in groups of vec4
3174 */
3175 inputs[ir->ninputs++] = NULL;
3176 inputs[ir->ninputs++] = NULL;
3177 inputs[ir->ninputs++] = NULL;
3178 }
3179
3180 /* since we don't know where to set the regid for frag_coord,
3181 * we have to use r0.x for it. But we don't want to *always*
3182 * use r1.x for frag_pos as that could increase the register
3183 * footprint on simple shaders:
3184 */
3185 if (so->frag_coord) {
3186 ctx->frag_coord[0]->regs[0]->num = regid++;
3187 ctx->frag_coord[1]->regs[0]->num = regid++;
3188 ctx->frag_coord[2]->regs[0]->num = regid++;
3189 ctx->frag_coord[3]->regs[0]->num = regid++;
3190
3191 inputs[ir->ninputs++] = ctx->frag_coord[0];
3192 inputs[ir->ninputs++] = ctx->frag_coord[1];
3193 inputs[ir->ninputs++] = ctx->frag_coord[2];
3194 inputs[ir->ninputs++] = ctx->frag_coord[3];
3195 }
3196
3197 /* we always have frag_pos: */
3198 so->pos_regid = regid;
3199
3200 /* r0.x */
3201 instr = create_input(ctx->in_block, ir->ninputs);
3202 instr->regs[0]->num = regid++;
3203 inputs[ir->ninputs++] = instr;
3204 ctx->frag_pos->regs[1]->instr = instr;
3205
3206 /* r0.y */
3207 instr = create_input(ctx->in_block, ir->ninputs);
3208 instr->regs[0]->num = regid++;
3209 inputs[ir->ninputs++] = instr;
3210 ctx->frag_pos->regs[2]->instr = instr;
3211
3212 ir->inputs = inputs;
3213 }
3214
3215 /* Fixup tex sampler state for astc/srgb workaround instructions. We
3216 * need to assign the tex state indexes for these after we know the
3217 * max tex index.
3218 */
3219 static void
fixup_astc_srgb(struct ir3_context * ctx)3220 fixup_astc_srgb(struct ir3_context *ctx)
3221 {
3222 struct ir3_shader_variant *so = ctx->so;
3223 /* indexed by original tex idx, value is newly assigned alpha sampler
3224 * state tex idx. Zero is invalid since there is at least one sampler
3225 * if we get here.
3226 */
3227 unsigned alt_tex_state[16] = {0};
3228 unsigned tex_idx = ctx->max_texture_index + 1;
3229 unsigned idx = 0;
3230
3231 so->astc_srgb.base = tex_idx;
3232
3233 for (unsigned i = 0; i < ctx->ir->astc_srgb_count; i++) {
3234 struct ir3_instruction *sam = ctx->ir->astc_srgb[i];
3235
3236 compile_assert(ctx, sam->cat5.tex < ARRAY_SIZE(alt_tex_state));
3237
3238 if (alt_tex_state[sam->cat5.tex] == 0) {
3239 /* assign new alternate/alpha tex state slot: */
3240 alt_tex_state[sam->cat5.tex] = tex_idx++;
3241 so->astc_srgb.orig_idx[idx++] = sam->cat5.tex;
3242 so->astc_srgb.count++;
3243 }
3244
3245 sam->cat5.tex = alt_tex_state[sam->cat5.tex];
3246 }
3247 }
3248
3249 int
ir3_compile_shader_nir(struct ir3_compiler * compiler,struct ir3_shader_variant * so)3250 ir3_compile_shader_nir(struct ir3_compiler *compiler,
3251 struct ir3_shader_variant *so)
3252 {
3253 struct ir3_context *ctx;
3254 struct ir3 *ir;
3255 struct ir3_instruction **inputs;
3256 unsigned i, j, actual_in, inloc;
3257 int ret = 0, max_bary;
3258
3259 assert(!so->ir);
3260
3261 ctx = compile_init(compiler, so);
3262 if (!ctx) {
3263 DBG("INIT failed!");
3264 ret = -1;
3265 goto out;
3266 }
3267
3268 emit_instructions(ctx);
3269
3270 if (ctx->error) {
3271 DBG("EMIT failed!");
3272 ret = -1;
3273 goto out;
3274 }
3275
3276 ir = so->ir = ctx->ir;
3277
3278 /* keep track of the inputs from TGSI perspective.. */
3279 inputs = ir->inputs;
3280
3281 /* but fixup actual inputs for frag shader: */
3282 if (so->type == SHADER_FRAGMENT)
3283 fixup_frag_inputs(ctx);
3284
3285 /* at this point, for binning pass, throw away unneeded outputs: */
3286 if (so->key.binning_pass) {
3287 for (i = 0, j = 0; i < so->outputs_count; i++) {
3288 unsigned slot = so->outputs[i].slot;
3289
3290 /* throw away everything but first position/psize */
3291 if ((slot == VARYING_SLOT_POS) || (slot == VARYING_SLOT_PSIZ)) {
3292 if (i != j) {
3293 so->outputs[j] = so->outputs[i];
3294 ir->outputs[(j*4)+0] = ir->outputs[(i*4)+0];
3295 ir->outputs[(j*4)+1] = ir->outputs[(i*4)+1];
3296 ir->outputs[(j*4)+2] = ir->outputs[(i*4)+2];
3297 ir->outputs[(j*4)+3] = ir->outputs[(i*4)+3];
3298 }
3299 j++;
3300 }
3301 }
3302 so->outputs_count = j;
3303 ir->noutputs = j * 4;
3304 }
3305
3306 /* if we want half-precision outputs, mark the output registers
3307 * as half:
3308 */
3309 if (so->key.half_precision) {
3310 for (i = 0; i < ir->noutputs; i++) {
3311 struct ir3_instruction *out = ir->outputs[i];
3312
3313 if (!out)
3314 continue;
3315
3316 /* if frag shader writes z, that needs to be full precision: */
3317 if (so->outputs[i/4].slot == FRAG_RESULT_DEPTH)
3318 continue;
3319
3320 out->regs[0]->flags |= IR3_REG_HALF;
3321 /* output could be a fanout (ie. texture fetch output)
3322 * in which case we need to propagate the half-reg flag
3323 * up to the definer so that RA sees it:
3324 */
3325 if (out->opc == OPC_META_FO) {
3326 out = out->regs[1]->instr;
3327 out->regs[0]->flags |= IR3_REG_HALF;
3328 }
3329
3330 if (out->opc == OPC_MOV) {
3331 out->cat1.dst_type = half_type(out->cat1.dst_type);
3332 }
3333 }
3334 }
3335
3336 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3337 printf("BEFORE CP:\n");
3338 ir3_print(ir);
3339 }
3340
3341 ir3_cp(ir, so);
3342
3343 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3344 printf("BEFORE GROUPING:\n");
3345 ir3_print(ir);
3346 }
3347
3348 ir3_sched_add_deps(ir);
3349
3350 /* Group left/right neighbors, inserting mov's where needed to
3351 * solve conflicts:
3352 */
3353 ir3_group(ir);
3354
3355 ir3_depth(ir);
3356
3357 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3358 printf("AFTER DEPTH:\n");
3359 ir3_print(ir);
3360 }
3361
3362 ret = ir3_sched(ir);
3363 if (ret) {
3364 DBG("SCHED failed!");
3365 goto out;
3366 }
3367
3368 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3369 printf("AFTER SCHED:\n");
3370 ir3_print(ir);
3371 }
3372
3373 ret = ir3_ra(ir, so->type, so->frag_coord, so->frag_face);
3374 if (ret) {
3375 DBG("RA failed!");
3376 goto out;
3377 }
3378
3379 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3380 printf("AFTER RA:\n");
3381 ir3_print(ir);
3382 }
3383
3384 /* fixup input/outputs: */
3385 for (i = 0; i < so->outputs_count; i++) {
3386 so->outputs[i].regid = ir->outputs[i*4]->regs[0]->num;
3387 }
3388
3389 /* Note that some or all channels of an input may be unused: */
3390 actual_in = 0;
3391 inloc = 0;
3392 for (i = 0; i < so->inputs_count; i++) {
3393 unsigned j, regid = ~0, compmask = 0, maxcomp = 0;
3394 so->inputs[i].ncomp = 0;
3395 so->inputs[i].inloc = inloc;
3396 for (j = 0; j < 4; j++) {
3397 struct ir3_instruction *in = inputs[(i*4) + j];
3398 if (in && !(in->flags & IR3_INSTR_UNUSED)) {
3399 compmask |= (1 << j);
3400 regid = in->regs[0]->num - j;
3401 actual_in++;
3402 so->inputs[i].ncomp++;
3403 if ((so->type == SHADER_FRAGMENT) && so->inputs[i].bary) {
3404 /* assign inloc: */
3405 assert(in->regs[1]->flags & IR3_REG_IMMED);
3406 in->regs[1]->iim_val = inloc + j;
3407 maxcomp = j + 1;
3408 }
3409 }
3410 }
3411 if ((so->type == SHADER_FRAGMENT) && compmask && so->inputs[i].bary) {
3412 so->varying_in++;
3413 so->inputs[i].compmask = (1 << maxcomp) - 1;
3414 inloc += maxcomp;
3415 } else {
3416 so->inputs[i].compmask = compmask;
3417 }
3418 so->inputs[i].regid = regid;
3419 }
3420
3421 if (ctx->astc_srgb)
3422 fixup_astc_srgb(ctx);
3423
3424 /* We need to do legalize after (for frag shader's) the "bary.f"
3425 * offsets (inloc) have been assigned.
3426 */
3427 ir3_legalize(ir, &so->has_samp, &so->has_ssbo, &max_bary);
3428
3429 if (fd_mesa_debug & FD_DBG_OPTMSGS) {
3430 printf("AFTER LEGALIZE:\n");
3431 ir3_print(ir);
3432 }
3433
3434 /* Note that actual_in counts inputs that are not bary.f'd for FS: */
3435 if (so->type == SHADER_VERTEX)
3436 so->total_in = actual_in;
3437 else
3438 so->total_in = max_bary + 1;
3439
3440 out:
3441 if (ret) {
3442 if (so->ir)
3443 ir3_destroy(so->ir);
3444 so->ir = NULL;
3445 }
3446 compile_free(ctx);
3447
3448 return ret;
3449 }
3450