• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #define LOG_TAG "android.hardware.neuralnetworks@1.0-impl-hvx"
18 
19 #include "HexagonUtils.h"
20 #include <hidlmemory/mapping.h>
21 #include <algorithm>
22 #include <numeric>
23 #include <vector>
24 #include "OperationsUtils.h"
25 
26 namespace android {
27 namespace hardware {
28 namespace neuralnetworks {
29 namespace V1_0 {
30 namespace implementation {
31 namespace hexagon {
32 
isHexagonAvailable()33 bool isHexagonAvailable() {
34     int version = -1;
35     Controller::getInstance().version(&version);
36     if (version != 92) {
37         LOG(INFO) << "ATTEMPTING TO RESTART NNLIB";
38         Controller::getInstance().resetNnlib();
39         Controller::getInstance().version(&version);
40     }
41     return version == 92;
42 }
43 
getPadding(uint32_t pad)44 hexagon_nn_padding_type getPadding(uint32_t pad) {
45     switch (pad) {
46         case ::android::nn::kPaddingSame:
47             return NN_PAD_SAME;
48         case ::android::nn::kPaddingValid:
49             return NN_PAD_VALID;
50         case ::android::nn::kPaddingUnknown:
51         default:
52             return NN_PAD_NA;
53     };
54 }
55 
getPadding(int32_t inWidth,int32_t inHeight,int32_t strideWidth,int32_t strideHeight,int32_t filterWidth,int32_t filterHeight,int32_t paddingLeft,int32_t paddingRight,int32_t paddingTop,int32_t paddingBottom)56 hexagon_nn_padding_type getPadding(int32_t inWidth, int32_t inHeight, int32_t strideWidth,
57                                    int32_t strideHeight, int32_t filterWidth, int32_t filterHeight,
58                                    int32_t paddingLeft, int32_t paddingRight, int32_t paddingTop,
59                                    int32_t paddingBottom) {
60     return getPadding(::android::nn::getPaddingScheme(inWidth, inHeight, strideWidth, strideHeight,
61                                                       filterWidth, filterHeight, paddingLeft,
62                                                       paddingRight, paddingTop, paddingBottom));
63 }
64 
getFloatActivationFunction(FusedActivationFunc act)65 op_type getFloatActivationFunction(FusedActivationFunc act) {
66     switch (act) {
67         case FusedActivationFunc::RELU:
68             return OP_Relu_f;
69         case FusedActivationFunc::RELU1:
70             return OP_Clamp_f;
71         case FusedActivationFunc::RELU6:
72             return OP_ReluX_f;
73         case FusedActivationFunc::NONE:
74             FALLTHROUGH_INTENDED;
75         default:
76             return OP_Nop;
77     };
78 }
79 
getQuantizedActivationFunction(FusedActivationFunc act)80 op_type getQuantizedActivationFunction(FusedActivationFunc act) {
81     switch (act) {
82         case FusedActivationFunc::RELU:
83             return OP_QuantizedRelu_8;
84         case FusedActivationFunc::RELU1:
85             return OP_QuantizedClamp_8;
86         case FusedActivationFunc::RELU6:
87             return OP_QuantizedReluX_8;
88         case FusedActivationFunc::NONE:
89             FALLTHROUGH_INTENDED;
90         default:
91             return OP_Nop;
92     };
93 }
94 
getSize(OperandType type)95 uint32_t getSize(OperandType type) {
96     static const uint32_t sizes[] = {
97         4,  // FLOAT32
98         4,  // INT32
99         4,  // UINT32
100         4,  // TENSOR_FLOAT32
101         4,  // TENSOR_INT32
102         1,  // TENSOR_SYMMETRICAL_QUANT8
103     };
104     HEXAGON_SOFT_ASSERT(static_cast<uint32_t>(type) < sizeof(sizes) / sizeof(*sizes),
105                         "Error: type exceeds max enum value");
106     return sizes[static_cast<uint32_t>(type)];
107 }
108 
getAlignedDimensions(const std::vector<uint32_t> & dims,uint32_t N)109 std::vector<uint32_t> getAlignedDimensions(const std::vector<uint32_t>& dims, uint32_t N) {
110     HEXAGON_SOFT_ASSERT_GE(
111         N, dims.size(),
112         "Error: constant data dimensions " << dims.size() << " exceeds alignment of " << N);
113     std::vector<uint32_t> dimensions(N - dims.size(), 1);
114     dimensions.insert(dimensions.end(), dims.begin(), dims.end());
115     return dimensions;
116 }
117 
mapPools(const hidl_vec<hidl_memory> & pools)118 std::vector<RunTimePoolInfo> mapPools(const hidl_vec<hidl_memory>& pools) {
119     std::vector<RunTimePoolInfo> poolInfos;
120     poolInfos.reserve(pools.size());
121     bool fail = false;
122     for (const auto& pool : pools) {
123         poolInfos.emplace_back(pool, &fail);
124     }
125     HEXAGON_SOFT_ASSERT(!fail, "Error setting pools");
126     return poolInfos;
127 }
128 
getPoolIndexes(const std::vector<RequestArgument> & inputsOutputs)129 std::unordered_set<uint32_t> getPoolIndexes(const std::vector<RequestArgument>& inputsOutputs) {
130     std::unordered_set<uint32_t> indexes;
131     for (const RequestArgument& inputOutput : inputsOutputs) {
132         indexes.insert(inputOutput.location.poolIndex);
133     }
134     return indexes;
135 }
136 
137 namespace {
getDataFromBlock(const hidl_vec<uint8_t> & block,uint32_t offset,uint32_t length)138 const uint8_t* getDataFromBlock(const hidl_vec<uint8_t>& block, uint32_t offset, uint32_t length) {
139     HEXAGON_SOFT_ASSERT_LE(offset + length, block.size(),
140                            "Error: trying to copy data from outside of block bounds");
141     return block.data() + offset;
142 }
143 
getDataFromPool(const RunTimePoolInfo & pool,uint32_t offset,uint32_t length)144 const uint8_t* getDataFromPool(const RunTimePoolInfo& pool, uint32_t offset,
145                                [[maybe_unused]] uint32_t length) {
146     // HEXAGON_SOFT_ASSERT_LE(offset + length, pool->getSize(),
147     //                       "Error: trying to copy data from outside of pool bounds");
148     return pool.getBuffer() + offset;
149 }
150 }  // anonymous namespace
151 
getData(const Operand & operand,const hidl_vec<uint8_t> & block,const std::vector<RunTimePoolInfo> & pools)152 const uint8_t* getData(const Operand& operand, const hidl_vec<uint8_t>& block,
153                        const std::vector<RunTimePoolInfo>& pools) {
154     switch (operand.lifetime) {
155         case OperandLifeTime::TEMPORARY_VARIABLE:
156             return nullptr;
157         case OperandLifeTime::MODEL_INPUT:
158         case OperandLifeTime::MODEL_OUTPUT:
159             HEXAGON_SOFT_ASSERT(false,
160                                 "Error: trying to retrieve data that is only known at runtime");
161         case OperandLifeTime::CONSTANT_COPY:
162             return getDataFromBlock(block, operand.location.offset, operand.location.length);
163         case OperandLifeTime::CONSTANT_REFERENCE:
164             return getDataFromPool(pools[operand.location.poolIndex], operand.location.offset,
165                                    operand.location.length);
166         default:
167             HEXAGON_SOFT_ASSERT(false, "Error: unrecognized operand lifetime");
168     }
169 }
170 
operator ==(const hexagon_nn_input & lhs,const hexagon_nn_input & rhs)171 bool operator==(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) {
172     return lhs.src_id == rhs.src_id && lhs.output_idx == rhs.output_idx;
173 }
174 
operator !=(const hexagon_nn_input & lhs,const hexagon_nn_input & rhs)175 bool operator!=(const hexagon_nn_input& lhs, const hexagon_nn_input& rhs) {
176     return !(lhs == rhs);
177 }
178 
operator ==(const hexagon_nn_output & lhs,const hexagon_nn_output & rhs)179 bool operator==(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) {
180     return lhs.rank == rhs.rank && lhs.max_sizes[0] == rhs.max_sizes[0] &&
181            lhs.max_sizes[1] == rhs.max_sizes[1] && lhs.max_sizes[2] == rhs.max_sizes[2] &&
182            lhs.max_sizes[3] == rhs.max_sizes[3] && lhs.max_sizes[4] == rhs.max_sizes[4] &&
183            lhs.max_sizes[5] == rhs.max_sizes[5] && lhs.max_sizes[6] == rhs.max_sizes[6] &&
184            lhs.max_sizes[7] == rhs.max_sizes[7] && lhs.elementsize == rhs.elementsize &&
185            lhs.zero_offset == rhs.zero_offset && lhs.stepsize == rhs.stepsize;
186 }
187 
operator !=(const hexagon_nn_output & lhs,const hexagon_nn_output & rhs)188 bool operator!=(const hexagon_nn_output& lhs, const hexagon_nn_output& rhs) {
189     return !(lhs == rhs);
190 }
191 
make_hexagon_nn_output(const std::vector<uint32_t> & dims,uint32_t size)192 hexagon_nn_output make_hexagon_nn_output(const std::vector<uint32_t>& dims, uint32_t size) {
193     std::vector<uint32_t> alignedDims = getAlignedDimensions(dims, 4);
194     hexagon_nn_output output = {
195         .rank = std::min(8u, static_cast<uint32_t>(alignedDims.size())),
196         .max_sizes = {0, 0, 0, 0, 0, 0, 0, 0},
197         .elementsize = size,
198         .zero_offset = 0,
199         .stepsize = 0.0f,
200     };
201     for (size_t i = 0; i < alignedDims.size() && i < 8; ++i) {
202         output.max_sizes[i] = alignedDims[i];
203     }
204     return output;
205 }
206 
207 // printers
toString(uint32_t val)208 std::string toString(uint32_t val) {
209     return std::to_string(val);
210 }
211 
toString(float val)212 std::string toString(float val) {
213     return std::to_string(val);
214 }
215 
toString(hexagon_nn_nn_id id)216 std::string toString(hexagon_nn_nn_id id) {
217     return std::to_string(static_cast<int32_t>(id));
218 }
219 
toString(op_type op)220 std::string toString(op_type op) {
221     static const char* opText[] = {
222 #define DEF_OP(NAME, ...) "OP_" #NAME,
223 #include "hexagon_nn_controller/ops.def"
224 #undef DEF_OP
225     };
226     return static_cast<size_t>(op) < sizeof(opText) / sizeof(char*)
227                ? opText[static_cast<size_t>(op)]
228                : "<invalid op_type>";
229 }
230 
toString(hexagon_nn_padding_type padding)231 std::string toString(hexagon_nn_padding_type padding) {
232     static const char* paddingText[] = {
233         "NN_PAD_NA",
234         "NN_PAD_SAME",
235         "NN_PAD_VALID",
236         "NN_PAD_MIRROR_REFLECT",
237         "NN_PAD_MIRROR_SYMMETRIC",
238         "NN_PAD_SAME_CAFFE",
239     };
240     return static_cast<size_t>(padding) < sizeof(paddingText) / sizeof(char*)
241                ? paddingText[static_cast<size_t>(padding)]
242                : "<invalid hexagon_nn_padding_type>";
243 }
244 
toString(const hexagon_nn_input & input)245 std::string toString(const hexagon_nn_input& input) {
246     return "hexagon_nn_input{.src_id: " + std::to_string(input.src_id) +
247            ", .output_idx: " + std::to_string(input.output_idx) + "}";
248 }
249 
toString(const hexagon_nn_output & output)250 std::string toString(const hexagon_nn_output& output) {
251     return "hexagon_nn_output{.rank: " + std::to_string(output.rank) + ", .max_sizes: [" +
252            std::to_string(output.max_sizes[0]) + ", " + std::to_string(output.max_sizes[1]) + ", " +
253            std::to_string(output.max_sizes[2]) + ", " + std::to_string(output.max_sizes[3]) + ", " +
254            std::to_string(output.max_sizes[4]) + ", " + std::to_string(output.max_sizes[5]) + ", " +
255            std::to_string(output.max_sizes[6]) + ", " + std::to_string(output.max_sizes[7]) + "]" +
256            ", .elementsize: " + std::to_string(output.elementsize) +
257            ", .zero_offset: " + std::to_string(output.zero_offset) +
258            ", .stepsize: " + std::to_string(output.stepsize) + "}";
259 }
260 
toString(const hexagon_nn_tensordef & tensordef)261 std::string toString(const hexagon_nn_tensordef& tensordef) {
262     return "hexagon_nn_tensordef{.batches: " + std::to_string(tensordef.batches) +
263            ", .height: " + std::to_string(tensordef.height) +
264            ", .width: " + std::to_string(tensordef.width) +
265            ", .depth: " + std::to_string(tensordef.depth) +
266            ", .data: " + std::to_string(reinterpret_cast<uintptr_t>(tensordef.data)) +
267            ", .dataLen: " + std::to_string(tensordef.dataLen) +
268            ", .data_valid_len: " + std::to_string(tensordef.data_valid_len) +
269            ", .unused: " + std::to_string(tensordef.unused) + "}";
270 }
271 
toString(const hexagon_nn_perfinfo & perfinfo)272 std::string toString(const hexagon_nn_perfinfo& perfinfo) {
273     return "hexagon_nn_perfinfo{.node_id: " + std::to_string(perfinfo.node_id) +
274            ", .executions: " + std::to_string(perfinfo.executions) +
275            ", .counter_lo: " + std::to_string(perfinfo.counter_lo) +
276            ", .counter_hi: " + std::to_string(perfinfo.counter_hi) + "}";
277 }
278 
toString(const::android::nn::Shape & shape)279 std::string toString(const ::android::nn::Shape& shape) {
280     return "Shape{.type: " + toString(shape.type) +
281            ", .dimensions: " + toString(shape.dimensions.data(), shape.dimensions.size()) +
282            ", .scale: " + std::to_string(shape.scale) +
283            ", .zeroPoint: " + std::to_string(shape.offset) + "}";
284 }
285 
286 }  // namespace hexagon
287 }  // namespace implementation
288 }  // namespace V1_0
289 }  // namespace neuralnetworks
290 }  // namespace hardware
291 }  // namespace android
292