1 //===- llvm/Analysis/AliasAnalysis.h - Alias Analysis Interface -*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the generic AliasAnalysis interface, which is used as the
11 // common interface used by all clients of alias analysis information, and
12 // implemented by all alias analysis implementations. Mod/Ref information is
13 // also captured by this interface.
14 //
15 // Implementations of this interface must implement the various virtual methods,
16 // which automatically provides functionality for the entire suite of client
17 // APIs.
18 //
19 // This API identifies memory regions with the MemoryLocation class. The pointer
20 // component specifies the base memory address of the region. The Size specifies
21 // the maximum size (in address units) of the memory region, or
22 // MemoryLocation::UnknownSize if the size is not known. The TBAA tag
23 // identifies the "type" of the memory reference; see the
24 // TypeBasedAliasAnalysis class for details.
25 //
26 // Some non-obvious details include:
27 // - Pointers that point to two completely different objects in memory never
28 // alias, regardless of the value of the Size component.
29 // - NoAlias doesn't imply inequal pointers. The most obvious example of this
30 // is two pointers to constant memory. Even if they are equal, constant
31 // memory is never stored to, so there will never be any dependencies.
32 // In this and other situations, the pointers may be both NoAlias and
33 // MustAlias at the same time. The current API can only return one result,
34 // though this is rarely a problem in practice.
35 //
36 //===----------------------------------------------------------------------===//
37
38 #ifndef LLVM_ANALYSIS_ALIASANALYSIS_H
39 #define LLVM_ANALYSIS_ALIASANALYSIS_H
40
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/SmallVector.h"
44 #include "llvm/Analysis/MemoryLocation.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/IR/CallSite.h"
47 #include "llvm/IR/Function.h"
48 #include "llvm/IR/Instruction.h"
49 #include "llvm/IR/Instructions.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/Pass.h"
52 #include <cstdint>
53 #include <functional>
54 #include <memory>
55 #include <vector>
56
57 namespace llvm {
58
59 class AnalysisUsage;
60 class BasicAAResult;
61 class BasicBlock;
62 class DominatorTree;
63 class OrderedBasicBlock;
64 class Value;
65
66 /// The possible results of an alias query.
67 ///
68 /// These results are always computed between two MemoryLocation objects as
69 /// a query to some alias analysis.
70 ///
71 /// Note that these are unscoped enumerations because we would like to support
72 /// implicitly testing a result for the existence of any possible aliasing with
73 /// a conversion to bool, but an "enum class" doesn't support this. The
74 /// canonical names from the literature are suffixed and unique anyways, and so
75 /// they serve as global constants in LLVM for these results.
76 ///
77 /// See docs/AliasAnalysis.html for more information on the specific meanings
78 /// of these values.
79 enum AliasResult : uint8_t {
80 /// The two locations do not alias at all.
81 ///
82 /// This value is arranged to convert to false, while all other values
83 /// convert to true. This allows a boolean context to convert the result to
84 /// a binary flag indicating whether there is the possibility of aliasing.
85 NoAlias = 0,
86 /// The two locations may or may not alias. This is the least precise result.
87 MayAlias,
88 /// The two locations alias, but only due to a partial overlap.
89 PartialAlias,
90 /// The two locations precisely alias each other.
91 MustAlias,
92 };
93
94 /// << operator for AliasResult.
95 raw_ostream &operator<<(raw_ostream &OS, AliasResult AR);
96
97 /// Flags indicating whether a memory access modifies or references memory.
98 ///
99 /// This is no access at all, a modification, a reference, or both
100 /// a modification and a reference. These are specifically structured such that
101 /// they form a three bit matrix and bit-tests for 'mod' or 'ref' or 'must'
102 /// work with any of the possible values.
103 enum class ModRefInfo : uint8_t {
104 /// Must is provided for completeness, but no routines will return only
105 /// Must today. See definition of Must below.
106 Must = 0,
107 /// The access may reference the value stored in memory,
108 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
109 MustRef = 1,
110 /// The access may modify the value stored in memory,
111 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
112 MustMod = 2,
113 /// The access may reference, modify or both the value stored in memory,
114 /// a mustAlias relation was found, and no mayAlias or partialAlias found.
115 MustModRef = MustRef | MustMod,
116 /// The access neither references nor modifies the value stored in memory.
117 NoModRef = 4,
118 /// The access may reference the value stored in memory.
119 Ref = NoModRef | MustRef,
120 /// The access may modify the value stored in memory.
121 Mod = NoModRef | MustMod,
122 /// The access may reference and may modify the value stored in memory.
123 ModRef = Ref | Mod,
124
125 /// About Must:
126 /// Must is set in a best effort manner.
127 /// We usually do not try our best to infer Must, instead it is merely
128 /// another piece of "free" information that is presented when available.
129 /// Must set means there was certainly a MustAlias found. For calls,
130 /// where multiple arguments are checked (argmemonly), this translates to
131 /// only MustAlias or NoAlias was found.
132 /// Must is not set for RAR accesses, even if the two locations must
133 /// alias. The reason is that two read accesses translate to an early return
134 /// of NoModRef. An additional alias check to set Must may be
135 /// expensive. Other cases may also not set Must(e.g. callCapturesBefore).
136 /// We refer to Must being *set* when the most significant bit is *cleared*.
137 /// Conversely we *clear* Must information by *setting* the Must bit to 1.
138 };
139
isNoModRef(const ModRefInfo MRI)140 LLVM_NODISCARD inline bool isNoModRef(const ModRefInfo MRI) {
141 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
142 static_cast<int>(ModRefInfo::Must);
143 }
isModOrRefSet(const ModRefInfo MRI)144 LLVM_NODISCARD inline bool isModOrRefSet(const ModRefInfo MRI) {
145 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef);
146 }
isModAndRefSet(const ModRefInfo MRI)147 LLVM_NODISCARD inline bool isModAndRefSet(const ModRefInfo MRI) {
148 return (static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustModRef)) ==
149 static_cast<int>(ModRefInfo::MustModRef);
150 }
isModSet(const ModRefInfo MRI)151 LLVM_NODISCARD inline bool isModSet(const ModRefInfo MRI) {
152 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustMod);
153 }
isRefSet(const ModRefInfo MRI)154 LLVM_NODISCARD inline bool isRefSet(const ModRefInfo MRI) {
155 return static_cast<int>(MRI) & static_cast<int>(ModRefInfo::MustRef);
156 }
isMustSet(const ModRefInfo MRI)157 LLVM_NODISCARD inline bool isMustSet(const ModRefInfo MRI) {
158 return !(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::NoModRef));
159 }
160
setMod(const ModRefInfo MRI)161 LLVM_NODISCARD inline ModRefInfo setMod(const ModRefInfo MRI) {
162 return ModRefInfo(static_cast<int>(MRI) |
163 static_cast<int>(ModRefInfo::MustMod));
164 }
setRef(const ModRefInfo MRI)165 LLVM_NODISCARD inline ModRefInfo setRef(const ModRefInfo MRI) {
166 return ModRefInfo(static_cast<int>(MRI) |
167 static_cast<int>(ModRefInfo::MustRef));
168 }
setMust(const ModRefInfo MRI)169 LLVM_NODISCARD inline ModRefInfo setMust(const ModRefInfo MRI) {
170 return ModRefInfo(static_cast<int>(MRI) &
171 static_cast<int>(ModRefInfo::MustModRef));
172 }
setModAndRef(const ModRefInfo MRI)173 LLVM_NODISCARD inline ModRefInfo setModAndRef(const ModRefInfo MRI) {
174 return ModRefInfo(static_cast<int>(MRI) |
175 static_cast<int>(ModRefInfo::MustModRef));
176 }
clearMod(const ModRefInfo MRI)177 LLVM_NODISCARD inline ModRefInfo clearMod(const ModRefInfo MRI) {
178 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Ref));
179 }
clearRef(const ModRefInfo MRI)180 LLVM_NODISCARD inline ModRefInfo clearRef(const ModRefInfo MRI) {
181 return ModRefInfo(static_cast<int>(MRI) & static_cast<int>(ModRefInfo::Mod));
182 }
clearMust(const ModRefInfo MRI)183 LLVM_NODISCARD inline ModRefInfo clearMust(const ModRefInfo MRI) {
184 return ModRefInfo(static_cast<int>(MRI) |
185 static_cast<int>(ModRefInfo::NoModRef));
186 }
unionModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)187 LLVM_NODISCARD inline ModRefInfo unionModRef(const ModRefInfo MRI1,
188 const ModRefInfo MRI2) {
189 return ModRefInfo(static_cast<int>(MRI1) | static_cast<int>(MRI2));
190 }
intersectModRef(const ModRefInfo MRI1,const ModRefInfo MRI2)191 LLVM_NODISCARD inline ModRefInfo intersectModRef(const ModRefInfo MRI1,
192 const ModRefInfo MRI2) {
193 return ModRefInfo(static_cast<int>(MRI1) & static_cast<int>(MRI2));
194 }
195
196 /// The locations at which a function might access memory.
197 ///
198 /// These are primarily used in conjunction with the \c AccessKind bits to
199 /// describe both the nature of access and the locations of access for a
200 /// function call.
201 enum FunctionModRefLocation {
202 /// Base case is no access to memory.
203 FMRL_Nowhere = 0,
204 /// Access to memory via argument pointers.
205 FMRL_ArgumentPointees = 8,
206 /// Memory that is inaccessible via LLVM IR.
207 FMRL_InaccessibleMem = 16,
208 /// Access to any memory.
209 FMRL_Anywhere = 32 | FMRL_InaccessibleMem | FMRL_ArgumentPointees
210 };
211
212 /// Summary of how a function affects memory in the program.
213 ///
214 /// Loads from constant globals are not considered memory accesses for this
215 /// interface. Also, functions may freely modify stack space local to their
216 /// invocation without having to report it through these interfaces.
217 enum FunctionModRefBehavior {
218 /// This function does not perform any non-local loads or stores to memory.
219 ///
220 /// This property corresponds to the GCC 'const' attribute.
221 /// This property corresponds to the LLVM IR 'readnone' attribute.
222 /// This property corresponds to the IntrNoMem LLVM intrinsic flag.
223 FMRB_DoesNotAccessMemory =
224 FMRL_Nowhere | static_cast<int>(ModRefInfo::NoModRef),
225
226 /// The only memory references in this function (if it has any) are
227 /// non-volatile loads from objects pointed to by its pointer-typed
228 /// arguments, with arbitrary offsets.
229 ///
230 /// This property corresponds to the IntrReadArgMem LLVM intrinsic flag.
231 FMRB_OnlyReadsArgumentPointees =
232 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::Ref),
233
234 /// The only memory references in this function (if it has any) are
235 /// non-volatile loads and stores from objects pointed to by its
236 /// pointer-typed arguments, with arbitrary offsets.
237 ///
238 /// This property corresponds to the IntrArgMemOnly LLVM intrinsic flag.
239 FMRB_OnlyAccessesArgumentPointees =
240 FMRL_ArgumentPointees | static_cast<int>(ModRefInfo::ModRef),
241
242 /// The only memory references in this function (if it has any) are
243 /// references of memory that is otherwise inaccessible via LLVM IR.
244 ///
245 /// This property corresponds to the LLVM IR inaccessiblememonly attribute.
246 FMRB_OnlyAccessesInaccessibleMem =
247 FMRL_InaccessibleMem | static_cast<int>(ModRefInfo::ModRef),
248
249 /// The function may perform non-volatile loads and stores of objects
250 /// pointed to by its pointer-typed arguments, with arbitrary offsets, and
251 /// it may also perform loads and stores of memory that is otherwise
252 /// inaccessible via LLVM IR.
253 ///
254 /// This property corresponds to the LLVM IR
255 /// inaccessiblemem_or_argmemonly attribute.
256 FMRB_OnlyAccessesInaccessibleOrArgMem = FMRL_InaccessibleMem |
257 FMRL_ArgumentPointees |
258 static_cast<int>(ModRefInfo::ModRef),
259
260 /// This function does not perform any non-local stores or volatile loads,
261 /// but may read from any memory location.
262 ///
263 /// This property corresponds to the GCC 'pure' attribute.
264 /// This property corresponds to the LLVM IR 'readonly' attribute.
265 /// This property corresponds to the IntrReadMem LLVM intrinsic flag.
266 FMRB_OnlyReadsMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Ref),
267
268 // This function does not read from memory anywhere, but may write to any
269 // memory location.
270 //
271 // This property corresponds to the LLVM IR 'writeonly' attribute.
272 // This property corresponds to the IntrWriteMem LLVM intrinsic flag.
273 FMRB_DoesNotReadMemory = FMRL_Anywhere | static_cast<int>(ModRefInfo::Mod),
274
275 /// This indicates that the function could not be classified into one of the
276 /// behaviors above.
277 FMRB_UnknownModRefBehavior =
278 FMRL_Anywhere | static_cast<int>(ModRefInfo::ModRef)
279 };
280
281 // Wrapper method strips bits significant only in FunctionModRefBehavior,
282 // to obtain a valid ModRefInfo. The benefit of using the wrapper is that if
283 // ModRefInfo enum changes, the wrapper can be updated to & with the new enum
284 // entry with all bits set to 1.
285 LLVM_NODISCARD inline ModRefInfo
createModRefInfo(const FunctionModRefBehavior FMRB)286 createModRefInfo(const FunctionModRefBehavior FMRB) {
287 return ModRefInfo(FMRB & static_cast<int>(ModRefInfo::ModRef));
288 }
289
290 class AAResults {
291 public:
292 // Make these results default constructable and movable. We have to spell
293 // these out because MSVC won't synthesize them.
AAResults(const TargetLibraryInfo & TLI)294 AAResults(const TargetLibraryInfo &TLI) : TLI(TLI) {}
295 AAResults(AAResults &&Arg);
296 ~AAResults();
297
298 /// Register a specific AA result.
addAAResult(AAResultT & AAResult)299 template <typename AAResultT> void addAAResult(AAResultT &AAResult) {
300 // FIXME: We should use a much lighter weight system than the usual
301 // polymorphic pattern because we don't own AAResult. It should
302 // ideally involve two pointers and no separate allocation.
303 AAs.emplace_back(new Model<AAResultT>(AAResult, *this));
304 }
305
306 /// Register a function analysis ID that the results aggregation depends on.
307 ///
308 /// This is used in the new pass manager to implement the invalidation logic
309 /// where we must invalidate the results aggregation if any of our component
310 /// analyses become invalid.
addAADependencyID(AnalysisKey * ID)311 void addAADependencyID(AnalysisKey *ID) { AADeps.push_back(ID); }
312
313 /// Handle invalidation events in the new pass manager.
314 ///
315 /// The aggregation is invalidated if any of the underlying analyses is
316 /// invalidated.
317 bool invalidate(Function &F, const PreservedAnalyses &PA,
318 FunctionAnalysisManager::Invalidator &Inv);
319
320 //===--------------------------------------------------------------------===//
321 /// \name Alias Queries
322 /// @{
323
324 /// The main low level interface to the alias analysis implementation.
325 /// Returns an AliasResult indicating whether the two pointers are aliased to
326 /// each other. This is the interface that must be implemented by specific
327 /// alias analysis implementations.
328 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);
329
330 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)331 AliasResult alias(const Value *V1, LocationSize V1Size, const Value *V2,
332 LocationSize V2Size) {
333 return alias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
334 }
335
336 /// A convenience wrapper around the primary \c alias interface.
alias(const Value * V1,const Value * V2)337 AliasResult alias(const Value *V1, const Value *V2) {
338 return alias(V1, MemoryLocation::UnknownSize, V2,
339 MemoryLocation::UnknownSize);
340 }
341
342 /// A trivial helper function to check to see if the specified pointers are
343 /// no-alias.
isNoAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)344 bool isNoAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
345 return alias(LocA, LocB) == NoAlias;
346 }
347
348 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,LocationSize V1Size,const Value * V2,LocationSize V2Size)349 bool isNoAlias(const Value *V1, LocationSize V1Size, const Value *V2,
350 LocationSize V2Size) {
351 return isNoAlias(MemoryLocation(V1, V1Size), MemoryLocation(V2, V2Size));
352 }
353
354 /// A convenience wrapper around the \c isNoAlias helper interface.
isNoAlias(const Value * V1,const Value * V2)355 bool isNoAlias(const Value *V1, const Value *V2) {
356 return isNoAlias(MemoryLocation(V1), MemoryLocation(V2));
357 }
358
359 /// A trivial helper function to check to see if the specified pointers are
360 /// must-alias.
isMustAlias(const MemoryLocation & LocA,const MemoryLocation & LocB)361 bool isMustAlias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
362 return alias(LocA, LocB) == MustAlias;
363 }
364
365 /// A convenience wrapper around the \c isMustAlias helper interface.
isMustAlias(const Value * V1,const Value * V2)366 bool isMustAlias(const Value *V1, const Value *V2) {
367 return alias(V1, 1, V2, 1) == MustAlias;
368 }
369
370 /// Checks whether the given location points to constant memory, or if
371 /// \p OrLocal is true whether it points to a local alloca.
372 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal = false);
373
374 /// A convenience wrapper around the primary \c pointsToConstantMemory
375 /// interface.
376 bool pointsToConstantMemory(const Value *P, bool OrLocal = false) {
377 return pointsToConstantMemory(MemoryLocation(P), OrLocal);
378 }
379
380 /// @}
381 //===--------------------------------------------------------------------===//
382 /// \name Simple mod/ref information
383 /// @{
384
385 /// Get the ModRef info associated with a pointer argument of a callsite. The
386 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
387 /// that these bits do not necessarily account for the overall behavior of
388 /// the function, but rather only provide additional per-argument
389 /// information. This never sets ModRefInfo::Must.
390 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);
391
392 /// Return the behavior of the given call site.
393 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);
394
395 /// Return the behavior when calling the given function.
396 FunctionModRefBehavior getModRefBehavior(const Function *F);
397
398 /// Checks if the specified call is known to never read or write memory.
399 ///
400 /// Note that if the call only reads from known-constant memory, it is also
401 /// legal to return true. Also, calls that unwind the stack are legal for
402 /// this predicate.
403 ///
404 /// Many optimizations (such as CSE and LICM) can be performed on such calls
405 /// without worrying about aliasing properties, and many calls have this
406 /// property (e.g. calls to 'sin' and 'cos').
407 ///
408 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(ImmutableCallSite CS)409 bool doesNotAccessMemory(ImmutableCallSite CS) {
410 return getModRefBehavior(CS) == FMRB_DoesNotAccessMemory;
411 }
412
413 /// Checks if the specified function is known to never read or write memory.
414 ///
415 /// Note that if the function only reads from known-constant memory, it is
416 /// also legal to return true. Also, function that unwind the stack are legal
417 /// for this predicate.
418 ///
419 /// Many optimizations (such as CSE and LICM) can be performed on such calls
420 /// to such functions without worrying about aliasing properties, and many
421 /// functions have this property (e.g. 'sin' and 'cos').
422 ///
423 /// This property corresponds to the GCC 'const' attribute.
doesNotAccessMemory(const Function * F)424 bool doesNotAccessMemory(const Function *F) {
425 return getModRefBehavior(F) == FMRB_DoesNotAccessMemory;
426 }
427
428 /// Checks if the specified call is known to only read from non-volatile
429 /// memory (or not access memory at all).
430 ///
431 /// Calls that unwind the stack are legal for this predicate.
432 ///
433 /// This property allows many common optimizations to be performed in the
434 /// absence of interfering store instructions, such as CSE of strlen calls.
435 ///
436 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(ImmutableCallSite CS)437 bool onlyReadsMemory(ImmutableCallSite CS) {
438 return onlyReadsMemory(getModRefBehavior(CS));
439 }
440
441 /// Checks if the specified function is known to only read from non-volatile
442 /// memory (or not access memory at all).
443 ///
444 /// Functions that unwind the stack are legal for this predicate.
445 ///
446 /// This property allows many common optimizations to be performed in the
447 /// absence of interfering store instructions, such as CSE of strlen calls.
448 ///
449 /// This property corresponds to the GCC 'pure' attribute.
onlyReadsMemory(const Function * F)450 bool onlyReadsMemory(const Function *F) {
451 return onlyReadsMemory(getModRefBehavior(F));
452 }
453
454 /// Checks if functions with the specified behavior are known to only read
455 /// from non-volatile memory (or not access memory at all).
onlyReadsMemory(FunctionModRefBehavior MRB)456 static bool onlyReadsMemory(FunctionModRefBehavior MRB) {
457 return !isModSet(createModRefInfo(MRB));
458 }
459
460 /// Checks if functions with the specified behavior are known to only write
461 /// memory (or not access memory at all).
doesNotReadMemory(FunctionModRefBehavior MRB)462 static bool doesNotReadMemory(FunctionModRefBehavior MRB) {
463 return !isRefSet(createModRefInfo(MRB));
464 }
465
466 /// Checks if functions with the specified behavior are known to read and
467 /// write at most from objects pointed to by their pointer-typed arguments
468 /// (with arbitrary offsets).
onlyAccessesArgPointees(FunctionModRefBehavior MRB)469 static bool onlyAccessesArgPointees(FunctionModRefBehavior MRB) {
470 return !(MRB & FMRL_Anywhere & ~FMRL_ArgumentPointees);
471 }
472
473 /// Checks if functions with the specified behavior are known to potentially
474 /// read or write from objects pointed to be their pointer-typed arguments
475 /// (with arbitrary offsets).
doesAccessArgPointees(FunctionModRefBehavior MRB)476 static bool doesAccessArgPointees(FunctionModRefBehavior MRB) {
477 return isModOrRefSet(createModRefInfo(MRB)) &&
478 (MRB & FMRL_ArgumentPointees);
479 }
480
481 /// Checks if functions with the specified behavior are known to read and
482 /// write at most from memory that is inaccessible from LLVM IR.
onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB)483 static bool onlyAccessesInaccessibleMem(FunctionModRefBehavior MRB) {
484 return !(MRB & FMRL_Anywhere & ~FMRL_InaccessibleMem);
485 }
486
487 /// Checks if functions with the specified behavior are known to potentially
488 /// read or write from memory that is inaccessible from LLVM IR.
doesAccessInaccessibleMem(FunctionModRefBehavior MRB)489 static bool doesAccessInaccessibleMem(FunctionModRefBehavior MRB) {
490 return isModOrRefSet(createModRefInfo(MRB)) && (MRB & FMRL_InaccessibleMem);
491 }
492
493 /// Checks if functions with the specified behavior are known to read and
494 /// write at most from memory that is inaccessible from LLVM IR or objects
495 /// pointed to by their pointer-typed arguments (with arbitrary offsets).
onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB)496 static bool onlyAccessesInaccessibleOrArgMem(FunctionModRefBehavior MRB) {
497 return !(MRB & FMRL_Anywhere &
498 ~(FMRL_InaccessibleMem | FMRL_ArgumentPointees));
499 }
500
501 /// getModRefInfo (for call sites) - Return information about whether
502 /// a particular call site modifies or reads the specified memory location.
503 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);
504
505 /// getModRefInfo (for call sites) - A convenience wrapper.
getModRefInfo(ImmutableCallSite CS,const Value * P,LocationSize Size)506 ModRefInfo getModRefInfo(ImmutableCallSite CS, const Value *P,
507 LocationSize Size) {
508 return getModRefInfo(CS, MemoryLocation(P, Size));
509 }
510
511 /// getModRefInfo (for calls) - Return information about whether
512 /// a particular call modifies or reads the specified memory location.
getModRefInfo(const CallInst * C,const MemoryLocation & Loc)513 ModRefInfo getModRefInfo(const CallInst *C, const MemoryLocation &Loc) {
514 return getModRefInfo(ImmutableCallSite(C), Loc);
515 }
516
517 /// getModRefInfo (for calls) - A convenience wrapper.
getModRefInfo(const CallInst * C,const Value * P,LocationSize Size)518 ModRefInfo getModRefInfo(const CallInst *C, const Value *P,
519 LocationSize Size) {
520 return getModRefInfo(C, MemoryLocation(P, Size));
521 }
522
523 /// getModRefInfo (for invokes) - Return information about whether
524 /// a particular invoke modifies or reads the specified memory location.
getModRefInfo(const InvokeInst * I,const MemoryLocation & Loc)525 ModRefInfo getModRefInfo(const InvokeInst *I, const MemoryLocation &Loc) {
526 return getModRefInfo(ImmutableCallSite(I), Loc);
527 }
528
529 /// getModRefInfo (for invokes) - A convenience wrapper.
getModRefInfo(const InvokeInst * I,const Value * P,LocationSize Size)530 ModRefInfo getModRefInfo(const InvokeInst *I, const Value *P,
531 LocationSize Size) {
532 return getModRefInfo(I, MemoryLocation(P, Size));
533 }
534
535 /// getModRefInfo (for loads) - Return information about whether
536 /// a particular load modifies or reads the specified memory location.
537 ModRefInfo getModRefInfo(const LoadInst *L, const MemoryLocation &Loc);
538
539 /// getModRefInfo (for loads) - A convenience wrapper.
getModRefInfo(const LoadInst * L,const Value * P,LocationSize Size)540 ModRefInfo getModRefInfo(const LoadInst *L, const Value *P,
541 LocationSize Size) {
542 return getModRefInfo(L, MemoryLocation(P, Size));
543 }
544
545 /// getModRefInfo (for stores) - Return information about whether
546 /// a particular store modifies or reads the specified memory location.
547 ModRefInfo getModRefInfo(const StoreInst *S, const MemoryLocation &Loc);
548
549 /// getModRefInfo (for stores) - A convenience wrapper.
getModRefInfo(const StoreInst * S,const Value * P,LocationSize Size)550 ModRefInfo getModRefInfo(const StoreInst *S, const Value *P,
551 LocationSize Size) {
552 return getModRefInfo(S, MemoryLocation(P, Size));
553 }
554
555 /// getModRefInfo (for fences) - Return information about whether
556 /// a particular store modifies or reads the specified memory location.
557 ModRefInfo getModRefInfo(const FenceInst *S, const MemoryLocation &Loc);
558
559 /// getModRefInfo (for fences) - A convenience wrapper.
getModRefInfo(const FenceInst * S,const Value * P,LocationSize Size)560 ModRefInfo getModRefInfo(const FenceInst *S, const Value *P,
561 LocationSize Size) {
562 return getModRefInfo(S, MemoryLocation(P, Size));
563 }
564
565 /// getModRefInfo (for cmpxchges) - Return information about whether
566 /// a particular cmpxchg modifies or reads the specified memory location.
567 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX,
568 const MemoryLocation &Loc);
569
570 /// getModRefInfo (for cmpxchges) - A convenience wrapper.
getModRefInfo(const AtomicCmpXchgInst * CX,const Value * P,unsigned Size)571 ModRefInfo getModRefInfo(const AtomicCmpXchgInst *CX, const Value *P,
572 unsigned Size) {
573 return getModRefInfo(CX, MemoryLocation(P, Size));
574 }
575
576 /// getModRefInfo (for atomicrmws) - Return information about whether
577 /// a particular atomicrmw modifies or reads the specified memory location.
578 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const MemoryLocation &Loc);
579
580 /// getModRefInfo (for atomicrmws) - A convenience wrapper.
getModRefInfo(const AtomicRMWInst * RMW,const Value * P,unsigned Size)581 ModRefInfo getModRefInfo(const AtomicRMWInst *RMW, const Value *P,
582 unsigned Size) {
583 return getModRefInfo(RMW, MemoryLocation(P, Size));
584 }
585
586 /// getModRefInfo (for va_args) - Return information about whether
587 /// a particular va_arg modifies or reads the specified memory location.
588 ModRefInfo getModRefInfo(const VAArgInst *I, const MemoryLocation &Loc);
589
590 /// getModRefInfo (for va_args) - A convenience wrapper.
getModRefInfo(const VAArgInst * I,const Value * P,LocationSize Size)591 ModRefInfo getModRefInfo(const VAArgInst *I, const Value *P,
592 LocationSize Size) {
593 return getModRefInfo(I, MemoryLocation(P, Size));
594 }
595
596 /// getModRefInfo (for catchpads) - Return information about whether
597 /// a particular catchpad modifies or reads the specified memory location.
598 ModRefInfo getModRefInfo(const CatchPadInst *I, const MemoryLocation &Loc);
599
600 /// getModRefInfo (for catchpads) - A convenience wrapper.
getModRefInfo(const CatchPadInst * I,const Value * P,LocationSize Size)601 ModRefInfo getModRefInfo(const CatchPadInst *I, const Value *P,
602 LocationSize Size) {
603 return getModRefInfo(I, MemoryLocation(P, Size));
604 }
605
606 /// getModRefInfo (for catchrets) - Return information about whether
607 /// a particular catchret modifies or reads the specified memory location.
608 ModRefInfo getModRefInfo(const CatchReturnInst *I, const MemoryLocation &Loc);
609
610 /// getModRefInfo (for catchrets) - A convenience wrapper.
getModRefInfo(const CatchReturnInst * I,const Value * P,LocationSize Size)611 ModRefInfo getModRefInfo(const CatchReturnInst *I, const Value *P,
612 LocationSize Size) {
613 return getModRefInfo(I, MemoryLocation(P, Size));
614 }
615
616 /// Check whether or not an instruction may read or write the optionally
617 /// specified memory location.
618 ///
619 ///
620 /// An instruction that doesn't read or write memory may be trivially LICM'd
621 /// for example.
622 ///
623 /// For function calls, this delegates to the alias-analysis specific
624 /// call-site mod-ref behavior queries. Otherwise it delegates to the specific
625 /// helpers above.
getModRefInfo(const Instruction * I,const Optional<MemoryLocation> & OptLoc)626 ModRefInfo getModRefInfo(const Instruction *I,
627 const Optional<MemoryLocation> &OptLoc) {
628 if (OptLoc == None) {
629 if (auto CS = ImmutableCallSite(I)) {
630 return createModRefInfo(getModRefBehavior(CS));
631 }
632 }
633
634 const MemoryLocation &Loc = OptLoc.getValueOr(MemoryLocation());
635
636 switch (I->getOpcode()) {
637 case Instruction::VAArg: return getModRefInfo((const VAArgInst*)I, Loc);
638 case Instruction::Load: return getModRefInfo((const LoadInst*)I, Loc);
639 case Instruction::Store: return getModRefInfo((const StoreInst*)I, Loc);
640 case Instruction::Fence: return getModRefInfo((const FenceInst*)I, Loc);
641 case Instruction::AtomicCmpXchg:
642 return getModRefInfo((const AtomicCmpXchgInst*)I, Loc);
643 case Instruction::AtomicRMW:
644 return getModRefInfo((const AtomicRMWInst*)I, Loc);
645 case Instruction::Call: return getModRefInfo((const CallInst*)I, Loc);
646 case Instruction::Invoke: return getModRefInfo((const InvokeInst*)I,Loc);
647 case Instruction::CatchPad:
648 return getModRefInfo((const CatchPadInst *)I, Loc);
649 case Instruction::CatchRet:
650 return getModRefInfo((const CatchReturnInst *)I, Loc);
651 default:
652 return ModRefInfo::NoModRef;
653 }
654 }
655
656 /// A convenience wrapper for constructing the memory location.
getModRefInfo(const Instruction * I,const Value * P,LocationSize Size)657 ModRefInfo getModRefInfo(const Instruction *I, const Value *P,
658 LocationSize Size) {
659 return getModRefInfo(I, MemoryLocation(P, Size));
660 }
661
662 /// Return information about whether a call and an instruction may refer to
663 /// the same memory locations.
664 ModRefInfo getModRefInfo(Instruction *I, ImmutableCallSite Call);
665
666 /// Return information about whether two call sites may refer to the same set
667 /// of memory locations. See the AA documentation for details:
668 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
669 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);
670
671 /// Return information about whether a particular call site modifies
672 /// or reads the specified memory location \p MemLoc before instruction \p I
673 /// in a BasicBlock. An ordered basic block \p OBB can be used to speed up
674 /// instruction ordering queries inside the BasicBlock containing \p I.
675 /// Early exits in callCapturesBefore may lead to ModRefInfo::Must not being
676 /// set.
677 ModRefInfo callCapturesBefore(const Instruction *I,
678 const MemoryLocation &MemLoc, DominatorTree *DT,
679 OrderedBasicBlock *OBB = nullptr);
680
681 /// A convenience wrapper to synthesize a memory location.
682 ModRefInfo callCapturesBefore(const Instruction *I, const Value *P,
683 LocationSize Size, DominatorTree *DT,
684 OrderedBasicBlock *OBB = nullptr) {
685 return callCapturesBefore(I, MemoryLocation(P, Size), DT, OBB);
686 }
687
688 /// @}
689 //===--------------------------------------------------------------------===//
690 /// \name Higher level methods for querying mod/ref information.
691 /// @{
692
693 /// Check if it is possible for execution of the specified basic block to
694 /// modify the location Loc.
695 bool canBasicBlockModify(const BasicBlock &BB, const MemoryLocation &Loc);
696
697 /// A convenience wrapper synthesizing a memory location.
canBasicBlockModify(const BasicBlock & BB,const Value * P,LocationSize Size)698 bool canBasicBlockModify(const BasicBlock &BB, const Value *P,
699 LocationSize Size) {
700 return canBasicBlockModify(BB, MemoryLocation(P, Size));
701 }
702
703 /// Check if it is possible for the execution of the specified instructions
704 /// to mod\ref (according to the mode) the location Loc.
705 ///
706 /// The instructions to consider are all of the instructions in the range of
707 /// [I1,I2] INCLUSIVE. I1 and I2 must be in the same basic block.
708 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
709 const MemoryLocation &Loc,
710 const ModRefInfo Mode);
711
712 /// A convenience wrapper synthesizing a memory location.
canInstructionRangeModRef(const Instruction & I1,const Instruction & I2,const Value * Ptr,LocationSize Size,const ModRefInfo Mode)713 bool canInstructionRangeModRef(const Instruction &I1, const Instruction &I2,
714 const Value *Ptr, LocationSize Size,
715 const ModRefInfo Mode) {
716 return canInstructionRangeModRef(I1, I2, MemoryLocation(Ptr, Size), Mode);
717 }
718
719 private:
720 class Concept;
721
722 template <typename T> class Model;
723
724 template <typename T> friend class AAResultBase;
725
726 const TargetLibraryInfo &TLI;
727
728 std::vector<std::unique_ptr<Concept>> AAs;
729
730 std::vector<AnalysisKey *> AADeps;
731 };
732
733 /// Temporary typedef for legacy code that uses a generic \c AliasAnalysis
734 /// pointer or reference.
735 using AliasAnalysis = AAResults;
736
737 /// A private abstract base class describing the concept of an individual alias
738 /// analysis implementation.
739 ///
740 /// This interface is implemented by any \c Model instantiation. It is also the
741 /// interface which a type used to instantiate the model must provide.
742 ///
743 /// All of these methods model methods by the same name in the \c
744 /// AAResults class. Only differences and specifics to how the
745 /// implementations are called are documented here.
746 class AAResults::Concept {
747 public:
748 virtual ~Concept() = 0;
749
750 /// An update API used internally by the AAResults to provide
751 /// a handle back to the top level aggregation.
752 virtual void setAAResults(AAResults *NewAAR) = 0;
753
754 //===--------------------------------------------------------------------===//
755 /// \name Alias Queries
756 /// @{
757
758 /// The main low level interface to the alias analysis implementation.
759 /// Returns an AliasResult indicating whether the two pointers are aliased to
760 /// each other. This is the interface that must be implemented by specific
761 /// alias analysis implementations.
762 virtual AliasResult alias(const MemoryLocation &LocA,
763 const MemoryLocation &LocB) = 0;
764
765 /// Checks whether the given location points to constant memory, or if
766 /// \p OrLocal is true whether it points to a local alloca.
767 virtual bool pointsToConstantMemory(const MemoryLocation &Loc,
768 bool OrLocal) = 0;
769
770 /// @}
771 //===--------------------------------------------------------------------===//
772 /// \name Simple mod/ref information
773 /// @{
774
775 /// Get the ModRef info associated with a pointer argument of a callsite. The
776 /// result's bits are set to indicate the allowed aliasing ModRef kinds. Note
777 /// that these bits do not necessarily account for the overall behavior of
778 /// the function, but rather only provide additional per-argument
779 /// information.
780 virtual ModRefInfo getArgModRefInfo(ImmutableCallSite CS,
781 unsigned ArgIdx) = 0;
782
783 /// Return the behavior of the given call site.
784 virtual FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) = 0;
785
786 /// Return the behavior when calling the given function.
787 virtual FunctionModRefBehavior getModRefBehavior(const Function *F) = 0;
788
789 /// getModRefInfo (for call sites) - Return information about whether
790 /// a particular call site modifies or reads the specified memory location.
791 virtual ModRefInfo getModRefInfo(ImmutableCallSite CS,
792 const MemoryLocation &Loc) = 0;
793
794 /// Return information about whether two call sites may refer to the same set
795 /// of memory locations. See the AA documentation for details:
796 /// http://llvm.org/docs/AliasAnalysis.html#ModRefInfo
797 virtual ModRefInfo getModRefInfo(ImmutableCallSite CS1,
798 ImmutableCallSite CS2) = 0;
799
800 /// @}
801 };
802
803 /// A private class template which derives from \c Concept and wraps some other
804 /// type.
805 ///
806 /// This models the concept by directly forwarding each interface point to the
807 /// wrapped type which must implement a compatible interface. This provides
808 /// a type erased binding.
809 template <typename AAResultT> class AAResults::Model final : public Concept {
810 AAResultT &Result;
811
812 public:
Model(AAResultT & Result,AAResults & AAR)813 explicit Model(AAResultT &Result, AAResults &AAR) : Result(Result) {
814 Result.setAAResults(&AAR);
815 }
816 ~Model() override = default;
817
setAAResults(AAResults * NewAAR)818 void setAAResults(AAResults *NewAAR) override { Result.setAAResults(NewAAR); }
819
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)820 AliasResult alias(const MemoryLocation &LocA,
821 const MemoryLocation &LocB) override {
822 return Result.alias(LocA, LocB);
823 }
824
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)825 bool pointsToConstantMemory(const MemoryLocation &Loc,
826 bool OrLocal) override {
827 return Result.pointsToConstantMemory(Loc, OrLocal);
828 }
829
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)830 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) override {
831 return Result.getArgModRefInfo(CS, ArgIdx);
832 }
833
getModRefBehavior(ImmutableCallSite CS)834 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) override {
835 return Result.getModRefBehavior(CS);
836 }
837
getModRefBehavior(const Function * F)838 FunctionModRefBehavior getModRefBehavior(const Function *F) override {
839 return Result.getModRefBehavior(F);
840 }
841
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)842 ModRefInfo getModRefInfo(ImmutableCallSite CS,
843 const MemoryLocation &Loc) override {
844 return Result.getModRefInfo(CS, Loc);
845 }
846
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)847 ModRefInfo getModRefInfo(ImmutableCallSite CS1,
848 ImmutableCallSite CS2) override {
849 return Result.getModRefInfo(CS1, CS2);
850 }
851 };
852
853 /// A CRTP-driven "mixin" base class to help implement the function alias
854 /// analysis results concept.
855 ///
856 /// Because of the nature of many alias analysis implementations, they often
857 /// only implement a subset of the interface. This base class will attempt to
858 /// implement the remaining portions of the interface in terms of simpler forms
859 /// of the interface where possible, and otherwise provide conservatively
860 /// correct fallback implementations.
861 ///
862 /// Implementors of an alias analysis should derive from this CRTP, and then
863 /// override specific methods that they wish to customize. There is no need to
864 /// use virtual anywhere, the CRTP base class does static dispatch to the
865 /// derived type passed into it.
866 template <typename DerivedT> class AAResultBase {
867 // Expose some parts of the interface only to the AAResults::Model
868 // for wrapping. Specifically, this allows the model to call our
869 // setAAResults method without exposing it as a fully public API.
870 friend class AAResults::Model<DerivedT>;
871
872 /// A pointer to the AAResults object that this AAResult is
873 /// aggregated within. May be null if not aggregated.
874 AAResults *AAR;
875
876 /// Helper to dispatch calls back through the derived type.
derived()877 DerivedT &derived() { return static_cast<DerivedT &>(*this); }
878
879 /// A setter for the AAResults pointer, which is used to satisfy the
880 /// AAResults::Model contract.
setAAResults(AAResults * NewAAR)881 void setAAResults(AAResults *NewAAR) { AAR = NewAAR; }
882
883 protected:
884 /// This proxy class models a common pattern where we delegate to either the
885 /// top-level \c AAResults aggregation if one is registered, or to the
886 /// current result if none are registered.
887 class AAResultsProxy {
888 AAResults *AAR;
889 DerivedT &CurrentResult;
890
891 public:
AAResultsProxy(AAResults * AAR,DerivedT & CurrentResult)892 AAResultsProxy(AAResults *AAR, DerivedT &CurrentResult)
893 : AAR(AAR), CurrentResult(CurrentResult) {}
894
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)895 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
896 return AAR ? AAR->alias(LocA, LocB) : CurrentResult.alias(LocA, LocB);
897 }
898
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)899 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
900 return AAR ? AAR->pointsToConstantMemory(Loc, OrLocal)
901 : CurrentResult.pointsToConstantMemory(Loc, OrLocal);
902 }
903
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)904 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
905 return AAR ? AAR->getArgModRefInfo(CS, ArgIdx) : CurrentResult.getArgModRefInfo(CS, ArgIdx);
906 }
907
getModRefBehavior(ImmutableCallSite CS)908 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
909 return AAR ? AAR->getModRefBehavior(CS) : CurrentResult.getModRefBehavior(CS);
910 }
911
getModRefBehavior(const Function * F)912 FunctionModRefBehavior getModRefBehavior(const Function *F) {
913 return AAR ? AAR->getModRefBehavior(F) : CurrentResult.getModRefBehavior(F);
914 }
915
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)916 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
917 return AAR ? AAR->getModRefInfo(CS, Loc)
918 : CurrentResult.getModRefInfo(CS, Loc);
919 }
920
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)921 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
922 return AAR ? AAR->getModRefInfo(CS1, CS2) : CurrentResult.getModRefInfo(CS1, CS2);
923 }
924 };
925
926 explicit AAResultBase() = default;
927
928 // Provide all the copy and move constructors so that derived types aren't
929 // constrained.
AAResultBase(const AAResultBase & Arg)930 AAResultBase(const AAResultBase &Arg) {}
AAResultBase(AAResultBase && Arg)931 AAResultBase(AAResultBase &&Arg) {}
932
933 /// Get a proxy for the best AA result set to query at this time.
934 ///
935 /// When this result is part of a larger aggregation, this will proxy to that
936 /// aggregation. When this result is used in isolation, it will just delegate
937 /// back to the derived class's implementation.
938 ///
939 /// Note that callers of this need to take considerable care to not cause
940 /// performance problems when they use this routine, in the case of a large
941 /// number of alias analyses being aggregated, it can be expensive to walk
942 /// back across the chain.
getBestAAResults()943 AAResultsProxy getBestAAResults() { return AAResultsProxy(AAR, derived()); }
944
945 public:
alias(const MemoryLocation & LocA,const MemoryLocation & LocB)946 AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB) {
947 return MayAlias;
948 }
949
pointsToConstantMemory(const MemoryLocation & Loc,bool OrLocal)950 bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal) {
951 return false;
952 }
953
getArgModRefInfo(ImmutableCallSite CS,unsigned ArgIdx)954 ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
955 return ModRefInfo::ModRef;
956 }
957
getModRefBehavior(ImmutableCallSite CS)958 FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS) {
959 return FMRB_UnknownModRefBehavior;
960 }
961
getModRefBehavior(const Function * F)962 FunctionModRefBehavior getModRefBehavior(const Function *F) {
963 return FMRB_UnknownModRefBehavior;
964 }
965
getModRefInfo(ImmutableCallSite CS,const MemoryLocation & Loc)966 ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc) {
967 return ModRefInfo::ModRef;
968 }
969
getModRefInfo(ImmutableCallSite CS1,ImmutableCallSite CS2)970 ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
971 return ModRefInfo::ModRef;
972 }
973 };
974
975 /// Return true if this pointer is returned by a noalias function.
976 bool isNoAliasCall(const Value *V);
977
978 /// Return true if this is an argument with the noalias attribute.
979 bool isNoAliasArgument(const Value *V);
980
981 /// Return true if this pointer refers to a distinct and identifiable object.
982 /// This returns true for:
983 /// Global Variables and Functions (but not Global Aliases)
984 /// Allocas
985 /// ByVal and NoAlias Arguments
986 /// NoAlias returns (e.g. calls to malloc)
987 ///
988 bool isIdentifiedObject(const Value *V);
989
990 /// Return true if V is umabigously identified at the function-level.
991 /// Different IdentifiedFunctionLocals can't alias.
992 /// Further, an IdentifiedFunctionLocal can not alias with any function
993 /// arguments other than itself, which is not necessarily true for
994 /// IdentifiedObjects.
995 bool isIdentifiedFunctionLocal(const Value *V);
996
997 /// A manager for alias analyses.
998 ///
999 /// This class can have analyses registered with it and when run, it will run
1000 /// all of them and aggregate their results into single AA results interface
1001 /// that dispatches across all of the alias analysis results available.
1002 ///
1003 /// Note that the order in which analyses are registered is very significant.
1004 /// That is the order in which the results will be aggregated and queried.
1005 ///
1006 /// This manager effectively wraps the AnalysisManager for registering alias
1007 /// analyses. When you register your alias analysis with this manager, it will
1008 /// ensure the analysis itself is registered with its AnalysisManager.
1009 class AAManager : public AnalysisInfoMixin<AAManager> {
1010 public:
1011 using Result = AAResults;
1012
1013 /// Register a specific AA result.
registerFunctionAnalysis()1014 template <typename AnalysisT> void registerFunctionAnalysis() {
1015 ResultGetters.push_back(&getFunctionAAResultImpl<AnalysisT>);
1016 }
1017
1018 /// Register a specific AA result.
registerModuleAnalysis()1019 template <typename AnalysisT> void registerModuleAnalysis() {
1020 ResultGetters.push_back(&getModuleAAResultImpl<AnalysisT>);
1021 }
1022
run(Function & F,FunctionAnalysisManager & AM)1023 Result run(Function &F, FunctionAnalysisManager &AM) {
1024 Result R(AM.getResult<TargetLibraryAnalysis>(F));
1025 for (auto &Getter : ResultGetters)
1026 (*Getter)(F, AM, R);
1027 return R;
1028 }
1029
1030 private:
1031 friend AnalysisInfoMixin<AAManager>;
1032
1033 static AnalysisKey Key;
1034
1035 SmallVector<void (*)(Function &F, FunctionAnalysisManager &AM,
1036 AAResults &AAResults),
1037 4> ResultGetters;
1038
1039 template <typename AnalysisT>
getFunctionAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1040 static void getFunctionAAResultImpl(Function &F,
1041 FunctionAnalysisManager &AM,
1042 AAResults &AAResults) {
1043 AAResults.addAAResult(AM.template getResult<AnalysisT>(F));
1044 AAResults.addAADependencyID(AnalysisT::ID());
1045 }
1046
1047 template <typename AnalysisT>
getModuleAAResultImpl(Function & F,FunctionAnalysisManager & AM,AAResults & AAResults)1048 static void getModuleAAResultImpl(Function &F, FunctionAnalysisManager &AM,
1049 AAResults &AAResults) {
1050 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
1051 auto &MAM = MAMProxy.getManager();
1052 if (auto *R = MAM.template getCachedResult<AnalysisT>(*F.getParent())) {
1053 AAResults.addAAResult(*R);
1054 MAMProxy
1055 .template registerOuterAnalysisInvalidation<AnalysisT, AAManager>();
1056 }
1057 }
1058 };
1059
1060 /// A wrapper pass to provide the legacy pass manager access to a suitably
1061 /// prepared AAResults object.
1062 class AAResultsWrapperPass : public FunctionPass {
1063 std::unique_ptr<AAResults> AAR;
1064
1065 public:
1066 static char ID;
1067
1068 AAResultsWrapperPass();
1069
getAAResults()1070 AAResults &getAAResults() { return *AAR; }
getAAResults()1071 const AAResults &getAAResults() const { return *AAR; }
1072
1073 bool runOnFunction(Function &F) override;
1074
1075 void getAnalysisUsage(AnalysisUsage &AU) const override;
1076 };
1077
1078 FunctionPass *createAAResultsWrapperPass();
1079
1080 /// A wrapper pass around a callback which can be used to populate the
1081 /// AAResults in the AAResultsWrapperPass from an external AA.
1082 ///
1083 /// The callback provided here will be used each time we prepare an AAResults
1084 /// object, and will receive a reference to the function wrapper pass, the
1085 /// function, and the AAResults object to populate. This should be used when
1086 /// setting up a custom pass pipeline to inject a hook into the AA results.
1087 ImmutablePass *createExternalAAWrapperPass(
1088 std::function<void(Pass &, Function &, AAResults &)> Callback);
1089
1090 /// A helper for the legacy pass manager to create a \c AAResults
1091 /// object populated to the best of our ability for a particular function when
1092 /// inside of a \c ModulePass or a \c CallGraphSCCPass.
1093 ///
1094 /// If a \c ModulePass or a \c CallGraphSCCPass calls \p
1095 /// createLegacyPMAAResults, it also needs to call \p addUsedAAAnalyses in \p
1096 /// getAnalysisUsage.
1097 AAResults createLegacyPMAAResults(Pass &P, Function &F, BasicAAResult &BAR);
1098
1099 /// A helper for the legacy pass manager to populate \p AU to add uses to make
1100 /// sure the analyses required by \p createLegacyPMAAResults are available.
1101 void getAAResultsAnalysisUsage(AnalysisUsage &AU);
1102
1103 } // end namespace llvm
1104
1105 #endif // LLVM_ANALYSIS_ALIASANALYSIS_H
1106