1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes an abstract interface used to get information about a 11 // target machines register file. This information is used for a variety of 12 // purposed, especially register allocation. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H 17 #define LLVM_CODEGEN_TARGETREGISTERINFO_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/CodeGen/MachineBasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/MC/LaneBitmask.h" 26 #include "llvm/MC/MCRegisterInfo.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include "llvm/Support/MachineValueType.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/Printable.h" 31 #include <cassert> 32 #include <cstdint> 33 #include <functional> 34 35 namespace llvm { 36 37 class BitVector; 38 class LiveRegMatrix; 39 class MachineFunction; 40 class MachineInstr; 41 class RegScavenger; 42 class VirtRegMap; 43 class LiveIntervals; 44 45 class TargetRegisterClass { 46 public: 47 using iterator = const MCPhysReg *; 48 using const_iterator = const MCPhysReg *; 49 using sc_iterator = const TargetRegisterClass* const *; 50 51 // Instance variables filled by tablegen, do not use! 52 const MCRegisterClass *MC; 53 const uint32_t *SubClassMask; 54 const uint16_t *SuperRegIndices; 55 const LaneBitmask LaneMask; 56 /// Classes with a higher priority value are assigned first by register 57 /// allocators using a greedy heuristic. The value is in the range [0,63]. 58 const uint8_t AllocationPriority; 59 /// Whether the class supports two (or more) disjunct subregister indices. 60 const bool HasDisjunctSubRegs; 61 /// Whether a combination of subregisters can cover every register in the 62 /// class. See also the CoveredBySubRegs description in Target.td. 63 const bool CoveredBySubRegs; 64 const sc_iterator SuperClasses; 65 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&); 66 67 /// Return the register class ID number. getID()68 unsigned getID() const { return MC->getID(); } 69 70 /// begin/end - Return all of the registers in this class. 71 /// begin()72 iterator begin() const { return MC->begin(); } end()73 iterator end() const { return MC->end(); } 74 75 /// Return the number of registers in this class. getNumRegs()76 unsigned getNumRegs() const { return MC->getNumRegs(); } 77 78 iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator> getRegisters()79 getRegisters() const { 80 return make_range(MC->begin(), MC->end()); 81 } 82 83 /// Return the specified register in the class. getRegister(unsigned i)84 unsigned getRegister(unsigned i) const { 85 return MC->getRegister(i); 86 } 87 88 /// Return true if the specified register is included in this register class. 89 /// This does not include virtual registers. contains(unsigned Reg)90 bool contains(unsigned Reg) const { 91 return MC->contains(Reg); 92 } 93 94 /// Return true if both registers are in this class. contains(unsigned Reg1,unsigned Reg2)95 bool contains(unsigned Reg1, unsigned Reg2) const { 96 return MC->contains(Reg1, Reg2); 97 } 98 99 /// Return the cost of copying a value between two registers in this class. 100 /// A negative number means the register class is very expensive 101 /// to copy e.g. status flag register classes. getCopyCost()102 int getCopyCost() const { return MC->getCopyCost(); } 103 104 /// Return true if this register class may be used to create virtual 105 /// registers. isAllocatable()106 bool isAllocatable() const { return MC->isAllocatable(); } 107 108 /// Return true if the specified TargetRegisterClass 109 /// is a proper sub-class of this TargetRegisterClass. hasSubClass(const TargetRegisterClass * RC)110 bool hasSubClass(const TargetRegisterClass *RC) const { 111 return RC != this && hasSubClassEq(RC); 112 } 113 114 /// Returns true if RC is a sub-class of or equal to this class. hasSubClassEq(const TargetRegisterClass * RC)115 bool hasSubClassEq(const TargetRegisterClass *RC) const { 116 unsigned ID = RC->getID(); 117 return (SubClassMask[ID / 32] >> (ID % 32)) & 1; 118 } 119 120 /// Return true if the specified TargetRegisterClass is a 121 /// proper super-class of this TargetRegisterClass. hasSuperClass(const TargetRegisterClass * RC)122 bool hasSuperClass(const TargetRegisterClass *RC) const { 123 return RC->hasSubClass(this); 124 } 125 126 /// Returns true if RC is a super-class of or equal to this class. hasSuperClassEq(const TargetRegisterClass * RC)127 bool hasSuperClassEq(const TargetRegisterClass *RC) const { 128 return RC->hasSubClassEq(this); 129 } 130 131 /// Returns a bit vector of subclasses, including this one. 132 /// The vector is indexed by class IDs. 133 /// 134 /// To use it, consider the returned array as a chunk of memory that 135 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk 136 /// contains a bitset of the ID of the subclasses in big-endian style. 137 138 /// I.e., the representation of the memory from left to right at the 139 /// bit level looks like: 140 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ... 141 /// [ XXX NumRegClasses NumRegClasses - 1 ... ] 142 /// Where the number represents the class ID and XXX bits that 143 /// should be ignored. 144 /// 145 /// See the implementation of hasSubClassEq for an example of how it 146 /// can be used. getSubClassMask()147 const uint32_t *getSubClassMask() const { 148 return SubClassMask; 149 } 150 151 /// Returns a 0-terminated list of sub-register indices that project some 152 /// super-register class into this register class. The list has an entry for 153 /// each Idx such that: 154 /// 155 /// There exists SuperRC where: 156 /// For all Reg in SuperRC: 157 /// this->contains(Reg:Idx) getSuperRegIndices()158 const uint16_t *getSuperRegIndices() const { 159 return SuperRegIndices; 160 } 161 162 /// Returns a NULL-terminated list of super-classes. The 163 /// classes are ordered by ID which is also a topological ordering from large 164 /// to small classes. The list does NOT include the current class. getSuperClasses()165 sc_iterator getSuperClasses() const { 166 return SuperClasses; 167 } 168 169 /// Return true if this TargetRegisterClass is a subset 170 /// class of at least one other TargetRegisterClass. isASubClass()171 bool isASubClass() const { 172 return SuperClasses[0] != nullptr; 173 } 174 175 /// Returns the preferred order for allocating registers from this register 176 /// class in MF. The raw order comes directly from the .td file and may 177 /// include reserved registers that are not allocatable. 178 /// Register allocators should also make sure to allocate 179 /// callee-saved registers only after all the volatiles are used. The 180 /// RegisterClassInfo class provides filtered allocation orders with 181 /// callee-saved registers moved to the end. 182 /// 183 /// The MachineFunction argument can be used to tune the allocatable 184 /// registers based on the characteristics of the function, subtarget, or 185 /// other criteria. 186 /// 187 /// By default, this method returns all registers in the class. getRawAllocationOrder(const MachineFunction & MF)188 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const { 189 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs()); 190 } 191 192 /// Returns the combination of all lane masks of register in this class. 193 /// The lane masks of the registers are the combination of all lane masks 194 /// of their subregisters. Returns 1 if there are no subregisters. getLaneMask()195 LaneBitmask getLaneMask() const { 196 return LaneMask; 197 } 198 }; 199 200 /// Extra information, not in MCRegisterDesc, about registers. 201 /// These are used by codegen, not by MC. 202 struct TargetRegisterInfoDesc { 203 unsigned CostPerUse; // Extra cost of instructions using register. 204 bool inAllocatableClass; // Register belongs to an allocatable regclass. 205 }; 206 207 /// Each TargetRegisterClass has a per register weight, and weight 208 /// limit which must be less than the limits of its pressure sets. 209 struct RegClassWeight { 210 unsigned RegWeight; 211 unsigned WeightLimit; 212 }; 213 214 /// TargetRegisterInfo base class - We assume that the target defines a static 215 /// array of TargetRegisterDesc objects that represent all of the machine 216 /// registers that the target has. As such, we simply have to track a pointer 217 /// to this array so that we can turn register number into a register 218 /// descriptor. 219 /// 220 class TargetRegisterInfo : public MCRegisterInfo { 221 public: 222 using regclass_iterator = const TargetRegisterClass * const *; 223 using vt_iterator = const MVT::SimpleValueType *; 224 struct RegClassInfo { 225 unsigned RegSize, SpillSize, SpillAlignment; 226 vt_iterator VTList; 227 }; 228 private: 229 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen 230 const char *const *SubRegIndexNames; // Names of subreg indexes. 231 // Pointer to array of lane masks, one per sub-reg index. 232 const LaneBitmask *SubRegIndexLaneMasks; 233 234 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses 235 LaneBitmask CoveringLanes; 236 const RegClassInfo *const RCInfos; 237 unsigned HwMode; 238 239 protected: 240 TargetRegisterInfo(const TargetRegisterInfoDesc *ID, 241 regclass_iterator RCB, 242 regclass_iterator RCE, 243 const char *const *SRINames, 244 const LaneBitmask *SRILaneMasks, 245 LaneBitmask CoveringLanes, 246 const RegClassInfo *const RCIs, 247 unsigned Mode = 0); 248 virtual ~TargetRegisterInfo(); 249 250 public: 251 // Register numbers can represent physical registers, virtual registers, and 252 // sometimes stack slots. The unsigned values are divided into these ranges: 253 // 254 // 0 Not a register, can be used as a sentinel. 255 // [1;2^30) Physical registers assigned by TableGen. 256 // [2^30;2^31) Stack slots. (Rarely used.) 257 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo. 258 // 259 // Further sentinels can be allocated from the small negative integers. 260 // DenseMapInfo<unsigned> uses -1u and -2u. 261 262 /// isStackSlot - Sometimes it is useful the be able to store a non-negative 263 /// frame index in a variable that normally holds a register. isStackSlot() 264 /// returns true if Reg is in the range used for stack slots. 265 /// 266 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack 267 /// slots, so if a variable may contains a stack slot, always check 268 /// isStackSlot() first. 269 /// isStackSlot(unsigned Reg)270 static bool isStackSlot(unsigned Reg) { 271 return int(Reg) >= (1 << 30); 272 } 273 274 /// Compute the frame index from a register value representing a stack slot. stackSlot2Index(unsigned Reg)275 static int stackSlot2Index(unsigned Reg) { 276 assert(isStackSlot(Reg) && "Not a stack slot"); 277 return int(Reg - (1u << 30)); 278 } 279 280 /// Convert a non-negative frame index to a stack slot register value. index2StackSlot(int FI)281 static unsigned index2StackSlot(int FI) { 282 assert(FI >= 0 && "Cannot hold a negative frame index."); 283 return FI + (1u << 30); 284 } 285 286 /// Return true if the specified register number is in 287 /// the physical register namespace. isPhysicalRegister(unsigned Reg)288 static bool isPhysicalRegister(unsigned Reg) { 289 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 290 return int(Reg) > 0; 291 } 292 293 /// Return true if the specified register number is in 294 /// the virtual register namespace. isVirtualRegister(unsigned Reg)295 static bool isVirtualRegister(unsigned Reg) { 296 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first."); 297 return int(Reg) < 0; 298 } 299 300 /// Convert a virtual register number to a 0-based index. 301 /// The first virtual register in a function will get the index 0. virtReg2Index(unsigned Reg)302 static unsigned virtReg2Index(unsigned Reg) { 303 assert(isVirtualRegister(Reg) && "Not a virtual register"); 304 return Reg & ~(1u << 31); 305 } 306 307 /// Convert a 0-based index to a virtual register number. 308 /// This is the inverse operation of VirtReg2IndexFunctor below. index2VirtReg(unsigned Index)309 static unsigned index2VirtReg(unsigned Index) { 310 return Index | (1u << 31); 311 } 312 313 /// Return the size in bits of a register from class RC. getRegSizeInBits(const TargetRegisterClass & RC)314 unsigned getRegSizeInBits(const TargetRegisterClass &RC) const { 315 return getRegClassInfo(RC).RegSize; 316 } 317 318 /// Return the size in bytes of the stack slot allocated to hold a spilled 319 /// copy of a register from class RC. getSpillSize(const TargetRegisterClass & RC)320 unsigned getSpillSize(const TargetRegisterClass &RC) const { 321 return getRegClassInfo(RC).SpillSize / 8; 322 } 323 324 /// Return the minimum required alignment in bytes for a spill slot for 325 /// a register of this class. getSpillAlignment(const TargetRegisterClass & RC)326 unsigned getSpillAlignment(const TargetRegisterClass &RC) const { 327 return getRegClassInfo(RC).SpillAlignment / 8; 328 } 329 330 /// Return true if the given TargetRegisterClass has the ValueType T. isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)331 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const { 332 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) 333 if (MVT(*I) == T) 334 return true; 335 return false; 336 } 337 338 /// Loop over all of the value types that can be represented by values 339 /// in the given register class. legalclasstypes_begin(const TargetRegisterClass & RC)340 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const { 341 return getRegClassInfo(RC).VTList; 342 } 343 legalclasstypes_end(const TargetRegisterClass & RC)344 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const { 345 vt_iterator I = legalclasstypes_begin(RC); 346 while (*I != MVT::Other) 347 ++I; 348 return I; 349 } 350 351 /// Returns the Register Class of a physical register of the given type, 352 /// picking the most sub register class of the right type that contains this 353 /// physreg. 354 const TargetRegisterClass * 355 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const; 356 357 /// Return the maximal subclass of the given register class that is 358 /// allocatable or NULL. 359 const TargetRegisterClass * 360 getAllocatableClass(const TargetRegisterClass *RC) const; 361 362 /// Returns a bitset indexed by register number indicating if a register is 363 /// allocatable or not. If a register class is specified, returns the subset 364 /// for the class. 365 BitVector getAllocatableSet(const MachineFunction &MF, 366 const TargetRegisterClass *RC = nullptr) const; 367 368 /// Return the additional cost of using this register instead 369 /// of other registers in its class. getCostPerUse(unsigned RegNo)370 unsigned getCostPerUse(unsigned RegNo) const { 371 return InfoDesc[RegNo].CostPerUse; 372 } 373 374 /// Return true if the register is in the allocation of any register class. isInAllocatableClass(unsigned RegNo)375 bool isInAllocatableClass(unsigned RegNo) const { 376 return InfoDesc[RegNo].inAllocatableClass; 377 } 378 379 /// Return the human-readable symbolic target-specific 380 /// name for the specified SubRegIndex. getSubRegIndexName(unsigned SubIdx)381 const char *getSubRegIndexName(unsigned SubIdx) const { 382 assert(SubIdx && SubIdx < getNumSubRegIndices() && 383 "This is not a subregister index"); 384 return SubRegIndexNames[SubIdx-1]; 385 } 386 387 /// Return a bitmask representing the parts of a register that are covered by 388 /// SubIdx \see LaneBitmask. 389 /// 390 /// SubIdx == 0 is allowed, it has the lane mask ~0u. getSubRegIndexLaneMask(unsigned SubIdx)391 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const { 392 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index"); 393 return SubRegIndexLaneMasks[SubIdx]; 394 } 395 396 /// The lane masks returned by getSubRegIndexLaneMask() above can only be 397 /// used to determine if sub-registers overlap - they can't be used to 398 /// determine if a set of sub-registers completely cover another 399 /// sub-register. 400 /// 401 /// The X86 general purpose registers have two lanes corresponding to the 402 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have 403 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the 404 /// sub_32bit sub-register. 405 /// 406 /// On the other hand, the ARM NEON lanes fully cover their registers: The 407 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes. 408 /// This is related to the CoveredBySubRegs property on register definitions. 409 /// 410 /// This function returns a bit mask of lanes that completely cover their 411 /// sub-registers. More precisely, given: 412 /// 413 /// Covering = getCoveringLanes(); 414 /// MaskA = getSubRegIndexLaneMask(SubA); 415 /// MaskB = getSubRegIndexLaneMask(SubB); 416 /// 417 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by 418 /// SubB. getCoveringLanes()419 LaneBitmask getCoveringLanes() const { return CoveringLanes; } 420 421 /// Returns true if the two registers are equal or alias each other. 422 /// The registers may be virtual registers. regsOverlap(unsigned regA,unsigned regB)423 bool regsOverlap(unsigned regA, unsigned regB) const { 424 if (regA == regB) return true; 425 if (isVirtualRegister(regA) || isVirtualRegister(regB)) 426 return false; 427 428 // Regunits are numerically ordered. Find a common unit. 429 MCRegUnitIterator RUA(regA, this); 430 MCRegUnitIterator RUB(regB, this); 431 do { 432 if (*RUA == *RUB) return true; 433 if (*RUA < *RUB) ++RUA; 434 else ++RUB; 435 } while (RUA.isValid() && RUB.isValid()); 436 return false; 437 } 438 439 /// Returns true if Reg contains RegUnit. hasRegUnit(unsigned Reg,unsigned RegUnit)440 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const { 441 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units) 442 if (*Units == RegUnit) 443 return true; 444 return false; 445 } 446 447 /// Returns the original SrcReg unless it is the target of a copy-like 448 /// operation, in which case we chain backwards through all such operations 449 /// to the ultimate source register. If a physical register is encountered, 450 /// we stop the search. 451 virtual unsigned lookThruCopyLike(unsigned SrcReg, 452 const MachineRegisterInfo *MRI) const; 453 454 /// Return a null-terminated list of all of the callee-saved registers on 455 /// this target. The register should be in the order of desired callee-save 456 /// stack frame offset. The first register is closest to the incoming stack 457 /// pointer if stack grows down, and vice versa. 458 /// Notice: This function does not take into account disabled CSRs. 459 /// In most cases you will want to use instead the function 460 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo. 461 virtual const MCPhysReg* 462 getCalleeSavedRegs(const MachineFunction *MF) const = 0; 463 464 /// Return a mask of call-preserved registers for the given calling convention 465 /// on the current function. The mask should include all call-preserved 466 /// aliases. This is used by the register allocator to determine which 467 /// registers can be live across a call. 468 /// 469 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries. 470 /// A set bit indicates that all bits of the corresponding register are 471 /// preserved across the function call. The bit mask is expected to be 472 /// sub-register complete, i.e. if A is preserved, so are all its 473 /// sub-registers. 474 /// 475 /// Bits are numbered from the LSB, so the bit for physical register Reg can 476 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1. 477 /// 478 /// A NULL pointer means that no register mask will be used, and call 479 /// instructions should use implicit-def operands to indicate call clobbered 480 /// registers. 481 /// getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)482 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF, 483 CallingConv::ID) const { 484 // The default mask clobbers everything. All targets should override. 485 return nullptr; 486 } 487 488 /// Return a register mask that clobbers everything. getNoPreservedMask()489 virtual const uint32_t *getNoPreservedMask() const { 490 llvm_unreachable("target does not provide no preserved mask"); 491 } 492 493 /// Return true if all bits that are set in mask \p mask0 are also set in 494 /// \p mask1. 495 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const; 496 497 /// Return all the call-preserved register masks defined for this target. 498 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0; 499 virtual ArrayRef<const char *> getRegMaskNames() const = 0; 500 501 /// Returns a bitset indexed by physical register number indicating if a 502 /// register is a special register that has particular uses and should be 503 /// considered unavailable at all times, e.g. stack pointer, return address. 504 /// A reserved register: 505 /// - is not allocatable 506 /// - is considered always live 507 /// - is ignored by liveness tracking 508 /// It is often necessary to reserve the super registers of a reserved 509 /// register as well, to avoid them getting allocated indirectly. You may use 510 /// markSuperRegs() and checkAllSuperRegsMarked() in this case. 511 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0; 512 513 /// Returns true if PhysReg is unallocatable and constant throughout the 514 /// function. Used by MachineRegisterInfo::isConstantPhysReg(). isConstantPhysReg(unsigned PhysReg)515 virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; } 516 517 /// Physical registers that may be modified within a function but are 518 /// guaranteed to be restored before any uses. This is useful for targets that 519 /// have call sequences where a GOT register may be updated by the caller 520 /// prior to a call and is guaranteed to be restored (also by the caller) 521 /// after the call. isCallerPreservedPhysReg(unsigned PhysReg,const MachineFunction & MF)522 virtual bool isCallerPreservedPhysReg(unsigned PhysReg, 523 const MachineFunction &MF) const { 524 return false; 525 } 526 527 /// Prior to adding the live-out mask to a stackmap or patchpoint 528 /// instruction, provide the target the opportunity to adjust it (mainly to 529 /// remove pseudo-registers that should be ignored). adjustStackMapLiveOutMask(uint32_t * Mask)530 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {} 531 532 /// Return a super-register of the specified register 533 /// Reg so its sub-register of index SubIdx is Reg. getMatchingSuperReg(unsigned Reg,unsigned SubIdx,const TargetRegisterClass * RC)534 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx, 535 const TargetRegisterClass *RC) const { 536 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC); 537 } 538 539 /// Return a subclass of the specified register 540 /// class A so that each register in it has a sub-register of the 541 /// specified sub-register index which is in the specified register class B. 542 /// 543 /// TableGen will synthesize missing A sub-classes. 544 virtual const TargetRegisterClass * 545 getMatchingSuperRegClass(const TargetRegisterClass *A, 546 const TargetRegisterClass *B, unsigned Idx) const; 547 548 // For a copy-like instruction that defines a register of class DefRC with 549 // subreg index DefSubReg, reading from another source with class SrcRC and 550 // subregister SrcSubReg return true if this is a preferable copy 551 // instruction or an earlier use should be used. 552 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC, 553 unsigned DefSubReg, 554 const TargetRegisterClass *SrcRC, 555 unsigned SrcSubReg) const; 556 557 /// Returns the largest legal sub-class of RC that 558 /// supports the sub-register index Idx. 559 /// If no such sub-class exists, return NULL. 560 /// If all registers in RC already have an Idx sub-register, return RC. 561 /// 562 /// TableGen generates a version of this function that is good enough in most 563 /// cases. Targets can override if they have constraints that TableGen 564 /// doesn't understand. For example, the x86 sub_8bit sub-register index is 565 /// supported by the full GR32 register class in 64-bit mode, but only by the 566 /// GR32_ABCD regiister class in 32-bit mode. 567 /// 568 /// TableGen will synthesize missing RC sub-classes. 569 virtual const TargetRegisterClass * getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)570 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const { 571 assert(Idx == 0 && "Target has no sub-registers"); 572 return RC; 573 } 574 575 /// Return the subregister index you get from composing 576 /// two subregister indices. 577 /// 578 /// The special null sub-register index composes as the identity. 579 /// 580 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b) 581 /// returns c. Note that composeSubRegIndices does not tell you about illegal 582 /// compositions. If R does not have a subreg a, or R:a does not have a subreg 583 /// b, composeSubRegIndices doesn't tell you. 584 /// 585 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has 586 /// ssub_0:S0 - ssub_3:S3 subregs. 587 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2. composeSubRegIndices(unsigned a,unsigned b)588 unsigned composeSubRegIndices(unsigned a, unsigned b) const { 589 if (!a) return b; 590 if (!b) return a; 591 return composeSubRegIndicesImpl(a, b); 592 } 593 594 /// Transforms a LaneMask computed for one subregister to the lanemask that 595 /// would have been computed when composing the subsubregisters with IdxA 596 /// first. @sa composeSubRegIndices() composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)597 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA, 598 LaneBitmask Mask) const { 599 if (!IdxA) 600 return Mask; 601 return composeSubRegIndexLaneMaskImpl(IdxA, Mask); 602 } 603 604 /// Transform a lanemask given for a virtual register to the corresponding 605 /// lanemask before using subregister with index \p IdxA. 606 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a 607 /// valie lane mask (no invalid bits set) the following holds: 608 /// X0 = composeSubRegIndexLaneMask(Idx, Mask) 609 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0) 610 /// => X1 == Mask reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)611 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA, 612 LaneBitmask LaneMask) const { 613 if (!IdxA) 614 return LaneMask; 615 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask); 616 } 617 618 /// Debugging helper: dump register in human readable form to dbgs() stream. 619 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0, 620 const TargetRegisterInfo* TRI = nullptr); 621 622 protected: 623 /// Overridden by TableGen in targets that have sub-registers. composeSubRegIndicesImpl(unsigned,unsigned)624 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const { 625 llvm_unreachable("Target has no sub-registers"); 626 } 627 628 /// Overridden by TableGen in targets that have sub-registers. 629 virtual LaneBitmask composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)630 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const { 631 llvm_unreachable("Target has no sub-registers"); 632 } 633 reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)634 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned, 635 LaneBitmask) const { 636 llvm_unreachable("Target has no sub-registers"); 637 } 638 639 public: 640 /// Find a common super-register class if it exists. 641 /// 642 /// Find a register class, SuperRC and two sub-register indices, PreA and 643 /// PreB, such that: 644 /// 645 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and 646 /// 647 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and 648 /// 649 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()). 650 /// 651 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the 652 /// requirements, and there is no register class with a smaller spill size 653 /// that satisfies the requirements. 654 /// 655 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead. 656 /// 657 /// Either of the PreA and PreB sub-register indices may be returned as 0. In 658 /// that case, the returned register class will be a sub-class of the 659 /// corresponding argument register class. 660 /// 661 /// The function returns NULL if no register class can be found. 662 const TargetRegisterClass* 663 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA, 664 const TargetRegisterClass *RCB, unsigned SubB, 665 unsigned &PreA, unsigned &PreB) const; 666 667 //===--------------------------------------------------------------------===// 668 // Register Class Information 669 // 670 protected: getRegClassInfo(const TargetRegisterClass & RC)671 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const { 672 return RCInfos[getNumRegClasses() * HwMode + RC.getID()]; 673 } 674 675 public: 676 /// Register class iterators regclass_begin()677 regclass_iterator regclass_begin() const { return RegClassBegin; } regclass_end()678 regclass_iterator regclass_end() const { return RegClassEnd; } regclasses()679 iterator_range<regclass_iterator> regclasses() const { 680 return make_range(regclass_begin(), regclass_end()); 681 } 682 getNumRegClasses()683 unsigned getNumRegClasses() const { 684 return (unsigned)(regclass_end()-regclass_begin()); 685 } 686 687 /// Returns the register class associated with the enumeration value. 688 /// See class MCOperandInfo. getRegClass(unsigned i)689 const TargetRegisterClass *getRegClass(unsigned i) const { 690 assert(i < getNumRegClasses() && "Register Class ID out of range"); 691 return RegClassBegin[i]; 692 } 693 694 /// Returns the name of the register class. getRegClassName(const TargetRegisterClass * Class)695 const char *getRegClassName(const TargetRegisterClass *Class) const { 696 return MCRegisterInfo::getRegClassName(Class->MC); 697 } 698 699 /// Find the largest common subclass of A and B. 700 /// Return NULL if there is no common subclass. 701 /// The common subclass should contain 702 /// simple value type SVT if it is not the Any type. 703 const TargetRegisterClass * 704 getCommonSubClass(const TargetRegisterClass *A, 705 const TargetRegisterClass *B, 706 const MVT::SimpleValueType SVT = 707 MVT::SimpleValueType::Any) const; 708 709 /// Returns a TargetRegisterClass used for pointer values. 710 /// If a target supports multiple different pointer register classes, 711 /// kind specifies which one is indicated. 712 virtual const TargetRegisterClass * 713 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const { 714 llvm_unreachable("Target didn't implement getPointerRegClass!"); 715 } 716 717 /// Returns a legal register class to copy a register in the specified class 718 /// to or from. If it is possible to copy the register directly without using 719 /// a cross register class copy, return the specified RC. Returns NULL if it 720 /// is not possible to copy between two registers of the specified class. 721 virtual const TargetRegisterClass * getCrossCopyRegClass(const TargetRegisterClass * RC)722 getCrossCopyRegClass(const TargetRegisterClass *RC) const { 723 return RC; 724 } 725 726 /// Returns the largest super class of RC that is legal to use in the current 727 /// sub-target and has the same spill size. 728 /// The returned register class can be used to create virtual registers which 729 /// means that all its registers can be copied and spilled. 730 virtual const TargetRegisterClass * getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)731 getLargestLegalSuperClass(const TargetRegisterClass *RC, 732 const MachineFunction &) const { 733 /// The default implementation is very conservative and doesn't allow the 734 /// register allocator to inflate register classes. 735 return RC; 736 } 737 738 /// Return the register pressure "high water mark" for the specific register 739 /// class. The scheduler is in high register pressure mode (for the specific 740 /// register class) if it goes over the limit. 741 /// 742 /// Note: this is the old register pressure model that relies on a manually 743 /// specified representative register class per value type. getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)744 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC, 745 MachineFunction &MF) const { 746 return 0; 747 } 748 749 /// Return a heuristic for the machine scheduler to compare the profitability 750 /// of increasing one register pressure set versus another. The scheduler 751 /// will prefer increasing the register pressure of the set which returns 752 /// the largest value for this function. getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)753 virtual unsigned getRegPressureSetScore(const MachineFunction &MF, 754 unsigned PSetID) const { 755 return PSetID; 756 } 757 758 /// Get the weight in units of pressure for this register class. 759 virtual const RegClassWeight &getRegClassWeight( 760 const TargetRegisterClass *RC) const = 0; 761 762 /// Returns size in bits of a phys/virtual/generic register. 763 unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const; 764 765 /// Get the weight in units of pressure for this register unit. 766 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0; 767 768 /// Get the number of dimensions of register pressure. 769 virtual unsigned getNumRegPressureSets() const = 0; 770 771 /// Get the name of this register unit pressure set. 772 virtual const char *getRegPressureSetName(unsigned Idx) const = 0; 773 774 /// Get the register unit pressure limit for this dimension. 775 /// This limit must be adjusted dynamically for reserved registers. 776 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF, 777 unsigned Idx) const = 0; 778 779 /// Get the dimensions of register pressure impacted by this register class. 780 /// Returns a -1 terminated array of pressure set IDs. 781 virtual const int *getRegClassPressureSets( 782 const TargetRegisterClass *RC) const = 0; 783 784 /// Get the dimensions of register pressure impacted by this register unit. 785 /// Returns a -1 terminated array of pressure set IDs. 786 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0; 787 788 /// Get a list of 'hint' registers that the register allocator should try 789 /// first when allocating a physical register for the virtual register 790 /// VirtReg. These registers are effectively moved to the front of the 791 /// allocation order. If true is returned, regalloc will try to only use 792 /// hints to the greatest extent possible even if it means spilling. 793 /// 794 /// The Order argument is the allocation order for VirtReg's register class 795 /// as returned from RegisterClassInfo::getOrder(). The hint registers must 796 /// come from Order, and they must not be reserved. 797 /// 798 /// The default implementation of this function will only add target 799 /// independent register allocation hints. Targets that override this 800 /// function should typically call this default implementation as well and 801 /// expect to see generic copy hints added. 802 virtual bool getRegAllocationHints(unsigned VirtReg, 803 ArrayRef<MCPhysReg> Order, 804 SmallVectorImpl<MCPhysReg> &Hints, 805 const MachineFunction &MF, 806 const VirtRegMap *VRM = nullptr, 807 const LiveRegMatrix *Matrix = nullptr) 808 const; 809 810 /// A callback to allow target a chance to update register allocation hints 811 /// when a register is "changed" (e.g. coalesced) to another register. 812 /// e.g. On ARM, some virtual registers should target register pairs, 813 /// if one of pair is coalesced to another register, the allocation hint of 814 /// the other half of the pair should be changed to point to the new register. updateRegAllocHint(unsigned Reg,unsigned NewReg,MachineFunction & MF)815 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg, 816 MachineFunction &MF) const { 817 // Do nothing. 818 } 819 820 /// The creation of multiple copy hints have been implemented in 821 /// weightCalcHelper(), but since this affects so many tests for many 822 /// targets, this is temporarily disabled per default. THIS SHOULD BE 823 /// "GENERAL GOODNESS" and hopefully all targets will update their tests 824 /// and enable this soon. This hook should then be removed. enableMultipleCopyHints()825 virtual bool enableMultipleCopyHints() const { return false; } 826 827 /// Allow the target to reverse allocation order of local live ranges. This 828 /// will generally allocate shorter local live ranges first. For targets with 829 /// many registers, this could reduce regalloc compile time by a large 830 /// factor. It is disabled by default for three reasons: 831 /// (1) Top-down allocation is simpler and easier to debug for targets that 832 /// don't benefit from reversing the order. 833 /// (2) Bottom-up allocation could result in poor evicition decisions on some 834 /// targets affecting the performance of compiled code. 835 /// (3) Bottom-up allocation is no longer guaranteed to optimally color. reverseLocalAssignment()836 virtual bool reverseLocalAssignment() const { return false; } 837 838 /// Allow the target to override the cost of using a callee-saved register for 839 /// the first time. Default value of 0 means we will use a callee-saved 840 /// register if it is available. getCSRFirstUseCost()841 virtual unsigned getCSRFirstUseCost() const { return 0; } 842 843 /// Returns true if the target requires (and can make use of) the register 844 /// scavenger. requiresRegisterScavenging(const MachineFunction & MF)845 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const { 846 return false; 847 } 848 849 /// Returns true if the target wants to use frame pointer based accesses to 850 /// spill to the scavenger emergency spill slot. useFPForScavengingIndex(const MachineFunction & MF)851 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const { 852 return true; 853 } 854 855 /// Returns true if the target requires post PEI scavenging of registers for 856 /// materializing frame index constants. requiresFrameIndexScavenging(const MachineFunction & MF)857 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const { 858 return false; 859 } 860 861 /// Returns true if the target requires using the RegScavenger directly for 862 /// frame elimination despite using requiresFrameIndexScavenging. requiresFrameIndexReplacementScavenging(const MachineFunction & MF)863 virtual bool requiresFrameIndexReplacementScavenging( 864 const MachineFunction &MF) const { 865 return false; 866 } 867 868 /// Returns true if the target wants the LocalStackAllocation pass to be run 869 /// and virtual base registers used for more efficient stack access. requiresVirtualBaseRegisters(const MachineFunction & MF)870 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const { 871 return false; 872 } 873 874 /// Return true if target has reserved a spill slot in the stack frame of 875 /// the given function for the specified register. e.g. On x86, if the frame 876 /// register is required, the first fixed stack object is reserved as its 877 /// spill slot. This tells PEI not to create a new stack frame 878 /// object for the given register. It should be called only after 879 /// determineCalleeSaves(). hasReservedSpillSlot(const MachineFunction & MF,unsigned Reg,int & FrameIdx)880 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg, 881 int &FrameIdx) const { 882 return false; 883 } 884 885 /// Returns true if the live-ins should be tracked after register allocation. trackLivenessAfterRegAlloc(const MachineFunction & MF)886 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const { 887 return false; 888 } 889 890 /// True if the stack can be realigned for the target. 891 virtual bool canRealignStack(const MachineFunction &MF) const; 892 893 /// True if storage within the function requires the stack pointer to be 894 /// aligned more than the normal calling convention calls for. 895 /// This cannot be overriden by the target, but canRealignStack can be 896 /// overridden. 897 bool needsStackRealignment(const MachineFunction &MF) const; 898 899 /// Get the offset from the referenced frame index in the instruction, 900 /// if there is one. getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)901 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI, 902 int Idx) const { 903 return 0; 904 } 905 906 /// Returns true if the instruction's frame index reference would be better 907 /// served by a base register other than FP or SP. 908 /// Used by LocalStackFrameAllocation to determine which frame index 909 /// references it should create new base registers for. needsFrameBaseReg(MachineInstr * MI,int64_t Offset)910 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const { 911 return false; 912 } 913 914 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx 915 /// before insertion point I. materializeFrameBaseRegister(MachineBasicBlock * MBB,unsigned BaseReg,int FrameIdx,int64_t Offset)916 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB, 917 unsigned BaseReg, int FrameIdx, 918 int64_t Offset) const { 919 llvm_unreachable("materializeFrameBaseRegister does not exist on this " 920 "target"); 921 } 922 923 /// Resolve a frame index operand of an instruction 924 /// to reference the indicated base register plus offset instead. resolveFrameIndex(MachineInstr & MI,unsigned BaseReg,int64_t Offset)925 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg, 926 int64_t Offset) const { 927 llvm_unreachable("resolveFrameIndex does not exist on this target"); 928 } 929 930 /// Determine whether a given base register plus offset immediate is 931 /// encodable to resolve a frame index. isFrameOffsetLegal(const MachineInstr * MI,unsigned BaseReg,int64_t Offset)932 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg, 933 int64_t Offset) const { 934 llvm_unreachable("isFrameOffsetLegal does not exist on this target"); 935 } 936 937 /// Spill the register so it can be used by the register scavenger. 938 /// Return true if the register was spilled, false otherwise. 939 /// If this function does not spill the register, the scavenger 940 /// will instead spill it to the emergency spill slot. saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,unsigned Reg)941 virtual bool saveScavengerRegister(MachineBasicBlock &MBB, 942 MachineBasicBlock::iterator I, 943 MachineBasicBlock::iterator &UseMI, 944 const TargetRegisterClass *RC, 945 unsigned Reg) const { 946 return false; 947 } 948 949 /// This method must be overriden to eliminate abstract frame indices from 950 /// instructions which may use them. The instruction referenced by the 951 /// iterator contains an MO_FrameIndex operand which must be eliminated by 952 /// this method. This method may modify or replace the specified instruction, 953 /// as long as it keeps the iterator pointing at the finished product. 954 /// SPAdj is the SP adjustment due to call frame setup instruction. 955 /// FIOperandNum is the FI operand number. 956 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI, 957 int SPAdj, unsigned FIOperandNum, 958 RegScavenger *RS = nullptr) const = 0; 959 960 /// Return the assembly name for \p Reg. getRegAsmName(unsigned Reg)961 virtual StringRef getRegAsmName(unsigned Reg) const { 962 // FIXME: We are assuming that the assembly name is equal to the TableGen 963 // name converted to lower case 964 // 965 // The TableGen name is the name of the definition for this register in the 966 // target's tablegen files. For example, the TableGen name of 967 // def EAX : Register <...>; is "EAX" 968 return StringRef(getName(Reg)); 969 } 970 971 //===--------------------------------------------------------------------===// 972 /// Subtarget Hooks 973 974 /// SrcRC and DstRC will be morphed into NewRC if this returns true. shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)975 virtual bool shouldCoalesce(MachineInstr *MI, 976 const TargetRegisterClass *SrcRC, 977 unsigned SubReg, 978 const TargetRegisterClass *DstRC, 979 unsigned DstSubReg, 980 const TargetRegisterClass *NewRC, 981 LiveIntervals &LIS) const 982 { return true; } 983 984 //===--------------------------------------------------------------------===// 985 /// Debug information queries. 986 987 /// getFrameRegister - This method should return the register used as a base 988 /// for values allocated in the current stack frame. 989 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0; 990 991 /// Mark a register and all its aliases as reserved in the given set. 992 void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const; 993 994 /// Returns true if for every register in the set all super registers are part 995 /// of the set as well. 996 bool checkAllSuperRegsMarked(const BitVector &RegisterSet, 997 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const; 998 999 virtual const TargetRegisterClass * getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1000 getConstrainedRegClassForOperand(const MachineOperand &MO, 1001 const MachineRegisterInfo &MRI) const { 1002 return nullptr; 1003 } 1004 }; 1005 1006 //===----------------------------------------------------------------------===// 1007 // SuperRegClassIterator 1008 //===----------------------------------------------------------------------===// 1009 // 1010 // Iterate over the possible super-registers for a given register class. The 1011 // iterator will visit a list of pairs (Idx, Mask) corresponding to the 1012 // possible classes of super-registers. 1013 // 1014 // Each bit mask will have at least one set bit, and each set bit in Mask 1015 // corresponds to a SuperRC such that: 1016 // 1017 // For all Reg in SuperRC: Reg:Idx is in RC. 1018 // 1019 // The iterator can include (O, RC->getSubClassMask()) as the first entry which 1020 // also satisfies the above requirement, assuming Reg:0 == Reg. 1021 // 1022 class SuperRegClassIterator { 1023 const unsigned RCMaskWords; 1024 unsigned SubReg = 0; 1025 const uint16_t *Idx; 1026 const uint32_t *Mask; 1027 1028 public: 1029 /// Create a SuperRegClassIterator that visits all the super-register classes 1030 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry. 1031 SuperRegClassIterator(const TargetRegisterClass *RC, 1032 const TargetRegisterInfo *TRI, 1033 bool IncludeSelf = false) 1034 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32), 1035 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) { 1036 if (!IncludeSelf) 1037 ++*this; 1038 } 1039 1040 /// Returns true if this iterator is still pointing at a valid entry. isValid()1041 bool isValid() const { return Idx; } 1042 1043 /// Returns the current sub-register index. getSubReg()1044 unsigned getSubReg() const { return SubReg; } 1045 1046 /// Returns the bit mask of register classes that getSubReg() projects into 1047 /// RC. 1048 /// See TargetRegisterClass::getSubClassMask() for how to use it. getMask()1049 const uint32_t *getMask() const { return Mask; } 1050 1051 /// Advance iterator to the next entry. 1052 void operator++() { 1053 assert(isValid() && "Cannot move iterator past end."); 1054 Mask += RCMaskWords; 1055 SubReg = *Idx++; 1056 if (!SubReg) 1057 Idx = nullptr; 1058 } 1059 }; 1060 1061 //===----------------------------------------------------------------------===// 1062 // BitMaskClassIterator 1063 //===----------------------------------------------------------------------===// 1064 /// This class encapuslates the logic to iterate over bitmask returned by 1065 /// the various RegClass related APIs. 1066 /// E.g., this class can be used to iterate over the subclasses provided by 1067 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask. 1068 class BitMaskClassIterator { 1069 /// Total number of register classes. 1070 const unsigned NumRegClasses; 1071 /// Base index of CurrentChunk. 1072 /// In other words, the number of bit we read to get at the 1073 /// beginning of that chunck. 1074 unsigned Base = 0; 1075 /// Adjust base index of CurrentChunk. 1076 /// Base index + how many bit we read within CurrentChunk. 1077 unsigned Idx = 0; 1078 /// Current register class ID. 1079 unsigned ID = 0; 1080 /// Mask we are iterating over. 1081 const uint32_t *Mask; 1082 /// Current chunk of the Mask we are traversing. 1083 uint32_t CurrentChunk; 1084 1085 /// Move ID to the next set bit. moveToNextID()1086 void moveToNextID() { 1087 // If the current chunk of memory is empty, move to the next one, 1088 // while making sure we do not go pass the number of register 1089 // classes. 1090 while (!CurrentChunk) { 1091 // Move to the next chunk. 1092 Base += 32; 1093 if (Base >= NumRegClasses) { 1094 ID = NumRegClasses; 1095 return; 1096 } 1097 CurrentChunk = *++Mask; 1098 Idx = Base; 1099 } 1100 // Otherwise look for the first bit set from the right 1101 // (representation of the class ID is big endian). 1102 // See getSubClassMask for more details on the representation. 1103 unsigned Offset = countTrailingZeros(CurrentChunk); 1104 // Add the Offset to the adjusted base number of this chunk: Idx. 1105 // This is the ID of the register class. 1106 ID = Idx + Offset; 1107 1108 // Consume the zeros, if any, and the bit we just read 1109 // so that we are at the right spot for the next call. 1110 // Do not do Offset + 1 because Offset may be 31 and 32 1111 // will be UB for the shift, though in that case we could 1112 // have make the chunk being equal to 0, but that would 1113 // have introduced a if statement. 1114 moveNBits(Offset); 1115 moveNBits(1); 1116 } 1117 1118 /// Move \p NumBits Bits forward in CurrentChunk. moveNBits(unsigned NumBits)1119 void moveNBits(unsigned NumBits) { 1120 assert(NumBits < 32 && "Undefined behavior spotted!"); 1121 // Consume the bit we read for the next call. 1122 CurrentChunk >>= NumBits; 1123 // Adjust the base for the chunk. 1124 Idx += NumBits; 1125 } 1126 1127 public: 1128 /// Create a BitMaskClassIterator that visits all the register classes 1129 /// represented by \p Mask. 1130 /// 1131 /// \pre \p Mask != nullptr BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1132 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI) 1133 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) { 1134 // Move to the first ID. 1135 moveToNextID(); 1136 } 1137 1138 /// Returns true if this iterator is still pointing at a valid entry. isValid()1139 bool isValid() const { return getID() != NumRegClasses; } 1140 1141 /// Returns the current register class ID. getID()1142 unsigned getID() const { return ID; } 1143 1144 /// Advance iterator to the next entry. 1145 void operator++() { 1146 assert(isValid() && "Cannot move iterator past end."); 1147 moveToNextID(); 1148 } 1149 }; 1150 1151 // This is useful when building IndexedMaps keyed on virtual registers 1152 struct VirtReg2IndexFunctor { 1153 using argument_type = unsigned; operatorVirtReg2IndexFunctor1154 unsigned operator()(unsigned Reg) const { 1155 return TargetRegisterInfo::virtReg2Index(Reg); 1156 } 1157 }; 1158 1159 /// Prints virtual and physical registers with or without a TRI instance. 1160 /// 1161 /// The format is: 1162 /// %noreg - NoRegister 1163 /// %5 - a virtual register. 1164 /// %5:sub_8bit - a virtual register with sub-register index (with TRI). 1165 /// %eax - a physical register 1166 /// %physreg17 - a physical register when no TRI instance given. 1167 /// 1168 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n'; 1169 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr, 1170 unsigned SubIdx = 0, 1171 const MachineRegisterInfo *MRI = nullptr); 1172 1173 /// Create Printable object to print register units on a \ref raw_ostream. 1174 /// 1175 /// Register units are named after their root registers: 1176 /// 1177 /// al - Single root. 1178 /// fp0~st7 - Dual roots. 1179 /// 1180 /// Usage: OS << printRegUnit(Unit, TRI) << '\n'; 1181 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI); 1182 1183 /// Create Printable object to print virtual registers and physical 1184 /// registers on a \ref raw_ostream. 1185 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI); 1186 1187 /// Create Printable object to print register classes or register banks 1188 /// on a \ref raw_ostream. 1189 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo, 1190 const TargetRegisterInfo *TRI); 1191 1192 } // end namespace llvm 1193 1194 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H 1195