1 /* -*- c++ -*- */
2 /*
3 * Copyright © 2010 Intel Corporation
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice (including the next
13 * paragraph) shall be included in all copies or substantial portions of the
14 * Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22 * DEALINGS IN THE SOFTWARE.
23 */
24
25 #ifndef IR_H
26 #define IR_H
27
28 #include <stdio.h>
29 #include <stdlib.h>
30
31 #include "util/ralloc.h"
32 #include "compiler/glsl_types.h"
33 #include "list.h"
34 #include "ir_visitor.h"
35 #include "ir_hierarchical_visitor.h"
36 #include "main/mtypes.h"
37
38 #ifdef __cplusplus
39
40 /**
41 * \defgroup IR Intermediate representation nodes
42 *
43 * @{
44 */
45
46 /**
47 * Class tags
48 *
49 * Each concrete class derived from \c ir_instruction has a value in this
50 * enumerant. The value for the type is stored in \c ir_instruction::ir_type
51 * by the constructor. While using type tags is not very C++, it is extremely
52 * convenient. For example, during debugging you can simply inspect
53 * \c ir_instruction::ir_type to find out the actual type of the object.
54 *
55 * In addition, it is possible to use a switch-statement based on \c
56 * \c ir_instruction::ir_type to select different behavior for different object
57 * types. For functions that have only slight differences for several object
58 * types, this allows writing very straightforward, readable code.
59 */
60 enum ir_node_type {
61 ir_type_dereference_array,
62 ir_type_dereference_record,
63 ir_type_dereference_variable,
64 ir_type_constant,
65 ir_type_expression,
66 ir_type_swizzle,
67 ir_type_texture,
68 ir_type_variable,
69 ir_type_assignment,
70 ir_type_call,
71 ir_type_function,
72 ir_type_function_signature,
73 ir_type_if,
74 ir_type_loop,
75 ir_type_loop_jump,
76 ir_type_return,
77 ir_type_discard,
78 ir_type_emit_vertex,
79 ir_type_end_primitive,
80 ir_type_barrier,
81 ir_type_max, /**< maximum ir_type enum number, for validation */
82 ir_type_unset = ir_type_max
83 };
84
85
86 /**
87 * Base class of all IR instructions
88 */
89 class ir_instruction : public exec_node {
90 public:
91 enum ir_node_type ir_type;
92
93 /**
94 * GCC 4.7+ and clang warn when deleting an ir_instruction unless
95 * there's a virtual destructor present. Because we almost
96 * universally use ralloc for our memory management of
97 * ir_instructions, the destructor doesn't need to do any work.
98 */
~ir_instruction()99 virtual ~ir_instruction()
100 {
101 }
102
103 /** ir_print_visitor helper for debugging. */
104 void print(void) const;
105 void fprint(FILE *f) const;
106
107 virtual void accept(ir_visitor *) = 0;
108 virtual ir_visitor_status accept(ir_hierarchical_visitor *) = 0;
109 virtual ir_instruction *clone(void *mem_ctx,
110 struct hash_table *ht) const = 0;
111
is_rvalue()112 bool is_rvalue() const
113 {
114 return ir_type == ir_type_dereference_array ||
115 ir_type == ir_type_dereference_record ||
116 ir_type == ir_type_dereference_variable ||
117 ir_type == ir_type_constant ||
118 ir_type == ir_type_expression ||
119 ir_type == ir_type_swizzle ||
120 ir_type == ir_type_texture;
121 }
122
is_dereference()123 bool is_dereference() const
124 {
125 return ir_type == ir_type_dereference_array ||
126 ir_type == ir_type_dereference_record ||
127 ir_type == ir_type_dereference_variable;
128 }
129
is_jump()130 bool is_jump() const
131 {
132 return ir_type == ir_type_loop_jump ||
133 ir_type == ir_type_return ||
134 ir_type == ir_type_discard;
135 }
136
137 /**
138 * \name IR instruction downcast functions
139 *
140 * These functions either cast the object to a derived class or return
141 * \c NULL if the object's type does not match the specified derived class.
142 * Additional downcast functions will be added as needed.
143 */
144 /*@{*/
145 #define AS_BASE(TYPE) \
146 class ir_##TYPE *as_##TYPE() \
147 { \
148 assume(this != NULL); \
149 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
150 } \
151 const class ir_##TYPE *as_##TYPE() const \
152 { \
153 assume(this != NULL); \
154 return is_##TYPE() ? (ir_##TYPE *) this : NULL; \
155 }
156
157 AS_BASE(rvalue)
158 AS_BASE(dereference)
159 AS_BASE(jump)
160 #undef AS_BASE
161
162 #define AS_CHILD(TYPE) \
163 class ir_##TYPE * as_##TYPE() \
164 { \
165 assume(this != NULL); \
166 return ir_type == ir_type_##TYPE ? (ir_##TYPE *) this : NULL; \
167 } \
168 const class ir_##TYPE * as_##TYPE() const \
169 { \
170 assume(this != NULL); \
171 return ir_type == ir_type_##TYPE ? (const ir_##TYPE *) this : NULL; \
172 }
173 AS_CHILD(variable)
174 AS_CHILD(function)
175 AS_CHILD(dereference_array)
176 AS_CHILD(dereference_variable)
177 AS_CHILD(dereference_record)
178 AS_CHILD(expression)
179 AS_CHILD(loop)
180 AS_CHILD(assignment)
181 AS_CHILD(call)
182 AS_CHILD(return)
183 AS_CHILD(if)
184 AS_CHILD(swizzle)
185 AS_CHILD(texture)
186 AS_CHILD(constant)
187 AS_CHILD(discard)
188 #undef AS_CHILD
189 /*@}*/
190
191 /**
192 * IR equality method: Return true if the referenced instruction would
193 * return the same value as this one.
194 *
195 * This intended to be used for CSE and algebraic optimizations, on rvalues
196 * in particular. No support for other instruction types (assignments,
197 * jumps, calls, etc.) is planned.
198 */
199 virtual bool equals(const ir_instruction *ir,
200 enum ir_node_type ignore = ir_type_unset) const;
201
202 protected:
ir_instruction(enum ir_node_type t)203 ir_instruction(enum ir_node_type t)
204 : ir_type(t)
205 {
206 }
207
208 private:
ir_instruction()209 ir_instruction()
210 {
211 assert(!"Should not get here.");
212 }
213 };
214
215
216 /**
217 * The base class for all "values"/expression trees.
218 */
219 class ir_rvalue : public ir_instruction {
220 public:
221 const struct glsl_type *type;
222
223 virtual ir_rvalue *clone(void *mem_ctx, struct hash_table *) const;
224
accept(ir_visitor * v)225 virtual void accept(ir_visitor *v)
226 {
227 v->visit(this);
228 }
229
230 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
231
232 virtual ir_constant *constant_expression_value(void *mem_ctx,
233 struct hash_table *variable_context = NULL);
234
235 ir_rvalue *as_rvalue_to_saturate();
236
237 virtual bool is_lvalue(const struct _mesa_glsl_parse_state *state = NULL) const
238 {
239 return false;
240 }
241
242 /**
243 * Get the variable that is ultimately referenced by an r-value
244 */
variable_referenced()245 virtual ir_variable *variable_referenced() const
246 {
247 return NULL;
248 }
249
250
251 /**
252 * If an r-value is a reference to a whole variable, get that variable
253 *
254 * \return
255 * Pointer to a variable that is completely dereferenced by the r-value. If
256 * the r-value is not a dereference or the dereference does not access the
257 * entire variable (i.e., it's just one array element, struct field), \c NULL
258 * is returned.
259 */
whole_variable_referenced()260 virtual ir_variable *whole_variable_referenced()
261 {
262 return NULL;
263 }
264
265 /**
266 * Determine if an r-value has the value zero
267 *
268 * The base implementation of this function always returns \c false. The
269 * \c ir_constant class over-rides this function to return \c true \b only
270 * for vector and scalar types that have all elements set to the value
271 * zero (or \c false for booleans).
272 *
273 * \sa ir_constant::has_value, ir_rvalue::is_one, ir_rvalue::is_negative_one
274 */
275 virtual bool is_zero() const;
276
277 /**
278 * Determine if an r-value has the value one
279 *
280 * The base implementation of this function always returns \c false. The
281 * \c ir_constant class over-rides this function to return \c true \b only
282 * for vector and scalar types that have all elements set to the value
283 * one (or \c true for booleans).
284 *
285 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_negative_one
286 */
287 virtual bool is_one() const;
288
289 /**
290 * Determine if an r-value has the value negative one
291 *
292 * The base implementation of this function always returns \c false. The
293 * \c ir_constant class over-rides this function to return \c true \b only
294 * for vector and scalar types that have all elements set to the value
295 * negative one. For boolean types, the result is always \c false.
296 *
297 * \sa ir_constant::has_value, ir_rvalue::is_zero, ir_rvalue::is_one
298 */
299 virtual bool is_negative_one() const;
300
301 /**
302 * Determine if an r-value is an unsigned integer constant which can be
303 * stored in 16 bits.
304 *
305 * \sa ir_constant::is_uint16_constant.
306 */
is_uint16_constant()307 virtual bool is_uint16_constant() const { return false; }
308
309 /**
310 * Return a generic value of error_type.
311 *
312 * Allocation will be performed with 'mem_ctx' as ralloc owner.
313 */
314 static ir_rvalue *error_value(void *mem_ctx);
315
316 protected:
317 ir_rvalue(enum ir_node_type t);
318 };
319
320
321 /**
322 * Variable storage classes
323 */
324 enum ir_variable_mode {
325 ir_var_auto = 0, /**< Function local variables and globals. */
326 ir_var_uniform, /**< Variable declared as a uniform. */
327 ir_var_shader_storage, /**< Variable declared as an ssbo. */
328 ir_var_shader_shared, /**< Variable declared as shared. */
329 ir_var_shader_in,
330 ir_var_shader_out,
331 ir_var_function_in,
332 ir_var_function_out,
333 ir_var_function_inout,
334 ir_var_const_in, /**< "in" param that must be a constant expression */
335 ir_var_system_value, /**< Ex: front-face, instance-id, etc. */
336 ir_var_temporary, /**< Temporary variable generated during compilation. */
337 ir_var_mode_count /**< Number of variable modes */
338 };
339
340 /**
341 * Enum keeping track of how a variable was declared. For error checking of
342 * the gl_PerVertex redeclaration rules.
343 */
344 enum ir_var_declaration_type {
345 /**
346 * Normal declaration (for most variables, this means an explicit
347 * declaration. Exception: temporaries are always implicitly declared, but
348 * they still use ir_var_declared_normally).
349 *
350 * Note: an ir_variable that represents a named interface block uses
351 * ir_var_declared_normally.
352 */
353 ir_var_declared_normally = 0,
354
355 /**
356 * Variable was explicitly declared (or re-declared) in an unnamed
357 * interface block.
358 */
359 ir_var_declared_in_block,
360
361 /**
362 * Variable is an implicitly declared built-in that has not been explicitly
363 * re-declared by the shader.
364 */
365 ir_var_declared_implicitly,
366
367 /**
368 * Variable is implicitly generated by the compiler and should not be
369 * visible via the API.
370 */
371 ir_var_hidden,
372 };
373
374 /**
375 * \brief Layout qualifiers for gl_FragDepth.
376 *
377 * The AMD/ARB_conservative_depth extensions allow gl_FragDepth to be redeclared
378 * with a layout qualifier.
379 */
380 enum ir_depth_layout {
381 ir_depth_layout_none, /**< No depth layout is specified. */
382 ir_depth_layout_any,
383 ir_depth_layout_greater,
384 ir_depth_layout_less,
385 ir_depth_layout_unchanged
386 };
387
388 /**
389 * \brief Convert depth layout qualifier to string.
390 */
391 const char*
392 depth_layout_string(ir_depth_layout layout);
393
394 /**
395 * Description of built-in state associated with a uniform
396 *
397 * \sa ir_variable::state_slots
398 */
399 struct ir_state_slot {
400 int tokens[5];
401 int swizzle;
402 };
403
404
405 /**
406 * Get the string value for an interpolation qualifier
407 *
408 * \return The string that would be used in a shader to specify \c
409 * mode will be returned.
410 *
411 * This function is used to generate error messages of the form "shader
412 * uses %s interpolation qualifier", so in the case where there is no
413 * interpolation qualifier, it returns "no".
414 *
415 * This function should only be used on a shader input or output variable.
416 */
417 const char *interpolation_string(unsigned interpolation);
418
419
420 class ir_variable : public ir_instruction {
421 public:
422 ir_variable(const struct glsl_type *, const char *, ir_variable_mode);
423
424 virtual ir_variable *clone(void *mem_ctx, struct hash_table *ht) const;
425
accept(ir_visitor * v)426 virtual void accept(ir_visitor *v)
427 {
428 v->visit(this);
429 }
430
431 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
432
433
434 /**
435 * Determine whether or not a variable is part of a uniform or
436 * shader storage block.
437 */
is_in_buffer_block()438 inline bool is_in_buffer_block() const
439 {
440 return (this->data.mode == ir_var_uniform ||
441 this->data.mode == ir_var_shader_storage) &&
442 this->interface_type != NULL;
443 }
444
445 /**
446 * Determine whether or not a variable is part of a shader storage block.
447 */
is_in_shader_storage_block()448 inline bool is_in_shader_storage_block() const
449 {
450 return this->data.mode == ir_var_shader_storage &&
451 this->interface_type != NULL;
452 }
453
454 /**
455 * Determine whether or not a variable is the declaration of an interface
456 * block
457 *
458 * For the first declaration below, there will be an \c ir_variable named
459 * "instance" whose type and whose instance_type will be the same
460 * \c glsl_type. For the second declaration, there will be an \c ir_variable
461 * named "f" whose type is float and whose instance_type is B2.
462 *
463 * "instance" is an interface instance variable, but "f" is not.
464 *
465 * uniform B1 {
466 * float f;
467 * } instance;
468 *
469 * uniform B2 {
470 * float f;
471 * };
472 */
is_interface_instance()473 inline bool is_interface_instance() const
474 {
475 return this->type->without_array() == this->interface_type;
476 }
477
478 /**
479 * Return whether this variable contains a bindless sampler/image.
480 */
contains_bindless()481 inline bool contains_bindless() const
482 {
483 if (!this->type->contains_sampler() && !this->type->contains_image())
484 return false;
485
486 return this->data.bindless || this->data.mode != ir_var_uniform;
487 }
488
489 /**
490 * Set this->interface_type on a newly created variable.
491 */
init_interface_type(const struct glsl_type * type)492 void init_interface_type(const struct glsl_type *type)
493 {
494 assert(this->interface_type == NULL);
495 this->interface_type = type;
496 if (this->is_interface_instance()) {
497 this->u.max_ifc_array_access =
498 ralloc_array(this, int, type->length);
499 for (unsigned i = 0; i < type->length; i++) {
500 this->u.max_ifc_array_access[i] = -1;
501 }
502 }
503 }
504
505 /**
506 * Change this->interface_type on a variable that previously had a
507 * different, but compatible, interface_type. This is used during linking
508 * to set the size of arrays in interface blocks.
509 */
change_interface_type(const struct glsl_type * type)510 void change_interface_type(const struct glsl_type *type)
511 {
512 if (this->u.max_ifc_array_access != NULL) {
513 /* max_ifc_array_access has already been allocated, so make sure the
514 * new interface has the same number of fields as the old one.
515 */
516 assert(this->interface_type->length == type->length);
517 }
518 this->interface_type = type;
519 }
520
521 /**
522 * Change this->interface_type on a variable that previously had a
523 * different, and incompatible, interface_type. This is used during
524 * compilation to handle redeclaration of the built-in gl_PerVertex
525 * interface block.
526 */
reinit_interface_type(const struct glsl_type * type)527 void reinit_interface_type(const struct glsl_type *type)
528 {
529 if (this->u.max_ifc_array_access != NULL) {
530 #ifndef NDEBUG
531 /* Redeclaring gl_PerVertex is only allowed if none of the built-ins
532 * it defines have been accessed yet; so it's safe to throw away the
533 * old max_ifc_array_access pointer, since all of its values are
534 * zero.
535 */
536 for (unsigned i = 0; i < this->interface_type->length; i++)
537 assert(this->u.max_ifc_array_access[i] == -1);
538 #endif
539 ralloc_free(this->u.max_ifc_array_access);
540 this->u.max_ifc_array_access = NULL;
541 }
542 this->interface_type = NULL;
543 init_interface_type(type);
544 }
545
get_interface_type()546 const glsl_type *get_interface_type() const
547 {
548 return this->interface_type;
549 }
550
get_interface_type_packing()551 enum glsl_interface_packing get_interface_type_packing() const
552 {
553 return this->interface_type->get_interface_packing();
554 }
555 /**
556 * Get the max_ifc_array_access pointer
557 *
558 * A "set" function is not needed because the array is dynmically allocated
559 * as necessary.
560 */
get_max_ifc_array_access()561 inline int *get_max_ifc_array_access()
562 {
563 assert(this->data._num_state_slots == 0);
564 return this->u.max_ifc_array_access;
565 }
566
get_num_state_slots()567 inline unsigned get_num_state_slots() const
568 {
569 assert(!this->is_interface_instance()
570 || this->data._num_state_slots == 0);
571 return this->data._num_state_slots;
572 }
573
set_num_state_slots(unsigned n)574 inline void set_num_state_slots(unsigned n)
575 {
576 assert(!this->is_interface_instance()
577 || n == 0);
578 this->data._num_state_slots = n;
579 }
580
get_state_slots()581 inline ir_state_slot *get_state_slots()
582 {
583 return this->is_interface_instance() ? NULL : this->u.state_slots;
584 }
585
get_state_slots()586 inline const ir_state_slot *get_state_slots() const
587 {
588 return this->is_interface_instance() ? NULL : this->u.state_slots;
589 }
590
allocate_state_slots(unsigned n)591 inline ir_state_slot *allocate_state_slots(unsigned n)
592 {
593 assert(!this->is_interface_instance());
594
595 this->u.state_slots = ralloc_array(this, ir_state_slot, n);
596 this->data._num_state_slots = 0;
597
598 if (this->u.state_slots != NULL)
599 this->data._num_state_slots = n;
600
601 return this->u.state_slots;
602 }
603
is_interpolation_flat()604 inline bool is_interpolation_flat() const
605 {
606 return this->data.interpolation == INTERP_MODE_FLAT ||
607 this->type->contains_integer() ||
608 this->type->contains_double();
609 }
610
is_name_ralloced()611 inline bool is_name_ralloced() const
612 {
613 return this->name != ir_variable::tmp_name &&
614 this->name != this->name_storage;
615 }
616
617 /**
618 * Enable emitting extension warnings for this variable
619 */
620 void enable_extension_warning(const char *extension);
621
622 /**
623 * Get the extension warning string for this variable
624 *
625 * If warnings are not enabled, \c NULL is returned.
626 */
627 const char *get_extension_warning() const;
628
629 /**
630 * Declared type of the variable
631 */
632 const struct glsl_type *type;
633
634 /**
635 * Declared name of the variable
636 */
637 const char *name;
638
639 private:
640 /**
641 * If the name length fits into name_storage, it's used, otherwise
642 * the name is ralloc'd. shader-db mining showed that 70% of variables
643 * fit here. This is a win over ralloc where only ralloc_header has
644 * 20 bytes on 64-bit (28 bytes with DEBUG), and we can also skip malloc.
645 */
646 char name_storage[16];
647
648 public:
649 struct ir_variable_data {
650
651 /**
652 * Is the variable read-only?
653 *
654 * This is set for variables declared as \c const, shader inputs,
655 * and uniforms.
656 */
657 unsigned read_only:1;
658 unsigned centroid:1;
659 unsigned sample:1;
660 unsigned patch:1;
661 unsigned invariant:1;
662 unsigned precise:1;
663
664 /**
665 * Has this variable been used for reading or writing?
666 *
667 * Several GLSL semantic checks require knowledge of whether or not a
668 * variable has been used. For example, it is an error to redeclare a
669 * variable as invariant after it has been used.
670 *
671 * This is only maintained in the ast_to_hir.cpp path, not in
672 * Mesa's fixed function or ARB program paths.
673 */
674 unsigned used:1;
675
676 /**
677 * Has this variable been statically assigned?
678 *
679 * This answers whether the variable was assigned in any path of
680 * the shader during ast_to_hir. This doesn't answer whether it is
681 * still written after dead code removal, nor is it maintained in
682 * non-ast_to_hir.cpp (GLSL parsing) paths.
683 */
684 unsigned assigned:1;
685
686 /**
687 * When separate shader programs are enabled, only input/outputs between
688 * the stages of a multi-stage separate program can be safely removed
689 * from the shader interface. Other input/outputs must remains active.
690 */
691 unsigned always_active_io:1;
692
693 /**
694 * Enum indicating how the variable was declared. See
695 * ir_var_declaration_type.
696 *
697 * This is used to detect certain kinds of illegal variable redeclarations.
698 */
699 unsigned how_declared:2;
700
701 /**
702 * Storage class of the variable.
703 *
704 * \sa ir_variable_mode
705 */
706 unsigned mode:4;
707
708 /**
709 * Interpolation mode for shader inputs / outputs
710 *
711 * \sa glsl_interp_mode
712 */
713 unsigned interpolation:2;
714
715 /**
716 * \name ARB_fragment_coord_conventions
717 * @{
718 */
719 unsigned origin_upper_left:1;
720 unsigned pixel_center_integer:1;
721 /*@}*/
722
723 /**
724 * Was the location explicitly set in the shader?
725 *
726 * If the location is explicitly set in the shader, it \b cannot be changed
727 * by the linker or by the API (e.g., calls to \c glBindAttribLocation have
728 * no effect).
729 */
730 unsigned explicit_location:1;
731 unsigned explicit_index:1;
732
733 /**
734 * Was an initial binding explicitly set in the shader?
735 *
736 * If so, constant_value contains an integer ir_constant representing the
737 * initial binding point.
738 */
739 unsigned explicit_binding:1;
740
741 /**
742 * Was an initial component explicitly set in the shader?
743 */
744 unsigned explicit_component:1;
745
746 /**
747 * Does this variable have an initializer?
748 *
749 * This is used by the linker to cross-validiate initializers of global
750 * variables.
751 */
752 unsigned has_initializer:1;
753
754 /**
755 * Is this variable a generic output or input that has not yet been matched
756 * up to a variable in another stage of the pipeline?
757 *
758 * This is used by the linker as scratch storage while assigning locations
759 * to generic inputs and outputs.
760 */
761 unsigned is_unmatched_generic_inout:1;
762
763 /**
764 * Is this varying used only by transform feedback?
765 *
766 * This is used by the linker to decide if its safe to pack the varying.
767 */
768 unsigned is_xfb_only:1;
769
770 /**
771 * Was a transfor feedback buffer set in the shader?
772 */
773 unsigned explicit_xfb_buffer:1;
774
775 /**
776 * Was a transfor feedback offset set in the shader?
777 */
778 unsigned explicit_xfb_offset:1;
779
780 /**
781 * Was a transfor feedback stride set in the shader?
782 */
783 unsigned explicit_xfb_stride:1;
784
785 /**
786 * If non-zero, then this variable may be packed along with other variables
787 * into a single varying slot, so this offset should be applied when
788 * accessing components. For example, an offset of 1 means that the x
789 * component of this variable is actually stored in component y of the
790 * location specified by \c location.
791 */
792 unsigned location_frac:2;
793
794 /**
795 * Layout of the matrix. Uses glsl_matrix_layout values.
796 */
797 unsigned matrix_layout:2;
798
799 /**
800 * Non-zero if this variable was created by lowering a named interface
801 * block.
802 */
803 unsigned from_named_ifc_block:1;
804
805 /**
806 * Non-zero if the variable must be a shader input. This is useful for
807 * constraints on function parameters.
808 */
809 unsigned must_be_shader_input:1;
810
811 /**
812 * Output index for dual source blending.
813 *
814 * \note
815 * The GLSL spec only allows the values 0 or 1 for the index in \b dual
816 * source blending.
817 */
818 unsigned index:1;
819
820 /**
821 * Precision qualifier.
822 *
823 * In desktop GLSL we do not care about precision qualifiers at all, in
824 * fact, the spec says that precision qualifiers are ignored.
825 *
826 * To make things easy, we make it so that this field is always
827 * GLSL_PRECISION_NONE on desktop shaders. This way all the variables
828 * have the same precision value and the checks we add in the compiler
829 * for this field will never break a desktop shader compile.
830 */
831 unsigned precision:2;
832
833 /**
834 * \brief Layout qualifier for gl_FragDepth.
835 *
836 * This is not equal to \c ir_depth_layout_none if and only if this
837 * variable is \c gl_FragDepth and a layout qualifier is specified.
838 */
839 ir_depth_layout depth_layout:3;
840
841 /**
842 * Memory qualifiers.
843 */
844 unsigned memory_read_only:1; /**< "readonly" qualifier. */
845 unsigned memory_write_only:1; /**< "writeonly" qualifier. */
846 unsigned memory_coherent:1;
847 unsigned memory_volatile:1;
848 unsigned memory_restrict:1;
849
850 /**
851 * ARB_shader_storage_buffer_object
852 */
853 unsigned from_ssbo_unsized_array:1; /**< unsized array buffer variable. */
854
855 unsigned implicit_sized_array:1;
856
857 /**
858 * Whether this is a fragment shader output implicitly initialized with
859 * the previous contents of the specified render target at the
860 * framebuffer location corresponding to this shader invocation.
861 */
862 unsigned fb_fetch_output:1;
863
864 /**
865 * Non-zero if this variable is considered bindless as defined by
866 * ARB_bindless_texture.
867 */
868 unsigned bindless:1;
869
870 /**
871 * Non-zero if this variable is considered bound as defined by
872 * ARB_bindless_texture.
873 */
874 unsigned bound:1;
875
876 /**
877 * Emit a warning if this variable is accessed.
878 */
879 private:
880 uint8_t warn_extension_index;
881
882 public:
883 /** Image internal format if specified explicitly, otherwise GL_NONE. */
884 uint16_t image_format;
885
886 private:
887 /**
888 * Number of state slots used
889 *
890 * \note
891 * This could be stored in as few as 7-bits, if necessary. If it is made
892 * smaller, add an assertion to \c ir_variable::allocate_state_slots to
893 * be safe.
894 */
895 uint16_t _num_state_slots;
896
897 public:
898 /**
899 * Initial binding point for a sampler, atomic, or UBO.
900 *
901 * For array types, this represents the binding point for the first element.
902 */
903 int16_t binding;
904
905 /**
906 * Storage location of the base of this variable
907 *
908 * The precise meaning of this field depends on the nature of the variable.
909 *
910 * - Vertex shader input: one of the values from \c gl_vert_attrib.
911 * - Vertex shader output: one of the values from \c gl_varying_slot.
912 * - Geometry shader input: one of the values from \c gl_varying_slot.
913 * - Geometry shader output: one of the values from \c gl_varying_slot.
914 * - Fragment shader input: one of the values from \c gl_varying_slot.
915 * - Fragment shader output: one of the values from \c gl_frag_result.
916 * - Uniforms: Per-stage uniform slot number for default uniform block.
917 * - Uniforms: Index within the uniform block definition for UBO members.
918 * - Non-UBO Uniforms: explicit location until linking then reused to
919 * store uniform slot number.
920 * - Other: This field is not currently used.
921 *
922 * If the variable is a uniform, shader input, or shader output, and the
923 * slot has not been assigned, the value will be -1.
924 */
925 int location;
926
927 /**
928 * for glsl->tgsi/mesa IR we need to store the index into the
929 * parameters for uniforms, initially the code overloaded location
930 * but this causes problems with indirect samplers and AoA.
931 * This is assigned in _mesa_generate_parameters_list_for_uniforms.
932 */
933 int param_index;
934
935 /**
936 * Vertex stream output identifier.
937 *
938 * For packed outputs, bit 31 is set and bits [2*i+1,2*i] indicate the
939 * stream of the i-th component.
940 */
941 unsigned stream;
942
943 /**
944 * Atomic, transform feedback or block member offset.
945 */
946 unsigned offset;
947
948 /**
949 * Highest element accessed with a constant expression array index
950 *
951 * Not used for non-array variables. -1 is never accessed.
952 */
953 int max_array_access;
954
955 /**
956 * Transform feedback buffer.
957 */
958 unsigned xfb_buffer;
959
960 /**
961 * Transform feedback stride.
962 */
963 unsigned xfb_stride;
964
965 /**
966 * Allow (only) ir_variable direct access private members.
967 */
968 friend class ir_variable;
969 } data;
970
971 /**
972 * Value assigned in the initializer of a variable declared "const"
973 */
974 ir_constant *constant_value;
975
976 /**
977 * Constant expression assigned in the initializer of the variable
978 *
979 * \warning
980 * This field and \c ::constant_value are distinct. Even if the two fields
981 * refer to constants with the same value, they must point to separate
982 * objects.
983 */
984 ir_constant *constant_initializer;
985
986 private:
987 static const char *const warn_extension_table[];
988
989 union {
990 /**
991 * For variables which satisfy the is_interface_instance() predicate,
992 * this points to an array of integers such that if the ith member of
993 * the interface block is an array, max_ifc_array_access[i] is the
994 * maximum array element of that member that has been accessed. If the
995 * ith member of the interface block is not an array,
996 * max_ifc_array_access[i] is unused.
997 *
998 * For variables whose type is not an interface block, this pointer is
999 * NULL.
1000 */
1001 int *max_ifc_array_access;
1002
1003 /**
1004 * Built-in state that backs this uniform
1005 *
1006 * Once set at variable creation, \c state_slots must remain invariant.
1007 *
1008 * If the variable is not a uniform, \c _num_state_slots will be zero
1009 * and \c state_slots will be \c NULL.
1010 */
1011 ir_state_slot *state_slots;
1012 } u;
1013
1014 /**
1015 * For variables that are in an interface block or are an instance of an
1016 * interface block, this is the \c GLSL_TYPE_INTERFACE type for that block.
1017 *
1018 * \sa ir_variable::location
1019 */
1020 const glsl_type *interface_type;
1021
1022 /**
1023 * Name used for anonymous compiler temporaries
1024 */
1025 static const char tmp_name[];
1026
1027 public:
1028 /**
1029 * Should the construct keep names for ir_var_temporary variables?
1030 *
1031 * When this global is false, names passed to the constructor for
1032 * \c ir_var_temporary variables will be dropped. Instead, the variable will
1033 * be named "compiler_temp". This name will be in static storage.
1034 *
1035 * \warning
1036 * \b NEVER change the mode of an \c ir_var_temporary.
1037 *
1038 * \warning
1039 * This variable is \b not thread-safe. It is global, \b not
1040 * per-context. It begins life false. A context can, at some point, make
1041 * it true. From that point on, it will be true forever. This should be
1042 * okay since it will only be set true while debugging.
1043 */
1044 static bool temporaries_allocate_names;
1045 };
1046
1047 /**
1048 * A function that returns whether a built-in function is available in the
1049 * current shading language (based on version, ES or desktop, and extensions).
1050 */
1051 typedef bool (*builtin_available_predicate)(const _mesa_glsl_parse_state *);
1052
1053 #define MAKE_INTRINSIC_FOR_TYPE(op, t) \
1054 ir_intrinsic_generic_ ## op - ir_intrinsic_generic_load + ir_intrinsic_ ## t ## _ ## load
1055
1056 #define MAP_INTRINSIC_TO_TYPE(i, t) \
1057 ir_intrinsic_id(int(i) - int(ir_intrinsic_generic_load) + int(ir_intrinsic_ ## t ## _ ## load))
1058
1059 enum ir_intrinsic_id {
1060 ir_intrinsic_invalid = 0,
1061
1062 /**
1063 * \name Generic intrinsics
1064 *
1065 * Each of these intrinsics has a specific version for shared variables and
1066 * SSBOs.
1067 */
1068 /*@{*/
1069 ir_intrinsic_generic_load,
1070 ir_intrinsic_generic_store,
1071 ir_intrinsic_generic_atomic_add,
1072 ir_intrinsic_generic_atomic_and,
1073 ir_intrinsic_generic_atomic_or,
1074 ir_intrinsic_generic_atomic_xor,
1075 ir_intrinsic_generic_atomic_min,
1076 ir_intrinsic_generic_atomic_max,
1077 ir_intrinsic_generic_atomic_exchange,
1078 ir_intrinsic_generic_atomic_comp_swap,
1079 /*@}*/
1080
1081 ir_intrinsic_atomic_counter_read,
1082 ir_intrinsic_atomic_counter_increment,
1083 ir_intrinsic_atomic_counter_predecrement,
1084 ir_intrinsic_atomic_counter_add,
1085 ir_intrinsic_atomic_counter_and,
1086 ir_intrinsic_atomic_counter_or,
1087 ir_intrinsic_atomic_counter_xor,
1088 ir_intrinsic_atomic_counter_min,
1089 ir_intrinsic_atomic_counter_max,
1090 ir_intrinsic_atomic_counter_exchange,
1091 ir_intrinsic_atomic_counter_comp_swap,
1092
1093 ir_intrinsic_image_load,
1094 ir_intrinsic_image_store,
1095 ir_intrinsic_image_atomic_add,
1096 ir_intrinsic_image_atomic_and,
1097 ir_intrinsic_image_atomic_or,
1098 ir_intrinsic_image_atomic_xor,
1099 ir_intrinsic_image_atomic_min,
1100 ir_intrinsic_image_atomic_max,
1101 ir_intrinsic_image_atomic_exchange,
1102 ir_intrinsic_image_atomic_comp_swap,
1103 ir_intrinsic_image_size,
1104 ir_intrinsic_image_samples,
1105
1106 ir_intrinsic_ssbo_load,
1107 ir_intrinsic_ssbo_store = MAKE_INTRINSIC_FOR_TYPE(store, ssbo),
1108 ir_intrinsic_ssbo_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, ssbo),
1109 ir_intrinsic_ssbo_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, ssbo),
1110 ir_intrinsic_ssbo_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, ssbo),
1111 ir_intrinsic_ssbo_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, ssbo),
1112 ir_intrinsic_ssbo_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, ssbo),
1113 ir_intrinsic_ssbo_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, ssbo),
1114 ir_intrinsic_ssbo_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, ssbo),
1115 ir_intrinsic_ssbo_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, ssbo),
1116
1117 ir_intrinsic_memory_barrier,
1118 ir_intrinsic_shader_clock,
1119 ir_intrinsic_group_memory_barrier,
1120 ir_intrinsic_memory_barrier_atomic_counter,
1121 ir_intrinsic_memory_barrier_buffer,
1122 ir_intrinsic_memory_barrier_image,
1123 ir_intrinsic_memory_barrier_shared,
1124
1125 ir_intrinsic_vote_all,
1126 ir_intrinsic_vote_any,
1127 ir_intrinsic_vote_eq,
1128 ir_intrinsic_ballot,
1129 ir_intrinsic_read_invocation,
1130 ir_intrinsic_read_first_invocation,
1131
1132 ir_intrinsic_shared_load,
1133 ir_intrinsic_shared_store = MAKE_INTRINSIC_FOR_TYPE(store, shared),
1134 ir_intrinsic_shared_atomic_add = MAKE_INTRINSIC_FOR_TYPE(atomic_add, shared),
1135 ir_intrinsic_shared_atomic_and = MAKE_INTRINSIC_FOR_TYPE(atomic_and, shared),
1136 ir_intrinsic_shared_atomic_or = MAKE_INTRINSIC_FOR_TYPE(atomic_or, shared),
1137 ir_intrinsic_shared_atomic_xor = MAKE_INTRINSIC_FOR_TYPE(atomic_xor, shared),
1138 ir_intrinsic_shared_atomic_min = MAKE_INTRINSIC_FOR_TYPE(atomic_min, shared),
1139 ir_intrinsic_shared_atomic_max = MAKE_INTRINSIC_FOR_TYPE(atomic_max, shared),
1140 ir_intrinsic_shared_atomic_exchange = MAKE_INTRINSIC_FOR_TYPE(atomic_exchange, shared),
1141 ir_intrinsic_shared_atomic_comp_swap = MAKE_INTRINSIC_FOR_TYPE(atomic_comp_swap, shared),
1142 };
1143
1144 /*@{*/
1145 /**
1146 * The representation of a function instance; may be the full definition or
1147 * simply a prototype.
1148 */
1149 class ir_function_signature : public ir_instruction {
1150 /* An ir_function_signature will be part of the list of signatures in
1151 * an ir_function.
1152 */
1153 public:
1154 ir_function_signature(const glsl_type *return_type,
1155 builtin_available_predicate builtin_avail = NULL);
1156
1157 virtual ir_function_signature *clone(void *mem_ctx,
1158 struct hash_table *ht) const;
1159 ir_function_signature *clone_prototype(void *mem_ctx,
1160 struct hash_table *ht) const;
1161
accept(ir_visitor * v)1162 virtual void accept(ir_visitor *v)
1163 {
1164 v->visit(this);
1165 }
1166
1167 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1168
1169 /**
1170 * Attempt to evaluate this function as a constant expression,
1171 * given a list of the actual parameters and the variable context.
1172 * Returns NULL for non-built-ins.
1173 */
1174 ir_constant *constant_expression_value(void *mem_ctx,
1175 exec_list *actual_parameters,
1176 struct hash_table *variable_context);
1177
1178 /**
1179 * Get the name of the function for which this is a signature
1180 */
1181 const char *function_name() const;
1182
1183 /**
1184 * Get a handle to the function for which this is a signature
1185 *
1186 * There is no setter function, this function returns a \c const pointer,
1187 * and \c ir_function_signature::_function is private for a reason. The
1188 * only way to make a connection between a function and function signature
1189 * is via \c ir_function::add_signature. This helps ensure that certain
1190 * invariants (i.e., a function signature is in the list of signatures for
1191 * its \c _function) are met.
1192 *
1193 * \sa ir_function::add_signature
1194 */
function()1195 inline const class ir_function *function() const
1196 {
1197 return this->_function;
1198 }
1199
1200 /**
1201 * Check whether the qualifiers match between this signature's parameters
1202 * and the supplied parameter list. If not, returns the name of the first
1203 * parameter with mismatched qualifiers (for use in error messages).
1204 */
1205 const char *qualifiers_match(exec_list *params);
1206
1207 /**
1208 * Replace the current parameter list with the given one. This is useful
1209 * if the current information came from a prototype, and either has invalid
1210 * or missing parameter names.
1211 */
1212 void replace_parameters(exec_list *new_params);
1213
1214 /**
1215 * Function return type.
1216 *
1217 * \note This discards the optional precision qualifier.
1218 */
1219 const struct glsl_type *return_type;
1220
1221 /**
1222 * List of ir_variable of function parameters.
1223 *
1224 * This represents the storage. The paramaters passed in a particular
1225 * call will be in ir_call::actual_paramaters.
1226 */
1227 struct exec_list parameters;
1228
1229 /** Whether or not this function has a body (which may be empty). */
1230 unsigned is_defined:1;
1231
1232 /** Whether or not this function signature is a built-in. */
1233 bool is_builtin() const;
1234
1235 /**
1236 * Whether or not this function is an intrinsic to be implemented
1237 * by the driver.
1238 */
is_intrinsic()1239 inline bool is_intrinsic() const
1240 {
1241 return intrinsic_id != ir_intrinsic_invalid;
1242 }
1243
1244 /** Indentifier for this intrinsic. */
1245 enum ir_intrinsic_id intrinsic_id;
1246
1247 /** Whether or not a built-in is available for this shader. */
1248 bool is_builtin_available(const _mesa_glsl_parse_state *state) const;
1249
1250 /** Body of instructions in the function. */
1251 struct exec_list body;
1252
1253 private:
1254 /**
1255 * A function pointer to a predicate that answers whether a built-in
1256 * function is available in the current shader. NULL if not a built-in.
1257 */
1258 builtin_available_predicate builtin_avail;
1259
1260 /** Function of which this signature is one overload. */
1261 class ir_function *_function;
1262
1263 /** Function signature of which this one is a prototype clone */
1264 const ir_function_signature *origin;
1265
1266 friend class ir_function;
1267
1268 /**
1269 * Helper function to run a list of instructions for constant
1270 * expression evaluation.
1271 *
1272 * The hash table represents the values of the visible variables.
1273 * There are no scoping issues because the table is indexed on
1274 * ir_variable pointers, not variable names.
1275 *
1276 * Returns false if the expression is not constant, true otherwise,
1277 * and the value in *result if result is non-NULL.
1278 */
1279 bool constant_expression_evaluate_expression_list(void *mem_ctx,
1280 const struct exec_list &body,
1281 struct hash_table *variable_context,
1282 ir_constant **result);
1283 };
1284
1285
1286 /**
1287 * Header for tracking multiple overloaded functions with the same name.
1288 * Contains a list of ir_function_signatures representing each of the
1289 * actual functions.
1290 */
1291 class ir_function : public ir_instruction {
1292 public:
1293 ir_function(const char *name);
1294
1295 virtual ir_function *clone(void *mem_ctx, struct hash_table *ht) const;
1296
accept(ir_visitor * v)1297 virtual void accept(ir_visitor *v)
1298 {
1299 v->visit(this);
1300 }
1301
1302 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1303
add_signature(ir_function_signature * sig)1304 void add_signature(ir_function_signature *sig)
1305 {
1306 sig->_function = this;
1307 this->signatures.push_tail(sig);
1308 }
1309
1310 /**
1311 * Find a signature that matches a set of actual parameters, taking implicit
1312 * conversions into account. Also flags whether the match was exact.
1313 */
1314 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1315 const exec_list *actual_param,
1316 bool allow_builtins,
1317 bool *match_is_exact);
1318
1319 /**
1320 * Find a signature that matches a set of actual parameters, taking implicit
1321 * conversions into account.
1322 */
1323 ir_function_signature *matching_signature(_mesa_glsl_parse_state *state,
1324 const exec_list *actual_param,
1325 bool allow_builtins);
1326
1327 /**
1328 * Find a signature that exactly matches a set of actual parameters without
1329 * any implicit type conversions.
1330 */
1331 ir_function_signature *exact_matching_signature(_mesa_glsl_parse_state *state,
1332 const exec_list *actual_ps);
1333
1334 /**
1335 * Name of the function.
1336 */
1337 const char *name;
1338
1339 /** Whether or not this function has a signature that isn't a built-in. */
1340 bool has_user_signature();
1341
1342 /**
1343 * List of ir_function_signature for each overloaded function with this name.
1344 */
1345 struct exec_list signatures;
1346
1347 /**
1348 * is this function a subroutine type declaration
1349 * e.g. subroutine void type1(float arg1);
1350 */
1351 bool is_subroutine;
1352
1353 /**
1354 * is this function associated to a subroutine type
1355 * e.g. subroutine (type1, type2) function_name { function_body };
1356 * would have num_subroutine_types 2,
1357 * and pointers to the type1 and type2 types.
1358 */
1359 int num_subroutine_types;
1360 const struct glsl_type **subroutine_types;
1361
1362 int subroutine_index;
1363 };
1364
function_name()1365 inline const char *ir_function_signature::function_name() const
1366 {
1367 return this->_function->name;
1368 }
1369 /*@}*/
1370
1371
1372 /**
1373 * IR instruction representing high-level if-statements
1374 */
1375 class ir_if : public ir_instruction {
1376 public:
ir_if(ir_rvalue * condition)1377 ir_if(ir_rvalue *condition)
1378 : ir_instruction(ir_type_if), condition(condition)
1379 {
1380 }
1381
1382 virtual ir_if *clone(void *mem_ctx, struct hash_table *ht) const;
1383
accept(ir_visitor * v)1384 virtual void accept(ir_visitor *v)
1385 {
1386 v->visit(this);
1387 }
1388
1389 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1390
1391 ir_rvalue *condition;
1392 /** List of ir_instruction for the body of the then branch */
1393 exec_list then_instructions;
1394 /** List of ir_instruction for the body of the else branch */
1395 exec_list else_instructions;
1396 };
1397
1398
1399 /**
1400 * IR instruction representing a high-level loop structure.
1401 */
1402 class ir_loop : public ir_instruction {
1403 public:
1404 ir_loop();
1405
1406 virtual ir_loop *clone(void *mem_ctx, struct hash_table *ht) const;
1407
accept(ir_visitor * v)1408 virtual void accept(ir_visitor *v)
1409 {
1410 v->visit(this);
1411 }
1412
1413 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1414
1415 /** List of ir_instruction that make up the body of the loop. */
1416 exec_list body_instructions;
1417 };
1418
1419
1420 class ir_assignment : public ir_instruction {
1421 public:
1422 ir_assignment(ir_rvalue *lhs, ir_rvalue *rhs, ir_rvalue *condition = NULL);
1423
1424 /**
1425 * Construct an assignment with an explicit write mask
1426 *
1427 * \note
1428 * Since a write mask is supplied, the LHS must already be a bare
1429 * \c ir_dereference. The cannot be any swizzles in the LHS.
1430 */
1431 ir_assignment(ir_dereference *lhs, ir_rvalue *rhs, ir_rvalue *condition,
1432 unsigned write_mask);
1433
1434 virtual ir_assignment *clone(void *mem_ctx, struct hash_table *ht) const;
1435
1436 virtual ir_constant *constant_expression_value(void *mem_ctx,
1437 struct hash_table *variable_context = NULL);
1438
accept(ir_visitor * v)1439 virtual void accept(ir_visitor *v)
1440 {
1441 v->visit(this);
1442 }
1443
1444 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1445
1446 /**
1447 * Get a whole variable written by an assignment
1448 *
1449 * If the LHS of the assignment writes a whole variable, the variable is
1450 * returned. Otherwise \c NULL is returned. Examples of whole-variable
1451 * assignment are:
1452 *
1453 * - Assigning to a scalar
1454 * - Assigning to all components of a vector
1455 * - Whole array (or matrix) assignment
1456 * - Whole structure assignment
1457 */
1458 ir_variable *whole_variable_written();
1459
1460 /**
1461 * Set the LHS of an assignment
1462 */
1463 void set_lhs(ir_rvalue *lhs);
1464
1465 /**
1466 * Left-hand side of the assignment.
1467 *
1468 * This should be treated as read only. If you need to set the LHS of an
1469 * assignment, use \c ir_assignment::set_lhs.
1470 */
1471 ir_dereference *lhs;
1472
1473 /**
1474 * Value being assigned
1475 */
1476 ir_rvalue *rhs;
1477
1478 /**
1479 * Optional condition for the assignment.
1480 */
1481 ir_rvalue *condition;
1482
1483
1484 /**
1485 * Component mask written
1486 *
1487 * For non-vector types in the LHS, this field will be zero. For vector
1488 * types, a bit will be set for each component that is written. Note that
1489 * for \c vec2 and \c vec3 types only the lower bits will ever be set.
1490 *
1491 * A partially-set write mask means that each enabled channel gets
1492 * the value from a consecutive channel of the rhs. For example,
1493 * to write just .xyw of gl_FrontColor with color:
1494 *
1495 * (assign (constant bool (1)) (xyw)
1496 * (var_ref gl_FragColor)
1497 * (swiz xyw (var_ref color)))
1498 */
1499 unsigned write_mask:4;
1500 };
1501
1502 #include "ir_expression_operation.h"
1503
1504 extern const char *const ir_expression_operation_strings[ir_last_opcode + 1];
1505 extern const char *const ir_expression_operation_enum_strings[ir_last_opcode + 1];
1506
1507 class ir_expression : public ir_rvalue {
1508 public:
1509 ir_expression(int op, const struct glsl_type *type,
1510 ir_rvalue *op0, ir_rvalue *op1 = NULL,
1511 ir_rvalue *op2 = NULL, ir_rvalue *op3 = NULL);
1512
1513 /**
1514 * Constructor for unary operation expressions
1515 */
1516 ir_expression(int op, ir_rvalue *);
1517
1518 /**
1519 * Constructor for binary operation expressions
1520 */
1521 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1);
1522
1523 /**
1524 * Constructor for ternary operation expressions
1525 */
1526 ir_expression(int op, ir_rvalue *op0, ir_rvalue *op1, ir_rvalue *op2);
1527
1528 virtual bool equals(const ir_instruction *ir,
1529 enum ir_node_type ignore = ir_type_unset) const;
1530
1531 virtual ir_expression *clone(void *mem_ctx, struct hash_table *ht) const;
1532
1533 /**
1534 * Attempt to constant-fold the expression
1535 *
1536 * The "variable_context" hash table links ir_variable * to ir_constant *
1537 * that represent the variables' values. \c NULL represents an empty
1538 * context.
1539 *
1540 * If the expression cannot be constant folded, this method will return
1541 * \c NULL.
1542 */
1543 virtual ir_constant *constant_expression_value(void *mem_ctx,
1544 struct hash_table *variable_context = NULL);
1545
1546 /**
1547 * This is only here for ir_reader to used for testing purposes please use
1548 * the precomputed num_operands field if you need the number of operands.
1549 */
1550 static unsigned get_num_operands(ir_expression_operation);
1551
1552 /**
1553 * Return whether the expression operates on vectors horizontally.
1554 */
is_horizontal()1555 bool is_horizontal() const
1556 {
1557 return operation == ir_binop_all_equal ||
1558 operation == ir_binop_any_nequal ||
1559 operation == ir_binop_dot ||
1560 operation == ir_binop_vector_extract ||
1561 operation == ir_triop_vector_insert ||
1562 operation == ir_binop_ubo_load ||
1563 operation == ir_quadop_vector;
1564 }
1565
1566 /**
1567 * Do a reverse-lookup to translate the given string into an operator.
1568 */
1569 static ir_expression_operation get_operator(const char *);
1570
accept(ir_visitor * v)1571 virtual void accept(ir_visitor *v)
1572 {
1573 v->visit(this);
1574 }
1575
1576 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1577
1578 virtual ir_variable *variable_referenced() const;
1579
1580 /**
1581 * Determine the number of operands used by an expression
1582 */
init_num_operands()1583 void init_num_operands()
1584 {
1585 if (operation == ir_quadop_vector) {
1586 num_operands = this->type->vector_elements;
1587 } else {
1588 num_operands = get_num_operands(operation);
1589 }
1590 }
1591
1592 ir_expression_operation operation;
1593 ir_rvalue *operands[4];
1594 uint8_t num_operands;
1595 };
1596
1597
1598 /**
1599 * HIR instruction representing a high-level function call, containing a list
1600 * of parameters and returning a value in the supplied temporary.
1601 */
1602 class ir_call : public ir_instruction {
1603 public:
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters)1604 ir_call(ir_function_signature *callee,
1605 ir_dereference_variable *return_deref,
1606 exec_list *actual_parameters)
1607 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(NULL), array_idx(NULL)
1608 {
1609 assert(callee->return_type != NULL);
1610 actual_parameters->move_nodes_to(& this->actual_parameters);
1611 }
1612
ir_call(ir_function_signature * callee,ir_dereference_variable * return_deref,exec_list * actual_parameters,ir_variable * var,ir_rvalue * array_idx)1613 ir_call(ir_function_signature *callee,
1614 ir_dereference_variable *return_deref,
1615 exec_list *actual_parameters,
1616 ir_variable *var, ir_rvalue *array_idx)
1617 : ir_instruction(ir_type_call), return_deref(return_deref), callee(callee), sub_var(var), array_idx(array_idx)
1618 {
1619 assert(callee->return_type != NULL);
1620 actual_parameters->move_nodes_to(& this->actual_parameters);
1621 }
1622
1623 virtual ir_call *clone(void *mem_ctx, struct hash_table *ht) const;
1624
1625 virtual ir_constant *constant_expression_value(void *mem_ctx,
1626 struct hash_table *variable_context = NULL);
1627
accept(ir_visitor * v)1628 virtual void accept(ir_visitor *v)
1629 {
1630 v->visit(this);
1631 }
1632
1633 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1634
1635 /**
1636 * Get the name of the function being called.
1637 */
callee_name()1638 const char *callee_name() const
1639 {
1640 return callee->function_name();
1641 }
1642
1643 /**
1644 * Generates an inline version of the function before @ir,
1645 * storing the return value in return_deref.
1646 */
1647 void generate_inline(ir_instruction *ir);
1648
1649 /**
1650 * Storage for the function's return value.
1651 * This must be NULL if the return type is void.
1652 */
1653 ir_dereference_variable *return_deref;
1654
1655 /**
1656 * The specific function signature being called.
1657 */
1658 ir_function_signature *callee;
1659
1660 /* List of ir_rvalue of paramaters passed in this call. */
1661 exec_list actual_parameters;
1662
1663 /*
1664 * ARB_shader_subroutine support -
1665 * the subroutine uniform variable and array index
1666 * rvalue to be used in the lowering pass later.
1667 */
1668 ir_variable *sub_var;
1669 ir_rvalue *array_idx;
1670 };
1671
1672
1673 /**
1674 * \name Jump-like IR instructions.
1675 *
1676 * These include \c break, \c continue, \c return, and \c discard.
1677 */
1678 /*@{*/
1679 class ir_jump : public ir_instruction {
1680 protected:
ir_jump(enum ir_node_type t)1681 ir_jump(enum ir_node_type t)
1682 : ir_instruction(t)
1683 {
1684 }
1685 };
1686
1687 class ir_return : public ir_jump {
1688 public:
ir_return()1689 ir_return()
1690 : ir_jump(ir_type_return), value(NULL)
1691 {
1692 }
1693
ir_return(ir_rvalue * value)1694 ir_return(ir_rvalue *value)
1695 : ir_jump(ir_type_return), value(value)
1696 {
1697 }
1698
1699 virtual ir_return *clone(void *mem_ctx, struct hash_table *) const;
1700
get_value()1701 ir_rvalue *get_value() const
1702 {
1703 return value;
1704 }
1705
accept(ir_visitor * v)1706 virtual void accept(ir_visitor *v)
1707 {
1708 v->visit(this);
1709 }
1710
1711 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1712
1713 ir_rvalue *value;
1714 };
1715
1716
1717 /**
1718 * Jump instructions used inside loops
1719 *
1720 * These include \c break and \c continue. The \c break within a loop is
1721 * different from the \c break within a switch-statement.
1722 *
1723 * \sa ir_switch_jump
1724 */
1725 class ir_loop_jump : public ir_jump {
1726 public:
1727 enum jump_mode {
1728 jump_break,
1729 jump_continue
1730 };
1731
ir_loop_jump(jump_mode mode)1732 ir_loop_jump(jump_mode mode)
1733 : ir_jump(ir_type_loop_jump)
1734 {
1735 this->mode = mode;
1736 }
1737
1738 virtual ir_loop_jump *clone(void *mem_ctx, struct hash_table *) const;
1739
accept(ir_visitor * v)1740 virtual void accept(ir_visitor *v)
1741 {
1742 v->visit(this);
1743 }
1744
1745 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1746
is_break()1747 bool is_break() const
1748 {
1749 return mode == jump_break;
1750 }
1751
is_continue()1752 bool is_continue() const
1753 {
1754 return mode == jump_continue;
1755 }
1756
1757 /** Mode selector for the jump instruction. */
1758 enum jump_mode mode;
1759 };
1760
1761 /**
1762 * IR instruction representing discard statements.
1763 */
1764 class ir_discard : public ir_jump {
1765 public:
ir_discard()1766 ir_discard()
1767 : ir_jump(ir_type_discard)
1768 {
1769 this->condition = NULL;
1770 }
1771
ir_discard(ir_rvalue * cond)1772 ir_discard(ir_rvalue *cond)
1773 : ir_jump(ir_type_discard)
1774 {
1775 this->condition = cond;
1776 }
1777
1778 virtual ir_discard *clone(void *mem_ctx, struct hash_table *ht) const;
1779
accept(ir_visitor * v)1780 virtual void accept(ir_visitor *v)
1781 {
1782 v->visit(this);
1783 }
1784
1785 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1786
1787 ir_rvalue *condition;
1788 };
1789 /*@}*/
1790
1791
1792 /**
1793 * Texture sampling opcodes used in ir_texture
1794 */
1795 enum ir_texture_opcode {
1796 ir_tex, /**< Regular texture look-up */
1797 ir_txb, /**< Texture look-up with LOD bias */
1798 ir_txl, /**< Texture look-up with explicit LOD */
1799 ir_txd, /**< Texture look-up with partial derivatvies */
1800 ir_txf, /**< Texel fetch with explicit LOD */
1801 ir_txf_ms, /**< Multisample texture fetch */
1802 ir_txs, /**< Texture size */
1803 ir_lod, /**< Texture lod query */
1804 ir_tg4, /**< Texture gather */
1805 ir_query_levels, /**< Texture levels query */
1806 ir_texture_samples, /**< Texture samples query */
1807 ir_samples_identical, /**< Query whether all samples are definitely identical. */
1808 };
1809
1810
1811 /**
1812 * IR instruction to sample a texture
1813 *
1814 * The specific form of the IR instruction depends on the \c mode value
1815 * selected from \c ir_texture_opcodes. In the printed IR, these will
1816 * appear as:
1817 *
1818 * Texel offset (0 or an expression)
1819 * | Projection divisor
1820 * | | Shadow comparator
1821 * | | |
1822 * v v v
1823 * (tex <type> <sampler> <coordinate> 0 1 ( ))
1824 * (txb <type> <sampler> <coordinate> 0 1 ( ) <bias>)
1825 * (txl <type> <sampler> <coordinate> 0 1 ( ) <lod>)
1826 * (txd <type> <sampler> <coordinate> 0 1 ( ) (dPdx dPdy))
1827 * (txf <type> <sampler> <coordinate> 0 <lod>)
1828 * (txf_ms
1829 * <type> <sampler> <coordinate> <sample_index>)
1830 * (txs <type> <sampler> <lod>)
1831 * (lod <type> <sampler> <coordinate>)
1832 * (tg4 <type> <sampler> <coordinate> <offset> <component>)
1833 * (query_levels <type> <sampler>)
1834 * (samples_identical <sampler> <coordinate>)
1835 */
1836 class ir_texture : public ir_rvalue {
1837 public:
ir_texture(enum ir_texture_opcode op)1838 ir_texture(enum ir_texture_opcode op)
1839 : ir_rvalue(ir_type_texture),
1840 op(op), sampler(NULL), coordinate(NULL), projector(NULL),
1841 shadow_comparator(NULL), offset(NULL)
1842 {
1843 memset(&lod_info, 0, sizeof(lod_info));
1844 }
1845
1846 virtual ir_texture *clone(void *mem_ctx, struct hash_table *) const;
1847
1848 virtual ir_constant *constant_expression_value(void *mem_ctx,
1849 struct hash_table *variable_context = NULL);
1850
accept(ir_visitor * v)1851 virtual void accept(ir_visitor *v)
1852 {
1853 v->visit(this);
1854 }
1855
1856 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1857
1858 virtual bool equals(const ir_instruction *ir,
1859 enum ir_node_type ignore = ir_type_unset) const;
1860
1861 /**
1862 * Return a string representing the ir_texture_opcode.
1863 */
1864 const char *opcode_string();
1865
1866 /** Set the sampler and type. */
1867 void set_sampler(ir_dereference *sampler, const glsl_type *type);
1868
1869 /**
1870 * Do a reverse-lookup to translate a string into an ir_texture_opcode.
1871 */
1872 static ir_texture_opcode get_opcode(const char *);
1873
1874 enum ir_texture_opcode op;
1875
1876 /** Sampler to use for the texture access. */
1877 ir_dereference *sampler;
1878
1879 /** Texture coordinate to sample */
1880 ir_rvalue *coordinate;
1881
1882 /**
1883 * Value used for projective divide.
1884 *
1885 * If there is no projective divide (the common case), this will be
1886 * \c NULL. Optimization passes should check for this to point to a constant
1887 * of 1.0 and replace that with \c NULL.
1888 */
1889 ir_rvalue *projector;
1890
1891 /**
1892 * Coordinate used for comparison on shadow look-ups.
1893 *
1894 * If there is no shadow comparison, this will be \c NULL. For the
1895 * \c ir_txf opcode, this *must* be \c NULL.
1896 */
1897 ir_rvalue *shadow_comparator;
1898
1899 /** Texel offset. */
1900 ir_rvalue *offset;
1901
1902 union {
1903 ir_rvalue *lod; /**< Floating point LOD */
1904 ir_rvalue *bias; /**< Floating point LOD bias */
1905 ir_rvalue *sample_index; /**< MSAA sample index */
1906 ir_rvalue *component; /**< Gather component selector */
1907 struct {
1908 ir_rvalue *dPdx; /**< Partial derivative of coordinate wrt X */
1909 ir_rvalue *dPdy; /**< Partial derivative of coordinate wrt Y */
1910 } grad;
1911 } lod_info;
1912 };
1913
1914
1915 struct ir_swizzle_mask {
1916 unsigned x:2;
1917 unsigned y:2;
1918 unsigned z:2;
1919 unsigned w:2;
1920
1921 /**
1922 * Number of components in the swizzle.
1923 */
1924 unsigned num_components:3;
1925
1926 /**
1927 * Does the swizzle contain duplicate components?
1928 *
1929 * L-value swizzles cannot contain duplicate components.
1930 */
1931 unsigned has_duplicates:1;
1932 };
1933
1934
1935 class ir_swizzle : public ir_rvalue {
1936 public:
1937 ir_swizzle(ir_rvalue *, unsigned x, unsigned y, unsigned z, unsigned w,
1938 unsigned count);
1939
1940 ir_swizzle(ir_rvalue *val, const unsigned *components, unsigned count);
1941
1942 ir_swizzle(ir_rvalue *val, ir_swizzle_mask mask);
1943
1944 virtual ir_swizzle *clone(void *mem_ctx, struct hash_table *) const;
1945
1946 virtual ir_constant *constant_expression_value(void *mem_ctx,
1947 struct hash_table *variable_context = NULL);
1948
1949 /**
1950 * Construct an ir_swizzle from the textual representation. Can fail.
1951 */
1952 static ir_swizzle *create(ir_rvalue *, const char *, unsigned vector_length);
1953
accept(ir_visitor * v)1954 virtual void accept(ir_visitor *v)
1955 {
1956 v->visit(this);
1957 }
1958
1959 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
1960
1961 virtual bool equals(const ir_instruction *ir,
1962 enum ir_node_type ignore = ir_type_unset) const;
1963
is_lvalue(const struct _mesa_glsl_parse_state * state)1964 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const
1965 {
1966 return val->is_lvalue(state) && !mask.has_duplicates;
1967 }
1968
1969 /**
1970 * Get the variable that is ultimately referenced by an r-value
1971 */
1972 virtual ir_variable *variable_referenced() const;
1973
1974 ir_rvalue *val;
1975 ir_swizzle_mask mask;
1976
1977 private:
1978 /**
1979 * Initialize the mask component of a swizzle
1980 *
1981 * This is used by the \c ir_swizzle constructors.
1982 */
1983 void init_mask(const unsigned *components, unsigned count);
1984 };
1985
1986
1987 class ir_dereference : public ir_rvalue {
1988 public:
1989 virtual ir_dereference *clone(void *mem_ctx, struct hash_table *) const = 0;
1990
1991 bool is_lvalue(const struct _mesa_glsl_parse_state *state) const;
1992
1993 /**
1994 * Get the variable that is ultimately referenced by an r-value
1995 */
1996 virtual ir_variable *variable_referenced() const = 0;
1997
1998 protected:
ir_dereference(enum ir_node_type t)1999 ir_dereference(enum ir_node_type t)
2000 : ir_rvalue(t)
2001 {
2002 }
2003 };
2004
2005
2006 class ir_dereference_variable : public ir_dereference {
2007 public:
2008 ir_dereference_variable(ir_variable *var);
2009
2010 virtual ir_dereference_variable *clone(void *mem_ctx,
2011 struct hash_table *) const;
2012
2013 virtual ir_constant *constant_expression_value(void *mem_ctx,
2014 struct hash_table *variable_context = NULL);
2015
2016 virtual bool equals(const ir_instruction *ir,
2017 enum ir_node_type ignore = ir_type_unset) const;
2018
2019 /**
2020 * Get the variable that is ultimately referenced by an r-value
2021 */
variable_referenced()2022 virtual ir_variable *variable_referenced() const
2023 {
2024 return this->var;
2025 }
2026
whole_variable_referenced()2027 virtual ir_variable *whole_variable_referenced()
2028 {
2029 /* ir_dereference_variable objects always dereference the entire
2030 * variable. However, if this dereference is dereferenced by anything
2031 * else, the complete deferefernce chain is not a whole-variable
2032 * dereference. This method should only be called on the top most
2033 * ir_rvalue in a dereference chain.
2034 */
2035 return this->var;
2036 }
2037
accept(ir_visitor * v)2038 virtual void accept(ir_visitor *v)
2039 {
2040 v->visit(this);
2041 }
2042
2043 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2044
2045 /**
2046 * Object being dereferenced.
2047 */
2048 ir_variable *var;
2049 };
2050
2051
2052 class ir_dereference_array : public ir_dereference {
2053 public:
2054 ir_dereference_array(ir_rvalue *value, ir_rvalue *array_index);
2055
2056 ir_dereference_array(ir_variable *var, ir_rvalue *array_index);
2057
2058 virtual ir_dereference_array *clone(void *mem_ctx,
2059 struct hash_table *) const;
2060
2061 virtual ir_constant *constant_expression_value(void *mem_ctx,
2062 struct hash_table *variable_context = NULL);
2063
2064 virtual bool equals(const ir_instruction *ir,
2065 enum ir_node_type ignore = ir_type_unset) const;
2066
2067 /**
2068 * Get the variable that is ultimately referenced by an r-value
2069 */
variable_referenced()2070 virtual ir_variable *variable_referenced() const
2071 {
2072 return this->array->variable_referenced();
2073 }
2074
accept(ir_visitor * v)2075 virtual void accept(ir_visitor *v)
2076 {
2077 v->visit(this);
2078 }
2079
2080 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2081
2082 ir_rvalue *array;
2083 ir_rvalue *array_index;
2084
2085 private:
2086 void set_array(ir_rvalue *value);
2087 };
2088
2089
2090 class ir_dereference_record : public ir_dereference {
2091 public:
2092 ir_dereference_record(ir_rvalue *value, const char *field);
2093
2094 ir_dereference_record(ir_variable *var, const char *field);
2095
2096 virtual ir_dereference_record *clone(void *mem_ctx,
2097 struct hash_table *) const;
2098
2099 virtual ir_constant *constant_expression_value(void *mem_ctx,
2100 struct hash_table *variable_context = NULL);
2101
2102 /**
2103 * Get the variable that is ultimately referenced by an r-value
2104 */
variable_referenced()2105 virtual ir_variable *variable_referenced() const
2106 {
2107 return this->record->variable_referenced();
2108 }
2109
accept(ir_visitor * v)2110 virtual void accept(ir_visitor *v)
2111 {
2112 v->visit(this);
2113 }
2114
2115 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2116
2117 ir_rvalue *record;
2118 int field_idx;
2119 };
2120
2121
2122 /**
2123 * Data stored in an ir_constant
2124 */
2125 union ir_constant_data {
2126 unsigned u[16];
2127 int i[16];
2128 float f[16];
2129 bool b[16];
2130 double d[16];
2131 uint64_t u64[16];
2132 int64_t i64[16];
2133 };
2134
2135
2136 class ir_constant : public ir_rvalue {
2137 public:
2138 ir_constant(const struct glsl_type *type, const ir_constant_data *data);
2139 ir_constant(bool b, unsigned vector_elements=1);
2140 ir_constant(unsigned int u, unsigned vector_elements=1);
2141 ir_constant(int i, unsigned vector_elements=1);
2142 ir_constant(float f, unsigned vector_elements=1);
2143 ir_constant(double d, unsigned vector_elements=1);
2144 ir_constant(uint64_t u64, unsigned vector_elements=1);
2145 ir_constant(int64_t i64, unsigned vector_elements=1);
2146
2147 /**
2148 * Construct an ir_constant from a list of ir_constant values
2149 */
2150 ir_constant(const struct glsl_type *type, exec_list *values);
2151
2152 /**
2153 * Construct an ir_constant from a scalar component of another ir_constant
2154 *
2155 * The new \c ir_constant inherits the type of the component from the
2156 * source constant.
2157 *
2158 * \note
2159 * In the case of a matrix constant, the new constant is a scalar, \b not
2160 * a vector.
2161 */
2162 ir_constant(const ir_constant *c, unsigned i);
2163
2164 /**
2165 * Return a new ir_constant of the specified type containing all zeros.
2166 */
2167 static ir_constant *zero(void *mem_ctx, const glsl_type *type);
2168
2169 virtual ir_constant *clone(void *mem_ctx, struct hash_table *) const;
2170
2171 virtual ir_constant *constant_expression_value(void *mem_ctx,
2172 struct hash_table *variable_context = NULL);
2173
accept(ir_visitor * v)2174 virtual void accept(ir_visitor *v)
2175 {
2176 v->visit(this);
2177 }
2178
2179 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2180
2181 virtual bool equals(const ir_instruction *ir,
2182 enum ir_node_type ignore = ir_type_unset) const;
2183
2184 /**
2185 * Get a particular component of a constant as a specific type
2186 *
2187 * This is useful, for example, to get a value from an integer constant
2188 * as a float or bool. This appears frequently when constructors are
2189 * called with all constant parameters.
2190 */
2191 /*@{*/
2192 bool get_bool_component(unsigned i) const;
2193 float get_float_component(unsigned i) const;
2194 double get_double_component(unsigned i) const;
2195 int get_int_component(unsigned i) const;
2196 unsigned get_uint_component(unsigned i) const;
2197 int64_t get_int64_component(unsigned i) const;
2198 uint64_t get_uint64_component(unsigned i) const;
2199 /*@}*/
2200
2201 ir_constant *get_array_element(unsigned i) const;
2202
2203 ir_constant *get_record_field(int idx);
2204
2205 /**
2206 * Copy the values on another constant at a given offset.
2207 *
2208 * The offset is ignored for array or struct copies, it's only for
2209 * scalars or vectors into vectors or matrices.
2210 *
2211 * With identical types on both sides and zero offset it's clone()
2212 * without creating a new object.
2213 */
2214
2215 void copy_offset(ir_constant *src, int offset);
2216
2217 /**
2218 * Copy the values on another constant at a given offset and
2219 * following an assign-like mask.
2220 *
2221 * The mask is ignored for scalars.
2222 *
2223 * Note that this function only handles what assign can handle,
2224 * i.e. at most a vector as source and a column of a matrix as
2225 * destination.
2226 */
2227
2228 void copy_masked_offset(ir_constant *src, int offset, unsigned int mask);
2229
2230 /**
2231 * Determine whether a constant has the same value as another constant
2232 *
2233 * \sa ir_constant::is_zero, ir_constant::is_one,
2234 * ir_constant::is_negative_one
2235 */
2236 bool has_value(const ir_constant *) const;
2237
2238 /**
2239 * Return true if this ir_constant represents the given value.
2240 *
2241 * For vectors, this checks that each component is the given value.
2242 */
2243 virtual bool is_value(float f, int i) const;
2244 virtual bool is_zero() const;
2245 virtual bool is_one() const;
2246 virtual bool is_negative_one() const;
2247
2248 /**
2249 * Return true for constants that could be stored as 16-bit unsigned values.
2250 *
2251 * Note that this will return true even for signed integer ir_constants, as
2252 * long as the value is non-negative and fits in 16-bits.
2253 */
2254 virtual bool is_uint16_constant() const;
2255
2256 /**
2257 * Value of the constant.
2258 *
2259 * The field used to back the values supplied by the constant is determined
2260 * by the type associated with the \c ir_instruction. Constants may be
2261 * scalars, vectors, or matrices.
2262 */
2263 union ir_constant_data value;
2264
2265 /* Array elements and structure fields */
2266 ir_constant **const_elements;
2267
2268 private:
2269 /**
2270 * Parameterless constructor only used by the clone method
2271 */
2272 ir_constant(void);
2273 };
2274
2275 /**
2276 * IR instruction to emit a vertex in a geometry shader.
2277 */
2278 class ir_emit_vertex : public ir_instruction {
2279 public:
ir_emit_vertex(ir_rvalue * stream)2280 ir_emit_vertex(ir_rvalue *stream)
2281 : ir_instruction(ir_type_emit_vertex),
2282 stream(stream)
2283 {
2284 assert(stream);
2285 }
2286
accept(ir_visitor * v)2287 virtual void accept(ir_visitor *v)
2288 {
2289 v->visit(this);
2290 }
2291
clone(void * mem_ctx,struct hash_table * ht)2292 virtual ir_emit_vertex *clone(void *mem_ctx, struct hash_table *ht) const
2293 {
2294 return new(mem_ctx) ir_emit_vertex(this->stream->clone(mem_ctx, ht));
2295 }
2296
2297 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2298
stream_id()2299 int stream_id() const
2300 {
2301 return stream->as_constant()->value.i[0];
2302 }
2303
2304 ir_rvalue *stream;
2305 };
2306
2307 /**
2308 * IR instruction to complete the current primitive and start a new one in a
2309 * geometry shader.
2310 */
2311 class ir_end_primitive : public ir_instruction {
2312 public:
ir_end_primitive(ir_rvalue * stream)2313 ir_end_primitive(ir_rvalue *stream)
2314 : ir_instruction(ir_type_end_primitive),
2315 stream(stream)
2316 {
2317 assert(stream);
2318 }
2319
accept(ir_visitor * v)2320 virtual void accept(ir_visitor *v)
2321 {
2322 v->visit(this);
2323 }
2324
clone(void * mem_ctx,struct hash_table * ht)2325 virtual ir_end_primitive *clone(void *mem_ctx, struct hash_table *ht) const
2326 {
2327 return new(mem_ctx) ir_end_primitive(this->stream->clone(mem_ctx, ht));
2328 }
2329
2330 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2331
stream_id()2332 int stream_id() const
2333 {
2334 return stream->as_constant()->value.i[0];
2335 }
2336
2337 ir_rvalue *stream;
2338 };
2339
2340 /**
2341 * IR instruction for tessellation control and compute shader barrier.
2342 */
2343 class ir_barrier : public ir_instruction {
2344 public:
ir_barrier()2345 ir_barrier()
2346 : ir_instruction(ir_type_barrier)
2347 {
2348 }
2349
accept(ir_visitor * v)2350 virtual void accept(ir_visitor *v)
2351 {
2352 v->visit(this);
2353 }
2354
clone(void * mem_ctx,struct hash_table *)2355 virtual ir_barrier *clone(void *mem_ctx, struct hash_table *) const
2356 {
2357 return new(mem_ctx) ir_barrier();
2358 }
2359
2360 virtual ir_visitor_status accept(ir_hierarchical_visitor *);
2361 };
2362
2363 /*@}*/
2364
2365 /**
2366 * Apply a visitor to each IR node in a list
2367 */
2368 void
2369 visit_exec_list(exec_list *list, ir_visitor *visitor);
2370
2371 /**
2372 * Validate invariants on each IR node in a list
2373 */
2374 void validate_ir_tree(exec_list *instructions);
2375
2376 struct _mesa_glsl_parse_state;
2377 struct gl_shader_program;
2378
2379 /**
2380 * Detect whether an unlinked shader contains static recursion
2381 *
2382 * If the list of instructions is determined to contain static recursion,
2383 * \c _mesa_glsl_error will be called to emit error messages for each function
2384 * that is in the recursion cycle.
2385 */
2386 void
2387 detect_recursion_unlinked(struct _mesa_glsl_parse_state *state,
2388 exec_list *instructions);
2389
2390 /**
2391 * Detect whether a linked shader contains static recursion
2392 *
2393 * If the list of instructions is determined to contain static recursion,
2394 * \c link_error_printf will be called to emit error messages for each function
2395 * that is in the recursion cycle. In addition,
2396 * \c gl_shader_program::LinkStatus will be set to false.
2397 */
2398 void
2399 detect_recursion_linked(struct gl_shader_program *prog,
2400 exec_list *instructions);
2401
2402 /**
2403 * Make a clone of each IR instruction in a list
2404 *
2405 * \param in List of IR instructions that are to be cloned
2406 * \param out List to hold the cloned instructions
2407 */
2408 void
2409 clone_ir_list(void *mem_ctx, exec_list *out, const exec_list *in);
2410
2411 extern void
2412 _mesa_glsl_initialize_variables(exec_list *instructions,
2413 struct _mesa_glsl_parse_state *state);
2414
2415 extern void
2416 reparent_ir(exec_list *list, void *mem_ctx);
2417
2418 extern void
2419 do_set_program_inouts(exec_list *instructions, struct gl_program *prog,
2420 gl_shader_stage shader_stage);
2421
2422 extern char *
2423 prototype_string(const glsl_type *return_type, const char *name,
2424 exec_list *parameters);
2425
2426 const char *
2427 mode_string(const ir_variable *var);
2428
2429 /**
2430 * Built-in / reserved GL variables names start with "gl_"
2431 */
2432 static inline bool
is_gl_identifier(const char * s)2433 is_gl_identifier(const char *s)
2434 {
2435 return s && s[0] == 'g' && s[1] == 'l' && s[2] == '_';
2436 }
2437
2438 extern "C" {
2439 #endif /* __cplusplus */
2440
2441 extern void _mesa_print_ir(FILE *f, struct exec_list *instructions,
2442 struct _mesa_glsl_parse_state *state);
2443
2444 extern void
2445 fprint_ir(FILE *f, const void *instruction);
2446
2447 extern const struct gl_builtin_uniform_desc *
2448 _mesa_glsl_get_builtin_uniform_desc(const char *name);
2449
2450 #ifdef __cplusplus
2451 } /* extern "C" */
2452 #endif
2453
2454 unsigned
2455 vertices_per_prim(GLenum prim);
2456
2457 #endif /* IR_H */
2458