1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "mutex.h"
18
19 #include <errno.h>
20 #include <sys/time.h>
21
22 #include "android-base/stringprintf.h"
23
24 #include "base/atomic.h"
25 #include "base/logging.h"
26 #include "base/systrace.h"
27 #include "base/time_utils.h"
28 #include "base/value_object.h"
29 #include "mutex-inl.h"
30 #include "scoped_thread_state_change-inl.h"
31 #include "thread-inl.h"
32
33 namespace art {
34
35 using android::base::StringPrintf;
36
37 struct AllMutexData {
38 // A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
39 Atomic<const BaseMutex*> all_mutexes_guard;
40 // All created mutexes guarded by all_mutexes_guard_.
41 std::set<BaseMutex*>* all_mutexes;
AllMutexDataart::AllMutexData42 AllMutexData() : all_mutexes(nullptr) {}
43 };
44 static struct AllMutexData gAllMutexData[kAllMutexDataSize];
45
46 #if ART_USE_FUTEXES
ComputeRelativeTimeSpec(timespec * result_ts,const timespec & lhs,const timespec & rhs)47 static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
48 const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
49 result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
50 result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
51 if (result_ts->tv_nsec < 0) {
52 result_ts->tv_sec--;
53 result_ts->tv_nsec += one_sec;
54 } else if (result_ts->tv_nsec > one_sec) {
55 result_ts->tv_sec++;
56 result_ts->tv_nsec -= one_sec;
57 }
58 return result_ts->tv_sec < 0;
59 }
60 #endif
61
62 // Wait for an amount of time that roughly increases in the argument i.
63 // Spin for small arguments and yield/sleep for longer ones.
BackOff(uint32_t i)64 static void BackOff(uint32_t i) {
65 static constexpr uint32_t kSpinMax = 10;
66 static constexpr uint32_t kYieldMax = 20;
67 if (i <= kSpinMax) {
68 // TODO: Esp. in very latency-sensitive cases, consider replacing this with an explicit
69 // test-and-test-and-set loop in the caller. Possibly skip entirely on a uniprocessor.
70 volatile uint32_t x = 0;
71 const uint32_t spin_count = 10 * i;
72 for (uint32_t spin = 0; spin < spin_count; ++spin) {
73 ++x; // Volatile; hence should not be optimized away.
74 }
75 // TODO: Consider adding x86 PAUSE and/or ARM YIELD here.
76 } else if (i <= kYieldMax) {
77 sched_yield();
78 } else {
79 NanoSleep(1000ull * (i - kYieldMax));
80 }
81 }
82
83 class ScopedAllMutexesLock final {
84 public:
ScopedAllMutexesLock(const BaseMutex * mutex)85 explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
86 for (uint32_t i = 0;
87 !gAllMutexData->all_mutexes_guard.CompareAndSetWeakAcquire(nullptr, mutex);
88 ++i) {
89 BackOff(i);
90 }
91 }
92
~ScopedAllMutexesLock()93 ~ScopedAllMutexesLock() {
94 DCHECK_EQ(gAllMutexData->all_mutexes_guard.load(std::memory_order_relaxed), mutex_);
95 gAllMutexData->all_mutexes_guard.store(nullptr, std::memory_order_release);
96 }
97
98 private:
99 const BaseMutex* const mutex_;
100 };
101
102 // Scoped class that generates events at the beginning and end of lock contention.
103 class ScopedContentionRecorder final : public ValueObject {
104 public:
ScopedContentionRecorder(BaseMutex * mutex,uint64_t blocked_tid,uint64_t owner_tid)105 ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
106 : mutex_(kLogLockContentions ? mutex : nullptr),
107 blocked_tid_(kLogLockContentions ? blocked_tid : 0),
108 owner_tid_(kLogLockContentions ? owner_tid : 0),
109 start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
110 if (ATraceEnabled()) {
111 std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
112 mutex->GetName(), owner_tid);
113 ATraceBegin(msg.c_str());
114 }
115 }
116
~ScopedContentionRecorder()117 ~ScopedContentionRecorder() {
118 ATraceEnd();
119 if (kLogLockContentions) {
120 uint64_t end_nano_time = NanoTime();
121 mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
122 }
123 }
124
125 private:
126 BaseMutex* const mutex_;
127 const uint64_t blocked_tid_;
128 const uint64_t owner_tid_;
129 const uint64_t start_nano_time_;
130 };
131
BaseMutex(const char * name,LockLevel level)132 BaseMutex::BaseMutex(const char* name, LockLevel level)
133 : name_(name),
134 level_(level),
135 should_respond_to_empty_checkpoint_request_(false) {
136 if (kLogLockContentions) {
137 ScopedAllMutexesLock mu(this);
138 std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
139 if (*all_mutexes_ptr == nullptr) {
140 // We leak the global set of all mutexes to avoid ordering issues in global variable
141 // construction/destruction.
142 *all_mutexes_ptr = new std::set<BaseMutex*>();
143 }
144 (*all_mutexes_ptr)->insert(this);
145 }
146 }
147
~BaseMutex()148 BaseMutex::~BaseMutex() {
149 if (kLogLockContentions) {
150 ScopedAllMutexesLock mu(this);
151 gAllMutexData->all_mutexes->erase(this);
152 }
153 }
154
DumpAll(std::ostream & os)155 void BaseMutex::DumpAll(std::ostream& os) {
156 if (kLogLockContentions) {
157 os << "Mutex logging:\n";
158 ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
159 std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
160 if (all_mutexes == nullptr) {
161 // No mutexes have been created yet during at startup.
162 return;
163 }
164 os << "(Contended)\n";
165 for (const BaseMutex* mutex : *all_mutexes) {
166 if (mutex->HasEverContended()) {
167 mutex->Dump(os);
168 os << "\n";
169 }
170 }
171 os << "(Never contented)\n";
172 for (const BaseMutex* mutex : *all_mutexes) {
173 if (!mutex->HasEverContended()) {
174 mutex->Dump(os);
175 os << "\n";
176 }
177 }
178 }
179 }
180
CheckSafeToWait(Thread * self)181 void BaseMutex::CheckSafeToWait(Thread* self) {
182 if (self == nullptr) {
183 CheckUnattachedThread(level_);
184 return;
185 }
186 if (kDebugLocking) {
187 CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
188 << "Waiting on unacquired mutex: " << name_;
189 bool bad_mutexes_held = false;
190 for (int i = kLockLevelCount - 1; i >= 0; --i) {
191 if (i != level_) {
192 BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
193 // We allow the thread to wait even if the user_code_suspension_lock_ is held so long. This
194 // just means that gc or some other internal process is suspending the thread while it is
195 // trying to suspend some other thread. So long as the current thread is not being suspended
196 // by a SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear)
197 // this is fine. This is needed due to user_code_suspension_lock_ being the way untrusted
198 // code interacts with suspension. One holds the lock to prevent user-code-suspension from
199 // occurring. Since this is only initiated from user-supplied native-code this is safe.
200 if (held_mutex == Locks::user_code_suspension_lock_) {
201 // No thread safety analysis is fine since we have both the user_code_suspension_lock_
202 // from the line above and the ThreadSuspendCountLock since it is our level_. We use this
203 // lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
204 auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
205 return self->GetUserCodeSuspendCount() != 0;
206 };
207 if (is_suspending_for_user_code()) {
208 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
209 << "(level " << LockLevel(i) << ") while performing wait on "
210 << "\"" << name_ << "\" (level " << level_ << ") "
211 << "with SuspendReason::kForUserCode pending suspensions";
212 bad_mutexes_held = true;
213 }
214 } else if (held_mutex != nullptr) {
215 LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
216 << "(level " << LockLevel(i) << ") while performing wait on "
217 << "\"" << name_ << "\" (level " << level_ << ")";
218 bad_mutexes_held = true;
219 }
220 }
221 }
222 if (gAborting == 0) { // Avoid recursive aborts.
223 CHECK(!bad_mutexes_held) << this;
224 }
225 }
226 }
227
AddToWaitTime(uint64_t value)228 void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
229 if (kLogLockContentions) {
230 // Atomically add value to wait_time.
231 wait_time.fetch_add(value, std::memory_order_seq_cst);
232 }
233 }
234
RecordContention(uint64_t blocked_tid,uint64_t owner_tid,uint64_t nano_time_blocked)235 void BaseMutex::RecordContention(uint64_t blocked_tid,
236 uint64_t owner_tid,
237 uint64_t nano_time_blocked) {
238 if (kLogLockContentions) {
239 ContentionLogData* data = contention_log_data_;
240 ++(data->contention_count);
241 data->AddToWaitTime(nano_time_blocked);
242 ContentionLogEntry* log = data->contention_log;
243 // This code is intentionally racy as it is only used for diagnostics.
244 int32_t slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
245 if (log[slot].blocked_tid == blocked_tid &&
246 log[slot].owner_tid == blocked_tid) {
247 ++log[slot].count;
248 } else {
249 uint32_t new_slot;
250 do {
251 slot = data->cur_content_log_entry.load(std::memory_order_relaxed);
252 new_slot = (slot + 1) % kContentionLogSize;
253 } while (!data->cur_content_log_entry.CompareAndSetWeakRelaxed(slot, new_slot));
254 log[new_slot].blocked_tid = blocked_tid;
255 log[new_slot].owner_tid = owner_tid;
256 log[new_slot].count.store(1, std::memory_order_relaxed);
257 }
258 }
259 }
260
DumpContention(std::ostream & os) const261 void BaseMutex::DumpContention(std::ostream& os) const {
262 if (kLogLockContentions) {
263 const ContentionLogData* data = contention_log_data_;
264 const ContentionLogEntry* log = data->contention_log;
265 uint64_t wait_time = data->wait_time.load(std::memory_order_relaxed);
266 uint32_t contention_count = data->contention_count.load(std::memory_order_relaxed);
267 if (contention_count == 0) {
268 os << "never contended";
269 } else {
270 os << "contended " << contention_count
271 << " total wait of contender " << PrettyDuration(wait_time)
272 << " average " << PrettyDuration(wait_time / contention_count);
273 SafeMap<uint64_t, size_t> most_common_blocker;
274 SafeMap<uint64_t, size_t> most_common_blocked;
275 for (size_t i = 0; i < kContentionLogSize; ++i) {
276 uint64_t blocked_tid = log[i].blocked_tid;
277 uint64_t owner_tid = log[i].owner_tid;
278 uint32_t count = log[i].count.load(std::memory_order_relaxed);
279 if (count > 0) {
280 auto it = most_common_blocked.find(blocked_tid);
281 if (it != most_common_blocked.end()) {
282 most_common_blocked.Overwrite(blocked_tid, it->second + count);
283 } else {
284 most_common_blocked.Put(blocked_tid, count);
285 }
286 it = most_common_blocker.find(owner_tid);
287 if (it != most_common_blocker.end()) {
288 most_common_blocker.Overwrite(owner_tid, it->second + count);
289 } else {
290 most_common_blocker.Put(owner_tid, count);
291 }
292 }
293 }
294 uint64_t max_tid = 0;
295 size_t max_tid_count = 0;
296 for (const auto& pair : most_common_blocked) {
297 if (pair.second > max_tid_count) {
298 max_tid = pair.first;
299 max_tid_count = pair.second;
300 }
301 }
302 if (max_tid != 0) {
303 os << " sample shows most blocked tid=" << max_tid;
304 }
305 max_tid = 0;
306 max_tid_count = 0;
307 for (const auto& pair : most_common_blocker) {
308 if (pair.second > max_tid_count) {
309 max_tid = pair.first;
310 max_tid_count = pair.second;
311 }
312 }
313 if (max_tid != 0) {
314 os << " sample shows tid=" << max_tid << " owning during this time";
315 }
316 }
317 }
318 }
319
320
Mutex(const char * name,LockLevel level,bool recursive)321 Mutex::Mutex(const char* name, LockLevel level, bool recursive)
322 : BaseMutex(name, level), exclusive_owner_(0), recursion_count_(0), recursive_(recursive) {
323 #if ART_USE_FUTEXES
324 DCHECK_EQ(0, state_and_contenders_.load(std::memory_order_relaxed));
325 #else
326 CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
327 #endif
328 }
329
330 // Helper to allow checking shutdown while locking for thread safety.
IsSafeToCallAbortSafe()331 static bool IsSafeToCallAbortSafe() {
332 MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
333 return Locks::IsSafeToCallAbortRacy();
334 }
335
~Mutex()336 Mutex::~Mutex() {
337 bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
338 #if ART_USE_FUTEXES
339 if (state_and_contenders_.load(std::memory_order_relaxed) != 0) {
340 LOG(safe_to_call_abort ? FATAL : WARNING)
341 << "destroying mutex with owner or contenders. Owner:" << GetExclusiveOwnerTid();
342 } else {
343 if (GetExclusiveOwnerTid() != 0) {
344 LOG(safe_to_call_abort ? FATAL : WARNING)
345 << "unexpectedly found an owner on unlocked mutex " << name_;
346 }
347 }
348 #else
349 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
350 // may still be using locks.
351 int rc = pthread_mutex_destroy(&mutex_);
352 if (rc != 0) {
353 errno = rc;
354 PLOG(safe_to_call_abort ? FATAL : WARNING)
355 << "pthread_mutex_destroy failed for " << name_;
356 }
357 #endif
358 }
359
ExclusiveLock(Thread * self)360 void Mutex::ExclusiveLock(Thread* self) {
361 DCHECK(self == nullptr || self == Thread::Current());
362 if (kDebugLocking && !recursive_) {
363 AssertNotHeld(self);
364 }
365 if (!recursive_ || !IsExclusiveHeld(self)) {
366 #if ART_USE_FUTEXES
367 bool done = false;
368 do {
369 int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
370 if (LIKELY((cur_state & kHeldMask) == 0) /* lock not held */) {
371 done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
372 } else {
373 // Failed to acquire, hang up.
374 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
375 // Increment contender count. We can't create enough threads for this to overflow.
376 increment_contenders();
377 // Make cur_state again reflect the expected value of state_and_contenders.
378 cur_state += kContenderIncrement;
379 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
380 self->CheckEmptyCheckpointFromMutex();
381 }
382 if (futex(state_and_contenders_.Address(), FUTEX_WAIT_PRIVATE, cur_state,
383 nullptr, nullptr, 0) != 0) {
384 // We only went to sleep after incrementing and contenders and checking that the lock
385 // is still held by someone else.
386 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
387 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
388 if ((errno != EAGAIN) && (errno != EINTR)) {
389 PLOG(FATAL) << "futex wait failed for " << name_;
390 }
391 }
392 decrement_contenders();
393 }
394 } while (!done);
395 // Confirm that lock is now held.
396 DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
397 #else
398 CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
399 #endif
400 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
401 exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
402 RegisterAsLocked(self);
403 }
404 recursion_count_++;
405 if (kDebugLocking) {
406 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
407 << name_ << " " << recursion_count_;
408 AssertHeld(self);
409 }
410 }
411
ExclusiveTryLock(Thread * self)412 bool Mutex::ExclusiveTryLock(Thread* self) {
413 DCHECK(self == nullptr || self == Thread::Current());
414 if (kDebugLocking && !recursive_) {
415 AssertNotHeld(self);
416 }
417 if (!recursive_ || !IsExclusiveHeld(self)) {
418 #if ART_USE_FUTEXES
419 bool done = false;
420 do {
421 int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
422 if ((cur_state & kHeldMask) == 0) {
423 // Change state to held and impose load/store ordering appropriate for lock acquisition.
424 done = state_and_contenders_.CompareAndSetWeakAcquire(cur_state, cur_state | kHeldMask);
425 } else {
426 return false;
427 }
428 } while (!done);
429 DCHECK_NE(state_and_contenders_.load(std::memory_order_relaxed) & kHeldMask, 0);
430 #else
431 int result = pthread_mutex_trylock(&mutex_);
432 if (result == EBUSY) {
433 return false;
434 }
435 if (result != 0) {
436 errno = result;
437 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
438 }
439 #endif
440 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
441 exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
442 RegisterAsLocked(self);
443 }
444 recursion_count_++;
445 if (kDebugLocking) {
446 CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
447 << name_ << " " << recursion_count_;
448 AssertHeld(self);
449 }
450 return true;
451 }
452
ExclusiveUnlock(Thread * self)453 void Mutex::ExclusiveUnlock(Thread* self) {
454 if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
455 std::string name1 = "<null>";
456 std::string name2 = "<null>";
457 if (self != nullptr) {
458 self->GetThreadName(name1);
459 }
460 if (Thread::Current() != nullptr) {
461 Thread::Current()->GetThreadName(name2);
462 }
463 LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
464 << " Thread::Current()=" << name2;
465 }
466 AssertHeld(self);
467 DCHECK_NE(GetExclusiveOwnerTid(), 0);
468 recursion_count_--;
469 if (!recursive_ || recursion_count_ == 0) {
470 if (kDebugLocking) {
471 CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
472 << name_ << " " << recursion_count_;
473 }
474 RegisterAsUnlocked(self);
475 #if ART_USE_FUTEXES
476 bool done = false;
477 do {
478 int32_t cur_state = state_and_contenders_.load(std::memory_order_relaxed);
479 if (LIKELY((cur_state & kHeldMask) != 0)) {
480 // We're no longer the owner.
481 exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
482 // Change state to not held and impose load/store ordering appropriate for lock release.
483 uint32_t new_state = cur_state & ~kHeldMask; // Same number of contenders.
484 done = state_and_contenders_.CompareAndSetWeakRelease(cur_state, new_state);
485 if (LIKELY(done)) { // Spurious fail or waiters changed ?
486 if (UNLIKELY(new_state != 0) /* have contenders */) {
487 futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeOne,
488 nullptr, nullptr, 0);
489 }
490 // We only do a futex wait after incrementing contenders and verifying the lock was
491 // still held. If we didn't see waiters, then there couldn't have been any futexes
492 // waiting on this lock when we did the CAS. New arrivals after that cannot wait for us,
493 // since the futex wait call would see the lock available and immediately return.
494 }
495 } else {
496 // Logging acquires the logging lock, avoid infinite recursion in that case.
497 if (this != Locks::logging_lock_) {
498 LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
499 } else {
500 LogHelper::LogLineLowStack(__FILE__,
501 __LINE__,
502 ::android::base::FATAL_WITHOUT_ABORT,
503 StringPrintf("Unexpected state_ %d in unlock for %s",
504 cur_state, name_).c_str());
505 _exit(1);
506 }
507 }
508 } while (!done);
509 #else
510 exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
511 CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
512 #endif
513 }
514 }
515
Dump(std::ostream & os) const516 void Mutex::Dump(std::ostream& os) const {
517 os << (recursive_ ? "recursive " : "non-recursive ")
518 << name_
519 << " level=" << static_cast<int>(level_)
520 << " rec=" << recursion_count_
521 << " owner=" << GetExclusiveOwnerTid() << " ";
522 DumpContention(os);
523 }
524
operator <<(std::ostream & os,const Mutex & mu)525 std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
526 mu.Dump(os);
527 return os;
528 }
529
WakeupToRespondToEmptyCheckpoint()530 void Mutex::WakeupToRespondToEmptyCheckpoint() {
531 #if ART_USE_FUTEXES
532 // Wake up all the waiters so they will respond to the emtpy checkpoint.
533 DCHECK(should_respond_to_empty_checkpoint_request_);
534 if (UNLIKELY(get_contenders() != 0)) {
535 futex(state_and_contenders_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
536 }
537 #else
538 LOG(FATAL) << "Non futex case isn't supported.";
539 #endif
540 }
541
ReaderWriterMutex(const char * name,LockLevel level)542 ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
543 : BaseMutex(name, level)
544 #if ART_USE_FUTEXES
545 , state_(0), num_pending_readers_(0), num_pending_writers_(0)
546 #endif
547 {
548 #if !ART_USE_FUTEXES
549 CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
550 #endif
551 exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
552 }
553
~ReaderWriterMutex()554 ReaderWriterMutex::~ReaderWriterMutex() {
555 #if ART_USE_FUTEXES
556 CHECK_EQ(state_.load(std::memory_order_relaxed), 0);
557 CHECK_EQ(GetExclusiveOwnerTid(), 0);
558 CHECK_EQ(num_pending_readers_.load(std::memory_order_relaxed), 0);
559 CHECK_EQ(num_pending_writers_.load(std::memory_order_relaxed), 0);
560 #else
561 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
562 // may still be using locks.
563 int rc = pthread_rwlock_destroy(&rwlock_);
564 if (rc != 0) {
565 errno = rc;
566 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
567 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
568 }
569 #endif
570 }
571
ExclusiveLock(Thread * self)572 void ReaderWriterMutex::ExclusiveLock(Thread* self) {
573 DCHECK(self == nullptr || self == Thread::Current());
574 AssertNotExclusiveHeld(self);
575 #if ART_USE_FUTEXES
576 bool done = false;
577 do {
578 int32_t cur_state = state_.load(std::memory_order_relaxed);
579 if (LIKELY(cur_state == 0)) {
580 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
581 done = state_.CompareAndSetWeakAcquire(0 /* cur_state*/, -1 /* new state */);
582 } else {
583 // Failed to acquire, hang up.
584 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
585 ++num_pending_writers_;
586 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
587 self->CheckEmptyCheckpointFromMutex();
588 }
589 if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
590 // EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
591 // We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
592 if ((errno != EAGAIN) && (errno != EINTR)) {
593 PLOG(FATAL) << "futex wait failed for " << name_;
594 }
595 }
596 --num_pending_writers_;
597 }
598 } while (!done);
599 DCHECK_EQ(state_.load(std::memory_order_relaxed), -1);
600 #else
601 CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
602 #endif
603 DCHECK_EQ(GetExclusiveOwnerTid(), 0);
604 exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
605 RegisterAsLocked(self);
606 AssertExclusiveHeld(self);
607 }
608
ExclusiveUnlock(Thread * self)609 void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
610 DCHECK(self == nullptr || self == Thread::Current());
611 AssertExclusiveHeld(self);
612 RegisterAsUnlocked(self);
613 DCHECK_NE(GetExclusiveOwnerTid(), 0);
614 #if ART_USE_FUTEXES
615 bool done = false;
616 do {
617 int32_t cur_state = state_.load(std::memory_order_relaxed);
618 if (LIKELY(cur_state == -1)) {
619 // We're no longer the owner.
620 exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
621 // Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
622 // Note, the relaxed loads below musn't reorder before the CompareAndSet.
623 // TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
624 // a status bit into the state on contention.
625 done = state_.CompareAndSetWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
626 if (LIKELY(done)) { // Weak CAS may fail spuriously.
627 // Wake any waiters.
628 if (UNLIKELY(num_pending_readers_.load(std::memory_order_seq_cst) > 0 ||
629 num_pending_writers_.load(std::memory_order_seq_cst) > 0)) {
630 futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
631 }
632 }
633 } else {
634 LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
635 }
636 } while (!done);
637 #else
638 exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
639 CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
640 #endif
641 }
642
643 #if HAVE_TIMED_RWLOCK
ExclusiveLockWithTimeout(Thread * self,int64_t ms,int32_t ns)644 bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
645 DCHECK(self == nullptr || self == Thread::Current());
646 #if ART_USE_FUTEXES
647 bool done = false;
648 timespec end_abs_ts;
649 InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
650 do {
651 int32_t cur_state = state_.load(std::memory_order_relaxed);
652 if (cur_state == 0) {
653 // Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
654 done = state_.CompareAndSetWeakAcquire(0 /* cur_state */, -1 /* new state */);
655 } else {
656 // Failed to acquire, hang up.
657 timespec now_abs_ts;
658 InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
659 timespec rel_ts;
660 if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
661 return false; // Timed out.
662 }
663 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
664 ++num_pending_writers_;
665 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
666 self->CheckEmptyCheckpointFromMutex();
667 }
668 if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, &rel_ts, nullptr, 0) != 0) {
669 if (errno == ETIMEDOUT) {
670 --num_pending_writers_;
671 return false; // Timed out.
672 } else if ((errno != EAGAIN) && (errno != EINTR)) {
673 // EAGAIN and EINTR both indicate a spurious failure,
674 // recompute the relative time out from now and try again.
675 // We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
676 PLOG(FATAL) << "timed futex wait failed for " << name_;
677 }
678 }
679 --num_pending_writers_;
680 }
681 } while (!done);
682 #else
683 timespec ts;
684 InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
685 int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
686 if (result == ETIMEDOUT) {
687 return false;
688 }
689 if (result != 0) {
690 errno = result;
691 PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
692 }
693 #endif
694 exclusive_owner_.store(SafeGetTid(self), std::memory_order_relaxed);
695 RegisterAsLocked(self);
696 AssertSharedHeld(self);
697 return true;
698 }
699 #endif
700
701 #if ART_USE_FUTEXES
HandleSharedLockContention(Thread * self,int32_t cur_state)702 void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
703 // Owner holds it exclusively, hang up.
704 ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
705 ++num_pending_readers_;
706 if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
707 self->CheckEmptyCheckpointFromMutex();
708 }
709 if (futex(state_.Address(), FUTEX_WAIT_PRIVATE, cur_state, nullptr, nullptr, 0) != 0) {
710 if (errno != EAGAIN && errno != EINTR) {
711 PLOG(FATAL) << "futex wait failed for " << name_;
712 }
713 }
714 --num_pending_readers_;
715 }
716 #endif
717
SharedTryLock(Thread * self)718 bool ReaderWriterMutex::SharedTryLock(Thread* self) {
719 DCHECK(self == nullptr || self == Thread::Current());
720 #if ART_USE_FUTEXES
721 bool done = false;
722 do {
723 int32_t cur_state = state_.load(std::memory_order_relaxed);
724 if (cur_state >= 0) {
725 // Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
726 done = state_.CompareAndSetWeakAcquire(cur_state, cur_state + 1);
727 } else {
728 // Owner holds it exclusively.
729 return false;
730 }
731 } while (!done);
732 #else
733 int result = pthread_rwlock_tryrdlock(&rwlock_);
734 if (result == EBUSY) {
735 return false;
736 }
737 if (result != 0) {
738 errno = result;
739 PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
740 }
741 #endif
742 RegisterAsLocked(self);
743 AssertSharedHeld(self);
744 return true;
745 }
746
IsSharedHeld(const Thread * self) const747 bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
748 DCHECK(self == nullptr || self == Thread::Current());
749 bool result;
750 if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
751 result = IsExclusiveHeld(self); // TODO: a better best effort here.
752 } else {
753 result = (self->GetHeldMutex(level_) == this);
754 }
755 return result;
756 }
757
Dump(std::ostream & os) const758 void ReaderWriterMutex::Dump(std::ostream& os) const {
759 os << name_
760 << " level=" << static_cast<int>(level_)
761 << " owner=" << GetExclusiveOwnerTid()
762 #if ART_USE_FUTEXES
763 << " state=" << state_.load(std::memory_order_seq_cst)
764 << " num_pending_writers=" << num_pending_writers_.load(std::memory_order_seq_cst)
765 << " num_pending_readers=" << num_pending_readers_.load(std::memory_order_seq_cst)
766 #endif
767 << " ";
768 DumpContention(os);
769 }
770
operator <<(std::ostream & os,const ReaderWriterMutex & mu)771 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
772 mu.Dump(os);
773 return os;
774 }
775
operator <<(std::ostream & os,const MutatorMutex & mu)776 std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
777 mu.Dump(os);
778 return os;
779 }
780
WakeupToRespondToEmptyCheckpoint()781 void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
782 #if ART_USE_FUTEXES
783 // Wake up all the waiters so they will respond to the emtpy checkpoint.
784 DCHECK(should_respond_to_empty_checkpoint_request_);
785 if (UNLIKELY(num_pending_readers_.load(std::memory_order_relaxed) > 0 ||
786 num_pending_writers_.load(std::memory_order_relaxed) > 0)) {
787 futex(state_.Address(), FUTEX_WAKE_PRIVATE, kWakeAll, nullptr, nullptr, 0);
788 }
789 #else
790 LOG(FATAL) << "Non futex case isn't supported.";
791 #endif
792 }
793
ConditionVariable(const char * name,Mutex & guard)794 ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
795 : name_(name), guard_(guard) {
796 #if ART_USE_FUTEXES
797 DCHECK_EQ(0, sequence_.load(std::memory_order_relaxed));
798 num_waiters_ = 0;
799 #else
800 pthread_condattr_t cond_attrs;
801 CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
802 #if !defined(__APPLE__)
803 // Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
804 CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
805 #endif
806 CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
807 #endif
808 }
809
~ConditionVariable()810 ConditionVariable::~ConditionVariable() {
811 #if ART_USE_FUTEXES
812 if (num_waiters_!= 0) {
813 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
814 LOG(is_safe_to_call_abort ? FATAL : WARNING)
815 << "ConditionVariable::~ConditionVariable for " << name_
816 << " called with " << num_waiters_ << " waiters.";
817 }
818 #else
819 // We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
820 // may still be using condition variables.
821 int rc = pthread_cond_destroy(&cond_);
822 if (rc != 0) {
823 errno = rc;
824 bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
825 PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
826 }
827 #endif
828 }
829
Broadcast(Thread * self)830 void ConditionVariable::Broadcast(Thread* self) {
831 DCHECK(self == nullptr || self == Thread::Current());
832 // TODO: enable below, there's a race in thread creation that causes false failures currently.
833 // guard_.AssertExclusiveHeld(self);
834 DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
835 #if ART_USE_FUTEXES
836 RequeueWaiters(std::numeric_limits<int32_t>::max());
837 #else
838 CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
839 #endif
840 }
841
842 #if ART_USE_FUTEXES
RequeueWaiters(int32_t count)843 void ConditionVariable::RequeueWaiters(int32_t count) {
844 if (num_waiters_ > 0) {
845 sequence_++; // Indicate a signal occurred.
846 // Move waiters from the condition variable's futex to the guard's futex,
847 // so that they will be woken up when the mutex is released.
848 bool done = futex(sequence_.Address(),
849 FUTEX_REQUEUE_PRIVATE,
850 /* Threads to wake */ 0,
851 /* Threads to requeue*/ reinterpret_cast<const timespec*>(count),
852 guard_.state_and_contenders_.Address(),
853 0) != -1;
854 if (!done && errno != EAGAIN && errno != EINTR) {
855 PLOG(FATAL) << "futex requeue failed for " << name_;
856 }
857 }
858 }
859 #endif
860
861
Signal(Thread * self)862 void ConditionVariable::Signal(Thread* self) {
863 DCHECK(self == nullptr || self == Thread::Current());
864 guard_.AssertExclusiveHeld(self);
865 #if ART_USE_FUTEXES
866 RequeueWaiters(1);
867 #else
868 CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
869 #endif
870 }
871
Wait(Thread * self)872 void ConditionVariable::Wait(Thread* self) {
873 guard_.CheckSafeToWait(self);
874 WaitHoldingLocks(self);
875 }
876
WaitHoldingLocks(Thread * self)877 void ConditionVariable::WaitHoldingLocks(Thread* self) {
878 DCHECK(self == nullptr || self == Thread::Current());
879 guard_.AssertExclusiveHeld(self);
880 unsigned int old_recursion_count = guard_.recursion_count_;
881 #if ART_USE_FUTEXES
882 num_waiters_++;
883 // Ensure the Mutex is contended so that requeued threads are awoken.
884 guard_.increment_contenders();
885 guard_.recursion_count_ = 1;
886 int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
887 guard_.ExclusiveUnlock(self);
888 if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, nullptr, nullptr, 0) != 0) {
889 // Futex failed, check it is an expected error.
890 // EAGAIN == EWOULDBLK, so we let the caller try again.
891 // EINTR implies a signal was sent to this thread.
892 if ((errno != EINTR) && (errno != EAGAIN)) {
893 PLOG(FATAL) << "futex wait failed for " << name_;
894 }
895 }
896 if (self != nullptr) {
897 JNIEnvExt* const env = self->GetJniEnv();
898 if (UNLIKELY(env != nullptr && env->IsRuntimeDeleted())) {
899 CHECK(self->IsDaemon());
900 // If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
901 // occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
902 // --host and --gdb.
903 // After we wake up, the runtime may have been shutdown, which means that this condition may
904 // have been deleted. It is not safe to retry the wait.
905 SleepForever();
906 }
907 }
908 guard_.ExclusiveLock(self);
909 CHECK_GT(num_waiters_, 0);
910 num_waiters_--;
911 // We awoke and so no longer require awakes from the guard_'s unlock.
912 CHECK_GT(guard_.get_contenders(), 0);
913 guard_.decrement_contenders();
914 #else
915 pid_t old_owner = guard_.GetExclusiveOwnerTid();
916 guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
917 guard_.recursion_count_ = 0;
918 CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
919 guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
920 #endif
921 guard_.recursion_count_ = old_recursion_count;
922 }
923
TimedWait(Thread * self,int64_t ms,int32_t ns)924 bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
925 DCHECK(self == nullptr || self == Thread::Current());
926 bool timed_out = false;
927 guard_.AssertExclusiveHeld(self);
928 guard_.CheckSafeToWait(self);
929 unsigned int old_recursion_count = guard_.recursion_count_;
930 #if ART_USE_FUTEXES
931 timespec rel_ts;
932 InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
933 num_waiters_++;
934 // Ensure the Mutex is contended so that requeued threads are awoken.
935 guard_.increment_contenders();
936 guard_.recursion_count_ = 1;
937 int32_t cur_sequence = sequence_.load(std::memory_order_relaxed);
938 guard_.ExclusiveUnlock(self);
939 if (futex(sequence_.Address(), FUTEX_WAIT_PRIVATE, cur_sequence, &rel_ts, nullptr, 0) != 0) {
940 if (errno == ETIMEDOUT) {
941 // Timed out we're done.
942 timed_out = true;
943 } else if ((errno == EAGAIN) || (errno == EINTR)) {
944 // A signal or ConditionVariable::Signal/Broadcast has come in.
945 } else {
946 PLOG(FATAL) << "timed futex wait failed for " << name_;
947 }
948 }
949 guard_.ExclusiveLock(self);
950 CHECK_GT(num_waiters_, 0);
951 num_waiters_--;
952 // We awoke and so no longer require awakes from the guard_'s unlock.
953 CHECK_GT(guard_.get_contenders(), 0);
954 guard_.decrement_contenders();
955 #else
956 #if !defined(__APPLE__)
957 int clock = CLOCK_MONOTONIC;
958 #else
959 int clock = CLOCK_REALTIME;
960 #endif
961 pid_t old_owner = guard_.GetExclusiveOwnerTid();
962 guard_.exclusive_owner_.store(0 /* pid */, std::memory_order_relaxed);
963 guard_.recursion_count_ = 0;
964 timespec ts;
965 InitTimeSpec(true, clock, ms, ns, &ts);
966 int rc;
967 while ((rc = pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts)) == EINTR) {
968 continue;
969 }
970
971 if (rc == ETIMEDOUT) {
972 timed_out = true;
973 } else if (rc != 0) {
974 errno = rc;
975 PLOG(FATAL) << "TimedWait failed for " << name_;
976 }
977 guard_.exclusive_owner_.store(old_owner, std::memory_order_relaxed);
978 #endif
979 guard_.recursion_count_ = old_recursion_count;
980 return timed_out;
981 }
982
983 } // namespace art
984