• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Image transform methods for lossless encoder.
11 //
12 // Authors: Vikas Arora (vikaas.arora@gmail.com)
13 //          Jyrki Alakuijala (jyrki@google.com)
14 //          Urvang Joshi (urvang@google.com)
15 //          Vincent Rabaud (vrabaud@google.com)
16 
17 #include "src/dsp/lossless.h"
18 #include "src/dsp/lossless_common.h"
19 #include "src/enc/vp8li_enc.h"
20 
21 #define MAX_DIFF_COST (1e30f)
22 
23 static const float kSpatialPredictorBias = 15.f;
24 static const int kPredLowEffort = 11;
25 static const uint32_t kMaskAlpha = 0xff000000;
26 
27 // Mostly used to reduce code size + readability
GetMin(int a,int b)28 static WEBP_INLINE int GetMin(int a, int b) { return (a > b) ? b : a; }
29 
30 //------------------------------------------------------------------------------
31 // Methods to calculate Entropy (Shannon).
32 
PredictionCostSpatial(const int counts[256],int weight_0,double exp_val)33 static float PredictionCostSpatial(const int counts[256], int weight_0,
34                                    double exp_val) {
35   const int significant_symbols = 256 >> 4;
36   const double exp_decay_factor = 0.6;
37   double bits = weight_0 * counts[0];
38   int i;
39   for (i = 1; i < significant_symbols; ++i) {
40     bits += exp_val * (counts[i] + counts[256 - i]);
41     exp_val *= exp_decay_factor;
42   }
43   return (float)(-0.1 * bits);
44 }
45 
PredictionCostSpatialHistogram(const int accumulated[4][256],const int tile[4][256])46 static float PredictionCostSpatialHistogram(const int accumulated[4][256],
47                                             const int tile[4][256]) {
48   int i;
49   double retval = 0;
50   for (i = 0; i < 4; ++i) {
51     const double kExpValue = 0.94;
52     retval += PredictionCostSpatial(tile[i], 1, kExpValue);
53     retval += VP8LCombinedShannonEntropy(tile[i], accumulated[i]);
54   }
55   return (float)retval;
56 }
57 
UpdateHisto(int histo_argb[4][256],uint32_t argb)58 static WEBP_INLINE void UpdateHisto(int histo_argb[4][256], uint32_t argb) {
59   ++histo_argb[0][argb >> 24];
60   ++histo_argb[1][(argb >> 16) & 0xff];
61   ++histo_argb[2][(argb >> 8) & 0xff];
62   ++histo_argb[3][argb & 0xff];
63 }
64 
65 //------------------------------------------------------------------------------
66 // Spatial transform functions.
67 
PredictBatch(int mode,int x_start,int y,int num_pixels,const uint32_t * current,const uint32_t * upper,uint32_t * out)68 static WEBP_INLINE void PredictBatch(int mode, int x_start, int y,
69                                      int num_pixels, const uint32_t* current,
70                                      const uint32_t* upper, uint32_t* out) {
71   if (x_start == 0) {
72     if (y == 0) {
73       // ARGB_BLACK.
74       VP8LPredictorsSub[0](current, NULL, 1, out);
75     } else {
76       // Top one.
77       VP8LPredictorsSub[2](current, upper, 1, out);
78     }
79     ++x_start;
80     ++out;
81     --num_pixels;
82   }
83   if (y == 0) {
84     // Left one.
85     VP8LPredictorsSub[1](current + x_start, NULL, num_pixels, out);
86   } else {
87     VP8LPredictorsSub[mode](current + x_start, upper + x_start, num_pixels,
88                             out);
89   }
90 }
91 
92 #if (WEBP_NEAR_LOSSLESS == 1)
GetMax(int a,int b)93 static WEBP_INLINE int GetMax(int a, int b) { return (a < b) ? b : a; }
94 
MaxDiffBetweenPixels(uint32_t p1,uint32_t p2)95 static int MaxDiffBetweenPixels(uint32_t p1, uint32_t p2) {
96   const int diff_a = abs((int)(p1 >> 24) - (int)(p2 >> 24));
97   const int diff_r = abs((int)((p1 >> 16) & 0xff) - (int)((p2 >> 16) & 0xff));
98   const int diff_g = abs((int)((p1 >> 8) & 0xff) - (int)((p2 >> 8) & 0xff));
99   const int diff_b = abs((int)(p1 & 0xff) - (int)(p2 & 0xff));
100   return GetMax(GetMax(diff_a, diff_r), GetMax(diff_g, diff_b));
101 }
102 
MaxDiffAroundPixel(uint32_t current,uint32_t up,uint32_t down,uint32_t left,uint32_t right)103 static int MaxDiffAroundPixel(uint32_t current, uint32_t up, uint32_t down,
104                               uint32_t left, uint32_t right) {
105   const int diff_up = MaxDiffBetweenPixels(current, up);
106   const int diff_down = MaxDiffBetweenPixels(current, down);
107   const int diff_left = MaxDiffBetweenPixels(current, left);
108   const int diff_right = MaxDiffBetweenPixels(current, right);
109   return GetMax(GetMax(diff_up, diff_down), GetMax(diff_left, diff_right));
110 }
111 
AddGreenToBlueAndRed(uint32_t argb)112 static uint32_t AddGreenToBlueAndRed(uint32_t argb) {
113   const uint32_t green = (argb >> 8) & 0xff;
114   uint32_t red_blue = argb & 0x00ff00ffu;
115   red_blue += (green << 16) | green;
116   red_blue &= 0x00ff00ffu;
117   return (argb & 0xff00ff00u) | red_blue;
118 }
119 
MaxDiffsForRow(int width,int stride,const uint32_t * const argb,uint8_t * const max_diffs,int used_subtract_green)120 static void MaxDiffsForRow(int width, int stride, const uint32_t* const argb,
121                            uint8_t* const max_diffs, int used_subtract_green) {
122   uint32_t current, up, down, left, right;
123   int x;
124   if (width <= 2) return;
125   current = argb[0];
126   right = argb[1];
127   if (used_subtract_green) {
128     current = AddGreenToBlueAndRed(current);
129     right = AddGreenToBlueAndRed(right);
130   }
131   // max_diffs[0] and max_diffs[width - 1] are never used.
132   for (x = 1; x < width - 1; ++x) {
133     up = argb[-stride + x];
134     down = argb[stride + x];
135     left = current;
136     current = right;
137     right = argb[x + 1];
138     if (used_subtract_green) {
139       up = AddGreenToBlueAndRed(up);
140       down = AddGreenToBlueAndRed(down);
141       right = AddGreenToBlueAndRed(right);
142     }
143     max_diffs[x] = MaxDiffAroundPixel(current, up, down, left, right);
144   }
145 }
146 
147 // Quantize the difference between the actual component value and its prediction
148 // to a multiple of quantization, working modulo 256, taking care not to cross
149 // a boundary (inclusive upper limit).
NearLosslessComponent(uint8_t value,uint8_t predict,uint8_t boundary,int quantization)150 static uint8_t NearLosslessComponent(uint8_t value, uint8_t predict,
151                                      uint8_t boundary, int quantization) {
152   const int residual = (value - predict) & 0xff;
153   const int boundary_residual = (boundary - predict) & 0xff;
154   const int lower = residual & ~(quantization - 1);
155   const int upper = lower + quantization;
156   // Resolve ties towards a value closer to the prediction (i.e. towards lower
157   // if value comes after prediction and towards upper otherwise).
158   const int bias = ((boundary - value) & 0xff) < boundary_residual;
159   if (residual - lower < upper - residual + bias) {
160     // lower is closer to residual than upper.
161     if (residual > boundary_residual && lower <= boundary_residual) {
162       // Halve quantization step to avoid crossing boundary. This midpoint is
163       // on the same side of boundary as residual because midpoint >= residual
164       // (since lower is closer than upper) and residual is above the boundary.
165       return lower + (quantization >> 1);
166     }
167     return lower;
168   } else {
169     // upper is closer to residual than lower.
170     if (residual <= boundary_residual && upper > boundary_residual) {
171       // Halve quantization step to avoid crossing boundary. This midpoint is
172       // on the same side of boundary as residual because midpoint <= residual
173       // (since upper is closer than lower) and residual is below the boundary.
174       return lower + (quantization >> 1);
175     }
176     return upper & 0xff;
177   }
178 }
179 
NearLosslessDiff(uint8_t a,uint8_t b)180 static WEBP_INLINE uint8_t NearLosslessDiff(uint8_t a, uint8_t b) {
181   return (uint8_t)((((int)(a) - (int)(b))) & 0xff);
182 }
183 
184 // Quantize every component of the difference between the actual pixel value and
185 // its prediction to a multiple of a quantization (a power of 2, not larger than
186 // max_quantization which is a power of 2, smaller than max_diff). Take care if
187 // value and predict have undergone subtract green, which means that red and
188 // blue are represented as offsets from green.
NearLossless(uint32_t value,uint32_t predict,int max_quantization,int max_diff,int used_subtract_green)189 static uint32_t NearLossless(uint32_t value, uint32_t predict,
190                              int max_quantization, int max_diff,
191                              int used_subtract_green) {
192   int quantization;
193   uint8_t new_green = 0;
194   uint8_t green_diff = 0;
195   uint8_t a, r, g, b;
196   if (max_diff <= 2) {
197     return VP8LSubPixels(value, predict);
198   }
199   quantization = max_quantization;
200   while (quantization >= max_diff) {
201     quantization >>= 1;
202   }
203   if ((value >> 24) == 0 || (value >> 24) == 0xff) {
204     // Preserve transparency of fully transparent or fully opaque pixels.
205     a = NearLosslessDiff(value >> 24, predict >> 24);
206   } else {
207     a = NearLosslessComponent(value >> 24, predict >> 24, 0xff, quantization);
208   }
209   g = NearLosslessComponent((value >> 8) & 0xff, (predict >> 8) & 0xff, 0xff,
210                             quantization);
211   if (used_subtract_green) {
212     // The green offset will be added to red and blue components during decoding
213     // to obtain the actual red and blue values.
214     new_green = ((predict >> 8) + g) & 0xff;
215     // The amount by which green has been adjusted during quantization. It is
216     // subtracted from red and blue for compensation, to avoid accumulating two
217     // quantization errors in them.
218     green_diff = NearLosslessDiff(new_green, value >> 8);
219   }
220   r = NearLosslessComponent(NearLosslessDiff(value >> 16, green_diff),
221                             (predict >> 16) & 0xff, 0xff - new_green,
222                             quantization);
223   b = NearLosslessComponent(NearLosslessDiff(value, green_diff),
224                             predict & 0xff, 0xff - new_green, quantization);
225   return ((uint32_t)a << 24) | ((uint32_t)r << 16) | ((uint32_t)g << 8) | b;
226 }
227 #endif  // (WEBP_NEAR_LOSSLESS == 1)
228 
229 // Stores the difference between the pixel and its prediction in "out".
230 // In case of a lossy encoding, updates the source image to avoid propagating
231 // the deviation further to pixels which depend on the current pixel for their
232 // predictions.
GetResidual(int width,int height,uint32_t * const upper_row,uint32_t * const current_row,const uint8_t * const max_diffs,int mode,int x_start,int x_end,int y,int max_quantization,int exact,int used_subtract_green,uint32_t * const out)233 static WEBP_INLINE void GetResidual(
234     int width, int height, uint32_t* const upper_row,
235     uint32_t* const current_row, const uint8_t* const max_diffs, int mode,
236     int x_start, int x_end, int y, int max_quantization, int exact,
237     int used_subtract_green, uint32_t* const out) {
238   if (exact) {
239     PredictBatch(mode, x_start, y, x_end - x_start, current_row, upper_row,
240                  out);
241   } else {
242     const VP8LPredictorFunc pred_func = VP8LPredictors[mode];
243     int x;
244     for (x = x_start; x < x_end; ++x) {
245       uint32_t predict;
246       uint32_t residual;
247       if (y == 0) {
248         predict = (x == 0) ? ARGB_BLACK : current_row[x - 1];  // Left.
249       } else if (x == 0) {
250         predict = upper_row[x];  // Top.
251       } else {
252         predict = pred_func(current_row[x - 1], upper_row + x);
253       }
254 #if (WEBP_NEAR_LOSSLESS == 1)
255       if (max_quantization == 1 || mode == 0 || y == 0 || y == height - 1 ||
256           x == 0 || x == width - 1) {
257         residual = VP8LSubPixels(current_row[x], predict);
258       } else {
259         residual = NearLossless(current_row[x], predict, max_quantization,
260                                 max_diffs[x], used_subtract_green);
261         // Update the source image.
262         current_row[x] = VP8LAddPixels(predict, residual);
263         // x is never 0 here so we do not need to update upper_row like below.
264       }
265 #else
266       (void)max_diffs;
267       (void)height;
268       (void)max_quantization;
269       (void)used_subtract_green;
270       residual = VP8LSubPixels(current_row[x], predict);
271 #endif
272       if ((current_row[x] & kMaskAlpha) == 0) {
273         // If alpha is 0, cleanup RGB. We can choose the RGB values of the
274         // residual for best compression. The prediction of alpha itself can be
275         // non-zero and must be kept though. We choose RGB of the residual to be
276         // 0.
277         residual &= kMaskAlpha;
278         // Update the source image.
279         current_row[x] = predict & ~kMaskAlpha;
280         // The prediction for the rightmost pixel in a row uses the leftmost
281         // pixel
282         // in that row as its top-right context pixel. Hence if we change the
283         // leftmost pixel of current_row, the corresponding change must be
284         // applied
285         // to upper_row as well where top-right context is being read from.
286         if (x == 0 && y != 0) upper_row[width] = current_row[0];
287       }
288       out[x - x_start] = residual;
289     }
290   }
291 }
292 
293 // Returns best predictor and updates the accumulated histogram.
294 // If max_quantization > 1, assumes that near lossless processing will be
295 // applied, quantizing residuals to multiples of quantization levels up to
296 // max_quantization (the actual quantization level depends on smoothness near
297 // the given pixel).
GetBestPredictorForTile(int width,int height,int tile_x,int tile_y,int bits,int accumulated[4][256],uint32_t * const argb_scratch,const uint32_t * const argb,int max_quantization,int exact,int used_subtract_green,const uint32_t * const modes)298 static int GetBestPredictorForTile(int width, int height,
299                                    int tile_x, int tile_y, int bits,
300                                    int accumulated[4][256],
301                                    uint32_t* const argb_scratch,
302                                    const uint32_t* const argb,
303                                    int max_quantization,
304                                    int exact, int used_subtract_green,
305                                    const uint32_t* const modes) {
306   const int kNumPredModes = 14;
307   const int start_x = tile_x << bits;
308   const int start_y = tile_y << bits;
309   const int tile_size = 1 << bits;
310   const int max_y = GetMin(tile_size, height - start_y);
311   const int max_x = GetMin(tile_size, width - start_x);
312   // Whether there exist columns just outside the tile.
313   const int have_left = (start_x > 0);
314   // Position and size of the strip covering the tile and adjacent columns if
315   // they exist.
316   const int context_start_x = start_x - have_left;
317 #if (WEBP_NEAR_LOSSLESS == 1)
318   const int context_width = max_x + have_left + (max_x < width - start_x);
319 #endif
320   const int tiles_per_row = VP8LSubSampleSize(width, bits);
321   // Prediction modes of the left and above neighbor tiles.
322   const int left_mode = (tile_x > 0) ?
323       (modes[tile_y * tiles_per_row + tile_x - 1] >> 8) & 0xff : 0xff;
324   const int above_mode = (tile_y > 0) ?
325       (modes[(tile_y - 1) * tiles_per_row + tile_x] >> 8) & 0xff : 0xff;
326   // The width of upper_row and current_row is one pixel larger than image width
327   // to allow the top right pixel to point to the leftmost pixel of the next row
328   // when at the right edge.
329   uint32_t* upper_row = argb_scratch;
330   uint32_t* current_row = upper_row + width + 1;
331   uint8_t* const max_diffs = (uint8_t*)(current_row + width + 1);
332   float best_diff = MAX_DIFF_COST;
333   int best_mode = 0;
334   int mode;
335   int histo_stack_1[4][256];
336   int histo_stack_2[4][256];
337   // Need pointers to be able to swap arrays.
338   int (*histo_argb)[256] = histo_stack_1;
339   int (*best_histo)[256] = histo_stack_2;
340   int i, j;
341   uint32_t residuals[1 << MAX_TRANSFORM_BITS];
342   assert(bits <= MAX_TRANSFORM_BITS);
343   assert(max_x <= (1 << MAX_TRANSFORM_BITS));
344 
345   for (mode = 0; mode < kNumPredModes; ++mode) {
346     float cur_diff;
347     int relative_y;
348     memset(histo_argb, 0, sizeof(histo_stack_1));
349     if (start_y > 0) {
350       // Read the row above the tile which will become the first upper_row.
351       // Include a pixel to the left if it exists; include a pixel to the right
352       // in all cases (wrapping to the leftmost pixel of the next row if it does
353       // not exist).
354       memcpy(current_row + context_start_x,
355              argb + (start_y - 1) * width + context_start_x,
356              sizeof(*argb) * (max_x + have_left + 1));
357     }
358     for (relative_y = 0; relative_y < max_y; ++relative_y) {
359       const int y = start_y + relative_y;
360       int relative_x;
361       uint32_t* tmp = upper_row;
362       upper_row = current_row;
363       current_row = tmp;
364       // Read current_row. Include a pixel to the left if it exists; include a
365       // pixel to the right in all cases except at the bottom right corner of
366       // the image (wrapping to the leftmost pixel of the next row if it does
367       // not exist in the current row).
368       memcpy(current_row + context_start_x,
369              argb + y * width + context_start_x,
370              sizeof(*argb) * (max_x + have_left + (y + 1 < height)));
371 #if (WEBP_NEAR_LOSSLESS == 1)
372       if (max_quantization > 1 && y >= 1 && y + 1 < height) {
373         MaxDiffsForRow(context_width, width, argb + y * width + context_start_x,
374                        max_diffs + context_start_x, used_subtract_green);
375       }
376 #endif
377 
378       GetResidual(width, height, upper_row, current_row, max_diffs, mode,
379                   start_x, start_x + max_x, y, max_quantization, exact,
380                   used_subtract_green, residuals);
381       for (relative_x = 0; relative_x < max_x; ++relative_x) {
382         UpdateHisto(histo_argb, residuals[relative_x]);
383       }
384     }
385     cur_diff = PredictionCostSpatialHistogram(
386         (const int (*)[256])accumulated, (const int (*)[256])histo_argb);
387     // Favor keeping the areas locally similar.
388     if (mode == left_mode) cur_diff -= kSpatialPredictorBias;
389     if (mode == above_mode) cur_diff -= kSpatialPredictorBias;
390 
391     if (cur_diff < best_diff) {
392       int (*tmp)[256] = histo_argb;
393       histo_argb = best_histo;
394       best_histo = tmp;
395       best_diff = cur_diff;
396       best_mode = mode;
397     }
398   }
399 
400   for (i = 0; i < 4; i++) {
401     for (j = 0; j < 256; j++) {
402       accumulated[i][j] += best_histo[i][j];
403     }
404   }
405 
406   return best_mode;
407 }
408 
409 // Converts pixels of the image to residuals with respect to predictions.
410 // If max_quantization > 1, applies near lossless processing, quantizing
411 // residuals to multiples of quantization levels up to max_quantization
412 // (the actual quantization level depends on smoothness near the given pixel).
CopyImageWithPrediction(int width,int height,int bits,uint32_t * const modes,uint32_t * const argb_scratch,uint32_t * const argb,int low_effort,int max_quantization,int exact,int used_subtract_green)413 static void CopyImageWithPrediction(int width, int height,
414                                     int bits, uint32_t* const modes,
415                                     uint32_t* const argb_scratch,
416                                     uint32_t* const argb,
417                                     int low_effort, int max_quantization,
418                                     int exact, int used_subtract_green) {
419   const int tiles_per_row = VP8LSubSampleSize(width, bits);
420   // The width of upper_row and current_row is one pixel larger than image width
421   // to allow the top right pixel to point to the leftmost pixel of the next row
422   // when at the right edge.
423   uint32_t* upper_row = argb_scratch;
424   uint32_t* current_row = upper_row + width + 1;
425   uint8_t* current_max_diffs = (uint8_t*)(current_row + width + 1);
426 #if (WEBP_NEAR_LOSSLESS == 1)
427   uint8_t* lower_max_diffs = current_max_diffs + width;
428 #endif
429   int y;
430 
431   for (y = 0; y < height; ++y) {
432     int x;
433     uint32_t* const tmp32 = upper_row;
434     upper_row = current_row;
435     current_row = tmp32;
436     memcpy(current_row, argb + y * width,
437            sizeof(*argb) * (width + (y + 1 < height)));
438 
439     if (low_effort) {
440       PredictBatch(kPredLowEffort, 0, y, width, current_row, upper_row,
441                    argb + y * width);
442     } else {
443 #if (WEBP_NEAR_LOSSLESS == 1)
444       if (max_quantization > 1) {
445         // Compute max_diffs for the lower row now, because that needs the
446         // contents of argb for the current row, which we will overwrite with
447         // residuals before proceeding with the next row.
448         uint8_t* const tmp8 = current_max_diffs;
449         current_max_diffs = lower_max_diffs;
450         lower_max_diffs = tmp8;
451         if (y + 2 < height) {
452           MaxDiffsForRow(width, width, argb + (y + 1) * width, lower_max_diffs,
453                          used_subtract_green);
454         }
455       }
456 #endif
457       for (x = 0; x < width;) {
458         const int mode =
459             (modes[(y >> bits) * tiles_per_row + (x >> bits)] >> 8) & 0xff;
460         int x_end = x + (1 << bits);
461         if (x_end > width) x_end = width;
462         GetResidual(width, height, upper_row, current_row, current_max_diffs,
463                     mode, x, x_end, y, max_quantization, exact,
464                     used_subtract_green, argb + y * width + x);
465         x = x_end;
466       }
467     }
468   }
469 }
470 
471 // Finds the best predictor for each tile, and converts the image to residuals
472 // with respect to predictions. If near_lossless_quality < 100, applies
473 // near lossless processing, shaving off more bits of residuals for lower
474 // qualities.
VP8LResidualImage(int width,int height,int bits,int low_effort,uint32_t * const argb,uint32_t * const argb_scratch,uint32_t * const image,int near_lossless_quality,int exact,int used_subtract_green)475 void VP8LResidualImage(int width, int height, int bits, int low_effort,
476                        uint32_t* const argb, uint32_t* const argb_scratch,
477                        uint32_t* const image, int near_lossless_quality,
478                        int exact, int used_subtract_green) {
479   const int tiles_per_row = VP8LSubSampleSize(width, bits);
480   const int tiles_per_col = VP8LSubSampleSize(height, bits);
481   int tile_y;
482   int histo[4][256];
483   const int max_quantization = 1 << VP8LNearLosslessBits(near_lossless_quality);
484   if (low_effort) {
485     int i;
486     for (i = 0; i < tiles_per_row * tiles_per_col; ++i) {
487       image[i] = ARGB_BLACK | (kPredLowEffort << 8);
488     }
489   } else {
490     memset(histo, 0, sizeof(histo));
491     for (tile_y = 0; tile_y < tiles_per_col; ++tile_y) {
492       int tile_x;
493       for (tile_x = 0; tile_x < tiles_per_row; ++tile_x) {
494         const int pred = GetBestPredictorForTile(width, height, tile_x, tile_y,
495             bits, histo, argb_scratch, argb, max_quantization, exact,
496             used_subtract_green, image);
497         image[tile_y * tiles_per_row + tile_x] = ARGB_BLACK | (pred << 8);
498       }
499     }
500   }
501 
502   CopyImageWithPrediction(width, height, bits, image, argb_scratch, argb,
503                           low_effort, max_quantization, exact,
504                           used_subtract_green);
505 }
506 
507 //------------------------------------------------------------------------------
508 // Color transform functions.
509 
MultipliersClear(VP8LMultipliers * const m)510 static WEBP_INLINE void MultipliersClear(VP8LMultipliers* const m) {
511   m->green_to_red_ = 0;
512   m->green_to_blue_ = 0;
513   m->red_to_blue_ = 0;
514 }
515 
ColorCodeToMultipliers(uint32_t color_code,VP8LMultipliers * const m)516 static WEBP_INLINE void ColorCodeToMultipliers(uint32_t color_code,
517                                                VP8LMultipliers* const m) {
518   m->green_to_red_  = (color_code >>  0) & 0xff;
519   m->green_to_blue_ = (color_code >>  8) & 0xff;
520   m->red_to_blue_   = (color_code >> 16) & 0xff;
521 }
522 
MultipliersToColorCode(const VP8LMultipliers * const m)523 static WEBP_INLINE uint32_t MultipliersToColorCode(
524     const VP8LMultipliers* const m) {
525   return 0xff000000u |
526          ((uint32_t)(m->red_to_blue_) << 16) |
527          ((uint32_t)(m->green_to_blue_) << 8) |
528          m->green_to_red_;
529 }
530 
PredictionCostCrossColor(const int accumulated[256],const int counts[256])531 static float PredictionCostCrossColor(const int accumulated[256],
532                                       const int counts[256]) {
533   // Favor low entropy, locally and globally.
534   // Favor small absolute values for PredictionCostSpatial
535   static const double kExpValue = 2.4;
536   return VP8LCombinedShannonEntropy(counts, accumulated) +
537          PredictionCostSpatial(counts, 3, kExpValue);
538 }
539 
GetPredictionCostCrossColorRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_red,const int accumulated_red_histo[256])540 static float GetPredictionCostCrossColorRed(
541     const uint32_t* argb, int stride, int tile_width, int tile_height,
542     VP8LMultipliers prev_x, VP8LMultipliers prev_y, int green_to_red,
543     const int accumulated_red_histo[256]) {
544   int histo[256] = { 0 };
545   float cur_diff;
546 
547   VP8LCollectColorRedTransforms(argb, stride, tile_width, tile_height,
548                                 green_to_red, histo);
549 
550   cur_diff = PredictionCostCrossColor(accumulated_red_histo, histo);
551   if ((uint8_t)green_to_red == prev_x.green_to_red_) {
552     cur_diff -= 3;  // favor keeping the areas locally similar
553   }
554   if ((uint8_t)green_to_red == prev_y.green_to_red_) {
555     cur_diff -= 3;  // favor keeping the areas locally similar
556   }
557   if (green_to_red == 0) {
558     cur_diff -= 3;
559   }
560   return cur_diff;
561 }
562 
GetBestGreenToRed(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const int accumulated_red_histo[256],VP8LMultipliers * const best_tx)563 static void GetBestGreenToRed(
564     const uint32_t* argb, int stride, int tile_width, int tile_height,
565     VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
566     const int accumulated_red_histo[256], VP8LMultipliers* const best_tx) {
567   const int kMaxIters = 4 + ((7 * quality) >> 8);  // in range [4..6]
568   int green_to_red_best = 0;
569   int iter, offset;
570   float best_diff = GetPredictionCostCrossColorRed(
571       argb, stride, tile_width, tile_height, prev_x, prev_y,
572       green_to_red_best, accumulated_red_histo);
573   for (iter = 0; iter < kMaxIters; ++iter) {
574     // ColorTransformDelta is a 3.5 bit fixed point, so 32 is equal to
575     // one in color computation. Having initial delta here as 1 is sufficient
576     // to explore the range of (-2, 2).
577     const int delta = 32 >> iter;
578     // Try a negative and a positive delta from the best known value.
579     for (offset = -delta; offset <= delta; offset += 2 * delta) {
580       const int green_to_red_cur = offset + green_to_red_best;
581       const float cur_diff = GetPredictionCostCrossColorRed(
582           argb, stride, tile_width, tile_height, prev_x, prev_y,
583           green_to_red_cur, accumulated_red_histo);
584       if (cur_diff < best_diff) {
585         best_diff = cur_diff;
586         green_to_red_best = green_to_red_cur;
587       }
588     }
589   }
590   best_tx->green_to_red_ = green_to_red_best;
591 }
592 
GetPredictionCostCrossColorBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int green_to_blue,int red_to_blue,const int accumulated_blue_histo[256])593 static float GetPredictionCostCrossColorBlue(
594     const uint32_t* argb, int stride, int tile_width, int tile_height,
595     VP8LMultipliers prev_x, VP8LMultipliers prev_y,
596     int green_to_blue, int red_to_blue, const int accumulated_blue_histo[256]) {
597   int histo[256] = { 0 };
598   float cur_diff;
599 
600   VP8LCollectColorBlueTransforms(argb, stride, tile_width, tile_height,
601                                  green_to_blue, red_to_blue, histo);
602 
603   cur_diff = PredictionCostCrossColor(accumulated_blue_histo, histo);
604   if ((uint8_t)green_to_blue == prev_x.green_to_blue_) {
605     cur_diff -= 3;  // favor keeping the areas locally similar
606   }
607   if ((uint8_t)green_to_blue == prev_y.green_to_blue_) {
608     cur_diff -= 3;  // favor keeping the areas locally similar
609   }
610   if ((uint8_t)red_to_blue == prev_x.red_to_blue_) {
611     cur_diff -= 3;  // favor keeping the areas locally similar
612   }
613   if ((uint8_t)red_to_blue == prev_y.red_to_blue_) {
614     cur_diff -= 3;  // favor keeping the areas locally similar
615   }
616   if (green_to_blue == 0) {
617     cur_diff -= 3;
618   }
619   if (red_to_blue == 0) {
620     cur_diff -= 3;
621   }
622   return cur_diff;
623 }
624 
625 #define kGreenRedToBlueNumAxis 8
626 #define kGreenRedToBlueMaxIters 7
GetBestGreenRedToBlue(const uint32_t * argb,int stride,int tile_width,int tile_height,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,const int accumulated_blue_histo[256],VP8LMultipliers * const best_tx)627 static void GetBestGreenRedToBlue(
628     const uint32_t* argb, int stride, int tile_width, int tile_height,
629     VP8LMultipliers prev_x, VP8LMultipliers prev_y, int quality,
630     const int accumulated_blue_histo[256],
631     VP8LMultipliers* const best_tx) {
632   const int8_t offset[kGreenRedToBlueNumAxis][2] =
633       {{0, -1}, {0, 1}, {-1, 0}, {1, 0}, {-1, -1}, {-1, 1}, {1, -1}, {1, 1}};
634   const int8_t delta_lut[kGreenRedToBlueMaxIters] = { 16, 16, 8, 4, 2, 2, 2 };
635   const int iters =
636       (quality < 25) ? 1 : (quality > 50) ? kGreenRedToBlueMaxIters : 4;
637   int green_to_blue_best = 0;
638   int red_to_blue_best = 0;
639   int iter;
640   // Initial value at origin:
641   float best_diff = GetPredictionCostCrossColorBlue(
642       argb, stride, tile_width, tile_height, prev_x, prev_y,
643       green_to_blue_best, red_to_blue_best, accumulated_blue_histo);
644   for (iter = 0; iter < iters; ++iter) {
645     const int delta = delta_lut[iter];
646     int axis;
647     for (axis = 0; axis < kGreenRedToBlueNumAxis; ++axis) {
648       const int green_to_blue_cur =
649           offset[axis][0] * delta + green_to_blue_best;
650       const int red_to_blue_cur = offset[axis][1] * delta + red_to_blue_best;
651       const float cur_diff = GetPredictionCostCrossColorBlue(
652           argb, stride, tile_width, tile_height, prev_x, prev_y,
653           green_to_blue_cur, red_to_blue_cur, accumulated_blue_histo);
654       if (cur_diff < best_diff) {
655         best_diff = cur_diff;
656         green_to_blue_best = green_to_blue_cur;
657         red_to_blue_best = red_to_blue_cur;
658       }
659       if (quality < 25 && iter == 4) {
660         // Only axis aligned diffs for lower quality.
661         break;  // next iter.
662       }
663     }
664     if (delta == 2 && green_to_blue_best == 0 && red_to_blue_best == 0) {
665       // Further iterations would not help.
666       break;  // out of iter-loop.
667     }
668   }
669   best_tx->green_to_blue_ = green_to_blue_best;
670   best_tx->red_to_blue_ = red_to_blue_best;
671 }
672 #undef kGreenRedToBlueMaxIters
673 #undef kGreenRedToBlueNumAxis
674 
GetBestColorTransformForTile(int tile_x,int tile_y,int bits,VP8LMultipliers prev_x,VP8LMultipliers prev_y,int quality,int xsize,int ysize,const int accumulated_red_histo[256],const int accumulated_blue_histo[256],const uint32_t * const argb)675 static VP8LMultipliers GetBestColorTransformForTile(
676     int tile_x, int tile_y, int bits,
677     VP8LMultipliers prev_x,
678     VP8LMultipliers prev_y,
679     int quality, int xsize, int ysize,
680     const int accumulated_red_histo[256],
681     const int accumulated_blue_histo[256],
682     const uint32_t* const argb) {
683   const int max_tile_size = 1 << bits;
684   const int tile_y_offset = tile_y * max_tile_size;
685   const int tile_x_offset = tile_x * max_tile_size;
686   const int all_x_max = GetMin(tile_x_offset + max_tile_size, xsize);
687   const int all_y_max = GetMin(tile_y_offset + max_tile_size, ysize);
688   const int tile_width = all_x_max - tile_x_offset;
689   const int tile_height = all_y_max - tile_y_offset;
690   const uint32_t* const tile_argb = argb + tile_y_offset * xsize
691                                   + tile_x_offset;
692   VP8LMultipliers best_tx;
693   MultipliersClear(&best_tx);
694 
695   GetBestGreenToRed(tile_argb, xsize, tile_width, tile_height,
696                     prev_x, prev_y, quality, accumulated_red_histo, &best_tx);
697   GetBestGreenRedToBlue(tile_argb, xsize, tile_width, tile_height,
698                         prev_x, prev_y, quality, accumulated_blue_histo,
699                         &best_tx);
700   return best_tx;
701 }
702 
CopyTileWithColorTransform(int xsize,int ysize,int tile_x,int tile_y,int max_tile_size,VP8LMultipliers color_transform,uint32_t * argb)703 static void CopyTileWithColorTransform(int xsize, int ysize,
704                                        int tile_x, int tile_y,
705                                        int max_tile_size,
706                                        VP8LMultipliers color_transform,
707                                        uint32_t* argb) {
708   const int xscan = GetMin(max_tile_size, xsize - tile_x);
709   int yscan = GetMin(max_tile_size, ysize - tile_y);
710   argb += tile_y * xsize + tile_x;
711   while (yscan-- > 0) {
712     VP8LTransformColor(&color_transform, argb, xscan);
713     argb += xsize;
714   }
715 }
716 
VP8LColorSpaceTransform(int width,int height,int bits,int quality,uint32_t * const argb,uint32_t * image)717 void VP8LColorSpaceTransform(int width, int height, int bits, int quality,
718                              uint32_t* const argb, uint32_t* image) {
719   const int max_tile_size = 1 << bits;
720   const int tile_xsize = VP8LSubSampleSize(width, bits);
721   const int tile_ysize = VP8LSubSampleSize(height, bits);
722   int accumulated_red_histo[256] = { 0 };
723   int accumulated_blue_histo[256] = { 0 };
724   int tile_x, tile_y;
725   VP8LMultipliers prev_x, prev_y;
726   MultipliersClear(&prev_y);
727   MultipliersClear(&prev_x);
728   for (tile_y = 0; tile_y < tile_ysize; ++tile_y) {
729     for (tile_x = 0; tile_x < tile_xsize; ++tile_x) {
730       int y;
731       const int tile_x_offset = tile_x * max_tile_size;
732       const int tile_y_offset = tile_y * max_tile_size;
733       const int all_x_max = GetMin(tile_x_offset + max_tile_size, width);
734       const int all_y_max = GetMin(tile_y_offset + max_tile_size, height);
735       const int offset = tile_y * tile_xsize + tile_x;
736       if (tile_y != 0) {
737         ColorCodeToMultipliers(image[offset - tile_xsize], &prev_y);
738       }
739       prev_x = GetBestColorTransformForTile(tile_x, tile_y, bits,
740                                             prev_x, prev_y,
741                                             quality, width, height,
742                                             accumulated_red_histo,
743                                             accumulated_blue_histo,
744                                             argb);
745       image[offset] = MultipliersToColorCode(&prev_x);
746       CopyTileWithColorTransform(width, height, tile_x_offset, tile_y_offset,
747                                  max_tile_size, prev_x, argb);
748 
749       // Gather accumulated histogram data.
750       for (y = tile_y_offset; y < all_y_max; ++y) {
751         int ix = y * width + tile_x_offset;
752         const int ix_end = ix + all_x_max - tile_x_offset;
753         for (; ix < ix_end; ++ix) {
754           const uint32_t pix = argb[ix];
755           if (ix >= 2 &&
756               pix == argb[ix - 2] &&
757               pix == argb[ix - 1]) {
758             continue;  // repeated pixels are handled by backward references
759           }
760           if (ix >= width + 2 &&
761               argb[ix - 2] == argb[ix - width - 2] &&
762               argb[ix - 1] == argb[ix - width - 1] &&
763               pix == argb[ix - width]) {
764             continue;  // repeated pixels are handled by backward references
765           }
766           ++accumulated_red_histo[(pix >> 16) & 0xff];
767           ++accumulated_blue_histo[(pix >> 0) & 0xff];
768         }
769       }
770     }
771   }
772 }
773