1 /******************************************************************************
2 * *
3 * Copyright (C) 2018 The Android Open Source Project
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 *****************************************************************************
18 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19 */
20 #include <float.h>
21 #include <stdlib.h>
22 #include <stdio.h>
23 #include <math.h>
24 #include <string.h>
25
26 #include "ixheaacd_cnst.h"
27 #include <ixheaacd_type_def.h>
28 #include "ixheaacd_bitbuffer.h"
29 #include "ixheaacd_acelp_com.h"
30
31 #include <ixheaacd_type_def.h>
32 #include "ixheaacd_bitbuffer.h"
33 #include "ixheaacd_interface.h"
34
35 #include "ixheaacd_tns_usac.h"
36 #include "ixheaacd_cnst.h"
37
38 #include "ixheaacd_acelp_info.h"
39
40 #include "ixheaacd_td_mdct.h"
41
42 #include "ixheaacd_sbrdecsettings.h"
43 #include "ixheaacd_info.h"
44 #include "ixheaacd_sbr_common.h"
45 #include "ixheaacd_drc_data_struct.h"
46 #include "ixheaacd_drc_dec.h"
47 #include "ixheaacd_sbrdecoder.h"
48 #include "ixheaacd_mps_polyphase.h"
49 #include "ixheaacd_sbr_const.h"
50
51 #include "ixheaacd_constants.h"
52 #include <ixheaacd_basic_ops32.h>
53 #include <ixheaacd_basic_ops40.h>
54 #include "ixheaacd_main.h"
55 #include "ixheaacd_arith_dec.h"
56
57 #define FREQ_MAX 6400.0f
58
59 #define ABS(A) ((A) < 0 ? (-A) : (A))
60
ixheaacd_compute_coeff_poly_f(FLOAT32 lsp[],FLOAT32 * f1,FLOAT32 * f2)61 static VOID ixheaacd_compute_coeff_poly_f(FLOAT32 lsp[], FLOAT32 *f1,
62 FLOAT32 *f2) {
63 FLOAT32 b1, b2;
64 FLOAT32 *ptr_lsp;
65 WORD32 i, j;
66
67 ptr_lsp = lsp;
68 f1[0] = f2[0] = 1.0f;
69
70 for (i = 1; i <= ORDER_BY_2; i++) {
71 b1 = -2.0f * (*ptr_lsp++);
72 b2 = -2.0f * (*ptr_lsp++);
73 f1[i] = (b1 * f1[i - 1]) + (2.0f * f1[i - 2]);
74 f2[i] = (b2 * f2[i - 1]) + (2.0f * f2[i - 2]);
75 for (j = i - 1; j > 0; j--) {
76 f1[j] += (b1 * f1[j - 1]) + f1[j - 2];
77 f2[j] += (b2 * f2[j - 1]) + f2[j - 2];
78 }
79 }
80
81 return;
82 }
ixheaacd_lsp_to_lp_conversion(FLOAT32 * lsp,FLOAT32 * lp_flt_coff_a)83 VOID ixheaacd_lsp_to_lp_conversion(FLOAT32 *lsp, FLOAT32 *lp_flt_coff_a) {
84 WORD32 i;
85 FLOAT32 *ppoly_f1, *ppoly_f2;
86 FLOAT32 *plp_flt_coff_a_bott, *plp_flt_coff_a_top;
87 FLOAT32 poly1[ORDER_BY_2 + 2], poly2[ORDER_BY_2 + 2];
88
89 poly1[0] = 0.0f;
90 poly2[0] = 0.0f;
91
92 ixheaacd_compute_coeff_poly_f(lsp, &poly1[1], &poly2[1]);
93
94 ppoly_f1 = poly1 + ORDER_BY_2 + 1;
95 ppoly_f2 = poly2 + ORDER_BY_2 + 1;
96
97 for (i = 0; i < ORDER_BY_2; i++) {
98 ppoly_f1[0] += ppoly_f1[-1];
99 ppoly_f2[0] -= ppoly_f2[-1];
100 ppoly_f1--;
101 ppoly_f2--;
102 }
103
104 plp_flt_coff_a_bott = lp_flt_coff_a;
105 *plp_flt_coff_a_bott++ = 1.0f;
106 plp_flt_coff_a_top = lp_flt_coff_a + ORDER;
107 ppoly_f1 = poly1 + 2;
108 ppoly_f2 = poly2 + 2;
109 for (i = 0; i < ORDER_BY_2; i++) {
110 *plp_flt_coff_a_bott++ = 0.5f * (*ppoly_f1 + *ppoly_f2);
111 *plp_flt_coff_a_top-- = 0.5f * (*ppoly_f1++ - *ppoly_f2++);
112 }
113
114 return;
115 }
116
ixheaacd_lpc_to_td(float * coeff,WORD32 order,float * gains,WORD32 lg)117 VOID ixheaacd_lpc_to_td(float *coeff, WORD32 order, float *gains, WORD32 lg) {
118 FLOAT32 data_r[LEN_SUPERFRAME * 2];
119 FLOAT32 data_i[LEN_SUPERFRAME * 2];
120 FLOAT64 avg_fac;
121 WORD32 idata_r[LEN_SUPERFRAME * 2];
122 WORD32 idata_i[LEN_SUPERFRAME * 2];
123 WORD8 qshift;
124 WORD32 preshift = 0;
125 WORD32 itemp;
126 FLOAT32 ftemp = 0;
127 FLOAT32 tmp, qfac;
128 WORD32 i, size_n;
129
130 size_n = 2 * lg;
131 avg_fac = PI / (FLOAT32)(size_n);
132
133 for (i = 0; i < order + 1; i++) {
134 tmp = (FLOAT32)(((FLOAT32)i) * avg_fac);
135 data_r[i] = (FLOAT32)(coeff[i] * cos(tmp));
136 data_i[i] = (FLOAT32)(-coeff[i] * sin(tmp));
137 }
138 for (; i < size_n; i++) {
139 data_r[i] = 0.f;
140 data_i[i] = 0.f;
141 }
142
143 for (i = 0; i < size_n; i++) {
144 if (ABS(data_r[i]) > ftemp) ftemp = ABS(data_r[i]);
145 if (ABS(data_i[i]) > ftemp) ftemp = ABS(data_i[i]);
146 }
147
148 itemp = (WORD32)ftemp;
149 qshift = ixheaacd_norm32(itemp);
150
151 for (i = 0; i < size_n; i++) {
152 idata_r[i] = (WORD32)(data_r[i] * ((WORD64)1 << qshift));
153 idata_i[i] = (WORD32)(data_i[i] * ((WORD64)1 << qshift));
154 }
155
156 ixheaacd_complex_fft(idata_r, idata_i, size_n, -1, &preshift);
157
158 qfac = 1.0f / ((FLOAT32)((WORD64)1 << (qshift - preshift)));
159
160 for (i = 0; i < size_n; i++) {
161 data_r[i] = (FLOAT32)((FLOAT32)idata_r[i] * qfac);
162 data_i[i] = (FLOAT32)((FLOAT32)idata_i[i] * qfac);
163 }
164
165 for (i = 0; i < size_n / 2; i++) {
166 gains[i] =
167 (FLOAT32)(1.0f / sqrt(data_r[i] * data_r[i] + data_i[i] * data_i[i]));
168 }
169
170 return;
171 }
172
ixheaacd_noise_shaping(FLOAT32 r[],WORD32 lg,WORD32 M,FLOAT32 g1[],FLOAT32 g2[])173 VOID ixheaacd_noise_shaping(FLOAT32 r[], WORD32 lg, WORD32 M, FLOAT32 g1[],
174 FLOAT32 g2[]) {
175 WORD32 i, k;
176 FLOAT32 rr_prev, a = 0, b = 0;
177 FLOAT32 rr[1024];
178
179 k = lg / M;
180
181 rr_prev = 0;
182
183 memcpy(&rr, r, lg * sizeof(FLOAT32));
184
185 for (i = 0; i < lg; i++) {
186 if ((i % k) == 0) {
187 a = 2.0f * g1[i / k] * g2[i / k] / (g1[i / k] + g2[i / k]);
188 b = (g2[i / k] - g1[i / k]) / (g1[i / k] + g2[i / k]);
189 }
190
191 rr[i] = a * rr[i] + b * rr_prev;
192 rr_prev = rr[i];
193 }
194
195 for (i = 0; i < lg / 2; i++) {
196 r[i] = rr[2 * i];
197 r[lg / 2 + i] = rr[lg - 2 * i - 1];
198 }
199 return;
200 }
201
ixheaacd_lpc_coef_gen(FLOAT32 lsf_old[],FLOAT32 lsf_new[],FLOAT32 a[],WORD32 nb_subfr,WORD32 m)202 VOID ixheaacd_lpc_coef_gen(FLOAT32 lsf_old[], FLOAT32 lsf_new[], FLOAT32 a[],
203 WORD32 nb_subfr, WORD32 m) {
204 FLOAT32 lsf[ORDER], *ptr_a;
205 FLOAT32 inc, fnew, fold;
206 WORD32 i;
207
208 ptr_a = a;
209
210 inc = 1.0f / (FLOAT32)nb_subfr;
211 fnew = 0.5f - (0.5f * inc);
212 fold = 1.0f - fnew;
213
214 for (i = 0; i < m; i++) {
215 lsf[i] = (lsf_old[i] * fold) + (lsf_new[i] * fnew);
216 }
217 ixheaacd_lsp_to_lp_conversion(lsf, ptr_a);
218 ptr_a += (m + 1);
219 ixheaacd_lsp_to_lp_conversion(lsf_old, ptr_a);
220 ptr_a += (m + 1);
221 ixheaacd_lsp_to_lp_conversion(lsf_new, ptr_a);
222 ptr_a += (m + 1);
223
224 return;
225 }
226
ixheaacd_interpolation_lsp_params(FLOAT32 lsp_old[],FLOAT32 lsp_new[],FLOAT32 lp_flt_coff_a[],WORD32 nb_subfr)227 VOID ixheaacd_interpolation_lsp_params(FLOAT32 lsp_old[], FLOAT32 lsp_new[],
228 FLOAT32 lp_flt_coff_a[],
229 WORD32 nb_subfr) {
230 FLOAT32 lsp[ORDER];
231 FLOAT32 factor;
232 WORD32 i, k;
233 FLOAT32 x_plus_y, x_minus_y;
234
235 factor = 1.0f / (FLOAT32)nb_subfr;
236
237 x_plus_y = 0.5f * factor;
238
239 for (k = 0; k < nb_subfr; k++) {
240 x_minus_y = 1.0f - x_plus_y;
241 for (i = 0; i < ORDER; i++) {
242 lsp[i] = (lsp_old[i] * x_minus_y) + (lsp_new[i] * x_plus_y);
243 }
244 x_plus_y += factor;
245
246 ixheaacd_lsp_to_lp_conversion(lsp, lp_flt_coff_a);
247
248 lp_flt_coff_a += (ORDER + 1);
249 }
250
251 ixheaacd_lsp_to_lp_conversion(lsp_new, lp_flt_coff_a);
252
253 return;
254 }
255