• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2  *                                                                            *
3  * Copyright (C) 2018 The Android Open Source Project
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at:
8  *
9  * http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  *
17  *****************************************************************************
18  * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore
19 */
20 #include <stdio.h>
21 #include <stdlib.h>
22 #include <math.h>
23 #include <string.h>
24 #include <assert.h>
25 
26 #include <ixheaacd_type_def.h>
27 #include "ixheaacd_bitbuffer.h"
28 #include "ixheaacd_config.h"
29 
30 #include "ixheaacd_mps_polyphase.h"
31 #include "ixheaacd_mps_dec.h"
32 #include "ixheaacd_mps_interface.h"
33 
34 #include "ixheaacd_mps_polyphase.h"
35 
36 #include "ixheaacd_mps_decor.h"
37 #include "ixheaacd_mps_hybfilter.h"
38 
39 #include "ixheaacd_constants.h"
40 
41 static WORD32 ixheaacd_decorr_delay[] = {11, 10, 5, 2};
42 
43 static WORD32 ixheaacd_qmf_split_freq_0[] = {3, 15, 24, 65};
44 static WORD32 ixheaacd_qmf_split_freq_1[] = {3, 50, 65, 65};
45 static WORD32 ixheaacd_qmf_split_freq_2[] = {0, 15, 65, 65};
46 
47 static FLOAT32 ixheaacd_lattice_coeff_0_filt_den_coeff[DECORR_FILT_0_ORD + 1] =
48     {1.000000f, -0.314818f, -0.256828f, -0.173641f, -0.115077f, 0.000599f,
49      0.033343f, 0.122672f,  -0.356362f, 0.128058f,  0.089800f};
50 static FLOAT32 ixheaacd_lattice_coeff_0_filt_num_coeff[DECORR_FILT_0_ORD + 1] =
51     {0.089800f,  0.128058f,  -0.356362f, 0.122672f,  0.033343f, 0.000599f,
52      -0.115077f, -0.173641f, -0.256828f, -0.314818f, 1.000000f};
53 
54 static FLOAT32 ixheaacd_lattice_coeff_1_filt_den_coeff[DECORR_FILT_1_ORD + 1] =
55     {1.000000f, -0.287137f, -0.088940f, 0.123204f, -0.126111f,
56      0.064218f, 0.045768f,  -0.016264f, -0.122100f};
57 static FLOAT32 ixheaacd_lattice_coeff_1_filt_num_coeff[DECORR_FILT_1_ORD + 1] =
58     {-0.122100f, -0.016264f, 0.045768f,  0.064218f, -0.126111f,
59      0.123204f,  -0.088940f, -0.287137f, 1.000000f};
60 
61 static FLOAT32 ixheaacd_lattice_coeff_2_filt_den_coeff[DECORR_FILT_2_ORD + 1] =
62     {1.000000f, 0.129403f, -0.032633f, 0.035700f};
63 static FLOAT32 ixheaacd_lattice_coeff_2_filt_num_coeff[DECORR_FILT_2_ORD + 1] =
64     {0.035700f, -0.032633f, 0.129403f, 1.000000f};
65 
66 static FLOAT32 ixheaacd_lattice_coeff_3_filt_den_coeff[DECORR_FILT_3_ORD + 1] =
67     {1.000000f, 0.034742f, -0.013000f};
68 static FLOAT32 ixheaacd_lattice_coeff_3_filt_num_coeff[DECORR_FILT_3_ORD + 1] =
69     {-0.013000f, 0.034742f, 1.000000f};
70 
71 extern WORD32
72     ixheaacd_hybrid_band_71_to_processing_band_28_map[MAX_HYBRID_BANDS_MPS];
73 
74 static WORD32 ixheaacd_hybrid_to_qmf_map[MAX_HYBRID_BANDS_MPS] = {
75     0,  0,  0,  0,  0,  0,  1,  1,  2,  2,  3,  4,  5,  6,  7,  8,  9,  10,
76     11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
77     29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
78     47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63};
79 
ixheaacd_mps_decor_filt_init(ia_mps_decor_filt_struct * self,WORD32 reverb_band)80 static void ixheaacd_mps_decor_filt_init(ia_mps_decor_filt_struct *self,
81                                          WORD32 reverb_band) {
82   switch (reverb_band) {
83     case 0:
84       self->num_len = self->den_len = DECORR_FILT_0_ORD + 1;
85       self->num = ixheaacd_lattice_coeff_0_filt_num_coeff;
86       self->den = ixheaacd_lattice_coeff_0_filt_den_coeff;
87 
88       break;
89     case 1:
90       self->num_len = self->den_len = DECORR_FILT_1_ORD + 1;
91       self->num = ixheaacd_lattice_coeff_1_filt_num_coeff;
92       self->den = ixheaacd_lattice_coeff_1_filt_den_coeff;
93 
94       break;
95     case 2:
96       self->num_len = self->den_len = DECORR_FILT_2_ORD + 1;
97       self->num = ixheaacd_lattice_coeff_2_filt_num_coeff;
98       self->den = ixheaacd_lattice_coeff_2_filt_den_coeff;
99       break;
100     case 3:
101       self->num_len = self->den_len = DECORR_FILT_3_ORD + 1;
102       self->num = ixheaacd_lattice_coeff_3_filt_num_coeff;
103       self->den = ixheaacd_lattice_coeff_3_filt_den_coeff;
104       break;
105   }
106 
107   self->state_len = self->num_len;
108   memset(self->state, 0,
109          sizeof(ia_cmplx_flt_struct) * (MAX_DECORR_FIL_ORDER + 1));
110 
111   return;
112 }
113 
ixheaacd_mps_allpass_apply(ia_mps_decor_filt_struct * self,ia_cmplx_flt_struct * input,WORD32 len,ia_cmplx_flt_struct * output)114 static VOID ixheaacd_mps_allpass_apply(ia_mps_decor_filt_struct *self,
115                                        ia_cmplx_flt_struct *input, WORD32 len,
116                                        ia_cmplx_flt_struct *output) {
117   WORD32 i, j;
118 
119   for (i = 0; i < len; i++) {
120     output[i].re = self->state[0].re + input[i].re * self->num[0];
121     output[i].im = self->state[0].im + input[i].im * self->num[0];
122 
123     for (j = 1; j < self->num_len; j++) {
124       self->state[j - 1].re = self->state[j].re + self->num[j] * input[i].re -
125                               self->den[j] * output[i].re;
126       self->state[j - 1].im = self->state[j].im + self->num[j] * input[i].im -
127                               self->den[j] * output[i].im;
128     }
129   }
130 }
131 
ixheaacd_mps_decor_energy_adjustment(ixheaacd_mps_decor_energy_adjust_filt_struct * handle,ia_cmplx_flt_struct in[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],ia_cmplx_flt_struct out[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],WORD32 time_slots)132 static VOID ixheaacd_mps_decor_energy_adjustment(
133     ixheaacd_mps_decor_energy_adjust_filt_struct *handle,
134     ia_cmplx_flt_struct in[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],
135     ia_cmplx_flt_struct out[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],
136     WORD32 time_slots) {
137   ixheaacd_mps_decor_energy_adjust_filt_struct *self =
138       (ixheaacd_mps_decor_energy_adjust_filt_struct *)handle;
139   FLOAT32 in_energy[MAX_PARAMETER_BANDS] = {0};
140   FLOAT32 out_energy[MAX_PARAMETER_BANDS] = {0};
141   FLOAT32 gain[MAX_PARAMETER_BANDS];
142   WORD32 i, j, k;
143 
144   for (i = 0; i < time_slots; i++) {
145     memset(in_energy, 0, sizeof(FLOAT32) * MAX_PARAMETER_BANDS);
146     memset(out_energy, 0, sizeof(FLOAT32) * MAX_PARAMETER_BANDS);
147 
148     for (j = 0; j < self->num_bins; j++) {
149       k = ixheaacd_hybrid_band_71_to_processing_band_28_map[j];
150 
151       in_energy[k] += in[i][j].re * in[i][j].re + in[i][j].im * in[i][j].im;
152       out_energy[k] +=
153           out[i][j].re * out[i][j].re + out[i][j].im * out[i][j].im;
154     }
155 
156     for (k = 0; k < MAX_PARAMETER_BANDS; k++) {
157       self->smooth_in_energy[k] = self->smooth_in_energy[k] * DECOR_ALPHA +
158                                   in_energy[k] * ONE_MINUS_DECOR_ALPHA;
159       self->smooth_out_energy[k] = self->smooth_out_energy[k] * DECOR_ALPHA +
160                                    out_energy[k] * ONE_MINUS_DECOR_ALPHA;
161 
162       gain[k] = 1.0f;
163 
164       if (self->smooth_out_energy[k] >
165           self->smooth_in_energy[k] * DECOR_GAMMA) {
166         gain[k] = (FLOAT32)sqrt(self->smooth_in_energy[k] * DECOR_GAMMA /
167                                 (self->smooth_out_energy[k] + ABS_THR));
168       }
169 
170       if (self->smooth_in_energy[k] >
171           self->smooth_out_energy[k] * DECOR_GAMMA) {
172         gain[k] =
173             min(2.0f, (FLOAT32)sqrt(self->smooth_in_energy[k] /
174                                     (DECOR_GAMMA * self->smooth_out_energy[k] +
175                                      ABS_THR)));
176       }
177     }
178 
179     for (j = 0; j < self->num_bins; j++) {
180       k = ixheaacd_hybrid_band_71_to_processing_band_28_map[j];
181 
182       out[i][j].re *= gain[k];
183       out[i][j].im *= gain[k];
184     }
185   }
186 }
187 
ixheaacd_mps_decor_init(ia_mps_decor_struct_handle self,WORD32 subbands,WORD32 decor_config)188 void ixheaacd_mps_decor_init(ia_mps_decor_struct_handle self, WORD32 subbands,
189                              WORD32 decor_config) {
190   WORD32 i, reverb_band;
191   WORD32 *splitfreq;
192 
193   switch (decor_config) {
194     case 0:
195       splitfreq = ixheaacd_qmf_split_freq_0;
196       break;
197     case 1:
198       splitfreq = ixheaacd_qmf_split_freq_1;
199       break;
200     case 2:
201       splitfreq = ixheaacd_qmf_split_freq_2;
202       break;
203     default:
204       return;
205   }
206 
207   self->num_bins = subbands;
208 
209   for (i = 0; i < self->num_bins; i++) {
210     reverb_band = 0;
211     while ((reverb_band < 3) &&
212            (ixheaacd_hybrid_to_qmf_map[i] >= (splitfreq[reverb_band] - 1)))
213       reverb_band++;
214 
215     self->delay_sample_count[i] = ixheaacd_decorr_delay[reverb_band];
216     ixheaacd_mps_decor_filt_init(&self->filter[i], reverb_band);
217   }
218 
219   self->decor_nrg_smooth.num_bins = self->num_bins;
220 
221   return;
222 }
223 
ixheaacd_mps_decor_apply(ia_mps_decor_struct_handle self,ia_cmplx_flt_struct in[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],ia_cmplx_flt_struct out[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],WORD32 length)224 VOID ixheaacd_mps_decor_apply(
225     ia_mps_decor_struct_handle self,
226     ia_cmplx_flt_struct in[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],
227     ia_cmplx_flt_struct out[MAX_TIME_SLOTS][MAX_HYBRID_BANDS_MPS],
228     WORD32 length) {
229   WORD32 idx, sb_sample;
230 
231   ia_cmplx_flt_struct scratch[MAX_TIME_SLOTS];
232 
233   for (idx = 0; idx < self->num_bins; idx++) {
234     for (sb_sample = 0; sb_sample < length; sb_sample++) {
235       self->decor_delay_buffer[idx][self->delay_sample_count[idx] + sb_sample]
236           .re = in[sb_sample][idx].re;
237       self->decor_delay_buffer[idx][self->delay_sample_count[idx] + sb_sample]
238           .im = in[sb_sample][idx].im;
239     }
240     ixheaacd_mps_allpass_apply(&self->filter[idx],
241                                self->decor_delay_buffer[idx], length, scratch);
242 
243     for (sb_sample = 0; sb_sample < length; sb_sample++) {
244       out[sb_sample][idx].re = scratch[sb_sample].re;
245       out[sb_sample][idx].im = scratch[sb_sample].im;
246     }
247 
248     for (sb_sample = 0; sb_sample < self->delay_sample_count[idx];
249          sb_sample++) {
250       self->decor_delay_buffer[idx][sb_sample].re =
251           self->decor_delay_buffer[idx][length + sb_sample].re;
252       self->decor_delay_buffer[idx][sb_sample].im =
253           self->decor_delay_buffer[idx][length + sb_sample].im;
254     }
255   }
256 
257   ixheaacd_mps_decor_energy_adjustment(&self->decor_nrg_smooth, in, out,
258                                        length);
259 }
260