1 //===-- tsan_rtl.h ----------------------------------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of ThreadSanitizer (TSan), a race detector.
11 //
12 // Main internal TSan header file.
13 //
14 // Ground rules:
15 // - C++ run-time should not be used (static CTORs, RTTI, exceptions, static
16 // function-scope locals)
17 // - All functions/classes/etc reside in namespace __tsan, except for those
18 // declared in tsan_interface.h.
19 // - Platform-specific files should be used instead of ifdefs (*).
20 // - No system headers included in header files (*).
21 // - Platform specific headres included only into platform-specific files (*).
22 //
23 // (*) Except when inlining is critical for performance.
24 //===----------------------------------------------------------------------===//
25
26 #ifndef TSAN_RTL_H
27 #define TSAN_RTL_H
28
29 #include "sanitizer_common/sanitizer_allocator.h"
30 #include "sanitizer_common/sanitizer_allocator_internal.h"
31 #include "sanitizer_common/sanitizer_asm.h"
32 #include "sanitizer_common/sanitizer_common.h"
33 #include "sanitizer_common/sanitizer_deadlock_detector_interface.h"
34 #include "sanitizer_common/sanitizer_libignore.h"
35 #include "sanitizer_common/sanitizer_suppressions.h"
36 #include "sanitizer_common/sanitizer_thread_registry.h"
37 #include "tsan_clock.h"
38 #include "tsan_defs.h"
39 #include "tsan_flags.h"
40 #include "tsan_sync.h"
41 #include "tsan_trace.h"
42 #include "tsan_vector.h"
43 #include "tsan_report.h"
44 #include "tsan_platform.h"
45 #include "tsan_mutexset.h"
46 #include "tsan_ignoreset.h"
47 #include "tsan_stack_trace.h"
48
49 #if SANITIZER_WORDSIZE != 64
50 # error "ThreadSanitizer is supported only on 64-bit platforms"
51 #endif
52
53 namespace __tsan {
54
55 #ifndef SANITIZER_GO
56 struct MapUnmapCallback;
57 #if defined(__mips64) || defined(__aarch64__) || defined(__powerpc__)
58 static const uptr kAllocatorSpace = 0;
59 static const uptr kAllocatorSize = SANITIZER_MMAP_RANGE_SIZE;
60 static const uptr kAllocatorRegionSizeLog = 20;
61 static const uptr kAllocatorNumRegions =
62 kAllocatorSize >> kAllocatorRegionSizeLog;
63 typedef TwoLevelByteMap<(kAllocatorNumRegions >> 12), 1 << 12,
64 MapUnmapCallback> ByteMap;
65 typedef SizeClassAllocator32<kAllocatorSpace, kAllocatorSize, 0,
66 CompactSizeClassMap, kAllocatorRegionSizeLog, ByteMap,
67 MapUnmapCallback> PrimaryAllocator;
68 #else
69 typedef SizeClassAllocator64<Mapping::kHeapMemBeg,
70 Mapping::kHeapMemEnd - Mapping::kHeapMemBeg, 0,
71 DefaultSizeClassMap, MapUnmapCallback> PrimaryAllocator;
72 #endif
73 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
74 typedef LargeMmapAllocator<MapUnmapCallback> SecondaryAllocator;
75 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
76 SecondaryAllocator> Allocator;
77 Allocator *allocator();
78 #endif
79
80 void TsanCheckFailed(const char *file, int line, const char *cond,
81 u64 v1, u64 v2);
82
83 const u64 kShadowRodata = (u64)-1; // .rodata shadow marker
84
85 // FastState (from most significant bit):
86 // ignore : 1
87 // tid : kTidBits
88 // unused : -
89 // history_size : 3
90 // epoch : kClkBits
91 class FastState {
92 public:
FastState(u64 tid,u64 epoch)93 FastState(u64 tid, u64 epoch) {
94 x_ = tid << kTidShift;
95 x_ |= epoch;
96 DCHECK_EQ(tid, this->tid());
97 DCHECK_EQ(epoch, this->epoch());
98 DCHECK_EQ(GetIgnoreBit(), false);
99 }
100
FastState(u64 x)101 explicit FastState(u64 x)
102 : x_(x) {
103 }
104
raw()105 u64 raw() const {
106 return x_;
107 }
108
tid()109 u64 tid() const {
110 u64 res = (x_ & ~kIgnoreBit) >> kTidShift;
111 return res;
112 }
113
TidWithIgnore()114 u64 TidWithIgnore() const {
115 u64 res = x_ >> kTidShift;
116 return res;
117 }
118
epoch()119 u64 epoch() const {
120 u64 res = x_ & ((1ull << kClkBits) - 1);
121 return res;
122 }
123
IncrementEpoch()124 void IncrementEpoch() {
125 u64 old_epoch = epoch();
126 x_ += 1;
127 DCHECK_EQ(old_epoch + 1, epoch());
128 (void)old_epoch;
129 }
130
SetIgnoreBit()131 void SetIgnoreBit() { x_ |= kIgnoreBit; }
ClearIgnoreBit()132 void ClearIgnoreBit() { x_ &= ~kIgnoreBit; }
GetIgnoreBit()133 bool GetIgnoreBit() const { return (s64)x_ < 0; }
134
SetHistorySize(int hs)135 void SetHistorySize(int hs) {
136 CHECK_GE(hs, 0);
137 CHECK_LE(hs, 7);
138 x_ = (x_ & ~(kHistoryMask << kHistoryShift)) | (u64(hs) << kHistoryShift);
139 }
140
141 ALWAYS_INLINE
GetHistorySize()142 int GetHistorySize() const {
143 return (int)((x_ >> kHistoryShift) & kHistoryMask);
144 }
145
ClearHistorySize()146 void ClearHistorySize() {
147 SetHistorySize(0);
148 }
149
150 ALWAYS_INLINE
GetTracePos()151 u64 GetTracePos() const {
152 const int hs = GetHistorySize();
153 // When hs == 0, the trace consists of 2 parts.
154 const u64 mask = (1ull << (kTracePartSizeBits + hs + 1)) - 1;
155 return epoch() & mask;
156 }
157
158 private:
159 friend class Shadow;
160 static const int kTidShift = 64 - kTidBits - 1;
161 static const u64 kIgnoreBit = 1ull << 63;
162 static const u64 kFreedBit = 1ull << 63;
163 static const u64 kHistoryShift = kClkBits;
164 static const u64 kHistoryMask = 7;
165 u64 x_;
166 };
167
168 // Shadow (from most significant bit):
169 // freed : 1
170 // tid : kTidBits
171 // is_atomic : 1
172 // is_read : 1
173 // size_log : 2
174 // addr0 : 3
175 // epoch : kClkBits
176 class Shadow : public FastState {
177 public:
Shadow(u64 x)178 explicit Shadow(u64 x)
179 : FastState(x) {
180 }
181
Shadow(const FastState & s)182 explicit Shadow(const FastState &s)
183 : FastState(s.x_) {
184 ClearHistorySize();
185 }
186
SetAddr0AndSizeLog(u64 addr0,unsigned kAccessSizeLog)187 void SetAddr0AndSizeLog(u64 addr0, unsigned kAccessSizeLog) {
188 DCHECK_EQ((x_ >> kClkBits) & 31, 0);
189 DCHECK_LE(addr0, 7);
190 DCHECK_LE(kAccessSizeLog, 3);
191 x_ |= ((kAccessSizeLog << 3) | addr0) << kClkBits;
192 DCHECK_EQ(kAccessSizeLog, size_log());
193 DCHECK_EQ(addr0, this->addr0());
194 }
195
SetWrite(unsigned kAccessIsWrite)196 void SetWrite(unsigned kAccessIsWrite) {
197 DCHECK_EQ(x_ & kReadBit, 0);
198 if (!kAccessIsWrite)
199 x_ |= kReadBit;
200 DCHECK_EQ(kAccessIsWrite, IsWrite());
201 }
202
SetAtomic(bool kIsAtomic)203 void SetAtomic(bool kIsAtomic) {
204 DCHECK(!IsAtomic());
205 if (kIsAtomic)
206 x_ |= kAtomicBit;
207 DCHECK_EQ(IsAtomic(), kIsAtomic);
208 }
209
IsAtomic()210 bool IsAtomic() const {
211 return x_ & kAtomicBit;
212 }
213
IsZero()214 bool IsZero() const {
215 return x_ == 0;
216 }
217
TidsAreEqual(const Shadow s1,const Shadow s2)218 static inline bool TidsAreEqual(const Shadow s1, const Shadow s2) {
219 u64 shifted_xor = (s1.x_ ^ s2.x_) >> kTidShift;
220 DCHECK_EQ(shifted_xor == 0, s1.TidWithIgnore() == s2.TidWithIgnore());
221 return shifted_xor == 0;
222 }
223
224 static ALWAYS_INLINE
Addr0AndSizeAreEqual(const Shadow s1,const Shadow s2)225 bool Addr0AndSizeAreEqual(const Shadow s1, const Shadow s2) {
226 u64 masked_xor = ((s1.x_ ^ s2.x_) >> kClkBits) & 31;
227 return masked_xor == 0;
228 }
229
TwoRangesIntersect(Shadow s1,Shadow s2,unsigned kS2AccessSize)230 static ALWAYS_INLINE bool TwoRangesIntersect(Shadow s1, Shadow s2,
231 unsigned kS2AccessSize) {
232 bool res = false;
233 u64 diff = s1.addr0() - s2.addr0();
234 if ((s64)diff < 0) { // s1.addr0 < s2.addr0 // NOLINT
235 // if (s1.addr0() + size1) > s2.addr0()) return true;
236 if (s1.size() > -diff)
237 res = true;
238 } else {
239 // if (s2.addr0() + kS2AccessSize > s1.addr0()) return true;
240 if (kS2AccessSize > diff)
241 res = true;
242 }
243 DCHECK_EQ(res, TwoRangesIntersectSlow(s1, s2));
244 DCHECK_EQ(res, TwoRangesIntersectSlow(s2, s1));
245 return res;
246 }
247
addr0()248 u64 ALWAYS_INLINE addr0() const { return (x_ >> kClkBits) & 7; }
size()249 u64 ALWAYS_INLINE size() const { return 1ull << size_log(); }
IsWrite()250 bool ALWAYS_INLINE IsWrite() const { return !IsRead(); }
IsRead()251 bool ALWAYS_INLINE IsRead() const { return x_ & kReadBit; }
252
253 // The idea behind the freed bit is as follows.
254 // When the memory is freed (or otherwise unaccessible) we write to the shadow
255 // values with tid/epoch related to the free and the freed bit set.
256 // During memory accesses processing the freed bit is considered
257 // as msb of tid. So any access races with shadow with freed bit set
258 // (it is as if write from a thread with which we never synchronized before).
259 // This allows us to detect accesses to freed memory w/o additional
260 // overheads in memory access processing and at the same time restore
261 // tid/epoch of free.
MarkAsFreed()262 void MarkAsFreed() {
263 x_ |= kFreedBit;
264 }
265
IsFreed()266 bool IsFreed() const {
267 return x_ & kFreedBit;
268 }
269
GetFreedAndReset()270 bool GetFreedAndReset() {
271 bool res = x_ & kFreedBit;
272 x_ &= ~kFreedBit;
273 return res;
274 }
275
IsBothReadsOrAtomic(bool kIsWrite,bool kIsAtomic)276 bool ALWAYS_INLINE IsBothReadsOrAtomic(bool kIsWrite, bool kIsAtomic) const {
277 bool v = x_ & ((u64(kIsWrite ^ 1) << kReadShift)
278 | (u64(kIsAtomic) << kAtomicShift));
279 DCHECK_EQ(v, (!IsWrite() && !kIsWrite) || (IsAtomic() && kIsAtomic));
280 return v;
281 }
282
IsRWNotWeaker(bool kIsWrite,bool kIsAtomic)283 bool ALWAYS_INLINE IsRWNotWeaker(bool kIsWrite, bool kIsAtomic) const {
284 bool v = ((x_ >> kReadShift) & 3)
285 <= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
286 DCHECK_EQ(v, (IsAtomic() < kIsAtomic) ||
287 (IsAtomic() == kIsAtomic && !IsWrite() <= !kIsWrite));
288 return v;
289 }
290
IsRWWeakerOrEqual(bool kIsWrite,bool kIsAtomic)291 bool ALWAYS_INLINE IsRWWeakerOrEqual(bool kIsWrite, bool kIsAtomic) const {
292 bool v = ((x_ >> kReadShift) & 3)
293 >= u64((kIsWrite ^ 1) | (kIsAtomic << 1));
294 DCHECK_EQ(v, (IsAtomic() > kIsAtomic) ||
295 (IsAtomic() == kIsAtomic && !IsWrite() >= !kIsWrite));
296 return v;
297 }
298
299 private:
300 static const u64 kReadShift = 5 + kClkBits;
301 static const u64 kReadBit = 1ull << kReadShift;
302 static const u64 kAtomicShift = 6 + kClkBits;
303 static const u64 kAtomicBit = 1ull << kAtomicShift;
304
size_log()305 u64 size_log() const { return (x_ >> (3 + kClkBits)) & 3; }
306
TwoRangesIntersectSlow(const Shadow s1,const Shadow s2)307 static bool TwoRangesIntersectSlow(const Shadow s1, const Shadow s2) {
308 if (s1.addr0() == s2.addr0()) return true;
309 if (s1.addr0() < s2.addr0() && s1.addr0() + s1.size() > s2.addr0())
310 return true;
311 if (s2.addr0() < s1.addr0() && s2.addr0() + s2.size() > s1.addr0())
312 return true;
313 return false;
314 }
315 };
316
317 struct ThreadSignalContext;
318
319 struct JmpBuf {
320 uptr sp;
321 uptr mangled_sp;
322 int int_signal_send;
323 bool in_blocking_func;
324 uptr in_signal_handler;
325 uptr *shadow_stack_pos;
326 };
327
328 // A Processor represents a physical thread, or a P for Go.
329 // It is used to store internal resources like allocate cache, and does not
330 // participate in race-detection logic (invisible to end user).
331 // In C++ it is tied to an OS thread just like ThreadState, however ideally
332 // it should be tied to a CPU (this way we will have fewer allocator caches).
333 // In Go it is tied to a P, so there are significantly fewer Processor's than
334 // ThreadState's (which are tied to Gs).
335 // A ThreadState must be wired with a Processor to handle events.
336 struct Processor {
337 ThreadState *thr; // currently wired thread, or nullptr
338 #ifndef SANITIZER_GO
339 AllocatorCache alloc_cache;
340 InternalAllocatorCache internal_alloc_cache;
341 #endif
342 DenseSlabAllocCache block_cache;
343 DenseSlabAllocCache sync_cache;
344 DenseSlabAllocCache clock_cache;
345 DDPhysicalThread *dd_pt;
346 };
347
348 #ifndef SANITIZER_GO
349 // ScopedGlobalProcessor temporary setups a global processor for the current
350 // thread, if it does not have one. Intended for interceptors that can run
351 // at the very thread end, when we already destroyed the thread processor.
352 struct ScopedGlobalProcessor {
353 ScopedGlobalProcessor();
354 ~ScopedGlobalProcessor();
355 };
356 #endif
357
358 // This struct is stored in TLS.
359 struct ThreadState {
360 FastState fast_state;
361 // Synch epoch represents the threads's epoch before the last synchronization
362 // action. It allows to reduce number of shadow state updates.
363 // For example, fast_synch_epoch=100, last write to addr X was at epoch=150,
364 // if we are processing write to X from the same thread at epoch=200,
365 // we do nothing, because both writes happen in the same 'synch epoch'.
366 // That is, if another memory access does not race with the former write,
367 // it does not race with the latter as well.
368 // QUESTION: can we can squeeze this into ThreadState::Fast?
369 // E.g. ThreadState::Fast is a 44-bit, 32 are taken by synch_epoch and 12 are
370 // taken by epoch between synchs.
371 // This way we can save one load from tls.
372 u64 fast_synch_epoch;
373 // This is a slow path flag. On fast path, fast_state.GetIgnoreBit() is read.
374 // We do not distinguish beteween ignoring reads and writes
375 // for better performance.
376 int ignore_reads_and_writes;
377 int ignore_sync;
378 // Go does not support ignores.
379 #ifndef SANITIZER_GO
380 IgnoreSet mop_ignore_set;
381 IgnoreSet sync_ignore_set;
382 #endif
383 // C/C++ uses fixed size shadow stack embed into Trace.
384 // Go uses malloc-allocated shadow stack with dynamic size.
385 uptr *shadow_stack;
386 uptr *shadow_stack_end;
387 uptr *shadow_stack_pos;
388 u64 *racy_shadow_addr;
389 u64 racy_state[2];
390 MutexSet mset;
391 ThreadClock clock;
392 #ifndef SANITIZER_GO
393 Vector<JmpBuf> jmp_bufs;
394 int ignore_interceptors;
395 #endif
396 #if TSAN_COLLECT_STATS
397 u64 stat[StatCnt];
398 #endif
399 const int tid;
400 const int unique_id;
401 bool in_symbolizer;
402 bool in_ignored_lib;
403 bool is_inited;
404 bool is_dead;
405 bool is_freeing;
406 bool is_vptr_access;
407 const uptr stk_addr;
408 const uptr stk_size;
409 const uptr tls_addr;
410 const uptr tls_size;
411 ThreadContext *tctx;
412
413 #if SANITIZER_DEBUG && !SANITIZER_GO
414 InternalDeadlockDetector internal_deadlock_detector;
415 #endif
416 DDLogicalThread *dd_lt;
417
418 // Current wired Processor, or nullptr. Required to handle any events.
419 Processor *proc1;
420 #ifndef SANITIZER_GO
procThreadState421 Processor *proc() { return proc1; }
422 #else
423 Processor *proc();
424 #endif
425
426 atomic_uintptr_t in_signal_handler;
427 ThreadSignalContext *signal_ctx;
428
429 #ifndef SANITIZER_GO
430 u32 last_sleep_stack_id;
431 ThreadClock last_sleep_clock;
432 #endif
433
434 // Set in regions of runtime that must be signal-safe and fork-safe.
435 // If set, malloc must not be called.
436 int nomalloc;
437
438 const ReportDesc *current_report;
439
440 explicit ThreadState(Context *ctx, int tid, int unique_id, u64 epoch,
441 unsigned reuse_count,
442 uptr stk_addr, uptr stk_size,
443 uptr tls_addr, uptr tls_size);
444 };
445
446 #ifndef SANITIZER_GO
447 #if SANITIZER_MAC || SANITIZER_ANDROID
448 ThreadState *cur_thread();
449 void cur_thread_finalize();
450 #else
451 __attribute__((tls_model("initial-exec")))
452 extern THREADLOCAL char cur_thread_placeholder[];
cur_thread()453 INLINE ThreadState *cur_thread() {
454 return reinterpret_cast<ThreadState *>(&cur_thread_placeholder);
455 }
cur_thread_finalize()456 INLINE void cur_thread_finalize() { }
457 #endif // SANITIZER_MAC || SANITIZER_ANDROID
458 #endif // SANITIZER_GO
459
460 class ThreadContext : public ThreadContextBase {
461 public:
462 explicit ThreadContext(int tid);
463 ~ThreadContext();
464 ThreadState *thr;
465 u32 creation_stack_id;
466 SyncClock sync;
467 // Epoch at which the thread had started.
468 // If we see an event from the thread stamped by an older epoch,
469 // the event is from a dead thread that shared tid with this thread.
470 u64 epoch0;
471 u64 epoch1;
472
473 // Override superclass callbacks.
474 void OnDead() override;
475 void OnJoined(void *arg) override;
476 void OnFinished() override;
477 void OnStarted(void *arg) override;
478 void OnCreated(void *arg) override;
479 void OnReset() override;
480 void OnDetached(void *arg) override;
481 };
482
483 struct RacyStacks {
484 MD5Hash hash[2];
485 bool operator==(const RacyStacks &other) const {
486 if (hash[0] == other.hash[0] && hash[1] == other.hash[1])
487 return true;
488 if (hash[0] == other.hash[1] && hash[1] == other.hash[0])
489 return true;
490 return false;
491 }
492 };
493
494 struct RacyAddress {
495 uptr addr_min;
496 uptr addr_max;
497 };
498
499 struct FiredSuppression {
500 ReportType type;
501 uptr pc_or_addr;
502 Suppression *supp;
503 };
504
505 struct Context {
506 Context();
507
508 bool initialized;
509 bool after_multithreaded_fork;
510
511 MetaMap metamap;
512
513 Mutex report_mtx;
514 int nreported;
515 int nmissed_expected;
516 atomic_uint64_t last_symbolize_time_ns;
517
518 void *background_thread;
519 atomic_uint32_t stop_background_thread;
520
521 ThreadRegistry *thread_registry;
522
523 Mutex racy_mtx;
524 Vector<RacyStacks> racy_stacks;
525 Vector<RacyAddress> racy_addresses;
526 // Number of fired suppressions may be large enough.
527 Mutex fired_suppressions_mtx;
528 InternalMmapVector<FiredSuppression> fired_suppressions;
529 DDetector *dd;
530
531 ClockAlloc clock_alloc;
532
533 Flags flags;
534
535 u64 stat[StatCnt];
536 u64 int_alloc_cnt[MBlockTypeCount];
537 u64 int_alloc_siz[MBlockTypeCount];
538 };
539
540 extern Context *ctx; // The one and the only global runtime context.
541
542 struct ScopedIgnoreInterceptors {
ScopedIgnoreInterceptorsScopedIgnoreInterceptors543 ScopedIgnoreInterceptors() {
544 #ifndef SANITIZER_GO
545 cur_thread()->ignore_interceptors++;
546 #endif
547 }
548
~ScopedIgnoreInterceptorsScopedIgnoreInterceptors549 ~ScopedIgnoreInterceptors() {
550 #ifndef SANITIZER_GO
551 cur_thread()->ignore_interceptors--;
552 #endif
553 }
554 };
555
556 class ScopedReport {
557 public:
558 explicit ScopedReport(ReportType typ);
559 ~ScopedReport();
560
561 void AddMemoryAccess(uptr addr, Shadow s, StackTrace stack,
562 const MutexSet *mset);
563 void AddStack(StackTrace stack, bool suppressable = false);
564 void AddThread(const ThreadContext *tctx, bool suppressable = false);
565 void AddThread(int unique_tid, bool suppressable = false);
566 void AddUniqueTid(int unique_tid);
567 void AddMutex(const SyncVar *s);
568 u64 AddMutex(u64 id);
569 void AddLocation(uptr addr, uptr size);
570 void AddSleep(u32 stack_id);
571 void SetCount(int count);
572
573 const ReportDesc *GetReport() const;
574
575 private:
576 ReportDesc *rep_;
577 // Symbolizer makes lots of intercepted calls. If we try to process them,
578 // at best it will cause deadlocks on internal mutexes.
579 ScopedIgnoreInterceptors ignore_interceptors_;
580
581 void AddDeadMutex(u64 id);
582
583 ScopedReport(const ScopedReport&);
584 void operator = (const ScopedReport&);
585 };
586
587 void RestoreStack(int tid, const u64 epoch, VarSizeStackTrace *stk,
588 MutexSet *mset);
589
590 template<typename StackTraceTy>
ObtainCurrentStack(ThreadState * thr,uptr toppc,StackTraceTy * stack)591 void ObtainCurrentStack(ThreadState *thr, uptr toppc, StackTraceTy *stack) {
592 uptr size = thr->shadow_stack_pos - thr->shadow_stack;
593 uptr start = 0;
594 if (size + !!toppc > kStackTraceMax) {
595 start = size + !!toppc - kStackTraceMax;
596 size = kStackTraceMax - !!toppc;
597 }
598 stack->Init(&thr->shadow_stack[start], size, toppc);
599 }
600
601
602 #if TSAN_COLLECT_STATS
603 void StatAggregate(u64 *dst, u64 *src);
604 void StatOutput(u64 *stat);
605 #endif
606
607 void ALWAYS_INLINE StatInc(ThreadState *thr, StatType typ, u64 n = 1) {
608 #if TSAN_COLLECT_STATS
609 thr->stat[typ] += n;
610 #endif
611 }
StatSet(ThreadState * thr,StatType typ,u64 n)612 void ALWAYS_INLINE StatSet(ThreadState *thr, StatType typ, u64 n) {
613 #if TSAN_COLLECT_STATS
614 thr->stat[typ] = n;
615 #endif
616 }
617
618 void MapShadow(uptr addr, uptr size);
619 void MapThreadTrace(uptr addr, uptr size, const char *name);
620 void DontNeedShadowFor(uptr addr, uptr size);
621 void InitializeShadowMemory();
622 void InitializeInterceptors();
623 void InitializeLibIgnore();
624 void InitializeDynamicAnnotations();
625
626 void ForkBefore(ThreadState *thr, uptr pc);
627 void ForkParentAfter(ThreadState *thr, uptr pc);
628 void ForkChildAfter(ThreadState *thr, uptr pc);
629
630 void ReportRace(ThreadState *thr);
631 bool OutputReport(ThreadState *thr, const ScopedReport &srep);
632 bool IsFiredSuppression(Context *ctx, ReportType type, StackTrace trace);
633 bool IsExpectedReport(uptr addr, uptr size);
634 void PrintMatchedBenignRaces();
635
636 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 1
637 # define DPrintf Printf
638 #else
639 # define DPrintf(...)
640 #endif
641
642 #if defined(TSAN_DEBUG_OUTPUT) && TSAN_DEBUG_OUTPUT >= 2
643 # define DPrintf2 Printf
644 #else
645 # define DPrintf2(...)
646 #endif
647
648 u32 CurrentStackId(ThreadState *thr, uptr pc);
649 ReportStack *SymbolizeStackId(u32 stack_id);
650 void PrintCurrentStack(ThreadState *thr, uptr pc);
651 void PrintCurrentStackSlow(uptr pc); // uses libunwind
652
653 void Initialize(ThreadState *thr);
654 int Finalize(ThreadState *thr);
655
656 void OnUserAlloc(ThreadState *thr, uptr pc, uptr p, uptr sz, bool write);
657 void OnUserFree(ThreadState *thr, uptr pc, uptr p, bool write);
658
659 void MemoryAccess(ThreadState *thr, uptr pc, uptr addr,
660 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic);
661 void MemoryAccessImpl(ThreadState *thr, uptr addr,
662 int kAccessSizeLog, bool kAccessIsWrite, bool kIsAtomic,
663 u64 *shadow_mem, Shadow cur);
664 void MemoryAccessRange(ThreadState *thr, uptr pc, uptr addr,
665 uptr size, bool is_write);
666 void MemoryAccessRangeStep(ThreadState *thr, uptr pc, uptr addr,
667 uptr size, uptr step, bool is_write);
668 void UnalignedMemoryAccess(ThreadState *thr, uptr pc, uptr addr,
669 int size, bool kAccessIsWrite, bool kIsAtomic);
670
671 const int kSizeLog1 = 0;
672 const int kSizeLog2 = 1;
673 const int kSizeLog4 = 2;
674 const int kSizeLog8 = 3;
675
MemoryRead(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)676 void ALWAYS_INLINE MemoryRead(ThreadState *thr, uptr pc,
677 uptr addr, int kAccessSizeLog) {
678 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, false);
679 }
680
MemoryWrite(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)681 void ALWAYS_INLINE MemoryWrite(ThreadState *thr, uptr pc,
682 uptr addr, int kAccessSizeLog) {
683 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, false);
684 }
685
MemoryReadAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)686 void ALWAYS_INLINE MemoryReadAtomic(ThreadState *thr, uptr pc,
687 uptr addr, int kAccessSizeLog) {
688 MemoryAccess(thr, pc, addr, kAccessSizeLog, false, true);
689 }
690
MemoryWriteAtomic(ThreadState * thr,uptr pc,uptr addr,int kAccessSizeLog)691 void ALWAYS_INLINE MemoryWriteAtomic(ThreadState *thr, uptr pc,
692 uptr addr, int kAccessSizeLog) {
693 MemoryAccess(thr, pc, addr, kAccessSizeLog, true, true);
694 }
695
696 void MemoryResetRange(ThreadState *thr, uptr pc, uptr addr, uptr size);
697 void MemoryRangeFreed(ThreadState *thr, uptr pc, uptr addr, uptr size);
698 void MemoryRangeImitateWrite(ThreadState *thr, uptr pc, uptr addr, uptr size);
699
700 void ThreadIgnoreBegin(ThreadState *thr, uptr pc);
701 void ThreadIgnoreEnd(ThreadState *thr, uptr pc);
702 void ThreadIgnoreSyncBegin(ThreadState *thr, uptr pc);
703 void ThreadIgnoreSyncEnd(ThreadState *thr, uptr pc);
704
705 void FuncEntry(ThreadState *thr, uptr pc);
706 void FuncExit(ThreadState *thr);
707
708 int ThreadCreate(ThreadState *thr, uptr pc, uptr uid, bool detached);
709 void ThreadStart(ThreadState *thr, int tid, uptr os_id);
710 void ThreadFinish(ThreadState *thr);
711 int ThreadTid(ThreadState *thr, uptr pc, uptr uid);
712 void ThreadJoin(ThreadState *thr, uptr pc, int tid);
713 void ThreadDetach(ThreadState *thr, uptr pc, int tid);
714 void ThreadFinalize(ThreadState *thr);
715 void ThreadSetName(ThreadState *thr, const char *name);
716 int ThreadCount(ThreadState *thr);
717 void ProcessPendingSignals(ThreadState *thr);
718
719 Processor *ProcCreate();
720 void ProcDestroy(Processor *proc);
721 void ProcWire(Processor *proc, ThreadState *thr);
722 void ProcUnwire(Processor *proc, ThreadState *thr);
723
724 void MutexCreate(ThreadState *thr, uptr pc, uptr addr,
725 bool rw, bool recursive, bool linker_init);
726 void MutexDestroy(ThreadState *thr, uptr pc, uptr addr);
727 void MutexLock(ThreadState *thr, uptr pc, uptr addr, int rec = 1,
728 bool try_lock = false);
729 int MutexUnlock(ThreadState *thr, uptr pc, uptr addr, bool all = false);
730 void MutexReadLock(ThreadState *thr, uptr pc, uptr addr, bool try_lock = false);
731 void MutexReadUnlock(ThreadState *thr, uptr pc, uptr addr);
732 void MutexReadOrWriteUnlock(ThreadState *thr, uptr pc, uptr addr);
733 void MutexRepair(ThreadState *thr, uptr pc, uptr addr); // call on EOWNERDEAD
734 void MutexInvalidAccess(ThreadState *thr, uptr pc, uptr addr);
735
736 void Acquire(ThreadState *thr, uptr pc, uptr addr);
737 // AcquireGlobal synchronizes the current thread with all other threads.
738 // In terms of happens-before relation, it draws a HB edge from all threads
739 // (where they happen to execute right now) to the current thread. We use it to
740 // handle Go finalizers. Namely, finalizer goroutine executes AcquireGlobal
741 // right before executing finalizers. This provides a coarse, but simple
742 // approximation of the actual required synchronization.
743 void AcquireGlobal(ThreadState *thr, uptr pc);
744 void Release(ThreadState *thr, uptr pc, uptr addr);
745 void ReleaseStore(ThreadState *thr, uptr pc, uptr addr);
746 void AfterSleep(ThreadState *thr, uptr pc);
747 void AcquireImpl(ThreadState *thr, uptr pc, SyncClock *c);
748 void ReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
749 void ReleaseStoreImpl(ThreadState *thr, uptr pc, SyncClock *c);
750 void AcquireReleaseImpl(ThreadState *thr, uptr pc, SyncClock *c);
751
752 // The hacky call uses custom calling convention and an assembly thunk.
753 // It is considerably faster that a normal call for the caller
754 // if it is not executed (it is intended for slow paths from hot functions).
755 // The trick is that the call preserves all registers and the compiler
756 // does not treat it as a call.
757 // If it does not work for you, use normal call.
758 #if !SANITIZER_DEBUG && defined(__x86_64__) && !SANITIZER_MAC
759 // The caller may not create the stack frame for itself at all,
760 // so we create a reserve stack frame for it (1024b must be enough).
761 #define HACKY_CALL(f) \
762 __asm__ __volatile__("sub $1024, %%rsp;" \
763 CFI_INL_ADJUST_CFA_OFFSET(1024) \
764 ".hidden " #f "_thunk;" \
765 "call " #f "_thunk;" \
766 "add $1024, %%rsp;" \
767 CFI_INL_ADJUST_CFA_OFFSET(-1024) \
768 ::: "memory", "cc");
769 #else
770 #define HACKY_CALL(f) f()
771 #endif
772
773 void TraceSwitch(ThreadState *thr);
774 uptr TraceTopPC(ThreadState *thr);
775 uptr TraceSize();
776 uptr TraceParts();
777 Trace *ThreadTrace(int tid);
778
779 extern "C" void __tsan_trace_switch();
TraceAddEvent(ThreadState * thr,FastState fs,EventType typ,u64 addr)780 void ALWAYS_INLINE TraceAddEvent(ThreadState *thr, FastState fs,
781 EventType typ, u64 addr) {
782 if (!kCollectHistory)
783 return;
784 DCHECK_GE((int)typ, 0);
785 DCHECK_LE((int)typ, 7);
786 DCHECK_EQ(GetLsb(addr, 61), addr);
787 StatInc(thr, StatEvents);
788 u64 pos = fs.GetTracePos();
789 if (UNLIKELY((pos % kTracePartSize) == 0)) {
790 #ifndef SANITIZER_GO
791 HACKY_CALL(__tsan_trace_switch);
792 #else
793 TraceSwitch(thr);
794 #endif
795 }
796 Event *trace = (Event*)GetThreadTrace(fs.tid());
797 Event *evp = &trace[pos];
798 Event ev = (u64)addr | ((u64)typ << 61);
799 *evp = ev;
800 }
801
802 #ifndef SANITIZER_GO
HeapEnd()803 uptr ALWAYS_INLINE HeapEnd() {
804 return HeapMemEnd() + PrimaryAllocator::AdditionalSize();
805 }
806 #endif
807
808 } // namespace __tsan
809
810 #endif // TSAN_RTL_H
811