1 /* 2 * Copyright (C) 2018 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef SRC_TRACING_CORE_TRACE_BUFFER_H_ 18 #define SRC_TRACING_CORE_TRACE_BUFFER_H_ 19 20 #include <stdint.h> 21 #include <string.h> 22 23 #include <array> 24 #include <limits> 25 #include <map> 26 #include <tuple> 27 28 #include "perfetto/base/logging.h" 29 #include "perfetto/base/paged_memory.h" 30 #include "perfetto/base/thread_annotations.h" 31 #include "perfetto/tracing/core/basic_types.h" 32 #include "perfetto/tracing/core/slice.h" 33 #include "perfetto/tracing/core/trace_stats.h" 34 35 namespace perfetto { 36 37 class TracePacket; 38 39 // The main buffer, owned by the tracing service, where all the trace data is 40 // ultimately stored into. The service will own several instances of this class, 41 // at least one per active consumer (as defined in the |buffers| section of 42 // trace_config.proto) and will copy chunks from the producer's shared memory 43 // buffers into here when a CommitData IPC is received. 44 // 45 // Writing into the buffer 46 // ----------------------- 47 // Data is copied from the SMB(s) using CopyChunkUntrusted(). The buffer will 48 // hence contain data coming from different producers and different writer 49 // sequences, more specifically: 50 // - The service receives data by several producer(s), identified by their ID. 51 // - Each producer writes several sequences identified by the same WriterID. 52 // (they correspond to TraceWriter instances in the producer). 53 // - Each Writer writes, in order, several chunks. 54 // - Each chunk contains zero, one, or more TracePacket(s), or even just 55 // fragments of packets (when they span across several chunks). 56 // 57 // So at any point in time, the buffer will contain a variable number of logical 58 // sequences identified by the {ProducerID, WriterID} tuple. Any given chunk 59 // will only contain packets (or fragments) belonging to the same sequence. 60 // 61 // The buffer operates by default as a ring buffer. 62 // It has two overwrite policies: 63 // 1. kOverwrite (default): if the write pointer reaches the read pointer, old 64 // unread chunks will be overwritten by new chunks. 65 // 2. kDiscard: if the write pointer reaches the read pointer, unread chunks 66 // are preserved and the new chunks are discarded. Any future write becomes 67 // a no-op, even if the reader manages to fully catch up. This is because 68 // once a chunk is discarded, the sequence of packets is broken and trying 69 // to recover would be too hard (also due to the fact that, at the same 70 // time, we allow out-of-order commits and chunk re-writes). 71 // 72 // Chunks are (over)written in the same order of the CopyChunkUntrusted() calls. 73 // When overwriting old content, entire chunks are overwritten or clobbered. 74 // The buffer never leaves a partial chunk around. Chunks' payload is copied 75 // as-is, but their header is not and is repacked in order to keep the 76 // ProducerID around. 77 // 78 // Chunks are stored in the buffer next to each other. Each chunk is prefixed by 79 // an inline header (ChunkRecord), which contains most of the fields of the 80 // SharedMemoryABI ChunkHeader + the ProducerID + the size of the payload. 81 // It's a conventional binary object stream essentially, where each ChunkRecord 82 // tells where it ends and hence where to find the next one, like this: 83 // 84 // .-------------------------. 16 byte boundary 85 // | ChunkRecord: 16 bytes | 86 // | - chunk id: 4 bytes | 87 // | - producer id: 2 bytes | 88 // | - writer id: 2 bytes | 89 // | - #fragments: 2 bytes | 90 // +-----+ - record size: 2 bytes | 91 // | | - flags+pad: 4 bytes | 92 // | +-------------------------+ 93 // | | | 94 // | : Chunk payload : 95 // | | | 96 // | +-------------------------+ 97 // | | Optional padding | 98 // +---> +-------------------------+ 16 byte boundary 99 // | ChunkRecord | 100 // : : 101 // Chunks stored in the buffer are always rounded up to 16 bytes (that is 102 // sizeof(ChunkRecord)), in order to avoid further inner fragmentation. 103 // Special "padding" chunks can be put in the buffer, e.g. in the case when we 104 // try to write a chunk of size N while the write pointer is at the end of the 105 // buffer, but the write pointer is < N bytes from the end (and hence needs to 106 // wrap over). 107 // Because of this, the buffer is self-describing: the contents of the buffer 108 // can be reconstructed by just looking at the buffer content (this will be 109 // quite useful in future to recover the buffer from crash reports). 110 // 111 // However, in order to keep some operations (patching and reading) fast, a 112 // lookaside index is maintained (in |index_|), keeping each chunk in the buffer 113 // indexed by their {ProducerID, WriterID, ChunkID} tuple. 114 // 115 // Patching data out-of-band 116 // ------------------------- 117 // This buffer also supports patching chunks' payload out-of-band, after they 118 // have been stored. This is to allow producers to backfill the "size" fields 119 // of the protos that spawn across several chunks, when the previous chunks are 120 // returned to the service. The MaybePatchChunkContents() deals with the fact 121 // that a chunk might have been lost (because of wrapping) by the time the OOB 122 // IPC comes. 123 // 124 // Reading from the buffer 125 // ----------------------- 126 // This class supports one reader only (the consumer). Reads are NOT idempotent 127 // as they move the read cursors around. Reading back the buffer is the most 128 // conceptually complex part. The ReadNextTracePacket() method operates with 129 // whole packet granularity. Packets are returned only when all their fragments 130 // are available. 131 // This class takes care of: 132 // - Gluing packets within the same sequence, even if they are not stored 133 // adjacently in the buffer. 134 // - Re-ordering chunks within a sequence (using the ChunkID, which wraps). 135 // - Detecting holes in packet fragments (because of loss of chunks). 136 // Reads guarantee that packets for the same sequence are read in FIFO order 137 // (according to their ChunkID), but don't give any guarantee about the read 138 // order of packets from different sequences, see comments in 139 // ReadNextTracePacket() below. 140 class TraceBuffer { 141 public: 142 static const size_t InlineChunkHeaderSize; // For test/fake_packet.{cc,h}. 143 144 // See comment in the header above. 145 enum OverwritePolicy { kOverwrite, kDiscard }; 146 147 // Argument for out-of-band patches applied through TryPatchChunkContents(). 148 struct Patch { 149 // From SharedMemoryABI::kPacketHeaderSize. 150 static constexpr size_t kSize = 4; 151 152 size_t offset_untrusted; 153 std::array<uint8_t, kSize> data; 154 }; 155 156 // Identifiers that are constant for a packet sequence. 157 struct PacketSequenceProperties { 158 ProducerID producer_id_trusted; 159 uid_t producer_uid_trusted; 160 WriterID writer_id; 161 }; 162 163 // Can return nullptr if the memory allocation fails. 164 static std::unique_ptr<TraceBuffer> Create(size_t size_in_bytes, 165 OverwritePolicy = kOverwrite); 166 167 ~TraceBuffer(); 168 169 // Copies a Chunk from a producer Shared Memory Buffer into the trace buffer. 170 // |src| points to the first packet in the SharedMemoryABI's chunk shared with 171 // an untrusted producer. "untrusted" here means: the producer might be 172 // malicious and might change |src| concurrently while we read it (internally 173 // this method memcpy()-s first the chunk before processing it). None of the 174 // arguments should be trusted, unless otherwise stated. We can trust that 175 // |src| points to a valid memory area, but not its contents. 176 // 177 // This method may be called multiple times for the same chunk. In this case, 178 // the original chunk's payload will be overridden and its number of fragments 179 // and flags adjusted to match |num_fragments| and |chunk_flags|. The service 180 // may use this to insert partial chunks (|chunk_complete = false|) before the 181 // producer has committed them. 182 // 183 // If |chunk_complete| is |false|, the TraceBuffer will only consider the 184 // first |num_fragments - 1| packets to be complete, since the producer may 185 // not have finished writing the latest packet. Reading from a sequence will 186 // also not progress past any incomplete chunks until they were rewritten with 187 // |chunk_complete = true|, e.g. after a producer's commit. 188 // 189 // TODO(eseckler): Pass in a PacketStreamProperties instead of individual IDs. 190 void CopyChunkUntrusted(ProducerID producer_id_trusted, 191 uid_t producer_uid_trusted, 192 WriterID writer_id, 193 ChunkID chunk_id, 194 uint16_t num_fragments, 195 uint8_t chunk_flags, 196 bool chunk_complete, 197 const uint8_t* src, 198 size_t size); 199 // Applies a batch of |patches| to the given chunk, if the given chunk is 200 // still in the buffer. Does nothing if the given ChunkID is gone. 201 // Returns true if the chunk has been found and patched, false otherwise. 202 // |other_patches_pending| is used to determine whether this is the only 203 // batch of patches for the chunk or there is more. 204 // If |other_patches_pending| == false, the chunk is marked as ready to be 205 // consumed. If true, the state of the chunk is not altered. 206 bool TryPatchChunkContents(ProducerID, 207 WriterID, 208 ChunkID, 209 const Patch* patches, 210 size_t patches_size, 211 bool other_patches_pending); 212 213 // To read the contents of the buffer the caller needs to: 214 // BeginRead() 215 // while (ReadNextTracePacket(packet_fragments)) { ... } 216 // No other calls to any other method should be interleaved between 217 // BeginRead() and ReadNextTracePacket(). 218 // Reads in the TraceBuffer are NOT idempotent. 219 void BeginRead(); 220 221 // Returns the next packet in the buffer, if any, and the producer_id, 222 // producer_uid, and writer_id of the producer/writer that wrote it (as passed 223 // in the CopyChunkUntrusted() call). Returns false if no packets can be read 224 // at this point. If a packet was read successfully, 225 // |previous_packet_on_sequence_dropped| is set to |true| if the previous 226 // packet on the sequence was dropped from the buffer before it could be read 227 // (e.g. because its chunk was overridden due to the ring buffer wrapping or 228 // due to an ABI violation), and to |false| otherwise. 229 // 230 // This function returns only complete packets. Specifically: 231 // When there is at least one complete packet in the buffer, this function 232 // returns true and populates the TracePacket argument with the boundaries of 233 // each fragment for one packet. 234 // TracePacket will have at least one slice when this function returns true. 235 // When there are no whole packets eligible to read (e.g. we are still missing 236 // fragments) this function returns false. 237 // This function guarantees also that packets for a given 238 // {ProducerID, WriterID} are read in FIFO order. 239 // This function does not guarantee any ordering w.r.t. packets belonging to 240 // different WriterID(s). For instance, given the following packets copied 241 // into the buffer: 242 // {ProducerID: 1, WriterID: 1}: P1 P2 P3 243 // {ProducerID: 1, WriterID: 2}: P4 P5 P6 244 // {ProducerID: 2, WriterID: 1}: P7 P8 P9 245 // The following read sequence is possible: 246 // P1, P4, P7, P2, P3, P5, P8, P9, P6 247 // But the following is guaranteed to NOT happen: 248 // P1, P5, P7, P4 (P4 cannot come after P5) 249 bool ReadNextTracePacket(TracePacket*, 250 PacketSequenceProperties* sequence_properties, 251 bool* previous_packet_on_sequence_dropped); 252 stats()253 const TraceStats::BufferStats& stats() const { return stats_; } size()254 size_t size() const { return size_; } 255 256 private: 257 friend class TraceBufferTest; 258 259 // ChunkRecord is a Chunk header stored inline in the |data_| buffer, before 260 // the chunk payload (the packets' data). The |data_| buffer looks like this: 261 // +---------------+------------------++---------------+-----------------+ 262 // | ChunkRecord 1 | Chunk payload 1 || ChunkRecord 2 | Chunk payload 2 | ... 263 // +---------------+------------------++---------------+-----------------+ 264 // Most of the ChunkRecord fields are copied from SharedMemoryABI::ChunkHeader 265 // (the chunk header used in the the shared memory buffers). 266 // A ChunkRecord can be a special "padding" record. In this case its payload 267 // should be ignored and the record should be just skipped. 268 // 269 // Full page move optimization: 270 // This struct has to be exactly (sizeof(PageHeader) + sizeof(ChunkHeader)) 271 // (from shared_memory_abi.h) to allow full page move optimizations 272 // (TODO(primiano): not implemented yet). In the special case of moving a full 273 // 4k page that contains only one chunk, in fact, we can just ask the kernel 274 // to move the full SHM page (see SPLICE_F_{GIFT,MOVE}) and overlay the 275 // ChunkRecord on top of the moved SMB's header (page + chunk header). 276 // This special requirement is covered by static_assert(s) in the .cc file. 277 struct ChunkRecord { ChunkRecordChunkRecord278 explicit ChunkRecord(size_t sz) : flags{0}, is_padding{0} { 279 PERFETTO_DCHECK(sz >= sizeof(ChunkRecord) && 280 sz % sizeof(ChunkRecord) == 0 && sz <= kMaxSize); 281 size = static_cast<decltype(size)>(sz); 282 } 283 is_validChunkRecord284 bool is_valid() const { return size != 0; } 285 286 // Keep this structure packed and exactly 16 bytes (128 bits) big. 287 288 // [32 bits] Monotonic counter within the same writer_id. 289 ChunkID chunk_id = 0; 290 291 // [16 bits] ID of the Producer from which the Chunk was copied from. 292 ProducerID producer_id = 0; 293 294 // [16 bits] Unique per Producer (but not within the service). 295 // If writer_id == kWriterIdPadding the record should just be skipped. 296 WriterID writer_id = 0; 297 298 // Number of fragments contained in the chunk. 299 uint16_t num_fragments = 0; 300 301 // Size in bytes, including sizeof(ChunkRecord) itself. 302 uint16_t size; 303 304 uint8_t flags : 6; // See SharedMemoryABI::ChunkHeader::flags. 305 uint8_t is_padding : 1; 306 uint8_t unused_flag : 1; 307 308 // Not strictly needed, can be reused for more fields in the future. But 309 // right now helps to spot chunks in hex dumps. 310 char unused[3] = {'C', 'H', 'U'}; 311 312 static constexpr size_t kMaxSize = 313 std::numeric_limits<decltype(size)>::max(); 314 }; 315 316 // Lookaside index entry. This serves two purposes: 317 // 1) Allow a fast lookup of ChunkRecord by their ID (the tuple 318 // {ProducerID, WriterID, ChunkID}). This is used when applying out-of-band 319 // patches to the contents of the chunks after they have been copied into 320 // the TraceBuffer. 321 // 2) keep the chunks ordered by their ID. This is used when reading back. 322 // 3) Keep metadata about the status of the chunk, e.g. whether the contents 323 // have been read already and should be skipped in a future read pass. 324 // This struct should not have any field that is essential for reconstructing 325 // the contents of the buffer from a crash dump. 326 struct ChunkMeta { 327 // Key used for sorting in the map. 328 struct Key { KeyChunkMeta::Key329 Key(ProducerID p, WriterID w, ChunkID c) 330 : producer_id{p}, writer_id{w}, chunk_id{c} {} 331 KeyChunkMeta::Key332 explicit Key(const ChunkRecord& cr) 333 : Key(cr.producer_id, cr.writer_id, cr.chunk_id) {} 334 335 // Note that this sorting doesn't keep into account the fact that ChunkID 336 // will wrap over at some point. The extra logic in SequenceIterator deals 337 // with that. 338 bool operator<(const Key& other) const { 339 return std::tie(producer_id, writer_id, chunk_id) < 340 std::tie(other.producer_id, other.writer_id, other.chunk_id); 341 } 342 343 bool operator==(const Key& other) const { 344 return std::tie(producer_id, writer_id, chunk_id) == 345 std::tie(other.producer_id, other.writer_id, other.chunk_id); 346 } 347 348 bool operator!=(const Key& other) const { return !(*this == other); } 349 350 // These fields should match at all times the corresponding fields in 351 // the |chunk_record|. They are copied here purely for efficiency to avoid 352 // dereferencing the buffer all the time. 353 ProducerID producer_id; 354 WriterID writer_id; 355 ChunkID chunk_id; 356 }; 357 358 enum IndexFlags : uint8_t { 359 // If set, the chunk state was kChunkComplete at the time it was copied. 360 // If unset, the chunk was still kChunkBeingWritten while copied. When 361 // reading from the chunk's sequence, the sequence will not advance past 362 // this chunk until this flag is set. 363 kComplete = 1 << 0, 364 365 // If set, we skipped the last packet that we read from this chunk e.g. 366 // because we it was a continuation from a previous chunk that was dropped 367 // or due to an ABI violation. 368 kLastReadPacketSkipped = 1 << 1 369 }; 370 ChunkMetaChunkMeta371 ChunkMeta(ChunkRecord* r, uint16_t p, bool complete, uint8_t f, uid_t u) 372 : chunk_record{r}, trusted_uid{u}, flags{f}, num_fragments{p} { 373 if (complete) 374 index_flags = kComplete; 375 } 376 is_completeChunkMeta377 bool is_complete() const { return index_flags & kComplete; } 378 set_completeChunkMeta379 void set_complete(bool complete) { 380 if (complete) { 381 index_flags |= kComplete; 382 } else { 383 index_flags &= ~kComplete; 384 } 385 } 386 last_read_packet_skippedChunkMeta387 bool last_read_packet_skipped() const { 388 return index_flags & kLastReadPacketSkipped; 389 } 390 set_last_read_packet_skippedChunkMeta391 void set_last_read_packet_skipped(bool skipped) { 392 if (skipped) { 393 index_flags |= kLastReadPacketSkipped; 394 } else { 395 index_flags &= ~kLastReadPacketSkipped; 396 } 397 } 398 399 ChunkRecord* const chunk_record; // Addr of ChunkRecord within |data_|. 400 const uid_t trusted_uid; // uid of the producer. 401 402 // Flags set by TraceBuffer to track the state of the chunk in the index. 403 uint8_t index_flags = 0; 404 405 // Correspond to |chunk_record->flags| and |chunk_record->num_fragments|. 406 // Copied here for performance reasons (avoids having to dereference 407 // |chunk_record| while iterating over ChunkMeta) and to aid debugging in 408 // case the buffer gets corrupted. 409 uint8_t flags = 0; // See SharedMemoryABI::ChunkHeader::flags. 410 uint16_t num_fragments = 0; // Total number of packet fragments. 411 412 uint16_t num_fragments_read = 0; // Number of fragments already read. 413 414 // The start offset of the next fragment (the |num_fragments_read|-th) to be 415 // read. This is the offset in bytes from the beginning of the ChunkRecord's 416 // payload (the 1st fragment starts at |chunk_record| + 417 // sizeof(ChunkRecord)). 418 uint16_t cur_fragment_offset = 0; 419 }; 420 421 using ChunkMap = std::map<ChunkMeta::Key, ChunkMeta>; 422 423 // Allows to iterate over a sub-sequence of |index_| for all keys belonging to 424 // the same {ProducerID,WriterID}. Furthermore takes into account the wrapping 425 // of ChunkID. Instances are valid only as long as the |index_| is not altered 426 // (can be used safely only between adjacent ReadNextTracePacket() calls). 427 // The order of the iteration will proceed in the following order: 428 // |wrapping_id| + 1 -> |seq_end|, |seq_begin| -> |wrapping_id|. 429 // Practical example: 430 // - Assume that kMaxChunkID == 7 431 // - Assume that we have all 8 chunks in the range (0..7). 432 // - Hence, |seq_begin| == c0, |seq_end| == c7 433 // - Assume |wrapping_id| = 4 (c4 is the last chunk copied over 434 // through a CopyChunkUntrusted()). 435 // The resulting iteration order will be: c5, c6, c7, c0, c1, c2, c3, c4. 436 struct SequenceIterator { 437 // Points to the 1st key (the one with the numerically min ChunkID). 438 ChunkMap::iterator seq_begin; 439 440 // Points one past the last key (the one with the numerically max ChunkID). 441 ChunkMap::iterator seq_end; 442 443 // Current iterator, always >= seq_begin && <= seq_end. 444 ChunkMap::iterator cur; 445 446 // The latest ChunkID written. Determines the start/end of the sequence. 447 ChunkID wrapping_id; 448 is_validSequenceIterator449 bool is_valid() const { return cur != seq_end; } 450 producer_idSequenceIterator451 ProducerID producer_id() const { 452 PERFETTO_DCHECK(is_valid()); 453 return cur->first.producer_id; 454 } 455 writer_idSequenceIterator456 WriterID writer_id() const { 457 PERFETTO_DCHECK(is_valid()); 458 return cur->first.writer_id; 459 } 460 chunk_idSequenceIterator461 ChunkID chunk_id() const { 462 PERFETTO_DCHECK(is_valid()); 463 return cur->first.chunk_id; 464 } 465 466 ChunkMeta& operator*() { 467 PERFETTO_DCHECK(is_valid()); 468 return cur->second; 469 } 470 471 // Moves |cur| to the next chunk in the index. 472 // is_valid() will become false after calling this, if this was the last 473 // entry of the sequence. 474 void MoveNext(); 475 MoveToEndSequenceIterator476 void MoveToEnd() { cur = seq_end; } 477 }; 478 479 enum class ReadAheadResult { 480 kSucceededReturnSlices, 481 kFailedMoveToNextSequence, 482 kFailedStayOnSameSequence, 483 }; 484 485 enum class ReadPacketResult { 486 kSucceeded, 487 kFailedInvalidPacket, 488 kFailedEmptyPacket, 489 }; 490 491 explicit TraceBuffer(OverwritePolicy); 492 TraceBuffer(const TraceBuffer&) = delete; 493 TraceBuffer& operator=(const TraceBuffer&) = delete; 494 495 bool Initialize(size_t size); 496 497 // Returns an object that allows to iterate over chunks in the |index_| that 498 // have the same {ProducerID, WriterID} of 499 // |seq_begin.first.{producer,writer}_id|. |seq_begin| must be an iterator to 500 // the first entry in the |index_| that has a different {ProducerID, WriterID} 501 // from the previous one. It is valid for |seq_begin| to be == index_.end() 502 // (i.e. if the index is empty). The iteration takes care of ChunkID wrapping, 503 // by using |last_chunk_id_|. 504 SequenceIterator GetReadIterForSequence(ChunkMap::iterator seq_begin); 505 506 // Used as a last resort when a buffer corruption is detected. 507 void ClearContentsAndResetRWCursors(); 508 509 // Adds a padding record of the given size (must be a multiple of 510 // sizeof(ChunkRecord)). 511 void AddPaddingRecord(size_t); 512 513 // Look for contiguous fragment of the same packet starting from |read_iter_|. 514 // If a contiguous packet is found, all the fragments are pushed into 515 // TracePacket and the function returns kSucceededReturnSlices. If not, the 516 // function returns either kFailedMoveToNextSequence or 517 // kFailedStayOnSameSequence, telling the caller to continue looking for 518 // packets. 519 ReadAheadResult ReadAhead(TracePacket*); 520 521 // Deletes (by marking the record invalid and removing form the index) all 522 // chunks from |wptr_| to |wptr_| + |bytes_to_clear|. 523 // Returns: 524 // * The size of the gap left between the next valid Chunk and the end of 525 // the deletion range. 526 // * 0 if no next valid chunk exists (if the buffer is still zeroed). 527 // * -1 if the buffer |overwrite_policy_| == kDiscard and the deletion would 528 // cause unread chunks to be overwritten. In this case the buffer is left 529 // untouched. 530 // Graphically, assume the initial situation is the following (|wptr_| = 10). 531 // |0 |10 (wptr_) |30 |40 |60 532 // +---------+-----------------+---------+-------------------+---------+ 533 // | Chunk 1 | Chunk 2 | Chunk 3 | Chunk 4 | Chunk 5 | 534 // +---------+-----------------+---------+-------------------+---------+ 535 // |_________Deletion range_______|~~return value~~| 536 // 537 // A call to DeleteNextChunksFor(32) will remove chunks 2,3,4 and return 18 538 // (60 - 42), the distance between chunk 5 and the end of the deletion range. 539 ssize_t DeleteNextChunksFor(size_t bytes_to_clear); 540 541 // Decodes the boundaries of the next packet (or a fragment) pointed by 542 // ChunkMeta and pushes that into |TracePacket|. It also increments the 543 // |num_fragments_read| counter. 544 // TracePacket can be nullptr, in which case the read state is still advanced. 545 // When TracePacket is not nullptr, ProducerID must also be not null and will 546 // be updated with the ProducerID that originally wrote the chunk. 547 ReadPacketResult ReadNextPacketInChunk(ChunkMeta*, TracePacket*); 548 DcheckIsAlignedAndWithinBounds(const uint8_t * ptr)549 void DcheckIsAlignedAndWithinBounds(const uint8_t* ptr) const { 550 PERFETTO_DCHECK(ptr >= begin() && ptr <= end() - sizeof(ChunkRecord)); 551 PERFETTO_DCHECK( 552 (reinterpret_cast<uintptr_t>(ptr) & (alignof(ChunkRecord) - 1)) == 0); 553 } 554 GetChunkRecordAt(uint8_t * ptr)555 ChunkRecord* GetChunkRecordAt(uint8_t* ptr) { 556 DcheckIsAlignedAndWithinBounds(ptr); 557 // We may be accessing a new (empty) record. 558 data_.EnsureCommitted( 559 static_cast<size_t>(ptr + sizeof(ChunkRecord) - begin())); 560 return reinterpret_cast<ChunkRecord*>(ptr); 561 } 562 563 void DiscardWrite(); 564 565 // |src| can be nullptr (in which case |size| must be == 566 // record.size - sizeof(ChunkRecord)), for the case of writing a padding 567 // record. |wptr_| is NOT advanced by this function, the caller must do that. WriteChunkRecord(uint8_t * wptr,const ChunkRecord & record,const uint8_t * src,size_t size)568 void WriteChunkRecord(uint8_t* wptr, 569 const ChunkRecord& record, 570 const uint8_t* src, 571 size_t size) { 572 // Note: |record.size| will be slightly bigger than |size| because of the 573 // ChunkRecord header and rounding, to ensure that all ChunkRecord(s) are 574 // multiple of sizeof(ChunkRecord). The invariant is: 575 // record.size >= |size| + sizeof(ChunkRecord) (== if no rounding). 576 PERFETTO_DCHECK(size <= ChunkRecord::kMaxSize); 577 PERFETTO_DCHECK(record.size >= sizeof(record)); 578 PERFETTO_DCHECK(record.size % sizeof(record) == 0); 579 PERFETTO_DCHECK(record.size >= size + sizeof(record)); 580 PERFETTO_CHECK(record.size <= size_to_end()); 581 DcheckIsAlignedAndWithinBounds(wptr); 582 583 // We may be writing to this area for the first time. 584 data_.EnsureCommitted(static_cast<size_t>(wptr + record.size - begin())); 585 586 // Deliberately not a *D*CHECK. 587 PERFETTO_CHECK(wptr + sizeof(record) + size <= end()); 588 memcpy(wptr, &record, sizeof(record)); 589 if (PERFETTO_LIKELY(src)) { 590 // If the producer modifies the data in the shared memory buffer while we 591 // are copying it to the central buffer, TSAN will (rightfully) flag that 592 // as a race. However the entire purpose of copying the data into the 593 // central buffer is that we can validate it without worrying that the 594 // producer changes it from under our feet, so this race is benign. The 595 // alternative would be to try computing which part of the buffer is safe 596 // to read (assuming a well-behaving client), but the risk of introducing 597 // a bug that way outweighs the benefit. 598 PERFETTO_ANNOTATE_BENIGN_RACE_SIZED( 599 src, size, "Benign race when copying chunk from shared memory."); 600 memcpy(wptr + sizeof(record), src, size); 601 } else { 602 PERFETTO_DCHECK(size == record.size - sizeof(record)); 603 } 604 const size_t rounding_size = record.size - sizeof(record) - size; 605 memset(wptr + sizeof(record) + size, 0, rounding_size); 606 } 607 begin()608 uint8_t* begin() const { return reinterpret_cast<uint8_t*>(data_.Get()); } end()609 uint8_t* end() const { return begin() + size_; } size_to_end()610 size_t size_to_end() const { return static_cast<size_t>(end() - wptr_); } 611 612 base::PagedMemory data_; 613 size_t size_ = 0; // Size in bytes of |data_|. 614 size_t max_chunk_size_ = 0; // Max size in bytes allowed for a chunk. 615 uint8_t* wptr_ = nullptr; // Write pointer. 616 617 // An index that keeps track of the positions and metadata of each 618 // ChunkRecord. 619 ChunkMap index_; 620 621 // Read iterator used for ReadNext(). It is reset by calling BeginRead(). 622 // It becomes invalid after any call to methods that alters the |index_|. 623 SequenceIterator read_iter_; 624 625 // See comments at the top of the file. 626 OverwritePolicy overwrite_policy_ = kOverwrite; 627 628 // Only used when |overwrite_policy_ == kDiscard|. This is set the first time 629 // a write fails because it would overwrite unread chunks. 630 bool discard_writes_ = false; 631 632 // Keeps track of the highest ChunkID written for a given sequence, taking 633 // into account a potential overflow of ChunkIDs. In the case of overflow, 634 // stores the highest ChunkID written since the overflow. 635 // 636 // TODO(primiano): should clean up keys from this map. Right now it grows 637 // without bounds (although realistically is not a problem unless we have too 638 // many producers/writers within the same trace session). 639 std::map<std::pair<ProducerID, WriterID>, ChunkID> last_chunk_id_written_; 640 641 // Statistics about buffer usage. 642 TraceStats::BufferStats stats_; 643 644 #if PERFETTO_DCHECK_IS_ON() 645 bool changed_since_last_read_ = false; 646 #endif 647 648 // When true disable some DCHECKs that have been put in place to detect 649 // bugs in the producers. This is for tests that feed malicious inputs and 650 // hence mimic a buggy producer. 651 bool suppress_sanity_dchecks_for_testing_ = false; 652 }; 653 654 } // namespace perfetto 655 656 #endif // SRC_TRACING_CORE_TRACE_BUFFER_H_ 657