1 /*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "BufferLayer"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21
22 #include "BufferLayer.h"
23
24 #include <compositionengine/CompositionEngine.h>
25 #include <compositionengine/Display.h>
26 #include <compositionengine/Layer.h>
27 #include <compositionengine/LayerCreationArgs.h>
28 #include <compositionengine/OutputLayer.h>
29 #include <compositionengine/impl/LayerCompositionState.h>
30 #include <compositionengine/impl/OutputLayerCompositionState.h>
31 #include <cutils/compiler.h>
32 #include <cutils/native_handle.h>
33 #include <cutils/properties.h>
34 #include <gui/BufferItem.h>
35 #include <gui/BufferQueue.h>
36 #include <gui/LayerDebugInfo.h>
37 #include <gui/Surface.h>
38 #include <renderengine/RenderEngine.h>
39 #include <ui/DebugUtils.h>
40 #include <utils/Errors.h>
41 #include <utils/Log.h>
42 #include <utils/NativeHandle.h>
43 #include <utils/StopWatch.h>
44 #include <utils/Trace.h>
45
46 #include <cmath>
47 #include <cstdlib>
48 #include <mutex>
49 #include <sstream>
50
51 #include "Colorizer.h"
52 #include "DisplayDevice.h"
53 #include "LayerRejecter.h"
54 #include "TimeStats/TimeStats.h"
55
56 namespace android {
57
BufferLayer(const LayerCreationArgs & args)58 BufferLayer::BufferLayer(const LayerCreationArgs& args)
59 : Layer(args),
60 mTextureName(args.flinger->getNewTexture()),
61 mCompositionLayer{mFlinger->getCompositionEngine().createLayer(
62 compositionengine::LayerCreationArgs{this})} {
63 ALOGV("Creating Layer %s", args.name.string());
64
65 mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
66
67 mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
68 mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
69 }
70
~BufferLayer()71 BufferLayer::~BufferLayer() {
72 mFlinger->deleteTextureAsync(mTextureName);
73 mFlinger->mTimeStats->onDestroy(getSequence());
74 }
75
useSurfaceDamage()76 void BufferLayer::useSurfaceDamage() {
77 if (mFlinger->mForceFullDamage) {
78 surfaceDamageRegion = Region::INVALID_REGION;
79 } else {
80 surfaceDamageRegion = getDrawingSurfaceDamage();
81 }
82 }
83
useEmptyDamage()84 void BufferLayer::useEmptyDamage() {
85 surfaceDamageRegion.clear();
86 }
87
isOpaque(const Layer::State & s) const88 bool BufferLayer::isOpaque(const Layer::State& s) const {
89 // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
90 // layer's opaque flag.
91 if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
92 return false;
93 }
94
95 // if the layer has the opaque flag, then we're always opaque,
96 // otherwise we use the current buffer's format.
97 return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
98 }
99
isVisible() const100 bool BufferLayer::isVisible() const {
101 bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
102 (mActiveBuffer != nullptr || mSidebandStream != nullptr);
103 mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible);
104
105 return visible;
106 }
107
isFixedSize() const108 bool BufferLayer::isFixedSize() const {
109 return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
110 }
111
usesSourceCrop() const112 bool BufferLayer::usesSourceCrop() const {
113 return true;
114 }
115
inverseOrientation(uint32_t transform)116 static constexpr mat4 inverseOrientation(uint32_t transform) {
117 const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
118 const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
119 const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
120 mat4 tr;
121
122 if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
123 tr = tr * rot90;
124 }
125 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
126 tr = tr * flipH;
127 }
128 if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
129 tr = tr * flipV;
130 }
131 return inverse(tr);
132 }
133
prepareClientLayer(const RenderArea & renderArea,const Region & clip,bool useIdentityTransform,Region & clearRegion,const bool supportProtectedContent,renderengine::LayerSettings & layer)134 bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
135 bool useIdentityTransform, Region& clearRegion,
136 const bool supportProtectedContent,
137 renderengine::LayerSettings& layer) {
138 ATRACE_CALL();
139 Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion,
140 supportProtectedContent, layer);
141 if (CC_UNLIKELY(mActiveBuffer == 0)) {
142 // the texture has not been created yet, this Layer has
143 // in fact never been drawn into. This happens frequently with
144 // SurfaceView because the WindowManager can't know when the client
145 // has drawn the first time.
146
147 // If there is nothing under us, we paint the screen in black, otherwise
148 // we just skip this update.
149
150 // figure out if there is something below us
151 Region under;
152 bool finished = false;
153 mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
154 if (finished || layer == static_cast<BufferLayer const*>(this)) {
155 finished = true;
156 return;
157 }
158 under.orSelf(layer->visibleRegion);
159 });
160 // if not everything below us is covered, we plug the holes!
161 Region holes(clip.subtract(under));
162 if (!holes.isEmpty()) {
163 clearRegion.orSelf(holes);
164 }
165 return false;
166 }
167 bool blackOutLayer =
168 (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure());
169 const State& s(getDrawingState());
170 if (!blackOutLayer) {
171 layer.source.buffer.buffer = mActiveBuffer;
172 layer.source.buffer.isOpaque = isOpaque(s);
173 layer.source.buffer.fence = mActiveBufferFence;
174 layer.source.buffer.textureName = mTextureName;
175 layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
176 layer.source.buffer.isY410BT2020 = isHdrY410();
177 // TODO: we could be more subtle with isFixedSize()
178 const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) ||
179 renderArea.needsFiltering() || isFixedSize();
180
181 // Query the texture matrix given our current filtering mode.
182 float textureMatrix[16];
183 setFilteringEnabled(useFiltering);
184 getDrawingTransformMatrix(textureMatrix);
185
186 if (getTransformToDisplayInverse()) {
187 /*
188 * the code below applies the primary display's inverse transform to
189 * the texture transform
190 */
191 uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
192 mat4 tr = inverseOrientation(transform);
193
194 /**
195 * TODO(b/36727915): This is basically a hack.
196 *
197 * Ensure that regardless of the parent transformation,
198 * this buffer is always transformed from native display
199 * orientation to display orientation. For example, in the case
200 * of a camera where the buffer remains in native orientation,
201 * we want the pixels to always be upright.
202 */
203 sp<Layer> p = mDrawingParent.promote();
204 if (p != nullptr) {
205 const auto parentTransform = p->getTransform();
206 tr = tr * inverseOrientation(parentTransform.getOrientation());
207 }
208
209 // and finally apply it to the original texture matrix
210 const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
211 memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
212 }
213
214 const Rect win{getBounds()};
215 float bufferWidth = getBufferSize(s).getWidth();
216 float bufferHeight = getBufferSize(s).getHeight();
217
218 // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
219 // been set and there is no parent layer bounds. In that case, the scale is meaningless so
220 // ignore them.
221 if (!getBufferSize(s).isValid()) {
222 bufferWidth = float(win.right) - float(win.left);
223 bufferHeight = float(win.bottom) - float(win.top);
224 }
225
226 const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
227 const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
228 const float translateY = float(win.top) / bufferHeight;
229 const float translateX = float(win.left) / bufferWidth;
230
231 // Flip y-coordinates because GLConsumer expects OpenGL convention.
232 mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
233 mat4::translate(vec4(-.5, -.5, 0, 1)) *
234 mat4::translate(vec4(translateX, translateY, 0, 1)) *
235 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
236
237 layer.source.buffer.useTextureFiltering = useFiltering;
238 layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
239 } else {
240 // If layer is blacked out, force alpha to 1 so that we draw a black color
241 // layer.
242 layer.source.buffer.buffer = nullptr;
243 layer.alpha = 1.0;
244 }
245
246 return true;
247 }
248
isHdrY410() const249 bool BufferLayer::isHdrY410() const {
250 // pixel format is HDR Y410 masquerading as RGBA_1010102
251 return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
252 getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
253 mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
254 }
255
setPerFrameData(const sp<const DisplayDevice> & displayDevice,const ui::Transform & transform,const Rect & viewport,int32_t supportedPerFrameMetadata,const ui::Dataspace targetDataspace)256 void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice,
257 const ui::Transform& transform, const Rect& viewport,
258 int32_t supportedPerFrameMetadata,
259 const ui::Dataspace targetDataspace) {
260 RETURN_IF_NO_HWC_LAYER(displayDevice);
261
262 // Apply this display's projection's viewport to the visible region
263 // before giving it to the HWC HAL.
264 Region visible = transform.transform(visibleRegion.intersect(viewport));
265
266 const auto outputLayer = findOutputLayerForDisplay(displayDevice);
267 LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
268
269 auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer;
270 auto error = hwcLayer->setVisibleRegion(visible);
271 if (error != HWC2::Error::None) {
272 ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
273 to_string(error).c_str(), static_cast<int32_t>(error));
274 visible.dump(LOG_TAG);
275 }
276 outputLayer->editState().visibleRegion = visible;
277
278 auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
279
280 error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
281 if (error != HWC2::Error::None) {
282 ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
283 to_string(error).c_str(), static_cast<int32_t>(error));
284 surfaceDamageRegion.dump(LOG_TAG);
285 }
286 layerCompositionState.surfaceDamage = surfaceDamageRegion;
287
288 // Sideband layers
289 if (layerCompositionState.sidebandStream.get()) {
290 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND);
291 ALOGV("[%s] Requesting Sideband composition", mName.string());
292 error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle());
293 if (error != HWC2::Error::None) {
294 ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
295 layerCompositionState.sidebandStream->handle(), to_string(error).c_str(),
296 static_cast<int32_t>(error));
297 }
298 layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
299 return;
300 }
301
302 // Device or Cursor layers
303 if (mPotentialCursor) {
304 ALOGV("[%s] Requesting Cursor composition", mName.string());
305 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR);
306 } else {
307 ALOGV("[%s] Requesting Device composition", mName.string());
308 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE);
309 }
310
311 ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN
312 ? targetDataspace
313 : mCurrentDataSpace;
314 error = hwcLayer->setDataspace(dataspace);
315 if (error != HWC2::Error::None) {
316 ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace,
317 to_string(error).c_str(), static_cast<int32_t>(error));
318 }
319
320 const HdrMetadata& metadata = getDrawingHdrMetadata();
321 error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
322 if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
323 ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
324 to_string(error).c_str(), static_cast<int32_t>(error));
325 }
326
327 error = hwcLayer->setColorTransform(getColorTransform());
328 if (error == HWC2::Error::Unsupported) {
329 // If per layer color transform is not supported, we use GPU composition.
330 setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT);
331 } else if (error != HWC2::Error::None) {
332 ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
333 to_string(error).c_str(), static_cast<int32_t>(error));
334 }
335 layerCompositionState.dataspace = mCurrentDataSpace;
336 layerCompositionState.colorTransform = getColorTransform();
337 layerCompositionState.hdrMetadata = metadata;
338
339 setHwcLayerBuffer(displayDevice);
340 }
341
onPreComposition(nsecs_t refreshStartTime)342 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
343 if (mBufferLatched) {
344 Mutex::Autolock lock(mFrameEventHistoryMutex);
345 mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
346 }
347 mRefreshPending = false;
348 return hasReadyFrame();
349 }
350
onPostComposition(const std::optional<DisplayId> & displayId,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)351 bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
352 const std::shared_ptr<FenceTime>& glDoneFence,
353 const std::shared_ptr<FenceTime>& presentFence,
354 const CompositorTiming& compositorTiming) {
355 // mFrameLatencyNeeded is true when a new frame was latched for the
356 // composition.
357 if (!mFrameLatencyNeeded) return false;
358
359 // Update mFrameEventHistory.
360 {
361 Mutex::Autolock lock(mFrameEventHistoryMutex);
362 mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
363 compositorTiming);
364 }
365
366 // Update mFrameTracker.
367 nsecs_t desiredPresentTime = getDesiredPresentTime();
368 mFrameTracker.setDesiredPresentTime(desiredPresentTime);
369
370 const int32_t layerID = getSequence();
371 mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
372
373 std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
374 if (frameReadyFence->isValid()) {
375 mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
376 } else {
377 // There was no fence for this frame, so assume that it was ready
378 // to be presented at the desired present time.
379 mFrameTracker.setFrameReadyTime(desiredPresentTime);
380 }
381
382 if (presentFence->isValid()) {
383 mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence);
384 mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
385 } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
386 // The HWC doesn't support present fences, so use the refresh
387 // timestamp instead.
388 const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
389 mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
390 mFrameTracker.setActualPresentTime(actualPresentTime);
391 }
392
393 mFrameTracker.advanceFrame();
394 mFrameLatencyNeeded = false;
395 return true;
396 }
397
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime)398 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
399 ATRACE_CALL();
400
401 bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
402
403 if (refreshRequired) {
404 return refreshRequired;
405 }
406
407 if (!hasReadyFrame()) {
408 return false;
409 }
410
411 // if we've already called updateTexImage() without going through
412 // a composition step, we have to skip this layer at this point
413 // because we cannot call updateTeximage() without a corresponding
414 // compositionComplete() call.
415 // we'll trigger an update in onPreComposition().
416 if (mRefreshPending) {
417 return false;
418 }
419
420 // If the head buffer's acquire fence hasn't signaled yet, return and
421 // try again later
422 if (!fenceHasSignaled()) {
423 ATRACE_NAME("!fenceHasSignaled()");
424 mFlinger->signalLayerUpdate();
425 return false;
426 }
427
428 // Capture the old state of the layer for comparisons later
429 const State& s(getDrawingState());
430 const bool oldOpacity = isOpaque(s);
431 sp<GraphicBuffer> oldBuffer = mActiveBuffer;
432
433 if (!allTransactionsSignaled()) {
434 mFlinger->setTransactionFlags(eTraversalNeeded);
435 return false;
436 }
437
438 status_t err = updateTexImage(recomputeVisibleRegions, latchTime);
439 if (err != NO_ERROR) {
440 return false;
441 }
442
443 err = updateActiveBuffer();
444 if (err != NO_ERROR) {
445 return false;
446 }
447
448 mBufferLatched = true;
449
450 err = updateFrameNumber(latchTime);
451 if (err != NO_ERROR) {
452 return false;
453 }
454
455 mRefreshPending = true;
456 mFrameLatencyNeeded = true;
457 if (oldBuffer == nullptr) {
458 // the first time we receive a buffer, we need to trigger a
459 // geometry invalidation.
460 recomputeVisibleRegions = true;
461 }
462
463 ui::Dataspace dataSpace = getDrawingDataSpace();
464 // translate legacy dataspaces to modern dataspaces
465 switch (dataSpace) {
466 case ui::Dataspace::SRGB:
467 dataSpace = ui::Dataspace::V0_SRGB;
468 break;
469 case ui::Dataspace::SRGB_LINEAR:
470 dataSpace = ui::Dataspace::V0_SRGB_LINEAR;
471 break;
472 case ui::Dataspace::JFIF:
473 dataSpace = ui::Dataspace::V0_JFIF;
474 break;
475 case ui::Dataspace::BT601_625:
476 dataSpace = ui::Dataspace::V0_BT601_625;
477 break;
478 case ui::Dataspace::BT601_525:
479 dataSpace = ui::Dataspace::V0_BT601_525;
480 break;
481 case ui::Dataspace::BT709:
482 dataSpace = ui::Dataspace::V0_BT709;
483 break;
484 default:
485 break;
486 }
487 mCurrentDataSpace = dataSpace;
488
489 Rect crop(getDrawingCrop());
490 const uint32_t transform(getDrawingTransform());
491 const uint32_t scalingMode(getDrawingScalingMode());
492 const bool transformToDisplayInverse(getTransformToDisplayInverse());
493 if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
494 (scalingMode != mCurrentScalingMode) ||
495 (transformToDisplayInverse != mTransformToDisplayInverse)) {
496 mCurrentCrop = crop;
497 mCurrentTransform = transform;
498 mCurrentScalingMode = scalingMode;
499 mTransformToDisplayInverse = transformToDisplayInverse;
500 recomputeVisibleRegions = true;
501 }
502
503 if (oldBuffer != nullptr) {
504 uint32_t bufWidth = mActiveBuffer->getWidth();
505 uint32_t bufHeight = mActiveBuffer->getHeight();
506 if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
507 recomputeVisibleRegions = true;
508 }
509 }
510
511 if (oldOpacity != isOpaque(s)) {
512 recomputeVisibleRegions = true;
513 }
514
515 // Remove any sync points corresponding to the buffer which was just
516 // latched
517 {
518 Mutex::Autolock lock(mLocalSyncPointMutex);
519 auto point = mLocalSyncPoints.begin();
520 while (point != mLocalSyncPoints.end()) {
521 if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
522 // This sync point must have been added since we started
523 // latching. Don't drop it yet.
524 ++point;
525 continue;
526 }
527
528 if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
529 std::stringstream ss;
530 ss << "Dropping sync point " << (*point)->getFrameNumber();
531 ATRACE_NAME(ss.str().c_str());
532 point = mLocalSyncPoints.erase(point);
533 } else {
534 ++point;
535 }
536 }
537 }
538
539 return true;
540 }
541
542 // transaction
notifyAvailableFrames()543 void BufferLayer::notifyAvailableFrames() {
544 const auto headFrameNumber = getHeadFrameNumber();
545 const bool headFenceSignaled = fenceHasSignaled();
546 const bool presentTimeIsCurrent = framePresentTimeIsCurrent();
547 Mutex::Autolock lock(mLocalSyncPointMutex);
548 for (auto& point : mLocalSyncPoints) {
549 if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
550 presentTimeIsCurrent) {
551 point->setFrameAvailable();
552 sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
553 if (requestedSyncLayer) {
554 // Need to update the transaction flag to ensure the layer's pending transaction
555 // gets applied.
556 requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
557 }
558 }
559 }
560 }
561
hasReadyFrame() const562 bool BufferLayer::hasReadyFrame() const {
563 return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
564 }
565
getEffectiveScalingMode() const566 uint32_t BufferLayer::getEffectiveScalingMode() const {
567 if (mOverrideScalingMode >= 0) {
568 return mOverrideScalingMode;
569 }
570
571 return mCurrentScalingMode;
572 }
573
isProtected() const574 bool BufferLayer::isProtected() const {
575 const sp<GraphicBuffer>& buffer(mActiveBuffer);
576 return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
577 }
578
latchUnsignaledBuffers()579 bool BufferLayer::latchUnsignaledBuffers() {
580 static bool propertyLoaded = false;
581 static bool latch = false;
582 static std::mutex mutex;
583 std::lock_guard<std::mutex> lock(mutex);
584 if (!propertyLoaded) {
585 char value[PROPERTY_VALUE_MAX] = {};
586 property_get("debug.sf.latch_unsignaled", value, "0");
587 latch = atoi(value);
588 propertyLoaded = true;
589 }
590 return latch;
591 }
592
593 // h/w composer set-up
allTransactionsSignaled()594 bool BufferLayer::allTransactionsSignaled() {
595 auto headFrameNumber = getHeadFrameNumber();
596 bool matchingFramesFound = false;
597 bool allTransactionsApplied = true;
598 Mutex::Autolock lock(mLocalSyncPointMutex);
599
600 for (auto& point : mLocalSyncPoints) {
601 if (point->getFrameNumber() > headFrameNumber) {
602 break;
603 }
604 matchingFramesFound = true;
605
606 if (!point->frameIsAvailable()) {
607 // We haven't notified the remote layer that the frame for
608 // this point is available yet. Notify it now, and then
609 // abort this attempt to latch.
610 point->setFrameAvailable();
611 allTransactionsApplied = false;
612 break;
613 }
614
615 allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
616 }
617 return !matchingFramesFound || allTransactionsApplied;
618 }
619
620 // As documented in libhardware header, formats in the range
621 // 0x100 - 0x1FF are specific to the HAL implementation, and
622 // are known to have no alpha channel
623 // TODO: move definition for device-specific range into
624 // hardware.h, instead of using hard-coded values here.
625 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
626
getOpacityForFormat(uint32_t format)627 bool BufferLayer::getOpacityForFormat(uint32_t format) {
628 if (HARDWARE_IS_DEVICE_FORMAT(format)) {
629 return true;
630 }
631 switch (format) {
632 case HAL_PIXEL_FORMAT_RGBA_8888:
633 case HAL_PIXEL_FORMAT_BGRA_8888:
634 case HAL_PIXEL_FORMAT_RGBA_FP16:
635 case HAL_PIXEL_FORMAT_RGBA_1010102:
636 return false;
637 }
638 // in all other case, we have no blending (also for unknown formats)
639 return true;
640 }
641
needsFiltering(const sp<const DisplayDevice> & displayDevice) const642 bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
643 // If we are not capturing based on the state of a known display device, we
644 // only return mNeedsFiltering
645 if (displayDevice == nullptr) {
646 return mNeedsFiltering;
647 }
648
649 const auto outputLayer = findOutputLayerForDisplay(displayDevice);
650 if (outputLayer == nullptr) {
651 return mNeedsFiltering;
652 }
653
654 const auto& compositionState = outputLayer->getState();
655 const auto displayFrame = compositionState.displayFrame;
656 const auto sourceCrop = compositionState.sourceCrop;
657 return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() ||
658 sourceCrop.getWidth() != displayFrame.getWidth();
659 }
660
getHeadFrameNumber() const661 uint64_t BufferLayer::getHeadFrameNumber() const {
662 if (hasFrameUpdate()) {
663 return getFrameNumber();
664 } else {
665 return mCurrentFrameNumber;
666 }
667 }
668
getBufferSize(const State & s) const669 Rect BufferLayer::getBufferSize(const State& s) const {
670 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
671 // we cannot determine the buffer size.
672 if ((s.sidebandStream != nullptr) ||
673 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
674 return Rect(getActiveWidth(s), getActiveHeight(s));
675 }
676
677 if (mActiveBuffer == nullptr) {
678 return Rect::INVALID_RECT;
679 }
680
681 uint32_t bufWidth = mActiveBuffer->getWidth();
682 uint32_t bufHeight = mActiveBuffer->getHeight();
683
684 // Undo any transformations on the buffer and return the result.
685 if (mCurrentTransform & ui::Transform::ROT_90) {
686 std::swap(bufWidth, bufHeight);
687 }
688
689 if (getTransformToDisplayInverse()) {
690 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
691 if (invTransform & ui::Transform::ROT_90) {
692 std::swap(bufWidth, bufHeight);
693 }
694 }
695
696 return Rect(bufWidth, bufHeight);
697 }
698
getCompositionLayer() const699 std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const {
700 return mCompositionLayer;
701 }
702
computeSourceBounds(const FloatRect & parentBounds) const703 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
704 const State& s(getDrawingState());
705
706 // If we have a sideband stream, or we are scaling the buffer then return the layer size since
707 // we cannot determine the buffer size.
708 if ((s.sidebandStream != nullptr) ||
709 (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
710 return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
711 }
712
713 if (mActiveBuffer == nullptr) {
714 return parentBounds;
715 }
716
717 uint32_t bufWidth = mActiveBuffer->getWidth();
718 uint32_t bufHeight = mActiveBuffer->getHeight();
719
720 // Undo any transformations on the buffer and return the result.
721 if (mCurrentTransform & ui::Transform::ROT_90) {
722 std::swap(bufWidth, bufHeight);
723 }
724
725 if (getTransformToDisplayInverse()) {
726 uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
727 if (invTransform & ui::Transform::ROT_90) {
728 std::swap(bufWidth, bufHeight);
729 }
730 }
731
732 return FloatRect(0, 0, bufWidth, bufHeight);
733 }
734
735 } // namespace android
736
737 #if defined(__gl_h_)
738 #error "don't include gl/gl.h in this file"
739 #endif
740
741 #if defined(__gl2_h_)
742 #error "don't include gl2/gl2.h in this file"
743 #endif
744