• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 #undef LOG_TAG
19 #define LOG_TAG "BufferLayer"
20 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
21 
22 #include "BufferLayer.h"
23 
24 #include <compositionengine/CompositionEngine.h>
25 #include <compositionengine/Display.h>
26 #include <compositionengine/Layer.h>
27 #include <compositionengine/LayerCreationArgs.h>
28 #include <compositionengine/OutputLayer.h>
29 #include <compositionengine/impl/LayerCompositionState.h>
30 #include <compositionengine/impl/OutputLayerCompositionState.h>
31 #include <cutils/compiler.h>
32 #include <cutils/native_handle.h>
33 #include <cutils/properties.h>
34 #include <gui/BufferItem.h>
35 #include <gui/BufferQueue.h>
36 #include <gui/LayerDebugInfo.h>
37 #include <gui/Surface.h>
38 #include <renderengine/RenderEngine.h>
39 #include <ui/DebugUtils.h>
40 #include <utils/Errors.h>
41 #include <utils/Log.h>
42 #include <utils/NativeHandle.h>
43 #include <utils/StopWatch.h>
44 #include <utils/Trace.h>
45 
46 #include <cmath>
47 #include <cstdlib>
48 #include <mutex>
49 #include <sstream>
50 
51 #include "Colorizer.h"
52 #include "DisplayDevice.h"
53 #include "LayerRejecter.h"
54 #include "TimeStats/TimeStats.h"
55 
56 namespace android {
57 
BufferLayer(const LayerCreationArgs & args)58 BufferLayer::BufferLayer(const LayerCreationArgs& args)
59       : Layer(args),
60         mTextureName(args.flinger->getNewTexture()),
61         mCompositionLayer{mFlinger->getCompositionEngine().createLayer(
62                 compositionengine::LayerCreationArgs{this})} {
63     ALOGV("Creating Layer %s", args.name.string());
64 
65     mPremultipliedAlpha = !(args.flags & ISurfaceComposerClient::eNonPremultiplied);
66 
67     mPotentialCursor = args.flags & ISurfaceComposerClient::eCursorWindow;
68     mProtectedByApp = args.flags & ISurfaceComposerClient::eProtectedByApp;
69 }
70 
~BufferLayer()71 BufferLayer::~BufferLayer() {
72     mFlinger->deleteTextureAsync(mTextureName);
73     mFlinger->mTimeStats->onDestroy(getSequence());
74 }
75 
useSurfaceDamage()76 void BufferLayer::useSurfaceDamage() {
77     if (mFlinger->mForceFullDamage) {
78         surfaceDamageRegion = Region::INVALID_REGION;
79     } else {
80         surfaceDamageRegion = getDrawingSurfaceDamage();
81     }
82 }
83 
useEmptyDamage()84 void BufferLayer::useEmptyDamage() {
85     surfaceDamageRegion.clear();
86 }
87 
isOpaque(const Layer::State & s) const88 bool BufferLayer::isOpaque(const Layer::State& s) const {
89     // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
90     // layer's opaque flag.
91     if ((mSidebandStream == nullptr) && (mActiveBuffer == nullptr)) {
92         return false;
93     }
94 
95     // if the layer has the opaque flag, then we're always opaque,
96     // otherwise we use the current buffer's format.
97     return ((s.flags & layer_state_t::eLayerOpaque) != 0) || getOpacityForFormat(getPixelFormat());
98 }
99 
isVisible() const100 bool BufferLayer::isVisible() const {
101     bool visible = !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
102             (mActiveBuffer != nullptr || mSidebandStream != nullptr);
103     mFlinger->mScheduler->setLayerVisibility(mSchedulerLayerHandle, visible);
104 
105     return visible;
106 }
107 
isFixedSize() const108 bool BufferLayer::isFixedSize() const {
109     return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
110 }
111 
usesSourceCrop() const112 bool BufferLayer::usesSourceCrop() const {
113     return true;
114 }
115 
inverseOrientation(uint32_t transform)116 static constexpr mat4 inverseOrientation(uint32_t transform) {
117     const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
118     const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
119     const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
120     mat4 tr;
121 
122     if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
123         tr = tr * rot90;
124     }
125     if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
126         tr = tr * flipH;
127     }
128     if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
129         tr = tr * flipV;
130     }
131     return inverse(tr);
132 }
133 
prepareClientLayer(const RenderArea & renderArea,const Region & clip,bool useIdentityTransform,Region & clearRegion,const bool supportProtectedContent,renderengine::LayerSettings & layer)134 bool BufferLayer::prepareClientLayer(const RenderArea& renderArea, const Region& clip,
135                                      bool useIdentityTransform, Region& clearRegion,
136                                      const bool supportProtectedContent,
137                                      renderengine::LayerSettings& layer) {
138     ATRACE_CALL();
139     Layer::prepareClientLayer(renderArea, clip, useIdentityTransform, clearRegion,
140                               supportProtectedContent, layer);
141     if (CC_UNLIKELY(mActiveBuffer == 0)) {
142         // the texture has not been created yet, this Layer has
143         // in fact never been drawn into. This happens frequently with
144         // SurfaceView because the WindowManager can't know when the client
145         // has drawn the first time.
146 
147         // If there is nothing under us, we paint the screen in black, otherwise
148         // we just skip this update.
149 
150         // figure out if there is something below us
151         Region under;
152         bool finished = false;
153         mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
154             if (finished || layer == static_cast<BufferLayer const*>(this)) {
155                 finished = true;
156                 return;
157             }
158             under.orSelf(layer->visibleRegion);
159         });
160         // if not everything below us is covered, we plug the holes!
161         Region holes(clip.subtract(under));
162         if (!holes.isEmpty()) {
163             clearRegion.orSelf(holes);
164         }
165         return false;
166     }
167     bool blackOutLayer =
168             (isProtected() && !supportProtectedContent) || (isSecure() && !renderArea.isSecure());
169     const State& s(getDrawingState());
170     if (!blackOutLayer) {
171         layer.source.buffer.buffer = mActiveBuffer;
172         layer.source.buffer.isOpaque = isOpaque(s);
173         layer.source.buffer.fence = mActiveBufferFence;
174         layer.source.buffer.textureName = mTextureName;
175         layer.source.buffer.usePremultipliedAlpha = getPremultipledAlpha();
176         layer.source.buffer.isY410BT2020 = isHdrY410();
177         // TODO: we could be more subtle with isFixedSize()
178         const bool useFiltering = needsFiltering(renderArea.getDisplayDevice()) ||
179                 renderArea.needsFiltering() || isFixedSize();
180 
181         // Query the texture matrix given our current filtering mode.
182         float textureMatrix[16];
183         setFilteringEnabled(useFiltering);
184         getDrawingTransformMatrix(textureMatrix);
185 
186         if (getTransformToDisplayInverse()) {
187             /*
188              * the code below applies the primary display's inverse transform to
189              * the texture transform
190              */
191             uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
192             mat4 tr = inverseOrientation(transform);
193 
194             /**
195              * TODO(b/36727915): This is basically a hack.
196              *
197              * Ensure that regardless of the parent transformation,
198              * this buffer is always transformed from native display
199              * orientation to display orientation. For example, in the case
200              * of a camera where the buffer remains in native orientation,
201              * we want the pixels to always be upright.
202              */
203             sp<Layer> p = mDrawingParent.promote();
204             if (p != nullptr) {
205                 const auto parentTransform = p->getTransform();
206                 tr = tr * inverseOrientation(parentTransform.getOrientation());
207             }
208 
209             // and finally apply it to the original texture matrix
210             const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
211             memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
212         }
213 
214         const Rect win{getBounds()};
215         float bufferWidth = getBufferSize(s).getWidth();
216         float bufferHeight = getBufferSize(s).getHeight();
217 
218         // BufferStateLayers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
219         // been set and there is no parent layer bounds. In that case, the scale is meaningless so
220         // ignore them.
221         if (!getBufferSize(s).isValid()) {
222             bufferWidth = float(win.right) - float(win.left);
223             bufferHeight = float(win.bottom) - float(win.top);
224         }
225 
226         const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
227         const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
228         const float translateY = float(win.top) / bufferHeight;
229         const float translateX = float(win.left) / bufferWidth;
230 
231         // Flip y-coordinates because GLConsumer expects OpenGL convention.
232         mat4 tr = mat4::translate(vec4(.5, .5, 0, 1)) * mat4::scale(vec4(1, -1, 1, 1)) *
233                 mat4::translate(vec4(-.5, -.5, 0, 1)) *
234                 mat4::translate(vec4(translateX, translateY, 0, 1)) *
235                 mat4::scale(vec4(scaleWidth, scaleHeight, 1.0, 1.0));
236 
237         layer.source.buffer.useTextureFiltering = useFiltering;
238         layer.source.buffer.textureTransform = mat4(static_cast<const float*>(textureMatrix)) * tr;
239     } else {
240         // If layer is blacked out, force alpha to 1 so that we draw a black color
241         // layer.
242         layer.source.buffer.buffer = nullptr;
243         layer.alpha = 1.0;
244     }
245 
246     return true;
247 }
248 
isHdrY410() const249 bool BufferLayer::isHdrY410() const {
250     // pixel format is HDR Y410 masquerading as RGBA_1010102
251     return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
252             getDrawingApi() == NATIVE_WINDOW_API_MEDIA &&
253             mActiveBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
254 }
255 
setPerFrameData(const sp<const DisplayDevice> & displayDevice,const ui::Transform & transform,const Rect & viewport,int32_t supportedPerFrameMetadata,const ui::Dataspace targetDataspace)256 void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice,
257                                   const ui::Transform& transform, const Rect& viewport,
258                                   int32_t supportedPerFrameMetadata,
259                                   const ui::Dataspace targetDataspace) {
260     RETURN_IF_NO_HWC_LAYER(displayDevice);
261 
262     // Apply this display's projection's viewport to the visible region
263     // before giving it to the HWC HAL.
264     Region visible = transform.transform(visibleRegion.intersect(viewport));
265 
266     const auto outputLayer = findOutputLayerForDisplay(displayDevice);
267     LOG_FATAL_IF(!outputLayer || !outputLayer->getState().hwc);
268 
269     auto& hwcLayer = (*outputLayer->getState().hwc).hwcLayer;
270     auto error = hwcLayer->setVisibleRegion(visible);
271     if (error != HWC2::Error::None) {
272         ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
273               to_string(error).c_str(), static_cast<int32_t>(error));
274         visible.dump(LOG_TAG);
275     }
276     outputLayer->editState().visibleRegion = visible;
277 
278     auto& layerCompositionState = getCompositionLayer()->editState().frontEnd;
279 
280     error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
281     if (error != HWC2::Error::None) {
282         ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
283               to_string(error).c_str(), static_cast<int32_t>(error));
284         surfaceDamageRegion.dump(LOG_TAG);
285     }
286     layerCompositionState.surfaceDamage = surfaceDamageRegion;
287 
288     // Sideband layers
289     if (layerCompositionState.sidebandStream.get()) {
290         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::SIDEBAND);
291         ALOGV("[%s] Requesting Sideband composition", mName.string());
292         error = hwcLayer->setSidebandStream(layerCompositionState.sidebandStream->handle());
293         if (error != HWC2::Error::None) {
294             ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
295                   layerCompositionState.sidebandStream->handle(), to_string(error).c_str(),
296                   static_cast<int32_t>(error));
297         }
298         layerCompositionState.compositionType = Hwc2::IComposerClient::Composition::SIDEBAND;
299         return;
300     }
301 
302     // Device or Cursor layers
303     if (mPotentialCursor) {
304         ALOGV("[%s] Requesting Cursor composition", mName.string());
305         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CURSOR);
306     } else {
307         ALOGV("[%s] Requesting Device composition", mName.string());
308         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::DEVICE);
309     }
310 
311     ui::Dataspace dataspace = isColorSpaceAgnostic() && targetDataspace != ui::Dataspace::UNKNOWN
312             ? targetDataspace
313             : mCurrentDataSpace;
314     error = hwcLayer->setDataspace(dataspace);
315     if (error != HWC2::Error::None) {
316         ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), dataspace,
317               to_string(error).c_str(), static_cast<int32_t>(error));
318     }
319 
320     const HdrMetadata& metadata = getDrawingHdrMetadata();
321     error = hwcLayer->setPerFrameMetadata(supportedPerFrameMetadata, metadata);
322     if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
323         ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
324               to_string(error).c_str(), static_cast<int32_t>(error));
325     }
326 
327     error = hwcLayer->setColorTransform(getColorTransform());
328     if (error == HWC2::Error::Unsupported) {
329         // If per layer color transform is not supported, we use GPU composition.
330         setCompositionType(displayDevice, Hwc2::IComposerClient::Composition::CLIENT);
331     } else if (error != HWC2::Error::None) {
332         ALOGE("[%s] Failed to setColorTransform: %s (%d)", mName.string(),
333                 to_string(error).c_str(), static_cast<int32_t>(error));
334     }
335     layerCompositionState.dataspace = mCurrentDataSpace;
336     layerCompositionState.colorTransform = getColorTransform();
337     layerCompositionState.hdrMetadata = metadata;
338 
339     setHwcLayerBuffer(displayDevice);
340 }
341 
onPreComposition(nsecs_t refreshStartTime)342 bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
343     if (mBufferLatched) {
344         Mutex::Autolock lock(mFrameEventHistoryMutex);
345         mFrameEventHistory.addPreComposition(mCurrentFrameNumber, refreshStartTime);
346     }
347     mRefreshPending = false;
348     return hasReadyFrame();
349 }
350 
onPostComposition(const std::optional<DisplayId> & displayId,const std::shared_ptr<FenceTime> & glDoneFence,const std::shared_ptr<FenceTime> & presentFence,const CompositorTiming & compositorTiming)351 bool BufferLayer::onPostComposition(const std::optional<DisplayId>& displayId,
352                                     const std::shared_ptr<FenceTime>& glDoneFence,
353                                     const std::shared_ptr<FenceTime>& presentFence,
354                                     const CompositorTiming& compositorTiming) {
355     // mFrameLatencyNeeded is true when a new frame was latched for the
356     // composition.
357     if (!mFrameLatencyNeeded) return false;
358 
359     // Update mFrameEventHistory.
360     {
361         Mutex::Autolock lock(mFrameEventHistoryMutex);
362         mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence, presentFence,
363                                               compositorTiming);
364     }
365 
366     // Update mFrameTracker.
367     nsecs_t desiredPresentTime = getDesiredPresentTime();
368     mFrameTracker.setDesiredPresentTime(desiredPresentTime);
369 
370     const int32_t layerID = getSequence();
371     mFlinger->mTimeStats->setDesiredTime(layerID, mCurrentFrameNumber, desiredPresentTime);
372 
373     std::shared_ptr<FenceTime> frameReadyFence = getCurrentFenceTime();
374     if (frameReadyFence->isValid()) {
375         mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
376     } else {
377         // There was no fence for this frame, so assume that it was ready
378         // to be presented at the desired present time.
379         mFrameTracker.setFrameReadyTime(desiredPresentTime);
380     }
381 
382     if (presentFence->isValid()) {
383         mFlinger->mTimeStats->setPresentFence(layerID, mCurrentFrameNumber, presentFence);
384         mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
385     } else if (displayId && mFlinger->getHwComposer().isConnected(*displayId)) {
386         // The HWC doesn't support present fences, so use the refresh
387         // timestamp instead.
388         const nsecs_t actualPresentTime = mFlinger->getHwComposer().getRefreshTimestamp(*displayId);
389         mFlinger->mTimeStats->setPresentTime(layerID, mCurrentFrameNumber, actualPresentTime);
390         mFrameTracker.setActualPresentTime(actualPresentTime);
391     }
392 
393     mFrameTracker.advanceFrame();
394     mFrameLatencyNeeded = false;
395     return true;
396 }
397 
latchBuffer(bool & recomputeVisibleRegions,nsecs_t latchTime)398 bool BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
399     ATRACE_CALL();
400 
401     bool refreshRequired = latchSidebandStream(recomputeVisibleRegions);
402 
403     if (refreshRequired) {
404         return refreshRequired;
405     }
406 
407     if (!hasReadyFrame()) {
408         return false;
409     }
410 
411     // if we've already called updateTexImage() without going through
412     // a composition step, we have to skip this layer at this point
413     // because we cannot call updateTeximage() without a corresponding
414     // compositionComplete() call.
415     // we'll trigger an update in onPreComposition().
416     if (mRefreshPending) {
417         return false;
418     }
419 
420     // If the head buffer's acquire fence hasn't signaled yet, return and
421     // try again later
422     if (!fenceHasSignaled()) {
423         ATRACE_NAME("!fenceHasSignaled()");
424         mFlinger->signalLayerUpdate();
425         return false;
426     }
427 
428     // Capture the old state of the layer for comparisons later
429     const State& s(getDrawingState());
430     const bool oldOpacity = isOpaque(s);
431     sp<GraphicBuffer> oldBuffer = mActiveBuffer;
432 
433     if (!allTransactionsSignaled()) {
434         mFlinger->setTransactionFlags(eTraversalNeeded);
435         return false;
436     }
437 
438     status_t err = updateTexImage(recomputeVisibleRegions, latchTime);
439     if (err != NO_ERROR) {
440         return false;
441     }
442 
443     err = updateActiveBuffer();
444     if (err != NO_ERROR) {
445         return false;
446     }
447 
448     mBufferLatched = true;
449 
450     err = updateFrameNumber(latchTime);
451     if (err != NO_ERROR) {
452         return false;
453     }
454 
455     mRefreshPending = true;
456     mFrameLatencyNeeded = true;
457     if (oldBuffer == nullptr) {
458         // the first time we receive a buffer, we need to trigger a
459         // geometry invalidation.
460         recomputeVisibleRegions = true;
461     }
462 
463     ui::Dataspace dataSpace = getDrawingDataSpace();
464     // translate legacy dataspaces to modern dataspaces
465     switch (dataSpace) {
466         case ui::Dataspace::SRGB:
467             dataSpace = ui::Dataspace::V0_SRGB;
468             break;
469         case ui::Dataspace::SRGB_LINEAR:
470             dataSpace = ui::Dataspace::V0_SRGB_LINEAR;
471             break;
472         case ui::Dataspace::JFIF:
473             dataSpace = ui::Dataspace::V0_JFIF;
474             break;
475         case ui::Dataspace::BT601_625:
476             dataSpace = ui::Dataspace::V0_BT601_625;
477             break;
478         case ui::Dataspace::BT601_525:
479             dataSpace = ui::Dataspace::V0_BT601_525;
480             break;
481         case ui::Dataspace::BT709:
482             dataSpace = ui::Dataspace::V0_BT709;
483             break;
484         default:
485             break;
486     }
487     mCurrentDataSpace = dataSpace;
488 
489     Rect crop(getDrawingCrop());
490     const uint32_t transform(getDrawingTransform());
491     const uint32_t scalingMode(getDrawingScalingMode());
492     const bool transformToDisplayInverse(getTransformToDisplayInverse());
493     if ((crop != mCurrentCrop) || (transform != mCurrentTransform) ||
494         (scalingMode != mCurrentScalingMode) ||
495         (transformToDisplayInverse != mTransformToDisplayInverse)) {
496         mCurrentCrop = crop;
497         mCurrentTransform = transform;
498         mCurrentScalingMode = scalingMode;
499         mTransformToDisplayInverse = transformToDisplayInverse;
500         recomputeVisibleRegions = true;
501     }
502 
503     if (oldBuffer != nullptr) {
504         uint32_t bufWidth = mActiveBuffer->getWidth();
505         uint32_t bufHeight = mActiveBuffer->getHeight();
506         if (bufWidth != uint32_t(oldBuffer->width) || bufHeight != uint32_t(oldBuffer->height)) {
507             recomputeVisibleRegions = true;
508         }
509     }
510 
511     if (oldOpacity != isOpaque(s)) {
512         recomputeVisibleRegions = true;
513     }
514 
515     // Remove any sync points corresponding to the buffer which was just
516     // latched
517     {
518         Mutex::Autolock lock(mLocalSyncPointMutex);
519         auto point = mLocalSyncPoints.begin();
520         while (point != mLocalSyncPoints.end()) {
521             if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
522                 // This sync point must have been added since we started
523                 // latching. Don't drop it yet.
524                 ++point;
525                 continue;
526             }
527 
528             if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
529                 std::stringstream ss;
530                 ss << "Dropping sync point " << (*point)->getFrameNumber();
531                 ATRACE_NAME(ss.str().c_str());
532                 point = mLocalSyncPoints.erase(point);
533             } else {
534                 ++point;
535             }
536         }
537     }
538 
539     return true;
540 }
541 
542 // transaction
notifyAvailableFrames()543 void BufferLayer::notifyAvailableFrames() {
544     const auto headFrameNumber = getHeadFrameNumber();
545     const bool headFenceSignaled = fenceHasSignaled();
546     const bool presentTimeIsCurrent = framePresentTimeIsCurrent();
547     Mutex::Autolock lock(mLocalSyncPointMutex);
548     for (auto& point : mLocalSyncPoints) {
549         if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled &&
550             presentTimeIsCurrent) {
551             point->setFrameAvailable();
552             sp<Layer> requestedSyncLayer = point->getRequestedSyncLayer();
553             if (requestedSyncLayer) {
554                 // Need to update the transaction flag to ensure the layer's pending transaction
555                 // gets applied.
556                 requestedSyncLayer->setTransactionFlags(eTransactionNeeded);
557             }
558         }
559     }
560 }
561 
hasReadyFrame() const562 bool BufferLayer::hasReadyFrame() const {
563     return hasFrameUpdate() || getSidebandStreamChanged() || getAutoRefresh();
564 }
565 
getEffectiveScalingMode() const566 uint32_t BufferLayer::getEffectiveScalingMode() const {
567     if (mOverrideScalingMode >= 0) {
568         return mOverrideScalingMode;
569     }
570 
571     return mCurrentScalingMode;
572 }
573 
isProtected() const574 bool BufferLayer::isProtected() const {
575     const sp<GraphicBuffer>& buffer(mActiveBuffer);
576     return (buffer != 0) && (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
577 }
578 
latchUnsignaledBuffers()579 bool BufferLayer::latchUnsignaledBuffers() {
580     static bool propertyLoaded = false;
581     static bool latch = false;
582     static std::mutex mutex;
583     std::lock_guard<std::mutex> lock(mutex);
584     if (!propertyLoaded) {
585         char value[PROPERTY_VALUE_MAX] = {};
586         property_get("debug.sf.latch_unsignaled", value, "0");
587         latch = atoi(value);
588         propertyLoaded = true;
589     }
590     return latch;
591 }
592 
593 // h/w composer set-up
allTransactionsSignaled()594 bool BufferLayer::allTransactionsSignaled() {
595     auto headFrameNumber = getHeadFrameNumber();
596     bool matchingFramesFound = false;
597     bool allTransactionsApplied = true;
598     Mutex::Autolock lock(mLocalSyncPointMutex);
599 
600     for (auto& point : mLocalSyncPoints) {
601         if (point->getFrameNumber() > headFrameNumber) {
602             break;
603         }
604         matchingFramesFound = true;
605 
606         if (!point->frameIsAvailable()) {
607             // We haven't notified the remote layer that the frame for
608             // this point is available yet. Notify it now, and then
609             // abort this attempt to latch.
610             point->setFrameAvailable();
611             allTransactionsApplied = false;
612             break;
613         }
614 
615         allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
616     }
617     return !matchingFramesFound || allTransactionsApplied;
618 }
619 
620 // As documented in libhardware header, formats in the range
621 // 0x100 - 0x1FF are specific to the HAL implementation, and
622 // are known to have no alpha channel
623 // TODO: move definition for device-specific range into
624 // hardware.h, instead of using hard-coded values here.
625 #define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
626 
getOpacityForFormat(uint32_t format)627 bool BufferLayer::getOpacityForFormat(uint32_t format) {
628     if (HARDWARE_IS_DEVICE_FORMAT(format)) {
629         return true;
630     }
631     switch (format) {
632         case HAL_PIXEL_FORMAT_RGBA_8888:
633         case HAL_PIXEL_FORMAT_BGRA_8888:
634         case HAL_PIXEL_FORMAT_RGBA_FP16:
635         case HAL_PIXEL_FORMAT_RGBA_1010102:
636             return false;
637     }
638     // in all other case, we have no blending (also for unknown formats)
639     return true;
640 }
641 
needsFiltering(const sp<const DisplayDevice> & displayDevice) const642 bool BufferLayer::needsFiltering(const sp<const DisplayDevice>& displayDevice) const {
643     // If we are not capturing based on the state of a known display device, we
644     // only return mNeedsFiltering
645     if (displayDevice == nullptr) {
646         return mNeedsFiltering;
647     }
648 
649     const auto outputLayer = findOutputLayerForDisplay(displayDevice);
650     if (outputLayer == nullptr) {
651         return mNeedsFiltering;
652     }
653 
654     const auto& compositionState = outputLayer->getState();
655     const auto displayFrame = compositionState.displayFrame;
656     const auto sourceCrop = compositionState.sourceCrop;
657     return mNeedsFiltering || sourceCrop.getHeight() != displayFrame.getHeight() ||
658             sourceCrop.getWidth() != displayFrame.getWidth();
659 }
660 
getHeadFrameNumber() const661 uint64_t BufferLayer::getHeadFrameNumber() const {
662     if (hasFrameUpdate()) {
663         return getFrameNumber();
664     } else {
665         return mCurrentFrameNumber;
666     }
667 }
668 
getBufferSize(const State & s) const669 Rect BufferLayer::getBufferSize(const State& s) const {
670     // If we have a sideband stream, or we are scaling the buffer then return the layer size since
671     // we cannot determine the buffer size.
672     if ((s.sidebandStream != nullptr) ||
673         (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
674         return Rect(getActiveWidth(s), getActiveHeight(s));
675     }
676 
677     if (mActiveBuffer == nullptr) {
678         return Rect::INVALID_RECT;
679     }
680 
681     uint32_t bufWidth = mActiveBuffer->getWidth();
682     uint32_t bufHeight = mActiveBuffer->getHeight();
683 
684     // Undo any transformations on the buffer and return the result.
685     if (mCurrentTransform & ui::Transform::ROT_90) {
686         std::swap(bufWidth, bufHeight);
687     }
688 
689     if (getTransformToDisplayInverse()) {
690         uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
691         if (invTransform & ui::Transform::ROT_90) {
692             std::swap(bufWidth, bufHeight);
693         }
694     }
695 
696     return Rect(bufWidth, bufHeight);
697 }
698 
getCompositionLayer() const699 std::shared_ptr<compositionengine::Layer> BufferLayer::getCompositionLayer() const {
700     return mCompositionLayer;
701 }
702 
computeSourceBounds(const FloatRect & parentBounds) const703 FloatRect BufferLayer::computeSourceBounds(const FloatRect& parentBounds) const {
704     const State& s(getDrawingState());
705 
706     // If we have a sideband stream, or we are scaling the buffer then return the layer size since
707     // we cannot determine the buffer size.
708     if ((s.sidebandStream != nullptr) ||
709         (getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE)) {
710         return FloatRect(0, 0, getActiveWidth(s), getActiveHeight(s));
711     }
712 
713     if (mActiveBuffer == nullptr) {
714         return parentBounds;
715     }
716 
717     uint32_t bufWidth = mActiveBuffer->getWidth();
718     uint32_t bufHeight = mActiveBuffer->getHeight();
719 
720     // Undo any transformations on the buffer and return the result.
721     if (mCurrentTransform & ui::Transform::ROT_90) {
722         std::swap(bufWidth, bufHeight);
723     }
724 
725     if (getTransformToDisplayInverse()) {
726         uint32_t invTransform = DisplayDevice::getPrimaryDisplayOrientationTransform();
727         if (invTransform & ui::Transform::ROT_90) {
728             std::swap(bufWidth, bufHeight);
729         }
730     }
731 
732     return FloatRect(0, 0, bufWidth, bufHeight);
733 }
734 
735 } // namespace android
736 
737 #if defined(__gl_h_)
738 #error "don't include gl/gl.h in this file"
739 #endif
740 
741 #if defined(__gl2_h_)
742 #error "don't include gl2/gl2.h in this file"
743 #endif
744