1 /*
2 * Copyright 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "ChoreographerFilter.h"
18
19 #define LOG_TAG "ChoreographerFilter"
20
21 #include <sched.h>
22 #include <unistd.h>
23
24 #include <deque>
25 #include <string>
26
27 #include "Settings.h"
28 #include "Thread.h"
29
30 #include "Log.h"
31 #include "Trace.h"
32
33 using namespace std::chrono_literals;
34 using time_point = std::chrono::steady_clock::time_point;
35
36 namespace {
37
38 class Timer {
39 public:
Timer(std::chrono::nanoseconds refreshPeriod,std::chrono::nanoseconds appToSfDelay)40 Timer(std::chrono::nanoseconds refreshPeriod, std::chrono::nanoseconds appToSfDelay)
41 : mRefreshPeriod(refreshPeriod),
42 mAppToSfDelay(appToSfDelay) {}
43
44 // Returns false if we have detected that we have received the same timestamp multiple times
45 // so that the caller can wait for fresh timestamps
addTimestamp(time_point point)46 bool addTimestamp(time_point point) {
47 // Keep track of the previous timestamp and how many times we've seen it to determine if
48 // we've stopped receiving Choreographer callbacks, which would indicate that we should
49 // probably stop until we see them again (e.g., if the app has been moved to the background)
50 if (point == mLastTimestamp) {
51 if (mRepeatCount++ > 5) {
52 return false;
53 }
54 } else {
55 mRepeatCount = 0;
56 }
57 mLastTimestamp = point;
58
59 point += mAppToSfDelay;
60
61 while (mBaseTime + mRefreshPeriod * 1.5 < point) {
62 mBaseTime += mRefreshPeriod;
63 }
64
65 std::chrono::nanoseconds delta = (point - (mBaseTime + mRefreshPeriod));
66 if (delta < -mRefreshPeriod / 2 || delta > mRefreshPeriod / 2) {
67 return true;
68 }
69
70 // TODO: 0.2 weighting factor for exponential smoothing is completely arbitrary
71 mBaseTime += mRefreshPeriod + delta * 2 / 10;
72
73 return true;
74 }
75
sleep(std::chrono::nanoseconds offset)76 void sleep(std::chrono::nanoseconds offset) {
77 if (offset < -(mRefreshPeriod / 2) || offset > mRefreshPeriod / 2) {
78 offset = 0ms;
79 }
80
81 const auto now = std::chrono::steady_clock::now();
82 auto targetTime = mBaseTime + mRefreshPeriod + offset;
83 while (targetTime < now) {
84 targetTime += mRefreshPeriod;
85 }
86
87 std::this_thread::sleep_until(targetTime);
88 }
89
90 private:
91 const std::chrono::nanoseconds mRefreshPeriod;
92 const std::chrono::nanoseconds mAppToSfDelay;
93 time_point mBaseTime = std::chrono::steady_clock::now();
94
95 time_point mLastTimestamp = std::chrono::steady_clock::now();
96 int32_t mRepeatCount = 0;
97 };
98
99 } // anonymous namespace
100
101 namespace swappy {
102
ChoreographerFilter(std::chrono::nanoseconds refreshPeriod,std::chrono::nanoseconds appToSfDelay,Worker doWork)103 ChoreographerFilter::ChoreographerFilter(std::chrono::nanoseconds refreshPeriod,
104 std::chrono::nanoseconds appToSfDelay,
105 Worker doWork)
106 : mRefreshPeriod(refreshPeriod),
107 mAppToSfDelay(appToSfDelay),
108 mDoWork(doWork) {
109 Settings::getInstance()->addListener([this]() { onSettingsChanged(); });
110
111 std::lock_guard<std::mutex> lock(mThreadPoolMutex);
112 mUseAffinity = Settings::getInstance()->getUseAffinity();
113 launchThreadsLocked();
114 }
115
~ChoreographerFilter()116 ChoreographerFilter::~ChoreographerFilter() {
117 std::lock_guard<std::mutex> lock(mThreadPoolMutex);
118 terminateThreadsLocked();
119 }
120
onChoreographer()121 void ChoreographerFilter::onChoreographer() {
122 std::unique_lock<std::mutex> lock(mMutex);
123 mLastTimestamp = std::chrono::steady_clock::now();
124 ++mSequenceNumber;
125 mCondition.notify_all();
126 }
127
launchThreadsLocked()128 void ChoreographerFilter::launchThreadsLocked() {
129 {
130 std::lock_guard<std::mutex> lock(mMutex);
131 mIsRunning = true;
132 }
133
134 const int32_t numThreads = getNumCpus() > 2 ? 2 : 1;
135 for (int32_t thread = 0; thread < numThreads; ++thread) {
136 mThreadPool.push_back(std::thread([this, thread]() { threadMain(mUseAffinity, thread); }));
137 }
138 }
139
terminateThreadsLocked()140 void ChoreographerFilter::terminateThreadsLocked() {
141 {
142 std::lock_guard<std::mutex> lock(mMutex);
143 mIsRunning = false;
144 mCondition.notify_all();
145 }
146
147 for (auto &thread : mThreadPool) {
148 thread.join();
149 }
150 mThreadPool.clear();
151 }
152
onSettingsChanged()153 void ChoreographerFilter::onSettingsChanged() {
154 const bool useAffinity = Settings::getInstance()->getUseAffinity();
155 std::lock_guard<std::mutex> lock(mThreadPoolMutex);
156 if (useAffinity == mUseAffinity) {
157 return;
158 }
159
160 terminateThreadsLocked();
161 mUseAffinity = useAffinity;
162 launchThreadsLocked();
163 }
164
threadMain(bool useAffinity,int32_t thread)165 void ChoreographerFilter::threadMain(bool useAffinity, int32_t thread) {
166 Timer timer(mRefreshPeriod, mAppToSfDelay);
167
168 {
169 int cpu = getNumCpus() - 1 - thread;
170 if (cpu >= 0) {
171 setAffinity(cpu);
172 }
173 }
174
175 std::string threadName = "Filter";
176 threadName += swappy::to_string(thread);
177 pthread_setname_np(pthread_self(), threadName.c_str());
178
179 std::unique_lock<std::mutex> lock(mMutex);
180 while (mIsRunning) {
181 auto timestamp = mLastTimestamp;
182 auto workDuration = mWorkDuration;
183 lock.unlock();
184
185 // If we have received the same timestamp multiple times, it probably means that the app
186 // has stopped sending them to us, which could indicate that it's no longer running. If we
187 // detect that, we stop until we see a fresh timestamp to avoid spinning forever in the
188 // background.
189 if (!timer.addTimestamp(timestamp)) {
190 lock.lock();
191 mCondition.wait(lock, [=]() { return mLastTimestamp != timestamp; });
192 timestamp = mLastTimestamp;
193 lock.unlock();
194 timer.addTimestamp(timestamp);
195 }
196
197 timer.sleep(-workDuration);
198 {
199 std::unique_lock<std::mutex> workLock(mWorkMutex);
200 const auto now = std::chrono::steady_clock::now();
201 if (now - mLastWorkRun > mRefreshPeriod / 2) {
202 // Assume we got here first and there's work to do
203 gamesdk::ScopedTrace trace("doWork");
204 mWorkDuration = mDoWork();
205 mLastWorkRun = now;
206 }
207 }
208 lock.lock();
209 }
210 }
211
212 } // namespace swappy
213