1 /* Drop in replacement for heapq.py
2
3 C implementation derived directly from heapq.py in Py2.3
4 which was written by Kevin O'Connor, augmented by Tim Peters,
5 annotated by François Pinard, and converted to C by Raymond Hettinger.
6
7 */
8
9 #include "Python.h"
10
11 static int
siftdown(PyListObject * heap,Py_ssize_t startpos,Py_ssize_t pos)12 siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
13 {
14 PyObject *newitem, *parent, **arr;
15 Py_ssize_t parentpos, size;
16 int cmp;
17
18 assert(PyList_Check(heap));
19 size = PyList_GET_SIZE(heap);
20 if (pos >= size) {
21 PyErr_SetString(PyExc_IndexError, "index out of range");
22 return -1;
23 }
24
25 /* Follow the path to the root, moving parents down until finding
26 a place newitem fits. */
27 arr = _PyList_ITEMS(heap);
28 newitem = arr[pos];
29 while (pos > startpos) {
30 parentpos = (pos - 1) >> 1;
31 parent = arr[parentpos];
32 cmp = PyObject_RichCompareBool(newitem, parent, Py_LT);
33 if (cmp < 0)
34 return -1;
35 if (size != PyList_GET_SIZE(heap)) {
36 PyErr_SetString(PyExc_RuntimeError,
37 "list changed size during iteration");
38 return -1;
39 }
40 if (cmp == 0)
41 break;
42 arr = _PyList_ITEMS(heap);
43 parent = arr[parentpos];
44 newitem = arr[pos];
45 arr[parentpos] = newitem;
46 arr[pos] = parent;
47 pos = parentpos;
48 }
49 return 0;
50 }
51
52 static int
siftup(PyListObject * heap,Py_ssize_t pos)53 siftup(PyListObject *heap, Py_ssize_t pos)
54 {
55 Py_ssize_t startpos, endpos, childpos, limit;
56 PyObject *tmp1, *tmp2, **arr;
57 int cmp;
58
59 assert(PyList_Check(heap));
60 endpos = PyList_GET_SIZE(heap);
61 startpos = pos;
62 if (pos >= endpos) {
63 PyErr_SetString(PyExc_IndexError, "index out of range");
64 return -1;
65 }
66
67 /* Bubble up the smaller child until hitting a leaf. */
68 arr = _PyList_ITEMS(heap);
69 limit = endpos >> 1; /* smallest pos that has no child */
70 while (pos < limit) {
71 /* Set childpos to index of smaller child. */
72 childpos = 2*pos + 1; /* leftmost child position */
73 if (childpos + 1 < endpos) {
74 cmp = PyObject_RichCompareBool(
75 arr[childpos],
76 arr[childpos + 1],
77 Py_LT);
78 if (cmp < 0)
79 return -1;
80 childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
81 arr = _PyList_ITEMS(heap); /* arr may have changed */
82 if (endpos != PyList_GET_SIZE(heap)) {
83 PyErr_SetString(PyExc_RuntimeError,
84 "list changed size during iteration");
85 return -1;
86 }
87 }
88 /* Move the smaller child up. */
89 tmp1 = arr[childpos];
90 tmp2 = arr[pos];
91 arr[childpos] = tmp2;
92 arr[pos] = tmp1;
93 pos = childpos;
94 }
95 /* Bubble it up to its final resting place (by sifting its parents down). */
96 return siftdown(heap, startpos, pos);
97 }
98
99 static PyObject *
heappush(PyObject * self,PyObject * args)100 heappush(PyObject *self, PyObject *args)
101 {
102 PyObject *heap, *item;
103
104 if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
105 return NULL;
106
107 if (!PyList_Check(heap)) {
108 PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
109 return NULL;
110 }
111
112 if (PyList_Append(heap, item))
113 return NULL;
114
115 if (siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1))
116 return NULL;
117 Py_RETURN_NONE;
118 }
119
120 PyDoc_STRVAR(heappush_doc,
121 "heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant.");
122
123 static PyObject *
heappop_internal(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))124 heappop_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
125 {
126 PyObject *lastelt, *returnitem;
127 Py_ssize_t n;
128
129 if (!PyList_Check(heap)) {
130 PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
131 return NULL;
132 }
133
134 /* raises IndexError if the heap is empty */
135 n = PyList_GET_SIZE(heap);
136 if (n == 0) {
137 PyErr_SetString(PyExc_IndexError, "index out of range");
138 return NULL;
139 }
140
141 lastelt = PyList_GET_ITEM(heap, n-1) ;
142 Py_INCREF(lastelt);
143 if (PyList_SetSlice(heap, n-1, n, NULL)) {
144 Py_DECREF(lastelt);
145 return NULL;
146 }
147 n--;
148
149 if (!n)
150 return lastelt;
151 returnitem = PyList_GET_ITEM(heap, 0);
152 PyList_SET_ITEM(heap, 0, lastelt);
153 if (siftup_func((PyListObject *)heap, 0)) {
154 Py_DECREF(returnitem);
155 return NULL;
156 }
157 return returnitem;
158 }
159
160 static PyObject *
heappop(PyObject * self,PyObject * heap)161 heappop(PyObject *self, PyObject *heap)
162 {
163 return heappop_internal(heap, siftup);
164 }
165
166 PyDoc_STRVAR(heappop_doc,
167 "Pop the smallest item off the heap, maintaining the heap invariant.");
168
169 static PyObject *
heapreplace_internal(PyObject * args,int siftup_func (PyListObject *,Py_ssize_t))170 heapreplace_internal(PyObject *args, int siftup_func(PyListObject *, Py_ssize_t))
171 {
172 PyObject *heap, *item, *returnitem;
173
174 if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
175 return NULL;
176
177 if (!PyList_Check(heap)) {
178 PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
179 return NULL;
180 }
181
182 if (PyList_GET_SIZE(heap) == 0) {
183 PyErr_SetString(PyExc_IndexError, "index out of range");
184 return NULL;
185 }
186
187 returnitem = PyList_GET_ITEM(heap, 0);
188 Py_INCREF(item);
189 PyList_SET_ITEM(heap, 0, item);
190 if (siftup_func((PyListObject *)heap, 0)) {
191 Py_DECREF(returnitem);
192 return NULL;
193 }
194 return returnitem;
195 }
196
197 static PyObject *
heapreplace(PyObject * self,PyObject * args)198 heapreplace(PyObject *self, PyObject *args)
199 {
200 return heapreplace_internal(args, siftup);
201 }
202
203 PyDoc_STRVAR(heapreplace_doc,
204 "heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\
205 \n\
206 This is more efficient than heappop() followed by heappush(), and can be\n\
207 more appropriate when using a fixed-size heap. Note that the value\n\
208 returned may be larger than item! That constrains reasonable uses of\n\
209 this routine unless written as part of a conditional replacement:\n\n\
210 if item > heap[0]:\n\
211 item = heapreplace(heap, item)\n");
212
213 static PyObject *
heappushpop(PyObject * self,PyObject * args)214 heappushpop(PyObject *self, PyObject *args)
215 {
216 PyObject *heap, *item, *returnitem;
217 int cmp;
218
219 if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item))
220 return NULL;
221
222 if (!PyList_Check(heap)) {
223 PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
224 return NULL;
225 }
226
227 if (PyList_GET_SIZE(heap) == 0) {
228 Py_INCREF(item);
229 return item;
230 }
231
232 cmp = PyObject_RichCompareBool(PyList_GET_ITEM(heap, 0), item, Py_LT);
233 if (cmp < 0)
234 return NULL;
235 if (cmp == 0) {
236 Py_INCREF(item);
237 return item;
238 }
239
240 if (PyList_GET_SIZE(heap) == 0) {
241 PyErr_SetString(PyExc_IndexError, "index out of range");
242 return NULL;
243 }
244
245 returnitem = PyList_GET_ITEM(heap, 0);
246 Py_INCREF(item);
247 PyList_SET_ITEM(heap, 0, item);
248 if (siftup((PyListObject *)heap, 0)) {
249 Py_DECREF(returnitem);
250 return NULL;
251 }
252 return returnitem;
253 }
254
255 PyDoc_STRVAR(heappushpop_doc,
256 "heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\
257 from the heap. The combined action runs more efficiently than\n\
258 heappush() followed by a separate call to heappop().");
259
260 static Py_ssize_t
keep_top_bit(Py_ssize_t n)261 keep_top_bit(Py_ssize_t n)
262 {
263 int i = 0;
264
265 while (n > 1) {
266 n >>= 1;
267 i++;
268 }
269 return n << i;
270 }
271
272 /* Cache friendly version of heapify()
273 -----------------------------------
274
275 Build-up a heap in O(n) time by performing siftup() operations
276 on nodes whose children are already heaps.
277
278 The simplest way is to sift the nodes in reverse order from
279 n//2-1 to 0 inclusive. The downside is that children may be
280 out of cache by the time their parent is reached.
281
282 A better way is to not wait for the children to go out of cache.
283 Once a sibling pair of child nodes have been sifted, immediately
284 sift their parent node (while the children are still in cache).
285
286 Both ways build child heaps before their parents, so both ways
287 do the exact same number of comparisons and produce exactly
288 the same heap. The only difference is that the traversal
289 order is optimized for cache efficiency.
290 */
291
292 static PyObject *
cache_friendly_heapify(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))293 cache_friendly_heapify(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
294 {
295 Py_ssize_t i, j, m, mhalf, leftmost;
296
297 m = PyList_GET_SIZE(heap) >> 1; /* index of first childless node */
298 leftmost = keep_top_bit(m + 1) - 1; /* leftmost node in row of m */
299 mhalf = m >> 1; /* parent of first childless node */
300
301 for (i = leftmost - 1 ; i >= mhalf ; i--) {
302 j = i;
303 while (1) {
304 if (siftup_func((PyListObject *)heap, j))
305 return NULL;
306 if (!(j & 1))
307 break;
308 j >>= 1;
309 }
310 }
311
312 for (i = m - 1 ; i >= leftmost ; i--) {
313 j = i;
314 while (1) {
315 if (siftup_func((PyListObject *)heap, j))
316 return NULL;
317 if (!(j & 1))
318 break;
319 j >>= 1;
320 }
321 }
322 Py_RETURN_NONE;
323 }
324
325 static PyObject *
heapify_internal(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))326 heapify_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
327 {
328 Py_ssize_t i, n;
329
330 if (!PyList_Check(heap)) {
331 PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
332 return NULL;
333 }
334
335 /* For heaps likely to be bigger than L1 cache, we use the cache
336 friendly heapify function. For smaller heaps that fit entirely
337 in cache, we prefer the simpler algorithm with less branching.
338 */
339 n = PyList_GET_SIZE(heap);
340 if (n > 2500)
341 return cache_friendly_heapify(heap, siftup_func);
342
343 /* Transform bottom-up. The largest index there's any point to
344 looking at is the largest with a child index in-range, so must
345 have 2*i + 1 < n, or i < (n-1)/2. If n is even = 2*j, this is
346 (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1. If
347 n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
348 and that's again n//2-1.
349 */
350 for (i = (n >> 1) - 1 ; i >= 0 ; i--)
351 if (siftup_func((PyListObject *)heap, i))
352 return NULL;
353 Py_RETURN_NONE;
354 }
355
356 static PyObject *
heapify(PyObject * self,PyObject * heap)357 heapify(PyObject *self, PyObject *heap)
358 {
359 return heapify_internal(heap, siftup);
360 }
361
362 PyDoc_STRVAR(heapify_doc,
363 "Transform list into a heap, in-place, in O(len(heap)) time.");
364
365 static int
siftdown_max(PyListObject * heap,Py_ssize_t startpos,Py_ssize_t pos)366 siftdown_max(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
367 {
368 PyObject *newitem, *parent, **arr;
369 Py_ssize_t parentpos, size;
370 int cmp;
371
372 assert(PyList_Check(heap));
373 size = PyList_GET_SIZE(heap);
374 if (pos >= size) {
375 PyErr_SetString(PyExc_IndexError, "index out of range");
376 return -1;
377 }
378
379 /* Follow the path to the root, moving parents down until finding
380 a place newitem fits. */
381 arr = _PyList_ITEMS(heap);
382 newitem = arr[pos];
383 while (pos > startpos) {
384 parentpos = (pos - 1) >> 1;
385 parent = arr[parentpos];
386 cmp = PyObject_RichCompareBool(parent, newitem, Py_LT);
387 if (cmp < 0)
388 return -1;
389 if (size != PyList_GET_SIZE(heap)) {
390 PyErr_SetString(PyExc_RuntimeError,
391 "list changed size during iteration");
392 return -1;
393 }
394 if (cmp == 0)
395 break;
396 arr = _PyList_ITEMS(heap);
397 parent = arr[parentpos];
398 newitem = arr[pos];
399 arr[parentpos] = newitem;
400 arr[pos] = parent;
401 pos = parentpos;
402 }
403 return 0;
404 }
405
406 static int
siftup_max(PyListObject * heap,Py_ssize_t pos)407 siftup_max(PyListObject *heap, Py_ssize_t pos)
408 {
409 Py_ssize_t startpos, endpos, childpos, limit;
410 PyObject *tmp1, *tmp2, **arr;
411 int cmp;
412
413 assert(PyList_Check(heap));
414 endpos = PyList_GET_SIZE(heap);
415 startpos = pos;
416 if (pos >= endpos) {
417 PyErr_SetString(PyExc_IndexError, "index out of range");
418 return -1;
419 }
420
421 /* Bubble up the smaller child until hitting a leaf. */
422 arr = _PyList_ITEMS(heap);
423 limit = endpos >> 1; /* smallest pos that has no child */
424 while (pos < limit) {
425 /* Set childpos to index of smaller child. */
426 childpos = 2*pos + 1; /* leftmost child position */
427 if (childpos + 1 < endpos) {
428 cmp = PyObject_RichCompareBool(
429 arr[childpos + 1],
430 arr[childpos],
431 Py_LT);
432 if (cmp < 0)
433 return -1;
434 childpos += ((unsigned)cmp ^ 1); /* increment when cmp==0 */
435 arr = _PyList_ITEMS(heap); /* arr may have changed */
436 if (endpos != PyList_GET_SIZE(heap)) {
437 PyErr_SetString(PyExc_RuntimeError,
438 "list changed size during iteration");
439 return -1;
440 }
441 }
442 /* Move the smaller child up. */
443 tmp1 = arr[childpos];
444 tmp2 = arr[pos];
445 arr[childpos] = tmp2;
446 arr[pos] = tmp1;
447 pos = childpos;
448 }
449 /* Bubble it up to its final resting place (by sifting its parents down). */
450 return siftdown_max(heap, startpos, pos);
451 }
452
453 static PyObject *
heappop_max(PyObject * self,PyObject * heap)454 heappop_max(PyObject *self, PyObject *heap)
455 {
456 return heappop_internal(heap, siftup_max);
457 }
458
459 PyDoc_STRVAR(heappop_max_doc, "Maxheap variant of heappop.");
460
461 static PyObject *
heapreplace_max(PyObject * self,PyObject * args)462 heapreplace_max(PyObject *self, PyObject *args)
463 {
464 return heapreplace_internal(args, siftup_max);
465 }
466
467 PyDoc_STRVAR(heapreplace_max_doc, "Maxheap variant of heapreplace");
468
469 static PyObject *
heapify_max(PyObject * self,PyObject * heap)470 heapify_max(PyObject *self, PyObject *heap)
471 {
472 return heapify_internal(heap, siftup_max);
473 }
474
475 PyDoc_STRVAR(heapify_max_doc, "Maxheap variant of heapify.");
476
477 static PyMethodDef heapq_methods[] = {
478 {"heappush", (PyCFunction)heappush,
479 METH_VARARGS, heappush_doc},
480 {"heappushpop", (PyCFunction)heappushpop,
481 METH_VARARGS, heappushpop_doc},
482 {"heappop", (PyCFunction)heappop,
483 METH_O, heappop_doc},
484 {"heapreplace", (PyCFunction)heapreplace,
485 METH_VARARGS, heapreplace_doc},
486 {"heapify", (PyCFunction)heapify,
487 METH_O, heapify_doc},
488 {"_heappop_max", (PyCFunction)heappop_max,
489 METH_O, heappop_max_doc},
490 {"_heapreplace_max",(PyCFunction)heapreplace_max,
491 METH_VARARGS, heapreplace_max_doc},
492 {"_heapify_max", (PyCFunction)heapify_max,
493 METH_O, heapify_max_doc},
494 {NULL, NULL} /* sentinel */
495 };
496
497 PyDoc_STRVAR(module_doc,
498 "Heap queue algorithm (a.k.a. priority queue).\n\
499 \n\
500 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
501 all k, counting elements from 0. For the sake of comparison,\n\
502 non-existing elements are considered to be infinite. The interesting\n\
503 property of a heap is that a[0] is always its smallest element.\n\
504 \n\
505 Usage:\n\
506 \n\
507 heap = [] # creates an empty heap\n\
508 heappush(heap, item) # pushes a new item on the heap\n\
509 item = heappop(heap) # pops the smallest item from the heap\n\
510 item = heap[0] # smallest item on the heap without popping it\n\
511 heapify(x) # transforms list into a heap, in-place, in linear time\n\
512 item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
513 # new item; the heap size is unchanged\n\
514 \n\
515 Our API differs from textbook heap algorithms as follows:\n\
516 \n\
517 - We use 0-based indexing. This makes the relationship between the\n\
518 index for a node and the indexes for its children slightly less\n\
519 obvious, but is more suitable since Python uses 0-based indexing.\n\
520 \n\
521 - Our heappop() method returns the smallest item, not the largest.\n\
522 \n\
523 These two make it possible to view the heap as a regular Python list\n\
524 without surprises: heap[0] is the smallest item, and heap.sort()\n\
525 maintains the heap invariant!\n");
526
527
528 PyDoc_STRVAR(__about__,
529 "Heap queues\n\
530 \n\
531 [explanation by Fran\xc3\xa7ois Pinard]\n\
532 \n\
533 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
534 all k, counting elements from 0. For the sake of comparison,\n\
535 non-existing elements are considered to be infinite. The interesting\n\
536 property of a heap is that a[0] is always its smallest element.\n"
537 "\n\
538 The strange invariant above is meant to be an efficient memory\n\
539 representation for a tournament. The numbers below are `k', not a[k]:\n\
540 \n\
541 0\n\
542 \n\
543 1 2\n\
544 \n\
545 3 4 5 6\n\
546 \n\
547 7 8 9 10 11 12 13 14\n\
548 \n\
549 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30\n\
550 \n\
551 \n\
552 In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In\n\
553 a usual binary tournament we see in sports, each cell is the winner\n\
554 over the two cells it tops, and we can trace the winner down the tree\n\
555 to see all opponents s/he had. However, in many computer applications\n\
556 of such tournaments, we do not need to trace the history of a winner.\n\
557 To be more memory efficient, when a winner is promoted, we try to\n\
558 replace it by something else at a lower level, and the rule becomes\n\
559 that a cell and the two cells it tops contain three different items,\n\
560 but the top cell \"wins\" over the two topped cells.\n"
561 "\n\
562 If this heap invariant is protected at all time, index 0 is clearly\n\
563 the overall winner. The simplest algorithmic way to remove it and\n\
564 find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
565 diagram above) into the 0 position, and then percolate this new 0 down\n\
566 the tree, exchanging values, until the invariant is re-established.\n\
567 This is clearly logarithmic on the total number of items in the tree.\n\
568 By iterating over all items, you get an O(n ln n) sort.\n"
569 "\n\
570 A nice feature of this sort is that you can efficiently insert new\n\
571 items while the sort is going on, provided that the inserted items are\n\
572 not \"better\" than the last 0'th element you extracted. This is\n\
573 especially useful in simulation contexts, where the tree holds all\n\
574 incoming events, and the \"win\" condition means the smallest scheduled\n\
575 time. When an event schedule other events for execution, they are\n\
576 scheduled into the future, so they can easily go into the heap. So, a\n\
577 heap is a good structure for implementing schedulers (this is what I\n\
578 used for my MIDI sequencer :-).\n"
579 "\n\
580 Various structures for implementing schedulers have been extensively\n\
581 studied, and heaps are good for this, as they are reasonably speedy,\n\
582 the speed is almost constant, and the worst case is not much different\n\
583 than the average case. However, there are other representations which\n\
584 are more efficient overall, yet the worst cases might be terrible.\n"
585 "\n\
586 Heaps are also very useful in big disk sorts. You most probably all\n\
587 know that a big sort implies producing \"runs\" (which are pre-sorted\n\
588 sequences, which size is usually related to the amount of CPU memory),\n\
589 followed by a merging passes for these runs, which merging is often\n\
590 very cleverly organised[1]. It is very important that the initial\n\
591 sort produces the longest runs possible. Tournaments are a good way\n\
592 to that. If, using all the memory available to hold a tournament, you\n\
593 replace and percolate items that happen to fit the current run, you'll\n\
594 produce runs which are twice the size of the memory for random input,\n\
595 and much better for input fuzzily ordered.\n"
596 "\n\
597 Moreover, if you output the 0'th item on disk and get an input which\n\
598 may not fit in the current tournament (because the value \"wins\" over\n\
599 the last output value), it cannot fit in the heap, so the size of the\n\
600 heap decreases. The freed memory could be cleverly reused immediately\n\
601 for progressively building a second heap, which grows at exactly the\n\
602 same rate the first heap is melting. When the first heap completely\n\
603 vanishes, you switch heaps and start a new run. Clever and quite\n\
604 effective!\n\
605 \n\
606 In a word, heaps are useful memory structures to know. I use them in\n\
607 a few applications, and I think it is good to keep a `heap' module\n\
608 around. :-)\n"
609 "\n\
610 --------------------\n\
611 [1] The disk balancing algorithms which are current, nowadays, are\n\
612 more annoying than clever, and this is a consequence of the seeking\n\
613 capabilities of the disks. On devices which cannot seek, like big\n\
614 tape drives, the story was quite different, and one had to be very\n\
615 clever to ensure (far in advance) that each tape movement will be the\n\
616 most effective possible (that is, will best participate at\n\
617 \"progressing\" the merge). Some tapes were even able to read\n\
618 backwards, and this was also used to avoid the rewinding time.\n\
619 Believe me, real good tape sorts were quite spectacular to watch!\n\
620 From all times, sorting has always been a Great Art! :-)\n");
621
622
623 static struct PyModuleDef _heapqmodule = {
624 PyModuleDef_HEAD_INIT,
625 "_heapq",
626 module_doc,
627 -1,
628 heapq_methods,
629 NULL,
630 NULL,
631 NULL,
632 NULL
633 };
634
635 PyMODINIT_FUNC
PyInit__heapq(void)636 PyInit__heapq(void)
637 {
638 PyObject *m, *about;
639
640 m = PyModule_Create(&_heapqmodule);
641 if (m == NULL)
642 return NULL;
643 about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL);
644 PyModule_AddObject(m, "__about__", about);
645 return m;
646 }
647
648