• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Drop in replacement for heapq.py
2 
3 C implementation derived directly from heapq.py in Py2.3
4 which was written by Kevin O'Connor, augmented by Tim Peters,
5 annotated by François Pinard, and converted to C by Raymond Hettinger.
6 
7 */
8 
9 #include "Python.h"
10 
11 static int
siftdown(PyListObject * heap,Py_ssize_t startpos,Py_ssize_t pos)12 siftdown(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
13 {
14     PyObject *newitem, *parent, **arr;
15     Py_ssize_t parentpos, size;
16     int cmp;
17 
18     assert(PyList_Check(heap));
19     size = PyList_GET_SIZE(heap);
20     if (pos >= size) {
21         PyErr_SetString(PyExc_IndexError, "index out of range");
22         return -1;
23     }
24 
25     /* Follow the path to the root, moving parents down until finding
26        a place newitem fits. */
27     arr = _PyList_ITEMS(heap);
28     newitem = arr[pos];
29     while (pos > startpos) {
30         parentpos = (pos - 1) >> 1;
31         parent = arr[parentpos];
32         cmp = PyObject_RichCompareBool(newitem, parent, Py_LT);
33         if (cmp < 0)
34             return -1;
35         if (size != PyList_GET_SIZE(heap)) {
36             PyErr_SetString(PyExc_RuntimeError,
37                             "list changed size during iteration");
38             return -1;
39         }
40         if (cmp == 0)
41             break;
42         arr = _PyList_ITEMS(heap);
43         parent = arr[parentpos];
44         newitem = arr[pos];
45         arr[parentpos] = newitem;
46         arr[pos] = parent;
47         pos = parentpos;
48     }
49     return 0;
50 }
51 
52 static int
siftup(PyListObject * heap,Py_ssize_t pos)53 siftup(PyListObject *heap, Py_ssize_t pos)
54 {
55     Py_ssize_t startpos, endpos, childpos, limit;
56     PyObject *tmp1, *tmp2, **arr;
57     int cmp;
58 
59     assert(PyList_Check(heap));
60     endpos = PyList_GET_SIZE(heap);
61     startpos = pos;
62     if (pos >= endpos) {
63         PyErr_SetString(PyExc_IndexError, "index out of range");
64         return -1;
65     }
66 
67     /* Bubble up the smaller child until hitting a leaf. */
68     arr = _PyList_ITEMS(heap);
69     limit = endpos >> 1;         /* smallest pos that has no child */
70     while (pos < limit) {
71         /* Set childpos to index of smaller child.   */
72         childpos = 2*pos + 1;    /* leftmost child position  */
73         if (childpos + 1 < endpos) {
74             cmp = PyObject_RichCompareBool(
75                 arr[childpos],
76                 arr[childpos + 1],
77                 Py_LT);
78             if (cmp < 0)
79                 return -1;
80             childpos += ((unsigned)cmp ^ 1);   /* increment when cmp==0 */
81             arr = _PyList_ITEMS(heap);         /* arr may have changed */
82             if (endpos != PyList_GET_SIZE(heap)) {
83                 PyErr_SetString(PyExc_RuntimeError,
84                                 "list changed size during iteration");
85                 return -1;
86             }
87         }
88         /* Move the smaller child up. */
89         tmp1 = arr[childpos];
90         tmp2 = arr[pos];
91         arr[childpos] = tmp2;
92         arr[pos] = tmp1;
93         pos = childpos;
94     }
95     /* Bubble it up to its final resting place (by sifting its parents down). */
96     return siftdown(heap, startpos, pos);
97 }
98 
99 static PyObject *
heappush(PyObject * self,PyObject * args)100 heappush(PyObject *self, PyObject *args)
101 {
102     PyObject *heap, *item;
103 
104     if (!PyArg_UnpackTuple(args, "heappush", 2, 2, &heap, &item))
105         return NULL;
106 
107     if (!PyList_Check(heap)) {
108         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
109         return NULL;
110     }
111 
112     if (PyList_Append(heap, item))
113         return NULL;
114 
115     if (siftdown((PyListObject *)heap, 0, PyList_GET_SIZE(heap)-1))
116         return NULL;
117     Py_RETURN_NONE;
118 }
119 
120 PyDoc_STRVAR(heappush_doc,
121 "heappush(heap, item) -> None. Push item onto heap, maintaining the heap invariant.");
122 
123 static PyObject *
heappop_internal(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))124 heappop_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
125 {
126     PyObject *lastelt, *returnitem;
127     Py_ssize_t n;
128 
129     if (!PyList_Check(heap)) {
130         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
131         return NULL;
132     }
133 
134     /* raises IndexError if the heap is empty */
135     n = PyList_GET_SIZE(heap);
136     if (n == 0) {
137         PyErr_SetString(PyExc_IndexError, "index out of range");
138         return NULL;
139     }
140 
141     lastelt = PyList_GET_ITEM(heap, n-1) ;
142     Py_INCREF(lastelt);
143     if (PyList_SetSlice(heap, n-1, n, NULL)) {
144         Py_DECREF(lastelt);
145         return NULL;
146     }
147     n--;
148 
149     if (!n)
150         return lastelt;
151     returnitem = PyList_GET_ITEM(heap, 0);
152     PyList_SET_ITEM(heap, 0, lastelt);
153     if (siftup_func((PyListObject *)heap, 0)) {
154         Py_DECREF(returnitem);
155         return NULL;
156     }
157     return returnitem;
158 }
159 
160 static PyObject *
heappop(PyObject * self,PyObject * heap)161 heappop(PyObject *self, PyObject *heap)
162 {
163     return heappop_internal(heap, siftup);
164 }
165 
166 PyDoc_STRVAR(heappop_doc,
167 "Pop the smallest item off the heap, maintaining the heap invariant.");
168 
169 static PyObject *
heapreplace_internal(PyObject * args,int siftup_func (PyListObject *,Py_ssize_t))170 heapreplace_internal(PyObject *args, int siftup_func(PyListObject *, Py_ssize_t))
171 {
172     PyObject *heap, *item, *returnitem;
173 
174     if (!PyArg_UnpackTuple(args, "heapreplace", 2, 2, &heap, &item))
175         return NULL;
176 
177     if (!PyList_Check(heap)) {
178         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
179         return NULL;
180     }
181 
182     if (PyList_GET_SIZE(heap) == 0) {
183         PyErr_SetString(PyExc_IndexError, "index out of range");
184         return NULL;
185     }
186 
187     returnitem = PyList_GET_ITEM(heap, 0);
188     Py_INCREF(item);
189     PyList_SET_ITEM(heap, 0, item);
190     if (siftup_func((PyListObject *)heap, 0)) {
191         Py_DECREF(returnitem);
192         return NULL;
193     }
194     return returnitem;
195 }
196 
197 static PyObject *
heapreplace(PyObject * self,PyObject * args)198 heapreplace(PyObject *self, PyObject *args)
199 {
200     return heapreplace_internal(args, siftup);
201 }
202 
203 PyDoc_STRVAR(heapreplace_doc,
204 "heapreplace(heap, item) -> value. Pop and return the current smallest value, and add the new item.\n\
205 \n\
206 This is more efficient than heappop() followed by heappush(), and can be\n\
207 more appropriate when using a fixed-size heap.  Note that the value\n\
208 returned may be larger than item!  That constrains reasonable uses of\n\
209 this routine unless written as part of a conditional replacement:\n\n\
210     if item > heap[0]:\n\
211         item = heapreplace(heap, item)\n");
212 
213 static PyObject *
heappushpop(PyObject * self,PyObject * args)214 heappushpop(PyObject *self, PyObject *args)
215 {
216     PyObject *heap, *item, *returnitem;
217     int cmp;
218 
219     if (!PyArg_UnpackTuple(args, "heappushpop", 2, 2, &heap, &item))
220         return NULL;
221 
222     if (!PyList_Check(heap)) {
223         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
224         return NULL;
225     }
226 
227     if (PyList_GET_SIZE(heap) == 0) {
228         Py_INCREF(item);
229         return item;
230     }
231 
232     cmp = PyObject_RichCompareBool(PyList_GET_ITEM(heap, 0), item, Py_LT);
233     if (cmp < 0)
234         return NULL;
235     if (cmp == 0) {
236         Py_INCREF(item);
237         return item;
238     }
239 
240     if (PyList_GET_SIZE(heap) == 0) {
241         PyErr_SetString(PyExc_IndexError, "index out of range");
242         return NULL;
243     }
244 
245     returnitem = PyList_GET_ITEM(heap, 0);
246     Py_INCREF(item);
247     PyList_SET_ITEM(heap, 0, item);
248     if (siftup((PyListObject *)heap, 0)) {
249         Py_DECREF(returnitem);
250         return NULL;
251     }
252     return returnitem;
253 }
254 
255 PyDoc_STRVAR(heappushpop_doc,
256 "heappushpop(heap, item) -> value. Push item on the heap, then pop and return the smallest item\n\
257 from the heap. The combined action runs more efficiently than\n\
258 heappush() followed by a separate call to heappop().");
259 
260 static Py_ssize_t
keep_top_bit(Py_ssize_t n)261 keep_top_bit(Py_ssize_t n)
262 {
263     int i = 0;
264 
265     while (n > 1) {
266         n >>= 1;
267         i++;
268     }
269     return n << i;
270 }
271 
272 /* Cache friendly version of heapify()
273    -----------------------------------
274 
275    Build-up a heap in O(n) time by performing siftup() operations
276    on nodes whose children are already heaps.
277 
278    The simplest way is to sift the nodes in reverse order from
279    n//2-1 to 0 inclusive.  The downside is that children may be
280    out of cache by the time their parent is reached.
281 
282    A better way is to not wait for the children to go out of cache.
283    Once a sibling pair of child nodes have been sifted, immediately
284    sift their parent node (while the children are still in cache).
285 
286    Both ways build child heaps before their parents, so both ways
287    do the exact same number of comparisons and produce exactly
288    the same heap.  The only difference is that the traversal
289    order is optimized for cache efficiency.
290 */
291 
292 static PyObject *
cache_friendly_heapify(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))293 cache_friendly_heapify(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
294 {
295     Py_ssize_t i, j, m, mhalf, leftmost;
296 
297     m = PyList_GET_SIZE(heap) >> 1;         /* index of first childless node */
298     leftmost = keep_top_bit(m + 1) - 1;     /* leftmost node in row of m */
299     mhalf = m >> 1;                         /* parent of first childless node */
300 
301     for (i = leftmost - 1 ; i >= mhalf ; i--) {
302         j = i;
303         while (1) {
304             if (siftup_func((PyListObject *)heap, j))
305                 return NULL;
306             if (!(j & 1))
307                 break;
308             j >>= 1;
309         }
310     }
311 
312     for (i = m - 1 ; i >= leftmost ; i--) {
313         j = i;
314         while (1) {
315             if (siftup_func((PyListObject *)heap, j))
316                 return NULL;
317             if (!(j & 1))
318                 break;
319             j >>= 1;
320         }
321     }
322     Py_RETURN_NONE;
323 }
324 
325 static PyObject *
heapify_internal(PyObject * heap,int siftup_func (PyListObject *,Py_ssize_t))326 heapify_internal(PyObject *heap, int siftup_func(PyListObject *, Py_ssize_t))
327 {
328     Py_ssize_t i, n;
329 
330     if (!PyList_Check(heap)) {
331         PyErr_SetString(PyExc_TypeError, "heap argument must be a list");
332         return NULL;
333     }
334 
335     /* For heaps likely to be bigger than L1 cache, we use the cache
336        friendly heapify function.  For smaller heaps that fit entirely
337        in cache, we prefer the simpler algorithm with less branching.
338     */
339     n = PyList_GET_SIZE(heap);
340     if (n > 2500)
341         return cache_friendly_heapify(heap, siftup_func);
342 
343     /* Transform bottom-up.  The largest index there's any point to
344        looking at is the largest with a child index in-range, so must
345        have 2*i + 1 < n, or i < (n-1)/2.  If n is even = 2*j, this is
346        (2*j-1)/2 = j-1/2 so j-1 is the largest, which is n//2 - 1.  If
347        n is odd = 2*j+1, this is (2*j+1-1)/2 = j so j-1 is the largest,
348        and that's again n//2-1.
349     */
350     for (i = (n >> 1) - 1 ; i >= 0 ; i--)
351         if (siftup_func((PyListObject *)heap, i))
352             return NULL;
353     Py_RETURN_NONE;
354 }
355 
356 static PyObject *
heapify(PyObject * self,PyObject * heap)357 heapify(PyObject *self, PyObject *heap)
358 {
359     return heapify_internal(heap, siftup);
360 }
361 
362 PyDoc_STRVAR(heapify_doc,
363 "Transform list into a heap, in-place, in O(len(heap)) time.");
364 
365 static int
siftdown_max(PyListObject * heap,Py_ssize_t startpos,Py_ssize_t pos)366 siftdown_max(PyListObject *heap, Py_ssize_t startpos, Py_ssize_t pos)
367 {
368     PyObject *newitem, *parent, **arr;
369     Py_ssize_t parentpos, size;
370     int cmp;
371 
372     assert(PyList_Check(heap));
373     size = PyList_GET_SIZE(heap);
374     if (pos >= size) {
375         PyErr_SetString(PyExc_IndexError, "index out of range");
376         return -1;
377     }
378 
379     /* Follow the path to the root, moving parents down until finding
380        a place newitem fits. */
381     arr = _PyList_ITEMS(heap);
382     newitem = arr[pos];
383     while (pos > startpos) {
384         parentpos = (pos - 1) >> 1;
385         parent = arr[parentpos];
386         cmp = PyObject_RichCompareBool(parent, newitem, Py_LT);
387         if (cmp < 0)
388             return -1;
389         if (size != PyList_GET_SIZE(heap)) {
390             PyErr_SetString(PyExc_RuntimeError,
391                             "list changed size during iteration");
392             return -1;
393         }
394         if (cmp == 0)
395             break;
396         arr = _PyList_ITEMS(heap);
397         parent = arr[parentpos];
398         newitem = arr[pos];
399         arr[parentpos] = newitem;
400         arr[pos] = parent;
401         pos = parentpos;
402     }
403     return 0;
404 }
405 
406 static int
siftup_max(PyListObject * heap,Py_ssize_t pos)407 siftup_max(PyListObject *heap, Py_ssize_t pos)
408 {
409     Py_ssize_t startpos, endpos, childpos, limit;
410     PyObject *tmp1, *tmp2, **arr;
411     int cmp;
412 
413     assert(PyList_Check(heap));
414     endpos = PyList_GET_SIZE(heap);
415     startpos = pos;
416     if (pos >= endpos) {
417         PyErr_SetString(PyExc_IndexError, "index out of range");
418         return -1;
419     }
420 
421     /* Bubble up the smaller child until hitting a leaf. */
422     arr = _PyList_ITEMS(heap);
423     limit = endpos >> 1;         /* smallest pos that has no child */
424     while (pos < limit) {
425         /* Set childpos to index of smaller child.   */
426         childpos = 2*pos + 1;    /* leftmost child position  */
427         if (childpos + 1 < endpos) {
428             cmp = PyObject_RichCompareBool(
429                 arr[childpos + 1],
430                 arr[childpos],
431                 Py_LT);
432             if (cmp < 0)
433                 return -1;
434             childpos += ((unsigned)cmp ^ 1);   /* increment when cmp==0 */
435             arr = _PyList_ITEMS(heap);         /* arr may have changed */
436             if (endpos != PyList_GET_SIZE(heap)) {
437                 PyErr_SetString(PyExc_RuntimeError,
438                                 "list changed size during iteration");
439                 return -1;
440             }
441         }
442         /* Move the smaller child up. */
443         tmp1 = arr[childpos];
444         tmp2 = arr[pos];
445         arr[childpos] = tmp2;
446         arr[pos] = tmp1;
447         pos = childpos;
448     }
449     /* Bubble it up to its final resting place (by sifting its parents down). */
450     return siftdown_max(heap, startpos, pos);
451 }
452 
453 static PyObject *
heappop_max(PyObject * self,PyObject * heap)454 heappop_max(PyObject *self, PyObject *heap)
455 {
456     return heappop_internal(heap, siftup_max);
457 }
458 
459 PyDoc_STRVAR(heappop_max_doc, "Maxheap variant of heappop.");
460 
461 static PyObject *
heapreplace_max(PyObject * self,PyObject * args)462 heapreplace_max(PyObject *self, PyObject *args)
463 {
464     return heapreplace_internal(args, siftup_max);
465 }
466 
467 PyDoc_STRVAR(heapreplace_max_doc, "Maxheap variant of heapreplace");
468 
469 static PyObject *
heapify_max(PyObject * self,PyObject * heap)470 heapify_max(PyObject *self, PyObject *heap)
471 {
472     return heapify_internal(heap, siftup_max);
473 }
474 
475 PyDoc_STRVAR(heapify_max_doc, "Maxheap variant of heapify.");
476 
477 static PyMethodDef heapq_methods[] = {
478     {"heappush",        (PyCFunction)heappush,
479         METH_VARARGS,           heappush_doc},
480     {"heappushpop",     (PyCFunction)heappushpop,
481         METH_VARARGS,           heappushpop_doc},
482     {"heappop",         (PyCFunction)heappop,
483         METH_O,                 heappop_doc},
484     {"heapreplace",     (PyCFunction)heapreplace,
485         METH_VARARGS,           heapreplace_doc},
486     {"heapify",         (PyCFunction)heapify,
487         METH_O,                 heapify_doc},
488     {"_heappop_max",    (PyCFunction)heappop_max,
489         METH_O,                 heappop_max_doc},
490     {"_heapreplace_max",(PyCFunction)heapreplace_max,
491         METH_VARARGS,           heapreplace_max_doc},
492     {"_heapify_max",    (PyCFunction)heapify_max,
493         METH_O,                 heapify_max_doc},
494     {NULL,              NULL}           /* sentinel */
495 };
496 
497 PyDoc_STRVAR(module_doc,
498 "Heap queue algorithm (a.k.a. priority queue).\n\
499 \n\
500 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
501 all k, counting elements from 0.  For the sake of comparison,\n\
502 non-existing elements are considered to be infinite.  The interesting\n\
503 property of a heap is that a[0] is always its smallest element.\n\
504 \n\
505 Usage:\n\
506 \n\
507 heap = []            # creates an empty heap\n\
508 heappush(heap, item) # pushes a new item on the heap\n\
509 item = heappop(heap) # pops the smallest item from the heap\n\
510 item = heap[0]       # smallest item on the heap without popping it\n\
511 heapify(x)           # transforms list into a heap, in-place, in linear time\n\
512 item = heapreplace(heap, item) # pops and returns smallest item, and adds\n\
513                                # new item; the heap size is unchanged\n\
514 \n\
515 Our API differs from textbook heap algorithms as follows:\n\
516 \n\
517 - We use 0-based indexing.  This makes the relationship between the\n\
518   index for a node and the indexes for its children slightly less\n\
519   obvious, but is more suitable since Python uses 0-based indexing.\n\
520 \n\
521 - Our heappop() method returns the smallest item, not the largest.\n\
522 \n\
523 These two make it possible to view the heap as a regular Python list\n\
524 without surprises: heap[0] is the smallest item, and heap.sort()\n\
525 maintains the heap invariant!\n");
526 
527 
528 PyDoc_STRVAR(__about__,
529 "Heap queues\n\
530 \n\
531 [explanation by Fran\xc3\xa7ois Pinard]\n\
532 \n\
533 Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for\n\
534 all k, counting elements from 0.  For the sake of comparison,\n\
535 non-existing elements are considered to be infinite.  The interesting\n\
536 property of a heap is that a[0] is always its smallest element.\n"
537 "\n\
538 The strange invariant above is meant to be an efficient memory\n\
539 representation for a tournament.  The numbers below are `k', not a[k]:\n\
540 \n\
541                                    0\n\
542 \n\
543                   1                                 2\n\
544 \n\
545           3               4                5               6\n\
546 \n\
547       7       8       9       10      11      12      13      14\n\
548 \n\
549     15 16   17 18   19 20   21 22   23 24   25 26   27 28   29 30\n\
550 \n\
551 \n\
552 In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'.  In\n\
553 a usual binary tournament we see in sports, each cell is the winner\n\
554 over the two cells it tops, and we can trace the winner down the tree\n\
555 to see all opponents s/he had.  However, in many computer applications\n\
556 of such tournaments, we do not need to trace the history of a winner.\n\
557 To be more memory efficient, when a winner is promoted, we try to\n\
558 replace it by something else at a lower level, and the rule becomes\n\
559 that a cell and the two cells it tops contain three different items,\n\
560 but the top cell \"wins\" over the two topped cells.\n"
561 "\n\
562 If this heap invariant is protected at all time, index 0 is clearly\n\
563 the overall winner.  The simplest algorithmic way to remove it and\n\
564 find the \"next\" winner is to move some loser (let's say cell 30 in the\n\
565 diagram above) into the 0 position, and then percolate this new 0 down\n\
566 the tree, exchanging values, until the invariant is re-established.\n\
567 This is clearly logarithmic on the total number of items in the tree.\n\
568 By iterating over all items, you get an O(n ln n) sort.\n"
569 "\n\
570 A nice feature of this sort is that you can efficiently insert new\n\
571 items while the sort is going on, provided that the inserted items are\n\
572 not \"better\" than the last 0'th element you extracted.  This is\n\
573 especially useful in simulation contexts, where the tree holds all\n\
574 incoming events, and the \"win\" condition means the smallest scheduled\n\
575 time.  When an event schedule other events for execution, they are\n\
576 scheduled into the future, so they can easily go into the heap.  So, a\n\
577 heap is a good structure for implementing schedulers (this is what I\n\
578 used for my MIDI sequencer :-).\n"
579 "\n\
580 Various structures for implementing schedulers have been extensively\n\
581 studied, and heaps are good for this, as they are reasonably speedy,\n\
582 the speed is almost constant, and the worst case is not much different\n\
583 than the average case.  However, there are other representations which\n\
584 are more efficient overall, yet the worst cases might be terrible.\n"
585 "\n\
586 Heaps are also very useful in big disk sorts.  You most probably all\n\
587 know that a big sort implies producing \"runs\" (which are pre-sorted\n\
588 sequences, which size is usually related to the amount of CPU memory),\n\
589 followed by a merging passes for these runs, which merging is often\n\
590 very cleverly organised[1].  It is very important that the initial\n\
591 sort produces the longest runs possible.  Tournaments are a good way\n\
592 to that.  If, using all the memory available to hold a tournament, you\n\
593 replace and percolate items that happen to fit the current run, you'll\n\
594 produce runs which are twice the size of the memory for random input,\n\
595 and much better for input fuzzily ordered.\n"
596 "\n\
597 Moreover, if you output the 0'th item on disk and get an input which\n\
598 may not fit in the current tournament (because the value \"wins\" over\n\
599 the last output value), it cannot fit in the heap, so the size of the\n\
600 heap decreases.  The freed memory could be cleverly reused immediately\n\
601 for progressively building a second heap, which grows at exactly the\n\
602 same rate the first heap is melting.  When the first heap completely\n\
603 vanishes, you switch heaps and start a new run.  Clever and quite\n\
604 effective!\n\
605 \n\
606 In a word, heaps are useful memory structures to know.  I use them in\n\
607 a few applications, and I think it is good to keep a `heap' module\n\
608 around. :-)\n"
609 "\n\
610 --------------------\n\
611 [1] The disk balancing algorithms which are current, nowadays, are\n\
612 more annoying than clever, and this is a consequence of the seeking\n\
613 capabilities of the disks.  On devices which cannot seek, like big\n\
614 tape drives, the story was quite different, and one had to be very\n\
615 clever to ensure (far in advance) that each tape movement will be the\n\
616 most effective possible (that is, will best participate at\n\
617 \"progressing\" the merge).  Some tapes were even able to read\n\
618 backwards, and this was also used to avoid the rewinding time.\n\
619 Believe me, real good tape sorts were quite spectacular to watch!\n\
620 From all times, sorting has always been a Great Art! :-)\n");
621 
622 
623 static struct PyModuleDef _heapqmodule = {
624     PyModuleDef_HEAD_INIT,
625     "_heapq",
626     module_doc,
627     -1,
628     heapq_methods,
629     NULL,
630     NULL,
631     NULL,
632     NULL
633 };
634 
635 PyMODINIT_FUNC
PyInit__heapq(void)636 PyInit__heapq(void)
637 {
638     PyObject *m, *about;
639 
640     m = PyModule_Create(&_heapqmodule);
641     if (m == NULL)
642         return NULL;
643     about = PyUnicode_DecodeUTF8(__about__, strlen(__about__), NULL);
644     PyModule_AddObject(m, "__about__", about);
645     return m;
646 }
647 
648