1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_GENERAL_MATRIX_MATRIX_H 11 #define EIGEN_GENERAL_MATRIX_MATRIX_H 12 13 namespace Eigen { 14 15 namespace internal { 16 17 template<typename _LhsScalar, typename _RhsScalar> class level3_blocking; 18 19 /* Specialization for a row-major destination matrix => simple transposition of the product */ 20 template< 21 typename Index, 22 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 23 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs> 24 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,RowMajor> 25 { 26 typedef gebp_traits<RhsScalar,LhsScalar> Traits; 27 28 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; 29 static EIGEN_STRONG_INLINE void run( 30 Index rows, Index cols, Index depth, 31 const LhsScalar* lhs, Index lhsStride, 32 const RhsScalar* rhs, Index rhsStride, 33 ResScalar* res, Index resStride, 34 ResScalar alpha, 35 level3_blocking<RhsScalar,LhsScalar>& blocking, 36 GemmParallelInfo<Index>* info = 0) 37 { 38 // transpose the product such that the result is column major 39 general_matrix_matrix_product<Index, 40 RhsScalar, RhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateRhs, 41 LhsScalar, LhsStorageOrder==RowMajor ? ColMajor : RowMajor, ConjugateLhs, 42 ColMajor> 43 ::run(cols,rows,depth,rhs,rhsStride,lhs,lhsStride,res,resStride,alpha,blocking,info); 44 } 45 }; 46 47 /* Specialization for a col-major destination matrix 48 * => Blocking algorithm following Goto's paper */ 49 template< 50 typename Index, 51 typename LhsScalar, int LhsStorageOrder, bool ConjugateLhs, 52 typename RhsScalar, int RhsStorageOrder, bool ConjugateRhs> 53 struct general_matrix_matrix_product<Index,LhsScalar,LhsStorageOrder,ConjugateLhs,RhsScalar,RhsStorageOrder,ConjugateRhs,ColMajor> 54 { 55 56 typedef gebp_traits<LhsScalar,RhsScalar> Traits; 57 58 typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar; 59 static void run(Index rows, Index cols, Index depth, 60 const LhsScalar* _lhs, Index lhsStride, 61 const RhsScalar* _rhs, Index rhsStride, 62 ResScalar* _res, Index resStride, 63 ResScalar alpha, 64 level3_blocking<LhsScalar,RhsScalar>& blocking, 65 GemmParallelInfo<Index>* info = 0) 66 { 67 typedef const_blas_data_mapper<LhsScalar, Index, LhsStorageOrder> LhsMapper; 68 typedef const_blas_data_mapper<RhsScalar, Index, RhsStorageOrder> RhsMapper; 69 typedef blas_data_mapper<typename Traits::ResScalar, Index, ColMajor> ResMapper; 70 LhsMapper lhs(_lhs,lhsStride); 71 RhsMapper rhs(_rhs,rhsStride); 72 ResMapper res(_res, resStride); 73 74 Index kc = blocking.kc(); // cache block size along the K direction 75 Index mc = (std::min)(rows,blocking.mc()); // cache block size along the M direction 76 Index nc = (std::min)(cols,blocking.nc()); // cache block size along the N direction 77 78 gemm_pack_lhs<LhsScalar, Index, LhsMapper, Traits::mr, Traits::LhsProgress, LhsStorageOrder> pack_lhs; 79 gemm_pack_rhs<RhsScalar, Index, RhsMapper, Traits::nr, RhsStorageOrder> pack_rhs; 80 gebp_kernel<LhsScalar, RhsScalar, Index, ResMapper, Traits::mr, Traits::nr, ConjugateLhs, ConjugateRhs> gebp; 81 82 #ifdef EIGEN_HAS_OPENMP 83 if(info) 84 { 85 // this is the parallel version! 86 int tid = omp_get_thread_num(); 87 int threads = omp_get_num_threads(); 88 89 LhsScalar* blockA = blocking.blockA(); 90 eigen_internal_assert(blockA!=0); 91 92 std::size_t sizeB = kc*nc; 93 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, 0); 94 95 // For each horizontal panel of the rhs, and corresponding vertical panel of the lhs... 96 for(Index k=0; k<depth; k+=kc) 97 { 98 const Index actual_kc = (std::min)(k+kc,depth)-k; // => rows of B', and cols of the A' 99 100 // In order to reduce the chance that a thread has to wait for the other, 101 // let's start by packing B'. 102 pack_rhs(blockB, rhs.getSubMapper(k,0), actual_kc, nc); 103 104 // Pack A_k to A' in a parallel fashion: 105 // each thread packs the sub block A_k,i to A'_i where i is the thread id. 106 107 // However, before copying to A'_i, we have to make sure that no other thread is still using it, 108 // i.e., we test that info[tid].users equals 0. 109 // Then, we set info[tid].users to the number of threads to mark that all other threads are going to use it. 110 while(info[tid].users!=0) {} 111 info[tid].users += threads; 112 113 pack_lhs(blockA+info[tid].lhs_start*actual_kc, lhs.getSubMapper(info[tid].lhs_start,k), actual_kc, info[tid].lhs_length); 114 115 // Notify the other threads that the part A'_i is ready to go. 116 info[tid].sync = k; 117 118 // Computes C_i += A' * B' per A'_i 119 for(int shift=0; shift<threads; ++shift) 120 { 121 int i = (tid+shift)%threads; 122 123 // At this point we have to make sure that A'_i has been updated by the thread i, 124 // we use testAndSetOrdered to mimic a volatile access. 125 // However, no need to wait for the B' part which has been updated by the current thread! 126 if (shift>0) { 127 while(info[i].sync!=k) { 128 } 129 } 130 131 gebp(res.getSubMapper(info[i].lhs_start, 0), blockA+info[i].lhs_start*actual_kc, blockB, info[i].lhs_length, actual_kc, nc, alpha); 132 } 133 134 // Then keep going as usual with the remaining B' 135 for(Index j=nc; j<cols; j+=nc) 136 { 137 const Index actual_nc = (std::min)(j+nc,cols)-j; 138 139 // pack B_k,j to B' 140 pack_rhs(blockB, rhs.getSubMapper(k,j), actual_kc, actual_nc); 141 142 // C_j += A' * B' 143 gebp(res.getSubMapper(0, j), blockA, blockB, rows, actual_kc, actual_nc, alpha); 144 } 145 146 // Release all the sub blocks A'_i of A' for the current thread, 147 // i.e., we simply decrement the number of users by 1 148 for(Index i=0; i<threads; ++i) 149 info[i].users -= 1; 150 } 151 } 152 else 153 #endif // EIGEN_HAS_OPENMP 154 { 155 EIGEN_UNUSED_VARIABLE(info); 156 157 // this is the sequential version! 158 std::size_t sizeA = kc*mc; 159 std::size_t sizeB = kc*nc; 160 161 ei_declare_aligned_stack_constructed_variable(LhsScalar, blockA, sizeA, blocking.blockA()); 162 ei_declare_aligned_stack_constructed_variable(RhsScalar, blockB, sizeB, blocking.blockB()); 163 164 const bool pack_rhs_once = mc!=rows && kc==depth && nc==cols; 165 166 // For each horizontal panel of the rhs, and corresponding panel of the lhs... 167 for(Index i2=0; i2<rows; i2+=mc) 168 { 169 const Index actual_mc = (std::min)(i2+mc,rows)-i2; 170 171 for(Index k2=0; k2<depth; k2+=kc) 172 { 173 const Index actual_kc = (std::min)(k2+kc,depth)-k2; 174 175 // OK, here we have selected one horizontal panel of rhs and one vertical panel of lhs. 176 // => Pack lhs's panel into a sequential chunk of memory (L2/L3 caching) 177 // Note that this panel will be read as many times as the number of blocks in the rhs's 178 // horizontal panel which is, in practice, a very low number. 179 pack_lhs(blockA, lhs.getSubMapper(i2,k2), actual_kc, actual_mc); 180 181 // For each kc x nc block of the rhs's horizontal panel... 182 for(Index j2=0; j2<cols; j2+=nc) 183 { 184 const Index actual_nc = (std::min)(j2+nc,cols)-j2; 185 186 // We pack the rhs's block into a sequential chunk of memory (L2 caching) 187 // Note that this block will be read a very high number of times, which is equal to the number of 188 // micro horizontal panel of the large rhs's panel (e.g., rows/12 times). 189 if((!pack_rhs_once) || i2==0) 190 pack_rhs(blockB, rhs.getSubMapper(k2,j2), actual_kc, actual_nc); 191 192 // Everything is packed, we can now call the panel * block kernel: 193 gebp(res.getSubMapper(i2, j2), blockA, blockB, actual_mc, actual_kc, actual_nc, alpha); 194 } 195 } 196 } 197 } 198 } 199 200 }; 201 202 /********************************************************************************* 203 * Specialization of generic_product_impl for "large" GEMM, i.e., 204 * implementation of the high level wrapper to general_matrix_matrix_product 205 **********************************************************************************/ 206 207 template<typename Scalar, typename Index, typename Gemm, typename Lhs, typename Rhs, typename Dest, typename BlockingType> 208 struct gemm_functor 209 { 210 gemm_functor(const Lhs& lhs, const Rhs& rhs, Dest& dest, const Scalar& actualAlpha, BlockingType& blocking) 211 : m_lhs(lhs), m_rhs(rhs), m_dest(dest), m_actualAlpha(actualAlpha), m_blocking(blocking) 212 {} 213 214 void initParallelSession(Index num_threads) const 215 { 216 m_blocking.initParallel(m_lhs.rows(), m_rhs.cols(), m_lhs.cols(), num_threads); 217 m_blocking.allocateA(); 218 } 219 220 void operator() (Index row, Index rows, Index col=0, Index cols=-1, GemmParallelInfo<Index>* info=0) const 221 { 222 if(cols==-1) 223 cols = m_rhs.cols(); 224 225 Gemm::run(rows, cols, m_lhs.cols(), 226 &m_lhs.coeffRef(row,0), m_lhs.outerStride(), 227 &m_rhs.coeffRef(0,col), m_rhs.outerStride(), 228 (Scalar*)&(m_dest.coeffRef(row,col)), m_dest.outerStride(), 229 m_actualAlpha, m_blocking, info); 230 } 231 232 typedef typename Gemm::Traits Traits; 233 234 protected: 235 const Lhs& m_lhs; 236 const Rhs& m_rhs; 237 Dest& m_dest; 238 Scalar m_actualAlpha; 239 BlockingType& m_blocking; 240 }; 241 242 template<int StorageOrder, typename LhsScalar, typename RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor=1, 243 bool FiniteAtCompileTime = MaxRows!=Dynamic && MaxCols!=Dynamic && MaxDepth != Dynamic> class gemm_blocking_space; 244 245 template<typename _LhsScalar, typename _RhsScalar> 246 class level3_blocking 247 { 248 typedef _LhsScalar LhsScalar; 249 typedef _RhsScalar RhsScalar; 250 251 protected: 252 LhsScalar* m_blockA; 253 RhsScalar* m_blockB; 254 255 Index m_mc; 256 Index m_nc; 257 Index m_kc; 258 259 public: 260 261 level3_blocking() 262 : m_blockA(0), m_blockB(0), m_mc(0), m_nc(0), m_kc(0) 263 {} 264 265 inline Index mc() const { return m_mc; } 266 inline Index nc() const { return m_nc; } 267 inline Index kc() const { return m_kc; } 268 269 inline LhsScalar* blockA() { return m_blockA; } 270 inline RhsScalar* blockB() { return m_blockB; } 271 }; 272 273 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor> 274 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, true /* == FiniteAtCompileTime */> 275 : public level3_blocking< 276 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type, 277 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type> 278 { 279 enum { 280 Transpose = StorageOrder==RowMajor, 281 ActualRows = Transpose ? MaxCols : MaxRows, 282 ActualCols = Transpose ? MaxRows : MaxCols 283 }; 284 typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar; 285 typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar; 286 typedef gebp_traits<LhsScalar,RhsScalar> Traits; 287 enum { 288 SizeA = ActualRows * MaxDepth, 289 SizeB = ActualCols * MaxDepth 290 }; 291 292 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES 293 EIGEN_ALIGN_MAX LhsScalar m_staticA[SizeA]; 294 EIGEN_ALIGN_MAX RhsScalar m_staticB[SizeB]; 295 #else 296 EIGEN_ALIGN_MAX char m_staticA[SizeA * sizeof(LhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; 297 EIGEN_ALIGN_MAX char m_staticB[SizeB * sizeof(RhsScalar) + EIGEN_DEFAULT_ALIGN_BYTES-1]; 298 #endif 299 300 public: 301 302 gemm_blocking_space(Index /*rows*/, Index /*cols*/, Index /*depth*/, Index /*num_threads*/, bool /*full_rows = false*/) 303 { 304 this->m_mc = ActualRows; 305 this->m_nc = ActualCols; 306 this->m_kc = MaxDepth; 307 #if EIGEN_MAX_STATIC_ALIGN_BYTES >= EIGEN_DEFAULT_ALIGN_BYTES 308 this->m_blockA = m_staticA; 309 this->m_blockB = m_staticB; 310 #else 311 this->m_blockA = reinterpret_cast<LhsScalar*>((internal::UIntPtr(m_staticA) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); 312 this->m_blockB = reinterpret_cast<RhsScalar*>((internal::UIntPtr(m_staticB) + (EIGEN_DEFAULT_ALIGN_BYTES-1)) & ~std::size_t(EIGEN_DEFAULT_ALIGN_BYTES-1)); 313 #endif 314 } 315 316 void initParallel(Index, Index, Index, Index) 317 {} 318 319 inline void allocateA() {} 320 inline void allocateB() {} 321 inline void allocateAll() {} 322 }; 323 324 template<int StorageOrder, typename _LhsScalar, typename _RhsScalar, int MaxRows, int MaxCols, int MaxDepth, int KcFactor> 325 class gemm_blocking_space<StorageOrder,_LhsScalar,_RhsScalar,MaxRows, MaxCols, MaxDepth, KcFactor, false> 326 : public level3_blocking< 327 typename conditional<StorageOrder==RowMajor,_RhsScalar,_LhsScalar>::type, 328 typename conditional<StorageOrder==RowMajor,_LhsScalar,_RhsScalar>::type> 329 { 330 enum { 331 Transpose = StorageOrder==RowMajor 332 }; 333 typedef typename conditional<Transpose,_RhsScalar,_LhsScalar>::type LhsScalar; 334 typedef typename conditional<Transpose,_LhsScalar,_RhsScalar>::type RhsScalar; 335 typedef gebp_traits<LhsScalar,RhsScalar> Traits; 336 337 Index m_sizeA; 338 Index m_sizeB; 339 340 public: 341 342 gemm_blocking_space(Index rows, Index cols, Index depth, Index num_threads, bool l3_blocking) 343 { 344 this->m_mc = Transpose ? cols : rows; 345 this->m_nc = Transpose ? rows : cols; 346 this->m_kc = depth; 347 348 if(l3_blocking) 349 { 350 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, this->m_nc, num_threads); 351 } 352 else // no l3 blocking 353 { 354 Index n = this->m_nc; 355 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, this->m_mc, n, num_threads); 356 } 357 358 m_sizeA = this->m_mc * this->m_kc; 359 m_sizeB = this->m_kc * this->m_nc; 360 } 361 362 void initParallel(Index rows, Index cols, Index depth, Index num_threads) 363 { 364 this->m_mc = Transpose ? cols : rows; 365 this->m_nc = Transpose ? rows : cols; 366 this->m_kc = depth; 367 368 eigen_internal_assert(this->m_blockA==0 && this->m_blockB==0); 369 Index m = this->m_mc; 370 computeProductBlockingSizes<LhsScalar,RhsScalar,KcFactor>(this->m_kc, m, this->m_nc, num_threads); 371 m_sizeA = this->m_mc * this->m_kc; 372 m_sizeB = this->m_kc * this->m_nc; 373 } 374 375 void allocateA() 376 { 377 if(this->m_blockA==0) 378 this->m_blockA = aligned_new<LhsScalar>(m_sizeA); 379 } 380 381 void allocateB() 382 { 383 if(this->m_blockB==0) 384 this->m_blockB = aligned_new<RhsScalar>(m_sizeB); 385 } 386 387 void allocateAll() 388 { 389 allocateA(); 390 allocateB(); 391 } 392 393 ~gemm_blocking_space() 394 { 395 aligned_delete(this->m_blockA, m_sizeA); 396 aligned_delete(this->m_blockB, m_sizeB); 397 } 398 }; 399 400 } // end namespace internal 401 402 namespace internal { 403 404 template<typename Lhs, typename Rhs> 405 struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> 406 : generic_product_impl_base<Lhs,Rhs,generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,GemmProduct> > 407 { 408 typedef typename Product<Lhs,Rhs>::Scalar Scalar; 409 typedef typename Lhs::Scalar LhsScalar; 410 typedef typename Rhs::Scalar RhsScalar; 411 412 typedef internal::blas_traits<Lhs> LhsBlasTraits; 413 typedef typename LhsBlasTraits::DirectLinearAccessType ActualLhsType; 414 typedef typename internal::remove_all<ActualLhsType>::type ActualLhsTypeCleaned; 415 416 typedef internal::blas_traits<Rhs> RhsBlasTraits; 417 typedef typename RhsBlasTraits::DirectLinearAccessType ActualRhsType; 418 typedef typename internal::remove_all<ActualRhsType>::type ActualRhsTypeCleaned; 419 420 enum { 421 MaxDepthAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(Lhs::MaxColsAtCompileTime,Rhs::MaxRowsAtCompileTime) 422 }; 423 424 typedef generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode> lazyproduct; 425 426 template<typename Dst> 427 static void evalTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) 428 { 429 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) 430 lazyproduct::evalTo(dst, lhs, rhs); 431 else 432 { 433 dst.setZero(); 434 scaleAndAddTo(dst, lhs, rhs, Scalar(1)); 435 } 436 } 437 438 template<typename Dst> 439 static void addTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) 440 { 441 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) 442 lazyproduct::addTo(dst, lhs, rhs); 443 else 444 scaleAndAddTo(dst,lhs, rhs, Scalar(1)); 445 } 446 447 template<typename Dst> 448 static void subTo(Dst& dst, const Lhs& lhs, const Rhs& rhs) 449 { 450 if((rhs.rows()+dst.rows()+dst.cols())<20 && rhs.rows()>0) 451 lazyproduct::subTo(dst, lhs, rhs); 452 else 453 scaleAndAddTo(dst, lhs, rhs, Scalar(-1)); 454 } 455 456 template<typename Dest> 457 static void scaleAndAddTo(Dest& dst, const Lhs& a_lhs, const Rhs& a_rhs, const Scalar& alpha) 458 { 459 eigen_assert(dst.rows()==a_lhs.rows() && dst.cols()==a_rhs.cols()); 460 if(a_lhs.cols()==0 || a_lhs.rows()==0 || a_rhs.cols()==0) 461 return; 462 463 typename internal::add_const_on_value_type<ActualLhsType>::type lhs = LhsBlasTraits::extract(a_lhs); 464 typename internal::add_const_on_value_type<ActualRhsType>::type rhs = RhsBlasTraits::extract(a_rhs); 465 466 Scalar actualAlpha = alpha * LhsBlasTraits::extractScalarFactor(a_lhs) 467 * RhsBlasTraits::extractScalarFactor(a_rhs); 468 469 typedef internal::gemm_blocking_space<(Dest::Flags&RowMajorBit) ? RowMajor : ColMajor,LhsScalar,RhsScalar, 470 Dest::MaxRowsAtCompileTime,Dest::MaxColsAtCompileTime,MaxDepthAtCompileTime> BlockingType; 471 472 typedef internal::gemm_functor< 473 Scalar, Index, 474 internal::general_matrix_matrix_product< 475 Index, 476 LhsScalar, (ActualLhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(LhsBlasTraits::NeedToConjugate), 477 RhsScalar, (ActualRhsTypeCleaned::Flags&RowMajorBit) ? RowMajor : ColMajor, bool(RhsBlasTraits::NeedToConjugate), 478 (Dest::Flags&RowMajorBit) ? RowMajor : ColMajor>, 479 ActualLhsTypeCleaned, ActualRhsTypeCleaned, Dest, BlockingType> GemmFunctor; 480 481 BlockingType blocking(dst.rows(), dst.cols(), lhs.cols(), 1, true); 482 internal::parallelize_gemm<(Dest::MaxRowsAtCompileTime>32 || Dest::MaxRowsAtCompileTime==Dynamic)> 483 (GemmFunctor(lhs, rhs, dst, actualAlpha, blocking), a_lhs.rows(), a_rhs.cols(), a_lhs.cols(), Dest::Flags&RowMajorBit); 484 } 485 }; 486 487 } // end namespace internal 488 489 } // end namespace Eigen 490 491 #endif // EIGEN_GENERAL_MATRIX_MATRIX_H 492