1 //===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions identifies calls to builtin functions that allocate
11 // or free memory.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Analysis/MemoryBuiltins.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/TargetFolder.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/Utils/Local.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalAlias.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/raw_ostream.h"
44 #include <cassert>
45 #include <cstdint>
46 #include <iterator>
47 #include <utility>
48
49 using namespace llvm;
50
51 #define DEBUG_TYPE "memory-builtins"
52
53 enum AllocType : uint8_t {
54 OpNewLike = 1<<0, // allocates; never returns null
55 MallocLike = 1<<1 | OpNewLike, // allocates; may return null
56 CallocLike = 1<<2, // allocates + bzero
57 ReallocLike = 1<<3, // reallocates
58 StrDupLike = 1<<4,
59 MallocOrCallocLike = MallocLike | CallocLike,
60 AllocLike = MallocLike | CallocLike | StrDupLike,
61 AnyAlloc = AllocLike | ReallocLike
62 };
63
64 struct AllocFnsTy {
65 AllocType AllocTy;
66 unsigned NumParams;
67 // First and Second size parameters (or -1 if unused)
68 int FstParam, SndParam;
69 };
70
71 // FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
72 // know which functions are nounwind, noalias, nocapture parameters, etc.
73 static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
74 {LibFunc_malloc, {MallocLike, 1, 0, -1}},
75 {LibFunc_valloc, {MallocLike, 1, 0, -1}},
76 {LibFunc_Znwj, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
77 {LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
78 {LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned int, align_val_t)
79 {LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, // new(unsigned int, align_val_t, nothrow)
80 {MallocLike, 3, 0, -1}},
81 {LibFunc_Znwm, {OpNewLike, 1, 0, -1}}, // new(unsigned long)
82 {LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new(unsigned long, nothrow)
83 {LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new(unsigned long, align_val_t)
84 {LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, // new(unsigned long, align_val_t, nothrow)
85 {MallocLike, 3, 0, -1}},
86 {LibFunc_Znaj, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
87 {LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
88 {LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned int, align_val_t)
89 {LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, // new[](unsigned int, align_val_t, nothrow)
90 {MallocLike, 3, 0, -1}},
91 {LibFunc_Znam, {OpNewLike, 1, 0, -1}}, // new[](unsigned long)
92 {LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1}}, // new[](unsigned long, nothrow)
93 {LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1}}, // new[](unsigned long, align_val_t)
94 {LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, // new[](unsigned long, align_val_t, nothrow)
95 {MallocLike, 3, 0, -1}},
96 {LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1}}, // new(unsigned int)
97 {LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned int, nothrow)
98 {LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1}}, // new(unsigned long long)
99 {LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new(unsigned long long, nothrow)
100 {LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1}}, // new[](unsigned int)
101 {LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned int, nothrow)
102 {LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1}}, // new[](unsigned long long)
103 {LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1}}, // new[](unsigned long long, nothrow)
104 {LibFunc_calloc, {CallocLike, 2, 0, 1}},
105 {LibFunc_realloc, {ReallocLike, 2, 1, -1}},
106 {LibFunc_reallocf, {ReallocLike, 2, 1, -1}},
107 {LibFunc_strdup, {StrDupLike, 1, -1, -1}},
108 {LibFunc_strndup, {StrDupLike, 2, 1, -1}}
109 // TODO: Handle "int posix_memalign(void **, size_t, size_t)"
110 };
111
getCalledFunction(const Value * V,bool LookThroughBitCast,bool & IsNoBuiltin)112 static const Function *getCalledFunction(const Value *V, bool LookThroughBitCast,
113 bool &IsNoBuiltin) {
114 // Don't care about intrinsics in this case.
115 if (isa<IntrinsicInst>(V))
116 return nullptr;
117
118 if (LookThroughBitCast)
119 V = V->stripPointerCasts();
120
121 ImmutableCallSite CS(V);
122 if (!CS.getInstruction())
123 return nullptr;
124
125 IsNoBuiltin = CS.isNoBuiltin();
126
127 if (const Function *Callee = CS.getCalledFunction())
128 return Callee;
129 return nullptr;
130 }
131
132 /// Returns the allocation data for the given value if it's either a call to a
133 /// known allocation function, or a call to a function with the allocsize
134 /// attribute.
135 static Optional<AllocFnsTy>
getAllocationDataForFunction(const Function * Callee,AllocType AllocTy,const TargetLibraryInfo * TLI)136 getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
137 const TargetLibraryInfo *TLI) {
138 // Make sure that the function is available.
139 StringRef FnName = Callee->getName();
140 LibFunc TLIFn;
141 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
142 return None;
143
144 const auto *Iter = find_if(
145 AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
146 return P.first == TLIFn;
147 });
148
149 if (Iter == std::end(AllocationFnData))
150 return None;
151
152 const AllocFnsTy *FnData = &Iter->second;
153 if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
154 return None;
155
156 // Check function prototype.
157 int FstParam = FnData->FstParam;
158 int SndParam = FnData->SndParam;
159 FunctionType *FTy = Callee->getFunctionType();
160
161 if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
162 FTy->getNumParams() == FnData->NumParams &&
163 (FstParam < 0 ||
164 (FTy->getParamType(FstParam)->isIntegerTy(32) ||
165 FTy->getParamType(FstParam)->isIntegerTy(64))) &&
166 (SndParam < 0 ||
167 FTy->getParamType(SndParam)->isIntegerTy(32) ||
168 FTy->getParamType(SndParam)->isIntegerTy(64)))
169 return *FnData;
170 return None;
171 }
172
getAllocationData(const Value * V,AllocType AllocTy,const TargetLibraryInfo * TLI,bool LookThroughBitCast=false)173 static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
174 const TargetLibraryInfo *TLI,
175 bool LookThroughBitCast = false) {
176 bool IsNoBuiltinCall;
177 if (const Function *Callee =
178 getCalledFunction(V, LookThroughBitCast, IsNoBuiltinCall))
179 if (!IsNoBuiltinCall)
180 return getAllocationDataForFunction(Callee, AllocTy, TLI);
181 return None;
182 }
183
getAllocationSize(const Value * V,const TargetLibraryInfo * TLI)184 static Optional<AllocFnsTy> getAllocationSize(const Value *V,
185 const TargetLibraryInfo *TLI) {
186 bool IsNoBuiltinCall;
187 const Function *Callee =
188 getCalledFunction(V, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
189 if (!Callee)
190 return None;
191
192 // Prefer to use existing information over allocsize. This will give us an
193 // accurate AllocTy.
194 if (!IsNoBuiltinCall)
195 if (Optional<AllocFnsTy> Data =
196 getAllocationDataForFunction(Callee, AnyAlloc, TLI))
197 return Data;
198
199 Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
200 if (Attr == Attribute())
201 return None;
202
203 std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
204
205 AllocFnsTy Result;
206 // Because allocsize only tells us how many bytes are allocated, we're not
207 // really allowed to assume anything, so we use MallocLike.
208 Result.AllocTy = MallocLike;
209 Result.NumParams = Callee->getNumOperands();
210 Result.FstParam = Args.first;
211 Result.SndParam = Args.second.getValueOr(-1);
212 return Result;
213 }
214
hasNoAliasAttr(const Value * V,bool LookThroughBitCast)215 static bool hasNoAliasAttr(const Value *V, bool LookThroughBitCast) {
216 ImmutableCallSite CS(LookThroughBitCast ? V->stripPointerCasts() : V);
217 return CS && CS.hasRetAttr(Attribute::NoAlias);
218 }
219
220 /// Tests if a value is a call or invoke to a library function that
221 /// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
222 /// like).
isAllocationFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)223 bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI,
224 bool LookThroughBitCast) {
225 return getAllocationData(V, AnyAlloc, TLI, LookThroughBitCast).hasValue();
226 }
227
228 /// Tests if a value is a call or invoke to a function that returns a
229 /// NoAlias pointer (including malloc/calloc/realloc/strdup-like functions).
isNoAliasFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)230 bool llvm::isNoAliasFn(const Value *V, const TargetLibraryInfo *TLI,
231 bool LookThroughBitCast) {
232 // it's safe to consider realloc as noalias since accessing the original
233 // pointer is undefined behavior
234 return isAllocationFn(V, TLI, LookThroughBitCast) ||
235 hasNoAliasAttr(V, LookThroughBitCast);
236 }
237
238 /// Tests if a value is a call or invoke to a library function that
239 /// allocates uninitialized memory (such as malloc).
isMallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)240 bool llvm::isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
241 bool LookThroughBitCast) {
242 return getAllocationData(V, MallocLike, TLI, LookThroughBitCast).hasValue();
243 }
244
245 /// Tests if a value is a call or invoke to a library function that
246 /// allocates zero-filled memory (such as calloc).
isCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)247 bool llvm::isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
248 bool LookThroughBitCast) {
249 return getAllocationData(V, CallocLike, TLI, LookThroughBitCast).hasValue();
250 }
251
252 /// Tests if a value is a call or invoke to a library function that
253 /// allocates memory similar to malloc or calloc.
isMallocOrCallocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)254 bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
255 bool LookThroughBitCast) {
256 return getAllocationData(V, MallocOrCallocLike, TLI,
257 LookThroughBitCast).hasValue();
258 }
259
260 /// Tests if a value is a call or invoke to a library function that
261 /// allocates memory (either malloc, calloc, or strdup like).
isAllocLikeFn(const Value * V,const TargetLibraryInfo * TLI,bool LookThroughBitCast)262 bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI,
263 bool LookThroughBitCast) {
264 return getAllocationData(V, AllocLike, TLI, LookThroughBitCast).hasValue();
265 }
266
267 /// extractMallocCall - Returns the corresponding CallInst if the instruction
268 /// is a malloc call. Since CallInst::CreateMalloc() only creates calls, we
269 /// ignore InvokeInst here.
extractMallocCall(const Value * I,const TargetLibraryInfo * TLI)270 const CallInst *llvm::extractMallocCall(const Value *I,
271 const TargetLibraryInfo *TLI) {
272 return isMallocLikeFn(I, TLI) ? dyn_cast<CallInst>(I) : nullptr;
273 }
274
computeArraySize(const CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt=false)275 static Value *computeArraySize(const CallInst *CI, const DataLayout &DL,
276 const TargetLibraryInfo *TLI,
277 bool LookThroughSExt = false) {
278 if (!CI)
279 return nullptr;
280
281 // The size of the malloc's result type must be known to determine array size.
282 Type *T = getMallocAllocatedType(CI, TLI);
283 if (!T || !T->isSized())
284 return nullptr;
285
286 unsigned ElementSize = DL.getTypeAllocSize(T);
287 if (StructType *ST = dyn_cast<StructType>(T))
288 ElementSize = DL.getStructLayout(ST)->getSizeInBytes();
289
290 // If malloc call's arg can be determined to be a multiple of ElementSize,
291 // return the multiple. Otherwise, return NULL.
292 Value *MallocArg = CI->getArgOperand(0);
293 Value *Multiple = nullptr;
294 if (ComputeMultiple(MallocArg, ElementSize, Multiple, LookThroughSExt))
295 return Multiple;
296
297 return nullptr;
298 }
299
300 /// getMallocType - Returns the PointerType resulting from the malloc call.
301 /// The PointerType depends on the number of bitcast uses of the malloc call:
302 /// 0: PointerType is the calls' return type.
303 /// 1: PointerType is the bitcast's result type.
304 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocType(const CallInst * CI,const TargetLibraryInfo * TLI)305 PointerType *llvm::getMallocType(const CallInst *CI,
306 const TargetLibraryInfo *TLI) {
307 assert(isMallocLikeFn(CI, TLI) && "getMallocType and not malloc call");
308
309 PointerType *MallocType = nullptr;
310 unsigned NumOfBitCastUses = 0;
311
312 // Determine if CallInst has a bitcast use.
313 for (Value::const_user_iterator UI = CI->user_begin(), E = CI->user_end();
314 UI != E;)
315 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(*UI++)) {
316 MallocType = cast<PointerType>(BCI->getDestTy());
317 NumOfBitCastUses++;
318 }
319
320 // Malloc call has 1 bitcast use, so type is the bitcast's destination type.
321 if (NumOfBitCastUses == 1)
322 return MallocType;
323
324 // Malloc call was not bitcast, so type is the malloc function's return type.
325 if (NumOfBitCastUses == 0)
326 return cast<PointerType>(CI->getType());
327
328 // Type could not be determined.
329 return nullptr;
330 }
331
332 /// getMallocAllocatedType - Returns the Type allocated by malloc call.
333 /// The Type depends on the number of bitcast uses of the malloc call:
334 /// 0: PointerType is the malloc calls' return type.
335 /// 1: PointerType is the bitcast's result type.
336 /// >1: Unique PointerType cannot be determined, return NULL.
getMallocAllocatedType(const CallInst * CI,const TargetLibraryInfo * TLI)337 Type *llvm::getMallocAllocatedType(const CallInst *CI,
338 const TargetLibraryInfo *TLI) {
339 PointerType *PT = getMallocType(CI, TLI);
340 return PT ? PT->getElementType() : nullptr;
341 }
342
343 /// getMallocArraySize - Returns the array size of a malloc call. If the
344 /// argument passed to malloc is a multiple of the size of the malloced type,
345 /// then return that multiple. For non-array mallocs, the multiple is
346 /// constant 1. Otherwise, return NULL for mallocs whose array size cannot be
347 /// determined.
getMallocArraySize(CallInst * CI,const DataLayout & DL,const TargetLibraryInfo * TLI,bool LookThroughSExt)348 Value *llvm::getMallocArraySize(CallInst *CI, const DataLayout &DL,
349 const TargetLibraryInfo *TLI,
350 bool LookThroughSExt) {
351 assert(isMallocLikeFn(CI, TLI) && "getMallocArraySize and not malloc call");
352 return computeArraySize(CI, DL, TLI, LookThroughSExt);
353 }
354
355 /// extractCallocCall - Returns the corresponding CallInst if the instruction
356 /// is a calloc call.
extractCallocCall(const Value * I,const TargetLibraryInfo * TLI)357 const CallInst *llvm::extractCallocCall(const Value *I,
358 const TargetLibraryInfo *TLI) {
359 return isCallocLikeFn(I, TLI) ? cast<CallInst>(I) : nullptr;
360 }
361
362 /// isFreeCall - Returns non-null if the value is a call to the builtin free()
isFreeCall(const Value * I,const TargetLibraryInfo * TLI)363 const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
364 bool IsNoBuiltinCall;
365 const Function *Callee =
366 getCalledFunction(I, /*LookThroughBitCast=*/false, IsNoBuiltinCall);
367 if (Callee == nullptr || IsNoBuiltinCall)
368 return nullptr;
369
370 StringRef FnName = Callee->getName();
371 LibFunc TLIFn;
372 if (!TLI || !TLI->getLibFunc(FnName, TLIFn) || !TLI->has(TLIFn))
373 return nullptr;
374
375 unsigned ExpectedNumParams;
376 if (TLIFn == LibFunc_free ||
377 TLIFn == LibFunc_ZdlPv || // operator delete(void*)
378 TLIFn == LibFunc_ZdaPv || // operator delete[](void*)
379 TLIFn == LibFunc_msvc_delete_ptr32 || // operator delete(void*)
380 TLIFn == LibFunc_msvc_delete_ptr64 || // operator delete(void*)
381 TLIFn == LibFunc_msvc_delete_array_ptr32 || // operator delete[](void*)
382 TLIFn == LibFunc_msvc_delete_array_ptr64) // operator delete[](void*)
383 ExpectedNumParams = 1;
384 else if (TLIFn == LibFunc_ZdlPvj || // delete(void*, uint)
385 TLIFn == LibFunc_ZdlPvm || // delete(void*, ulong)
386 TLIFn == LibFunc_ZdlPvRKSt9nothrow_t || // delete(void*, nothrow)
387 TLIFn == LibFunc_ZdlPvSt11align_val_t || // delete(void*, align_val_t)
388 TLIFn == LibFunc_ZdaPvj || // delete[](void*, uint)
389 TLIFn == LibFunc_ZdaPvm || // delete[](void*, ulong)
390 TLIFn == LibFunc_ZdaPvRKSt9nothrow_t || // delete[](void*, nothrow)
391 TLIFn == LibFunc_ZdaPvSt11align_val_t || // delete[](void*, align_val_t)
392 TLIFn == LibFunc_msvc_delete_ptr32_int || // delete(void*, uint)
393 TLIFn == LibFunc_msvc_delete_ptr64_longlong || // delete(void*, ulonglong)
394 TLIFn == LibFunc_msvc_delete_ptr32_nothrow || // delete(void*, nothrow)
395 TLIFn == LibFunc_msvc_delete_ptr64_nothrow || // delete(void*, nothrow)
396 TLIFn == LibFunc_msvc_delete_array_ptr32_int || // delete[](void*, uint)
397 TLIFn == LibFunc_msvc_delete_array_ptr64_longlong || // delete[](void*, ulonglong)
398 TLIFn == LibFunc_msvc_delete_array_ptr32_nothrow || // delete[](void*, nothrow)
399 TLIFn == LibFunc_msvc_delete_array_ptr64_nothrow) // delete[](void*, nothrow)
400 ExpectedNumParams = 2;
401 else if (TLIFn == LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t || // delete(void*, align_val_t, nothrow)
402 TLIFn == LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t) // delete[](void*, align_val_t, nothrow)
403 ExpectedNumParams = 3;
404 else
405 return nullptr;
406
407 // Check free prototype.
408 // FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
409 // attribute will exist.
410 FunctionType *FTy = Callee->getFunctionType();
411 if (!FTy->getReturnType()->isVoidTy())
412 return nullptr;
413 if (FTy->getNumParams() != ExpectedNumParams)
414 return nullptr;
415 if (FTy->getParamType(0) != Type::getInt8PtrTy(Callee->getContext()))
416 return nullptr;
417
418 return dyn_cast<CallInst>(I);
419 }
420
421 //===----------------------------------------------------------------------===//
422 // Utility functions to compute size of objects.
423 //
getSizeWithOverflow(const SizeOffsetType & Data)424 static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
425 if (Data.second.isNegative() || Data.first.ult(Data.second))
426 return APInt(Data.first.getBitWidth(), 0);
427 return Data.first - Data.second;
428 }
429
430 /// Compute the size of the object pointed by Ptr. Returns true and the
431 /// object size in Size if successful, and false otherwise.
432 /// If RoundToAlign is true, then Size is rounded up to the alignment of
433 /// allocas, byval arguments, and global variables.
getObjectSize(const Value * Ptr,uint64_t & Size,const DataLayout & DL,const TargetLibraryInfo * TLI,ObjectSizeOpts Opts)434 bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
435 const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
436 ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
437 SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
438 if (!Visitor.bothKnown(Data))
439 return false;
440
441 Size = getSizeWithOverflow(Data).getZExtValue();
442 return true;
443 }
444
lowerObjectSizeCall(IntrinsicInst * ObjectSize,const DataLayout & DL,const TargetLibraryInfo * TLI,bool MustSucceed)445 ConstantInt *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
446 const DataLayout &DL,
447 const TargetLibraryInfo *TLI,
448 bool MustSucceed) {
449 assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
450 "ObjectSize must be a call to llvm.objectsize!");
451
452 bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
453 ObjectSizeOpts EvalOptions;
454 // Unless we have to fold this to something, try to be as accurate as
455 // possible.
456 if (MustSucceed)
457 EvalOptions.EvalMode =
458 MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
459 else
460 EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
461
462 EvalOptions.NullIsUnknownSize =
463 cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
464
465 // FIXME: Does it make sense to just return a failure value if the size won't
466 // fit in the output and `!MustSucceed`?
467 uint64_t Size;
468 auto *ResultType = cast<IntegerType>(ObjectSize->getType());
469 if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
470 isUIntN(ResultType->getBitWidth(), Size))
471 return ConstantInt::get(ResultType, Size);
472
473 if (!MustSucceed)
474 return nullptr;
475
476 return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
477 }
478
479 STATISTIC(ObjectVisitorArgument,
480 "Number of arguments with unsolved size and offset");
481 STATISTIC(ObjectVisitorLoad,
482 "Number of load instructions with unsolved size and offset");
483
align(APInt Size,uint64_t Align)484 APInt ObjectSizeOffsetVisitor::align(APInt Size, uint64_t Align) {
485 if (Options.RoundToAlign && Align)
486 return APInt(IntTyBits, alignTo(Size.getZExtValue(), Align));
487 return Size;
488 }
489
ObjectSizeOffsetVisitor(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,ObjectSizeOpts Options)490 ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
491 const TargetLibraryInfo *TLI,
492 LLVMContext &Context,
493 ObjectSizeOpts Options)
494 : DL(DL), TLI(TLI), Options(Options) {
495 // Pointer size must be rechecked for each object visited since it could have
496 // a different address space.
497 }
498
compute(Value * V)499 SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
500 IntTyBits = DL.getPointerTypeSizeInBits(V->getType());
501 Zero = APInt::getNullValue(IntTyBits);
502
503 V = V->stripPointerCasts();
504 if (Instruction *I = dyn_cast<Instruction>(V)) {
505 // If we have already seen this instruction, bail out. Cycles can happen in
506 // unreachable code after constant propagation.
507 if (!SeenInsts.insert(I).second)
508 return unknown();
509
510 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
511 return visitGEPOperator(*GEP);
512 return visit(*I);
513 }
514 if (Argument *A = dyn_cast<Argument>(V))
515 return visitArgument(*A);
516 if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
517 return visitConstantPointerNull(*P);
518 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
519 return visitGlobalAlias(*GA);
520 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
521 return visitGlobalVariable(*GV);
522 if (UndefValue *UV = dyn_cast<UndefValue>(V))
523 return visitUndefValue(*UV);
524 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
525 if (CE->getOpcode() == Instruction::IntToPtr)
526 return unknown(); // clueless
527 if (CE->getOpcode() == Instruction::GetElementPtr)
528 return visitGEPOperator(cast<GEPOperator>(*CE));
529 }
530
531 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
532 << *V << '\n');
533 return unknown();
534 }
535
536 /// When we're compiling N-bit code, and the user uses parameters that are
537 /// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
538 /// trouble with APInt size issues. This function handles resizing + overflow
539 /// checks for us. Check and zext or trunc \p I depending on IntTyBits and
540 /// I's value.
CheckedZextOrTrunc(APInt & I)541 bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
542 // More bits than we can handle. Checking the bit width isn't necessary, but
543 // it's faster than checking active bits, and should give `false` in the
544 // vast majority of cases.
545 if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
546 return false;
547 if (I.getBitWidth() != IntTyBits)
548 I = I.zextOrTrunc(IntTyBits);
549 return true;
550 }
551
visitAllocaInst(AllocaInst & I)552 SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
553 if (!I.getAllocatedType()->isSized())
554 return unknown();
555
556 APInt Size(IntTyBits, DL.getTypeAllocSize(I.getAllocatedType()));
557 if (!I.isArrayAllocation())
558 return std::make_pair(align(Size, I.getAlignment()), Zero);
559
560 Value *ArraySize = I.getArraySize();
561 if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
562 APInt NumElems = C->getValue();
563 if (!CheckedZextOrTrunc(NumElems))
564 return unknown();
565
566 bool Overflow;
567 Size = Size.umul_ov(NumElems, Overflow);
568 return Overflow ? unknown() : std::make_pair(align(Size, I.getAlignment()),
569 Zero);
570 }
571 return unknown();
572 }
573
visitArgument(Argument & A)574 SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
575 // No interprocedural analysis is done at the moment.
576 if (!A.hasByValOrInAllocaAttr()) {
577 ++ObjectVisitorArgument;
578 return unknown();
579 }
580 PointerType *PT = cast<PointerType>(A.getType());
581 APInt Size(IntTyBits, DL.getTypeAllocSize(PT->getElementType()));
582 return std::make_pair(align(Size, A.getParamAlignment()), Zero);
583 }
584
visitCallSite(CallSite CS)585 SizeOffsetType ObjectSizeOffsetVisitor::visitCallSite(CallSite CS) {
586 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
587 if (!FnData)
588 return unknown();
589
590 // Handle strdup-like functions separately.
591 if (FnData->AllocTy == StrDupLike) {
592 APInt Size(IntTyBits, GetStringLength(CS.getArgument(0)));
593 if (!Size)
594 return unknown();
595
596 // Strndup limits strlen.
597 if (FnData->FstParam > 0) {
598 ConstantInt *Arg =
599 dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
600 if (!Arg)
601 return unknown();
602
603 APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
604 if (Size.ugt(MaxSize))
605 Size = MaxSize + 1;
606 }
607 return std::make_pair(Size, Zero);
608 }
609
610 ConstantInt *Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->FstParam));
611 if (!Arg)
612 return unknown();
613
614 APInt Size = Arg->getValue();
615 if (!CheckedZextOrTrunc(Size))
616 return unknown();
617
618 // Size is determined by just 1 parameter.
619 if (FnData->SndParam < 0)
620 return std::make_pair(Size, Zero);
621
622 Arg = dyn_cast<ConstantInt>(CS.getArgument(FnData->SndParam));
623 if (!Arg)
624 return unknown();
625
626 APInt NumElems = Arg->getValue();
627 if (!CheckedZextOrTrunc(NumElems))
628 return unknown();
629
630 bool Overflow;
631 Size = Size.umul_ov(NumElems, Overflow);
632 return Overflow ? unknown() : std::make_pair(Size, Zero);
633
634 // TODO: handle more standard functions (+ wchar cousins):
635 // - strdup / strndup
636 // - strcpy / strncpy
637 // - strcat / strncat
638 // - memcpy / memmove
639 // - strcat / strncat
640 // - memset
641 }
642
643 SizeOffsetType
visitConstantPointerNull(ConstantPointerNull & CPN)644 ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
645 // If null is unknown, there's nothing we can do. Additionally, non-zero
646 // address spaces can make use of null, so we don't presume to know anything
647 // about that.
648 //
649 // TODO: How should this work with address space casts? We currently just drop
650 // them on the floor, but it's unclear what we should do when a NULL from
651 // addrspace(1) gets casted to addrspace(0) (or vice-versa).
652 if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
653 return unknown();
654 return std::make_pair(Zero, Zero);
655 }
656
657 SizeOffsetType
visitExtractElementInst(ExtractElementInst &)658 ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
659 return unknown();
660 }
661
662 SizeOffsetType
visitExtractValueInst(ExtractValueInst &)663 ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
664 // Easy cases were already folded by previous passes.
665 return unknown();
666 }
667
visitGEPOperator(GEPOperator & GEP)668 SizeOffsetType ObjectSizeOffsetVisitor::visitGEPOperator(GEPOperator &GEP) {
669 SizeOffsetType PtrData = compute(GEP.getPointerOperand());
670 APInt Offset(IntTyBits, 0);
671 if (!bothKnown(PtrData) || !GEP.accumulateConstantOffset(DL, Offset))
672 return unknown();
673
674 return std::make_pair(PtrData.first, PtrData.second + Offset);
675 }
676
visitGlobalAlias(GlobalAlias & GA)677 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
678 if (GA.isInterposable())
679 return unknown();
680 return compute(GA.getAliasee());
681 }
682
visitGlobalVariable(GlobalVariable & GV)683 SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
684 if (!GV.hasDefinitiveInitializer())
685 return unknown();
686
687 APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getType()->getElementType()));
688 return std::make_pair(align(Size, GV.getAlignment()), Zero);
689 }
690
visitIntToPtrInst(IntToPtrInst &)691 SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
692 // clueless
693 return unknown();
694 }
695
visitLoadInst(LoadInst &)696 SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst&) {
697 ++ObjectVisitorLoad;
698 return unknown();
699 }
700
visitPHINode(PHINode &)701 SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode&) {
702 // too complex to analyze statically.
703 return unknown();
704 }
705
visitSelectInst(SelectInst & I)706 SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
707 SizeOffsetType TrueSide = compute(I.getTrueValue());
708 SizeOffsetType FalseSide = compute(I.getFalseValue());
709 if (bothKnown(TrueSide) && bothKnown(FalseSide)) {
710 if (TrueSide == FalseSide) {
711 return TrueSide;
712 }
713
714 APInt TrueResult = getSizeWithOverflow(TrueSide);
715 APInt FalseResult = getSizeWithOverflow(FalseSide);
716
717 if (TrueResult == FalseResult) {
718 return TrueSide;
719 }
720 if (Options.EvalMode == ObjectSizeOpts::Mode::Min) {
721 if (TrueResult.slt(FalseResult))
722 return TrueSide;
723 return FalseSide;
724 }
725 if (Options.EvalMode == ObjectSizeOpts::Mode::Max) {
726 if (TrueResult.sgt(FalseResult))
727 return TrueSide;
728 return FalseSide;
729 }
730 }
731 return unknown();
732 }
733
visitUndefValue(UndefValue &)734 SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
735 return std::make_pair(Zero, Zero);
736 }
737
visitInstruction(Instruction & I)738 SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
739 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
740 << '\n');
741 return unknown();
742 }
743
ObjectSizeOffsetEvaluator(const DataLayout & DL,const TargetLibraryInfo * TLI,LLVMContext & Context,bool RoundToAlign)744 ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
745 const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
746 bool RoundToAlign)
747 : DL(DL), TLI(TLI), Context(Context), Builder(Context, TargetFolder(DL)),
748 RoundToAlign(RoundToAlign) {
749 // IntTy and Zero must be set for each compute() since the address space may
750 // be different for later objects.
751 }
752
compute(Value * V)753 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
754 // XXX - Are vectors of pointers possible here?
755 IntTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
756 Zero = ConstantInt::get(IntTy, 0);
757
758 SizeOffsetEvalType Result = compute_(V);
759
760 if (!bothKnown(Result)) {
761 // Erase everything that was computed in this iteration from the cache, so
762 // that no dangling references are left behind. We could be a bit smarter if
763 // we kept a dependency graph. It's probably not worth the complexity.
764 for (const Value *SeenVal : SeenVals) {
765 CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
766 // non-computable results can be safely cached
767 if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
768 CacheMap.erase(CacheIt);
769 }
770 }
771
772 SeenVals.clear();
773 return Result;
774 }
775
compute_(Value * V)776 SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
777 ObjectSizeOpts ObjSizeOptions;
778 ObjSizeOptions.RoundToAlign = RoundToAlign;
779
780 ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, ObjSizeOptions);
781 SizeOffsetType Const = Visitor.compute(V);
782 if (Visitor.bothKnown(Const))
783 return std::make_pair(ConstantInt::get(Context, Const.first),
784 ConstantInt::get(Context, Const.second));
785
786 V = V->stripPointerCasts();
787
788 // Check cache.
789 CacheMapTy::iterator CacheIt = CacheMap.find(V);
790 if (CacheIt != CacheMap.end())
791 return CacheIt->second;
792
793 // Always generate code immediately before the instruction being
794 // processed, so that the generated code dominates the same BBs.
795 BuilderTy::InsertPointGuard Guard(Builder);
796 if (Instruction *I = dyn_cast<Instruction>(V))
797 Builder.SetInsertPoint(I);
798
799 // Now compute the size and offset.
800 SizeOffsetEvalType Result;
801
802 // Record the pointers that were handled in this run, so that they can be
803 // cleaned later if something fails. We also use this set to break cycles that
804 // can occur in dead code.
805 if (!SeenVals.insert(V).second) {
806 Result = unknown();
807 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
808 Result = visitGEPOperator(*GEP);
809 } else if (Instruction *I = dyn_cast<Instruction>(V)) {
810 Result = visit(*I);
811 } else if (isa<Argument>(V) ||
812 (isa<ConstantExpr>(V) &&
813 cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
814 isa<GlobalAlias>(V) ||
815 isa<GlobalVariable>(V)) {
816 // Ignore values where we cannot do more than ObjectSizeVisitor.
817 Result = unknown();
818 } else {
819 LLVM_DEBUG(
820 dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
821 << '\n');
822 Result = unknown();
823 }
824
825 // Don't reuse CacheIt since it may be invalid at this point.
826 CacheMap[V] = Result;
827 return Result;
828 }
829
visitAllocaInst(AllocaInst & I)830 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
831 if (!I.getAllocatedType()->isSized())
832 return unknown();
833
834 // must be a VLA
835 assert(I.isArrayAllocation());
836 Value *ArraySize = I.getArraySize();
837 Value *Size = ConstantInt::get(ArraySize->getType(),
838 DL.getTypeAllocSize(I.getAllocatedType()));
839 Size = Builder.CreateMul(Size, ArraySize);
840 return std::make_pair(Size, Zero);
841 }
842
visitCallSite(CallSite CS)843 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallSite(CallSite CS) {
844 Optional<AllocFnsTy> FnData = getAllocationSize(CS.getInstruction(), TLI);
845 if (!FnData)
846 return unknown();
847
848 // Handle strdup-like functions separately.
849 if (FnData->AllocTy == StrDupLike) {
850 // TODO
851 return unknown();
852 }
853
854 Value *FirstArg = CS.getArgument(FnData->FstParam);
855 FirstArg = Builder.CreateZExt(FirstArg, IntTy);
856 if (FnData->SndParam < 0)
857 return std::make_pair(FirstArg, Zero);
858
859 Value *SecondArg = CS.getArgument(FnData->SndParam);
860 SecondArg = Builder.CreateZExt(SecondArg, IntTy);
861 Value *Size = Builder.CreateMul(FirstArg, SecondArg);
862 return std::make_pair(Size, Zero);
863
864 // TODO: handle more standard functions (+ wchar cousins):
865 // - strdup / strndup
866 // - strcpy / strncpy
867 // - strcat / strncat
868 // - memcpy / memmove
869 // - strcat / strncat
870 // - memset
871 }
872
873 SizeOffsetEvalType
visitExtractElementInst(ExtractElementInst &)874 ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
875 return unknown();
876 }
877
878 SizeOffsetEvalType
visitExtractValueInst(ExtractValueInst &)879 ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
880 return unknown();
881 }
882
883 SizeOffsetEvalType
visitGEPOperator(GEPOperator & GEP)884 ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
885 SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
886 if (!bothKnown(PtrData))
887 return unknown();
888
889 Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
890 Offset = Builder.CreateAdd(PtrData.second, Offset);
891 return std::make_pair(PtrData.first, Offset);
892 }
893
visitIntToPtrInst(IntToPtrInst &)894 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
895 // clueless
896 return unknown();
897 }
898
visitLoadInst(LoadInst &)899 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst&) {
900 return unknown();
901 }
902
visitPHINode(PHINode & PHI)903 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
904 // Create 2 PHIs: one for size and another for offset.
905 PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
906 PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
907
908 // Insert right away in the cache to handle recursive PHIs.
909 CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
910
911 // Compute offset/size for each PHI incoming pointer.
912 for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
913 Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
914 SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
915
916 if (!bothKnown(EdgeData)) {
917 OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
918 OffsetPHI->eraseFromParent();
919 SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
920 SizePHI->eraseFromParent();
921 return unknown();
922 }
923 SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
924 OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
925 }
926
927 Value *Size = SizePHI, *Offset = OffsetPHI, *Tmp;
928 if ((Tmp = SizePHI->hasConstantValue())) {
929 Size = Tmp;
930 SizePHI->replaceAllUsesWith(Size);
931 SizePHI->eraseFromParent();
932 }
933 if ((Tmp = OffsetPHI->hasConstantValue())) {
934 Offset = Tmp;
935 OffsetPHI->replaceAllUsesWith(Offset);
936 OffsetPHI->eraseFromParent();
937 }
938 return std::make_pair(Size, Offset);
939 }
940
visitSelectInst(SelectInst & I)941 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
942 SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
943 SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
944
945 if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
946 return unknown();
947 if (TrueSide == FalseSide)
948 return TrueSide;
949
950 Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
951 FalseSide.first);
952 Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
953 FalseSide.second);
954 return std::make_pair(Size, Offset);
955 }
956
visitInstruction(Instruction & I)957 SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
958 LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
959 << '\n');
960 return unknown();
961 }
962