• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23 
24 /**
25  * \file lower_instructions.cpp
26  *
27  * Many GPUs lack native instructions for certain expression operations, and
28  * must replace them with some other expression tree.  This pass lowers some
29  * of the most common cases, allowing the lowering code to be implemented once
30  * rather than in each driver backend.
31  *
32  * Currently supported transformations:
33  * - SUB_TO_ADD_NEG
34  * - DIV_TO_MUL_RCP
35  * - INT_DIV_TO_MUL_RCP
36  * - EXP_TO_EXP2
37  * - POW_TO_EXP2
38  * - LOG_TO_LOG2
39  * - MOD_TO_FLOOR
40  * - LDEXP_TO_ARITH
41  * - DFREXP_TO_ARITH
42  * - CARRY_TO_ARITH
43  * - BORROW_TO_ARITH
44  * - SAT_TO_CLAMP
45  * - DOPS_TO_DFRAC
46  *
47  * SUB_TO_ADD_NEG:
48  * ---------------
49  * Breaks an ir_binop_sub expression down to add(op0, neg(op1))
50  *
51  * This simplifies expression reassociation, and for many backends
52  * there is no subtract operation separate from adding the negation.
53  * For backends with native subtract operations, they will probably
54  * want to recognize add(op0, neg(op1)) or the other way around to
55  * produce a subtract anyway.
56  *
57  * FDIV_TO_MUL_RCP, DDIV_TO_MUL_RCP, and INT_DIV_TO_MUL_RCP:
58  * ---------------------------------------------------------
59  * Breaks an ir_binop_div expression down to op0 * (rcp(op1)).
60  *
61  * Many GPUs don't have a divide instruction (945 and 965 included),
62  * but they do have an RCP instruction to compute an approximate
63  * reciprocal.  By breaking the operation down, constant reciprocals
64  * can get constant folded.
65  *
66  * FDIV_TO_MUL_RCP only lowers single-precision floating point division;
67  * DDIV_TO_MUL_RCP only lowers double-precision floating point division.
68  * DIV_TO_MUL_RCP is a convenience macro that sets both flags.
69  * INT_DIV_TO_MUL_RCP handles the integer case, converting to and from floating
70  * point so that RCP is possible.
71  *
72  * EXP_TO_EXP2 and LOG_TO_LOG2:
73  * ----------------------------
74  * Many GPUs don't have a base e log or exponent instruction, but they
75  * do have base 2 versions, so this pass converts exp and log to exp2
76  * and log2 operations.
77  *
78  * POW_TO_EXP2:
79  * -----------
80  * Many older GPUs don't have an x**y instruction.  For these GPUs, convert
81  * x**y to 2**(y * log2(x)).
82  *
83  * MOD_TO_FLOOR:
84  * -------------
85  * Breaks an ir_binop_mod expression down to (op0 - op1 * floor(op0 / op1))
86  *
87  * Many GPUs don't have a MOD instruction (945 and 965 included), and
88  * if we have to break it down like this anyway, it gives an
89  * opportunity to do things like constant fold the (1.0 / op1) easily.
90  *
91  * Note: before we used to implement this as op1 * fract(op / op1) but this
92  * implementation had significant precision errors.
93  *
94  * LDEXP_TO_ARITH:
95  * -------------
96  * Converts ir_binop_ldexp to arithmetic and bit operations for float sources.
97  *
98  * DFREXP_DLDEXP_TO_ARITH:
99  * ---------------
100  * Converts ir_binop_ldexp, ir_unop_frexp_sig, and ir_unop_frexp_exp to
101  * arithmetic and bit ops for double arguments.
102  *
103  * CARRY_TO_ARITH:
104  * ---------------
105  * Converts ir_carry into (x + y) < x.
106  *
107  * BORROW_TO_ARITH:
108  * ----------------
109  * Converts ir_borrow into (x < y).
110  *
111  * SAT_TO_CLAMP:
112  * -------------
113  * Converts ir_unop_saturate into min(max(x, 0.0), 1.0)
114  *
115  * DOPS_TO_DFRAC:
116  * --------------
117  * Converts double trunc, ceil, floor, round to fract
118  */
119 
120 #include "c99_math.h"
121 #include "program/prog_instruction.h" /* for swizzle */
122 #include "compiler/glsl_types.h"
123 #include "ir.h"
124 #include "ir_builder.h"
125 #include "ir_optimization.h"
126 
127 using namespace ir_builder;
128 
129 namespace {
130 
131 class lower_instructions_visitor : public ir_hierarchical_visitor {
132 public:
lower_instructions_visitor(unsigned lower)133    lower_instructions_visitor(unsigned lower)
134       : progress(false), lower(lower) { }
135 
136    ir_visitor_status visit_leave(ir_expression *);
137 
138    bool progress;
139 
140 private:
141    unsigned lower; /** Bitfield of which operations to lower */
142 
143    void sub_to_add_neg(ir_expression *);
144    void div_to_mul_rcp(ir_expression *);
145    void int_div_to_mul_rcp(ir_expression *);
146    void mod_to_floor(ir_expression *);
147    void exp_to_exp2(ir_expression *);
148    void pow_to_exp2(ir_expression *);
149    void log_to_log2(ir_expression *);
150    void ldexp_to_arith(ir_expression *);
151    void dldexp_to_arith(ir_expression *);
152    void dfrexp_sig_to_arith(ir_expression *);
153    void dfrexp_exp_to_arith(ir_expression *);
154    void carry_to_arith(ir_expression *);
155    void borrow_to_arith(ir_expression *);
156    void sat_to_clamp(ir_expression *);
157    void double_dot_to_fma(ir_expression *);
158    void double_lrp(ir_expression *);
159    void dceil_to_dfrac(ir_expression *);
160    void dfloor_to_dfrac(ir_expression *);
161    void dround_even_to_dfrac(ir_expression *);
162    void dtrunc_to_dfrac(ir_expression *);
163    void dsign_to_csel(ir_expression *);
164    void bit_count_to_math(ir_expression *);
165    void extract_to_shifts(ir_expression *);
166    void insert_to_shifts(ir_expression *);
167    void reverse_to_shifts(ir_expression *ir);
168    void find_lsb_to_float_cast(ir_expression *ir);
169    void find_msb_to_float_cast(ir_expression *ir);
170    void imul_high_to_mul(ir_expression *ir);
171    void sqrt_to_abs_sqrt(ir_expression *ir);
172 
173    ir_expression *_carry(operand a, operand b);
174 };
175 
176 } /* anonymous namespace */
177 
178 /**
179  * Determine if a particular type of lowering should occur
180  */
181 #define lowering(x) (this->lower & x)
182 
183 bool
lower_instructions(exec_list * instructions,unsigned what_to_lower)184 lower_instructions(exec_list *instructions, unsigned what_to_lower)
185 {
186    lower_instructions_visitor v(what_to_lower);
187 
188    visit_list_elements(&v, instructions);
189    return v.progress;
190 }
191 
192 void
sub_to_add_neg(ir_expression * ir)193 lower_instructions_visitor::sub_to_add_neg(ir_expression *ir)
194 {
195    ir->operation = ir_binop_add;
196    ir->init_num_operands();
197    ir->operands[1] = new(ir) ir_expression(ir_unop_neg, ir->operands[1]->type,
198 					   ir->operands[1], NULL);
199    this->progress = true;
200 }
201 
202 void
div_to_mul_rcp(ir_expression * ir)203 lower_instructions_visitor::div_to_mul_rcp(ir_expression *ir)
204 {
205    assert(ir->operands[1]->type->is_float() || ir->operands[1]->type->is_double());
206 
207    /* New expression for the 1.0 / op1 */
208    ir_rvalue *expr;
209    expr = new(ir) ir_expression(ir_unop_rcp,
210 				ir->operands[1]->type,
211 				ir->operands[1]);
212 
213    /* op0 / op1 -> op0 * (1.0 / op1) */
214    ir->operation = ir_binop_mul;
215    ir->init_num_operands();
216    ir->operands[1] = expr;
217 
218    this->progress = true;
219 }
220 
221 void
int_div_to_mul_rcp(ir_expression * ir)222 lower_instructions_visitor::int_div_to_mul_rcp(ir_expression *ir)
223 {
224    assert(ir->operands[1]->type->is_integer());
225 
226    /* Be careful with integer division -- we need to do it as a
227     * float and re-truncate, since rcp(n > 1) of an integer would
228     * just be 0.
229     */
230    ir_rvalue *op0, *op1;
231    const struct glsl_type *vec_type;
232 
233    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
234 				      ir->operands[1]->type->vector_elements,
235 				      ir->operands[1]->type->matrix_columns);
236 
237    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT)
238       op1 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[1], NULL);
239    else
240       op1 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[1], NULL);
241 
242    op1 = new(ir) ir_expression(ir_unop_rcp, op1->type, op1, NULL);
243 
244    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
245 				      ir->operands[0]->type->vector_elements,
246 				      ir->operands[0]->type->matrix_columns);
247 
248    if (ir->operands[0]->type->base_type == GLSL_TYPE_INT)
249       op0 = new(ir) ir_expression(ir_unop_i2f, vec_type, ir->operands[0], NULL);
250    else
251       op0 = new(ir) ir_expression(ir_unop_u2f, vec_type, ir->operands[0], NULL);
252 
253    vec_type = glsl_type::get_instance(GLSL_TYPE_FLOAT,
254 				      ir->type->vector_elements,
255 				      ir->type->matrix_columns);
256 
257    op0 = new(ir) ir_expression(ir_binop_mul, vec_type, op0, op1);
258 
259    if (ir->operands[1]->type->base_type == GLSL_TYPE_INT) {
260       ir->operation = ir_unop_f2i;
261       ir->operands[0] = op0;
262    } else {
263       ir->operation = ir_unop_i2u;
264       ir->operands[0] = new(ir) ir_expression(ir_unop_f2i, op0);
265    }
266    ir->init_num_operands();
267    ir->operands[1] = NULL;
268 
269    this->progress = true;
270 }
271 
272 void
exp_to_exp2(ir_expression * ir)273 lower_instructions_visitor::exp_to_exp2(ir_expression *ir)
274 {
275    ir_constant *log2_e = new(ir) ir_constant(float(M_LOG2E));
276 
277    ir->operation = ir_unop_exp2;
278    ir->init_num_operands();
279    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[0]->type,
280 					   ir->operands[0], log2_e);
281    this->progress = true;
282 }
283 
284 void
pow_to_exp2(ir_expression * ir)285 lower_instructions_visitor::pow_to_exp2(ir_expression *ir)
286 {
287    ir_expression *const log2_x =
288       new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
289 			    ir->operands[0]);
290 
291    ir->operation = ir_unop_exp2;
292    ir->init_num_operands();
293    ir->operands[0] = new(ir) ir_expression(ir_binop_mul, ir->operands[1]->type,
294 					   ir->operands[1], log2_x);
295    ir->operands[1] = NULL;
296    this->progress = true;
297 }
298 
299 void
log_to_log2(ir_expression * ir)300 lower_instructions_visitor::log_to_log2(ir_expression *ir)
301 {
302    ir->operation = ir_binop_mul;
303    ir->init_num_operands();
304    ir->operands[0] = new(ir) ir_expression(ir_unop_log2, ir->operands[0]->type,
305 					   ir->operands[0], NULL);
306    ir->operands[1] = new(ir) ir_constant(float(1.0 / M_LOG2E));
307    this->progress = true;
308 }
309 
310 void
mod_to_floor(ir_expression * ir)311 lower_instructions_visitor::mod_to_floor(ir_expression *ir)
312 {
313    ir_variable *x = new(ir) ir_variable(ir->operands[0]->type, "mod_x",
314                                          ir_var_temporary);
315    ir_variable *y = new(ir) ir_variable(ir->operands[1]->type, "mod_y",
316                                          ir_var_temporary);
317    this->base_ir->insert_before(x);
318    this->base_ir->insert_before(y);
319 
320    ir_assignment *const assign_x =
321       new(ir) ir_assignment(new(ir) ir_dereference_variable(x),
322                             ir->operands[0]);
323    ir_assignment *const assign_y =
324       new(ir) ir_assignment(new(ir) ir_dereference_variable(y),
325                             ir->operands[1]);
326 
327    this->base_ir->insert_before(assign_x);
328    this->base_ir->insert_before(assign_y);
329 
330    ir_expression *const div_expr =
331       new(ir) ir_expression(ir_binop_div, x->type,
332                             new(ir) ir_dereference_variable(x),
333                             new(ir) ir_dereference_variable(y));
334 
335    /* Don't generate new IR that would need to be lowered in an additional
336     * pass.
337     */
338    if ((lowering(FDIV_TO_MUL_RCP) && ir->type->is_float()) ||
339        (lowering(DDIV_TO_MUL_RCP) && ir->type->is_double()))
340       div_to_mul_rcp(div_expr);
341 
342    ir_expression *const floor_expr =
343       new(ir) ir_expression(ir_unop_floor, x->type, div_expr);
344 
345    if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
346       dfloor_to_dfrac(floor_expr);
347 
348    ir_expression *const mul_expr =
349       new(ir) ir_expression(ir_binop_mul,
350                             new(ir) ir_dereference_variable(y),
351                             floor_expr);
352 
353    ir->operation = ir_binop_sub;
354    ir->init_num_operands();
355    ir->operands[0] = new(ir) ir_dereference_variable(x);
356    ir->operands[1] = mul_expr;
357    this->progress = true;
358 }
359 
360 void
ldexp_to_arith(ir_expression * ir)361 lower_instructions_visitor::ldexp_to_arith(ir_expression *ir)
362 {
363    /* Translates
364     *    ir_binop_ldexp x exp
365     * into
366     *
367     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
368     *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
369     *
370     *    if (extracted_biased_exp >= 255)
371     *       return x; // +/-inf, NaN
372     *
373     *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
374     *
375     *    if (min(resulting_biased_exp, extracted_biased_exp) < 1)
376     *       resulting_biased_exp = 0;
377     *    if (resulting_biased_exp >= 255 ||
378     *        min(resulting_biased_exp, extracted_biased_exp) < 1) {
379     *       sign_mantissa &= sign_mask;
380     *    }
381     *
382     *    return bitcast_u2f(sign_mantissa |
383     *                       lshift(i2u(resulting_biased_exp), exp_shift));
384     *
385     * which we can't actually implement as such, since the GLSL IR doesn't
386     * have vectorized if-statements. We actually implement it without branches
387     * using conditional-select:
388     *
389     *    extracted_biased_exp = rshift(bitcast_f2i(abs(x)), exp_shift);
390     *    resulting_biased_exp = min(extracted_biased_exp + exp, 255);
391     *
392     *    sign_mantissa = bitcast_f2u(x) & sign_mantissa_mask;
393     *
394     *    flush_to_zero = lequal(min(resulting_biased_exp, extracted_biased_exp), 0);
395     *    resulting_biased_exp = csel(flush_to_zero, 0, resulting_biased_exp)
396     *    zero_mantissa = logic_or(flush_to_zero,
397     *                             gequal(resulting_biased_exp, 255));
398     *    sign_mantissa = csel(zero_mantissa, sign_mantissa & sign_mask, sign_mantissa);
399     *
400     *    result = sign_mantissa |
401     *             lshift(i2u(resulting_biased_exp), exp_shift));
402     *
403     *    return csel(extracted_biased_exp >= 255, x, bitcast_u2f(result));
404     *
405     * The definition of ldexp in the GLSL spec says:
406     *
407     *    "If this product is too large to be represented in the
408     *     floating-point type, the result is undefined."
409     *
410     * However, the definition of ldexp in the GLSL ES spec does not contain
411     * this sentence, so we do need to handle overflow correctly.
412     *
413     * There is additional language limiting the defined range of exp, but this
414     * is merely to allow implementations that store 2^exp in a temporary
415     * variable.
416     */
417 
418    const unsigned vec_elem = ir->type->vector_elements;
419 
420    /* Types */
421    const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
422    const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
423    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
424 
425    /* Temporary variables */
426    ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
427    ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
428    ir_variable *result = new(ir) ir_variable(uvec, "result", ir_var_temporary);
429 
430    ir_variable *extracted_biased_exp =
431       new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
432    ir_variable *resulting_biased_exp =
433       new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
434 
435    ir_variable *sign_mantissa =
436       new(ir) ir_variable(uvec, "sign_mantissa", ir_var_temporary);
437 
438    ir_variable *flush_to_zero =
439       new(ir) ir_variable(bvec, "flush_to_zero", ir_var_temporary);
440    ir_variable *zero_mantissa =
441       new(ir) ir_variable(bvec, "zero_mantissa", ir_var_temporary);
442 
443    ir_instruction &i = *base_ir;
444 
445    /* Copy <x> and <exp> arguments. */
446    i.insert_before(x);
447    i.insert_before(assign(x, ir->operands[0]));
448    i.insert_before(exp);
449    i.insert_before(assign(exp, ir->operands[1]));
450 
451    /* Extract the biased exponent from <x>. */
452    i.insert_before(extracted_biased_exp);
453    i.insert_before(assign(extracted_biased_exp,
454                           rshift(bitcast_f2i(abs(x)),
455                                  new(ir) ir_constant(23, vec_elem))));
456 
457    /* The definition of ldexp in the GLSL 4.60 spec says:
458     *
459     *    "If exp is greater than +128 (single-precision) or +1024
460     *     (double-precision), the value returned is undefined. If exp is less
461     *     than -126 (single-precision) or -1022 (double-precision), the value
462     *     returned may be flushed to zero."
463     *
464     * So we do not have to guard against the possibility of addition overflow,
465     * which could happen when exp is close to INT_MAX. Addition underflow
466     * cannot happen (the worst case is 0 + (-INT_MAX)).
467     */
468    i.insert_before(resulting_biased_exp);
469    i.insert_before(assign(resulting_biased_exp,
470                           min2(add(extracted_biased_exp, exp),
471                                new(ir) ir_constant(255, vec_elem))));
472 
473    i.insert_before(sign_mantissa);
474    i.insert_before(assign(sign_mantissa,
475                           bit_and(bitcast_f2u(x),
476                                   new(ir) ir_constant(0x807fffffu, vec_elem))));
477 
478    /* We flush to zero if the original or resulting biased exponent is 0,
479     * indicating a +/-0.0 or subnormal input or output.
480     *
481     * The mantissa is set to 0 if the resulting biased exponent is 255, since
482     * an overflow should produce a +/-inf result.
483     *
484     * Note that NaN inputs are handled separately.
485     */
486    i.insert_before(flush_to_zero);
487    i.insert_before(assign(flush_to_zero,
488                           lequal(min2(resulting_biased_exp,
489                                       extracted_biased_exp),
490                                  ir_constant::zero(ir, ivec))));
491    i.insert_before(assign(resulting_biased_exp,
492                           csel(flush_to_zero,
493                                ir_constant::zero(ir, ivec),
494                                resulting_biased_exp)));
495 
496    i.insert_before(zero_mantissa);
497    i.insert_before(assign(zero_mantissa,
498                           logic_or(flush_to_zero,
499                                    equal(resulting_biased_exp,
500                                          new(ir) ir_constant(255, vec_elem)))));
501    i.insert_before(assign(sign_mantissa,
502                           csel(zero_mantissa,
503                                bit_and(sign_mantissa,
504                                        new(ir) ir_constant(0x80000000u, vec_elem)),
505                                sign_mantissa)));
506 
507    /* Don't generate new IR that would need to be lowered in an additional
508     * pass.
509     */
510    i.insert_before(result);
511    if (!lowering(INSERT_TO_SHIFTS)) {
512       i.insert_before(assign(result,
513                              bitfield_insert(sign_mantissa,
514                                              i2u(resulting_biased_exp),
515                                              new(ir) ir_constant(23u, vec_elem),
516                                              new(ir) ir_constant(8u, vec_elem))));
517    } else {
518       i.insert_before(assign(result,
519                              bit_or(sign_mantissa,
520                                     lshift(i2u(resulting_biased_exp),
521                                            new(ir) ir_constant(23, vec_elem)))));
522    }
523 
524    ir->operation = ir_triop_csel;
525    ir->init_num_operands();
526    ir->operands[0] = gequal(extracted_biased_exp,
527                             new(ir) ir_constant(255, vec_elem));
528    ir->operands[1] = new(ir) ir_dereference_variable(x);
529    ir->operands[2] = bitcast_u2f(result);
530 
531    this->progress = true;
532 }
533 
534 void
dldexp_to_arith(ir_expression * ir)535 lower_instructions_visitor::dldexp_to_arith(ir_expression *ir)
536 {
537    /* See ldexp_to_arith for structure. Uses frexp_exp to extract the exponent
538     * from the significand.
539     */
540 
541    const unsigned vec_elem = ir->type->vector_elements;
542 
543    /* Types */
544    const glsl_type *ivec = glsl_type::get_instance(GLSL_TYPE_INT, vec_elem, 1);
545    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
546 
547    /* Constants */
548    ir_constant *zeroi = ir_constant::zero(ir, ivec);
549 
550    ir_constant *sign_mask = new(ir) ir_constant(0x80000000u);
551 
552    ir_constant *exp_shift = new(ir) ir_constant(20u);
553    ir_constant *exp_width = new(ir) ir_constant(11u);
554    ir_constant *exp_bias = new(ir) ir_constant(1022, vec_elem);
555 
556    /* Temporary variables */
557    ir_variable *x = new(ir) ir_variable(ir->type, "x", ir_var_temporary);
558    ir_variable *exp = new(ir) ir_variable(ivec, "exp", ir_var_temporary);
559 
560    ir_variable *zero_sign_x = new(ir) ir_variable(ir->type, "zero_sign_x",
561                                                   ir_var_temporary);
562 
563    ir_variable *extracted_biased_exp =
564       new(ir) ir_variable(ivec, "extracted_biased_exp", ir_var_temporary);
565    ir_variable *resulting_biased_exp =
566       new(ir) ir_variable(ivec, "resulting_biased_exp", ir_var_temporary);
567 
568    ir_variable *is_not_zero_or_underflow =
569       new(ir) ir_variable(bvec, "is_not_zero_or_underflow", ir_var_temporary);
570 
571    ir_instruction &i = *base_ir;
572 
573    /* Copy <x> and <exp> arguments. */
574    i.insert_before(x);
575    i.insert_before(assign(x, ir->operands[0]));
576    i.insert_before(exp);
577    i.insert_before(assign(exp, ir->operands[1]));
578 
579    ir_expression *frexp_exp = expr(ir_unop_frexp_exp, x);
580    if (lowering(DFREXP_DLDEXP_TO_ARITH))
581       dfrexp_exp_to_arith(frexp_exp);
582 
583    /* Extract the biased exponent from <x>. */
584    i.insert_before(extracted_biased_exp);
585    i.insert_before(assign(extracted_biased_exp, add(frexp_exp, exp_bias)));
586 
587    i.insert_before(resulting_biased_exp);
588    i.insert_before(assign(resulting_biased_exp,
589                           add(extracted_biased_exp, exp)));
590 
591    /* Test if result is ±0.0, subnormal, or underflow by checking if the
592     * resulting biased exponent would be less than 0x1. If so, the result is
593     * 0.0 with the sign of x. (Actually, invert the conditions so that
594     * immediate values are the second arguments, which is better for i965)
595     * TODO: Implement in a vector fashion.
596     */
597    i.insert_before(zero_sign_x);
598    for (unsigned elem = 0; elem < vec_elem; elem++) {
599       ir_variable *unpacked =
600          new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
601       i.insert_before(unpacked);
602       i.insert_before(
603             assign(unpacked,
604                    expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
605       i.insert_before(assign(unpacked, bit_and(swizzle_y(unpacked), sign_mask->clone(ir, NULL)),
606                              WRITEMASK_Y));
607       i.insert_before(assign(unpacked, ir_constant::zero(ir, glsl_type::uint_type), WRITEMASK_X));
608       i.insert_before(assign(zero_sign_x,
609                              expr(ir_unop_pack_double_2x32, unpacked),
610                              1 << elem));
611    }
612    i.insert_before(is_not_zero_or_underflow);
613    i.insert_before(assign(is_not_zero_or_underflow,
614                           gequal(resulting_biased_exp,
615                                   new(ir) ir_constant(0x1, vec_elem))));
616    i.insert_before(assign(x, csel(is_not_zero_or_underflow,
617                                   x, zero_sign_x)));
618    i.insert_before(assign(resulting_biased_exp,
619                           csel(is_not_zero_or_underflow,
620                                resulting_biased_exp, zeroi)));
621 
622    /* We could test for overflows by checking if the resulting biased exponent
623     * would be greater than 0xFE. Turns out we don't need to because the GLSL
624     * spec says:
625     *
626     *    "If this product is too large to be represented in the
627     *     floating-point type, the result is undefined."
628     */
629 
630    ir_rvalue *results[4] = {NULL};
631    for (unsigned elem = 0; elem < vec_elem; elem++) {
632       ir_variable *unpacked =
633          new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
634       i.insert_before(unpacked);
635       i.insert_before(
636             assign(unpacked,
637                    expr(ir_unop_unpack_double_2x32, swizzle(x, elem, 1))));
638 
639       ir_expression *bfi = bitfield_insert(
640             swizzle_y(unpacked),
641             i2u(swizzle(resulting_biased_exp, elem, 1)),
642             exp_shift->clone(ir, NULL),
643             exp_width->clone(ir, NULL));
644 
645       i.insert_before(assign(unpacked, bfi, WRITEMASK_Y));
646 
647       results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
648    }
649 
650    ir->operation = ir_quadop_vector;
651    ir->init_num_operands();
652    ir->operands[0] = results[0];
653    ir->operands[1] = results[1];
654    ir->operands[2] = results[2];
655    ir->operands[3] = results[3];
656 
657    /* Don't generate new IR that would need to be lowered in an additional
658     * pass.
659     */
660 
661    this->progress = true;
662 }
663 
664 void
dfrexp_sig_to_arith(ir_expression * ir)665 lower_instructions_visitor::dfrexp_sig_to_arith(ir_expression *ir)
666 {
667    const unsigned vec_elem = ir->type->vector_elements;
668    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
669 
670    /* Double-precision floating-point values are stored as
671     *   1 sign bit;
672     *   11 exponent bits;
673     *   52 mantissa bits.
674     *
675     * We're just extracting the significand here, so we only need to modify
676     * the upper 32-bit uint. Unfortunately we must extract each double
677     * independently as there is no vector version of unpackDouble.
678     */
679 
680    ir_instruction &i = *base_ir;
681 
682    ir_variable *is_not_zero =
683       new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
684    ir_rvalue *results[4] = {NULL};
685 
686    ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
687    i.insert_before(is_not_zero);
688    i.insert_before(
689          assign(is_not_zero,
690                 nequal(abs(ir->operands[0]->clone(ir, NULL)), dzero)));
691 
692    /* TODO: Remake this as more vector-friendly when int64 support is
693     * available.
694     */
695    for (unsigned elem = 0; elem < vec_elem; elem++) {
696       ir_constant *zero = new(ir) ir_constant(0u, 1);
697       ir_constant *sign_mantissa_mask = new(ir) ir_constant(0x800fffffu, 1);
698 
699       /* Exponent of double floating-point values in the range [0.5, 1.0). */
700       ir_constant *exponent_value = new(ir) ir_constant(0x3fe00000u, 1);
701 
702       ir_variable *bits =
703          new(ir) ir_variable(glsl_type::uint_type, "bits", ir_var_temporary);
704       ir_variable *unpacked =
705          new(ir) ir_variable(glsl_type::uvec2_type, "unpacked", ir_var_temporary);
706 
707       ir_rvalue *x = swizzle(ir->operands[0]->clone(ir, NULL), elem, 1);
708 
709       i.insert_before(bits);
710       i.insert_before(unpacked);
711       i.insert_before(assign(unpacked, expr(ir_unop_unpack_double_2x32, x)));
712 
713       /* Manipulate the high uint to remove the exponent and replace it with
714        * either the default exponent or zero.
715        */
716       i.insert_before(assign(bits, swizzle_y(unpacked)));
717       i.insert_before(assign(bits, bit_and(bits, sign_mantissa_mask)));
718       i.insert_before(assign(bits, bit_or(bits,
719                                           csel(swizzle(is_not_zero, elem, 1),
720                                                exponent_value,
721                                                zero))));
722       i.insert_before(assign(unpacked, bits, WRITEMASK_Y));
723       results[elem] = expr(ir_unop_pack_double_2x32, unpacked);
724    }
725 
726    /* Put the dvec back together */
727    ir->operation = ir_quadop_vector;
728    ir->init_num_operands();
729    ir->operands[0] = results[0];
730    ir->operands[1] = results[1];
731    ir->operands[2] = results[2];
732    ir->operands[3] = results[3];
733 
734    this->progress = true;
735 }
736 
737 void
dfrexp_exp_to_arith(ir_expression * ir)738 lower_instructions_visitor::dfrexp_exp_to_arith(ir_expression *ir)
739 {
740    const unsigned vec_elem = ir->type->vector_elements;
741    const glsl_type *bvec = glsl_type::get_instance(GLSL_TYPE_BOOL, vec_elem, 1);
742    const glsl_type *uvec = glsl_type::get_instance(GLSL_TYPE_UINT, vec_elem, 1);
743 
744    /* Double-precision floating-point values are stored as
745     *   1 sign bit;
746     *   11 exponent bits;
747     *   52 mantissa bits.
748     *
749     * We're just extracting the exponent here, so we only care about the upper
750     * 32-bit uint.
751     */
752 
753    ir_instruction &i = *base_ir;
754 
755    ir_variable *is_not_zero =
756       new(ir) ir_variable(bvec, "is_not_zero", ir_var_temporary);
757    ir_variable *high_words =
758       new(ir) ir_variable(uvec, "high_words", ir_var_temporary);
759    ir_constant *dzero = new(ir) ir_constant(0.0, vec_elem);
760    ir_constant *izero = new(ir) ir_constant(0, vec_elem);
761 
762    ir_rvalue *absval = abs(ir->operands[0]);
763 
764    i.insert_before(is_not_zero);
765    i.insert_before(high_words);
766    i.insert_before(assign(is_not_zero, nequal(absval->clone(ir, NULL), dzero)));
767 
768    /* Extract all of the upper uints. */
769    for (unsigned elem = 0; elem < vec_elem; elem++) {
770       ir_rvalue *x = swizzle(absval->clone(ir, NULL), elem, 1);
771 
772       i.insert_before(assign(high_words,
773                              swizzle_y(expr(ir_unop_unpack_double_2x32, x)),
774                              1 << elem));
775 
776    }
777    ir_constant *exponent_shift = new(ir) ir_constant(20, vec_elem);
778    ir_constant *exponent_bias = new(ir) ir_constant(-1022, vec_elem);
779 
780    /* For non-zero inputs, shift the exponent down and apply bias. */
781    ir->operation = ir_triop_csel;
782    ir->init_num_operands();
783    ir->operands[0] = new(ir) ir_dereference_variable(is_not_zero);
784    ir->operands[1] = add(exponent_bias, u2i(rshift(high_words, exponent_shift)));
785    ir->operands[2] = izero;
786 
787    this->progress = true;
788 }
789 
790 void
carry_to_arith(ir_expression * ir)791 lower_instructions_visitor::carry_to_arith(ir_expression *ir)
792 {
793    /* Translates
794     *   ir_binop_carry x y
795     * into
796     *   sum = ir_binop_add x y
797     *   bcarry = ir_binop_less sum x
798     *   carry = ir_unop_b2i bcarry
799     */
800 
801    ir_rvalue *x_clone = ir->operands[0]->clone(ir, NULL);
802    ir->operation = ir_unop_i2u;
803    ir->init_num_operands();
804    ir->operands[0] = b2i(less(add(ir->operands[0], ir->operands[1]), x_clone));
805    ir->operands[1] = NULL;
806 
807    this->progress = true;
808 }
809 
810 void
borrow_to_arith(ir_expression * ir)811 lower_instructions_visitor::borrow_to_arith(ir_expression *ir)
812 {
813    /* Translates
814     *   ir_binop_borrow x y
815     * into
816     *   bcarry = ir_binop_less x y
817     *   carry = ir_unop_b2i bcarry
818     */
819 
820    ir->operation = ir_unop_i2u;
821    ir->init_num_operands();
822    ir->operands[0] = b2i(less(ir->operands[0], ir->operands[1]));
823    ir->operands[1] = NULL;
824 
825    this->progress = true;
826 }
827 
828 void
sat_to_clamp(ir_expression * ir)829 lower_instructions_visitor::sat_to_clamp(ir_expression *ir)
830 {
831    /* Translates
832     *   ir_unop_saturate x
833     * into
834     *   ir_binop_min (ir_binop_max(x, 0.0), 1.0)
835     */
836 
837    ir->operation = ir_binop_min;
838    ir->init_num_operands();
839    ir->operands[0] = new(ir) ir_expression(ir_binop_max, ir->operands[0]->type,
840                                            ir->operands[0],
841                                            new(ir) ir_constant(0.0f));
842    ir->operands[1] = new(ir) ir_constant(1.0f);
843 
844    this->progress = true;
845 }
846 
847 void
double_dot_to_fma(ir_expression * ir)848 lower_instructions_visitor::double_dot_to_fma(ir_expression *ir)
849 {
850    ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type->get_base_type(), "dot_res",
851 					   ir_var_temporary);
852    this->base_ir->insert_before(temp);
853 
854    int nc = ir->operands[0]->type->components();
855    for (int i = nc - 1; i >= 1; i--) {
856       ir_assignment *assig;
857       if (i == (nc - 1)) {
858          assig = assign(temp, mul(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
859                                   swizzle(ir->operands[1]->clone(ir, NULL), i, 1)));
860       } else {
861          assig = assign(temp, fma(swizzle(ir->operands[0]->clone(ir, NULL), i, 1),
862                                   swizzle(ir->operands[1]->clone(ir, NULL), i, 1),
863                                   temp));
864       }
865       this->base_ir->insert_before(assig);
866    }
867 
868    ir->operation = ir_triop_fma;
869    ir->init_num_operands();
870    ir->operands[0] = swizzle(ir->operands[0], 0, 1);
871    ir->operands[1] = swizzle(ir->operands[1], 0, 1);
872    ir->operands[2] = new(ir) ir_dereference_variable(temp);
873 
874    this->progress = true;
875 
876 }
877 
878 void
double_lrp(ir_expression * ir)879 lower_instructions_visitor::double_lrp(ir_expression *ir)
880 {
881    int swizval;
882    ir_rvalue *op0 = ir->operands[0], *op2 = ir->operands[2];
883    ir_constant *one = new(ir) ir_constant(1.0, op2->type->vector_elements);
884 
885    switch (op2->type->vector_elements) {
886    case 1:
887       swizval = SWIZZLE_XXXX;
888       break;
889    default:
890       assert(op0->type->vector_elements == op2->type->vector_elements);
891       swizval = SWIZZLE_XYZW;
892       break;
893    }
894 
895    ir->operation = ir_triop_fma;
896    ir->init_num_operands();
897    ir->operands[0] = swizzle(op2, swizval, op0->type->vector_elements);
898    ir->operands[2] = mul(sub(one, op2->clone(ir, NULL)), op0);
899 
900    this->progress = true;
901 }
902 
903 void
dceil_to_dfrac(ir_expression * ir)904 lower_instructions_visitor::dceil_to_dfrac(ir_expression *ir)
905 {
906    /*
907     * frtemp = frac(x);
908     * temp = sub(x, frtemp);
909     * result = temp + ((frtemp != 0.0) ? 1.0 : 0.0);
910     */
911    ir_instruction &i = *base_ir;
912    ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
913    ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
914    ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
915                                              ir_var_temporary);
916 
917    i.insert_before(frtemp);
918    i.insert_before(assign(frtemp, fract(ir->operands[0])));
919 
920    ir->operation = ir_binop_add;
921    ir->init_num_operands();
922    ir->operands[0] = sub(ir->operands[0]->clone(ir, NULL), frtemp);
923    ir->operands[1] = csel(nequal(frtemp, zero), one, zero->clone(ir, NULL));
924 
925    this->progress = true;
926 }
927 
928 void
dfloor_to_dfrac(ir_expression * ir)929 lower_instructions_visitor::dfloor_to_dfrac(ir_expression *ir)
930 {
931    /*
932     * frtemp = frac(x);
933     * result = sub(x, frtemp);
934     */
935    ir->operation = ir_binop_sub;
936    ir->init_num_operands();
937    ir->operands[1] = fract(ir->operands[0]->clone(ir, NULL));
938 
939    this->progress = true;
940 }
941 void
dround_even_to_dfrac(ir_expression * ir)942 lower_instructions_visitor::dround_even_to_dfrac(ir_expression *ir)
943 {
944    /*
945     * insane but works
946     * temp = x + 0.5;
947     * frtemp = frac(temp);
948     * t2 = sub(temp, frtemp);
949     * if (frac(x) == 0.5)
950     *     result = frac(t2 * 0.5) == 0 ? t2 : t2 - 1;
951     *  else
952     *     result = t2;
953 
954     */
955    ir_instruction &i = *base_ir;
956    ir_variable *frtemp = new(ir) ir_variable(ir->operands[0]->type, "frtemp",
957                                              ir_var_temporary);
958    ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
959                                            ir_var_temporary);
960    ir_variable *t2 = new(ir) ir_variable(ir->operands[0]->type, "t2",
961                                            ir_var_temporary);
962    ir_constant *p5 = new(ir) ir_constant(0.5, ir->operands[0]->type->vector_elements);
963    ir_constant *one = new(ir) ir_constant(1.0, ir->operands[0]->type->vector_elements);
964    ir_constant *zero = new(ir) ir_constant(0.0, ir->operands[0]->type->vector_elements);
965 
966    i.insert_before(temp);
967    i.insert_before(assign(temp, add(ir->operands[0], p5)));
968 
969    i.insert_before(frtemp);
970    i.insert_before(assign(frtemp, fract(temp)));
971 
972    i.insert_before(t2);
973    i.insert_before(assign(t2, sub(temp, frtemp)));
974 
975    ir->operation = ir_triop_csel;
976    ir->init_num_operands();
977    ir->operands[0] = equal(fract(ir->operands[0]->clone(ir, NULL)),
978                            p5->clone(ir, NULL));
979    ir->operands[1] = csel(equal(fract(mul(t2, p5->clone(ir, NULL))),
980                                 zero),
981                           t2,
982                           sub(t2, one));
983    ir->operands[2] = new(ir) ir_dereference_variable(t2);
984 
985    this->progress = true;
986 }
987 
988 void
dtrunc_to_dfrac(ir_expression * ir)989 lower_instructions_visitor::dtrunc_to_dfrac(ir_expression *ir)
990 {
991    /*
992     * frtemp = frac(x);
993     * temp = sub(x, frtemp);
994     * result = x >= 0 ? temp : temp + (frtemp == 0.0) ? 0 : 1;
995     */
996    ir_rvalue *arg = ir->operands[0];
997    ir_instruction &i = *base_ir;
998 
999    ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
1000    ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
1001    ir_variable *frtemp = new(ir) ir_variable(arg->type, "frtemp",
1002                                              ir_var_temporary);
1003    ir_variable *temp = new(ir) ir_variable(ir->operands[0]->type, "temp",
1004                                            ir_var_temporary);
1005 
1006    i.insert_before(frtemp);
1007    i.insert_before(assign(frtemp, fract(arg)));
1008    i.insert_before(temp);
1009    i.insert_before(assign(temp, sub(arg->clone(ir, NULL), frtemp)));
1010 
1011    ir->operation = ir_triop_csel;
1012    ir->init_num_operands();
1013    ir->operands[0] = gequal(arg->clone(ir, NULL), zero);
1014    ir->operands[1] = new (ir) ir_dereference_variable(temp);
1015    ir->operands[2] = add(temp,
1016                          csel(equal(frtemp, zero->clone(ir, NULL)),
1017                               zero->clone(ir, NULL),
1018                               one));
1019 
1020    this->progress = true;
1021 }
1022 
1023 void
dsign_to_csel(ir_expression * ir)1024 lower_instructions_visitor::dsign_to_csel(ir_expression *ir)
1025 {
1026    /*
1027     * temp = x > 0.0 ? 1.0 : 0.0;
1028     * result = x < 0.0 ? -1.0 : temp;
1029     */
1030    ir_rvalue *arg = ir->operands[0];
1031    ir_constant *zero = new(ir) ir_constant(0.0, arg->type->vector_elements);
1032    ir_constant *one = new(ir) ir_constant(1.0, arg->type->vector_elements);
1033    ir_constant *neg_one = new(ir) ir_constant(-1.0, arg->type->vector_elements);
1034 
1035    ir->operation = ir_triop_csel;
1036    ir->init_num_operands();
1037    ir->operands[0] = less(arg->clone(ir, NULL),
1038                           zero->clone(ir, NULL));
1039    ir->operands[1] = neg_one;
1040    ir->operands[2] = csel(greater(arg, zero),
1041                           one,
1042                           zero->clone(ir, NULL));
1043 
1044    this->progress = true;
1045 }
1046 
1047 void
bit_count_to_math(ir_expression * ir)1048 lower_instructions_visitor::bit_count_to_math(ir_expression *ir)
1049 {
1050    /* For more details, see:
1051     *
1052     * http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetPaallel
1053     */
1054    const unsigned elements = ir->operands[0]->type->vector_elements;
1055    ir_variable *temp = new(ir) ir_variable(glsl_type::uvec(elements), "temp",
1056                                            ir_var_temporary);
1057    ir_constant *c55555555 = new(ir) ir_constant(0x55555555u);
1058    ir_constant *c33333333 = new(ir) ir_constant(0x33333333u);
1059    ir_constant *c0F0F0F0F = new(ir) ir_constant(0x0F0F0F0Fu);
1060    ir_constant *c01010101 = new(ir) ir_constant(0x01010101u);
1061    ir_constant *c1 = new(ir) ir_constant(1u);
1062    ir_constant *c2 = new(ir) ir_constant(2u);
1063    ir_constant *c4 = new(ir) ir_constant(4u);
1064    ir_constant *c24 = new(ir) ir_constant(24u);
1065 
1066    base_ir->insert_before(temp);
1067 
1068    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1069       base_ir->insert_before(assign(temp, ir->operands[0]));
1070    } else {
1071       assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1072       base_ir->insert_before(assign(temp, i2u(ir->operands[0])));
1073    }
1074 
1075    /* temp = temp - ((temp >> 1) & 0x55555555u); */
1076    base_ir->insert_before(assign(temp, sub(temp, bit_and(rshift(temp, c1),
1077                                                          c55555555))));
1078 
1079    /* temp = (temp & 0x33333333u) + ((temp >> 2) & 0x33333333u); */
1080    base_ir->insert_before(assign(temp, add(bit_and(temp, c33333333),
1081                                            bit_and(rshift(temp, c2),
1082                                                    c33333333->clone(ir, NULL)))));
1083 
1084    /* int(((temp + (temp >> 4) & 0xF0F0F0Fu) * 0x1010101u) >> 24); */
1085    ir->operation = ir_unop_u2i;
1086    ir->init_num_operands();
1087    ir->operands[0] = rshift(mul(bit_and(add(temp, rshift(temp, c4)), c0F0F0F0F),
1088                                 c01010101),
1089                             c24);
1090 
1091    this->progress = true;
1092 }
1093 
1094 void
extract_to_shifts(ir_expression * ir)1095 lower_instructions_visitor::extract_to_shifts(ir_expression *ir)
1096 {
1097    ir_variable *bits =
1098       new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1099 
1100    base_ir->insert_before(bits);
1101    base_ir->insert_before(assign(bits, ir->operands[2]));
1102 
1103    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1104       ir_constant *c1 =
1105          new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1106       ir_constant *c32 =
1107          new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1108       ir_constant *cFFFFFFFF =
1109          new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1110 
1111       /* At least some hardware treats (x << y) as (x << (y%32)).  This means
1112        * we'd get a mask of 0 when bits is 32.  Special case it.
1113        *
1114        * mask = bits == 32 ? 0xffffffff : (1u << bits) - 1u;
1115        */
1116       ir_expression *mask = csel(equal(bits, c32),
1117                                  cFFFFFFFF,
1118                                  sub(lshift(c1, bits), c1->clone(ir, NULL)));
1119 
1120       /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1121        *
1122        *    If bits is zero, the result will be zero.
1123        *
1124        * Since (1 << 0) - 1 == 0, we don't need to bother with the conditional
1125        * select as in the signed integer case.
1126        *
1127        * (value >> offset) & mask;
1128        */
1129       ir->operation = ir_binop_bit_and;
1130       ir->init_num_operands();
1131       ir->operands[0] = rshift(ir->operands[0], ir->operands[1]);
1132       ir->operands[1] = mask;
1133       ir->operands[2] = NULL;
1134    } else {
1135       ir_constant *c0 =
1136          new(ir) ir_constant(int(0), ir->operands[0]->type->vector_elements);
1137       ir_constant *c32 =
1138          new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1139       ir_variable *temp =
1140          new(ir) ir_variable(ir->operands[0]->type, "temp", ir_var_temporary);
1141 
1142       /* temp = 32 - bits; */
1143       base_ir->insert_before(temp);
1144       base_ir->insert_before(assign(temp, sub(c32, bits)));
1145 
1146       /* expr = value << (temp - offset)) >> temp; */
1147       ir_expression *expr =
1148          rshift(lshift(ir->operands[0], sub(temp, ir->operands[1])), temp);
1149 
1150       /* Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1151        *
1152        *    If bits is zero, the result will be zero.
1153        *
1154        * Due to the (x << (y%32)) behavior mentioned before, the (value <<
1155        * (32-0)) doesn't "erase" all of the data as we would like, so finish
1156        * up with:
1157        *
1158        * (bits == 0) ? 0 : e;
1159        */
1160       ir->operation = ir_triop_csel;
1161       ir->init_num_operands();
1162       ir->operands[0] = equal(c0, bits);
1163       ir->operands[1] = c0->clone(ir, NULL);
1164       ir->operands[2] = expr;
1165    }
1166 
1167    this->progress = true;
1168 }
1169 
1170 void
insert_to_shifts(ir_expression * ir)1171 lower_instructions_visitor::insert_to_shifts(ir_expression *ir)
1172 {
1173    ir_constant *c1;
1174    ir_constant *c32;
1175    ir_constant *cFFFFFFFF;
1176    ir_variable *offset =
1177       new(ir) ir_variable(ir->operands[0]->type, "offset", ir_var_temporary);
1178    ir_variable *bits =
1179       new(ir) ir_variable(ir->operands[0]->type, "bits", ir_var_temporary);
1180    ir_variable *mask =
1181       new(ir) ir_variable(ir->operands[0]->type, "mask", ir_var_temporary);
1182 
1183    if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1184       c1 = new(ir) ir_constant(int(1), ir->operands[0]->type->vector_elements);
1185       c32 = new(ir) ir_constant(int(32), ir->operands[0]->type->vector_elements);
1186       cFFFFFFFF = new(ir) ir_constant(int(0xFFFFFFFF), ir->operands[0]->type->vector_elements);
1187    } else {
1188       assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1189 
1190       c1 = new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1191       c32 = new(ir) ir_constant(32u, ir->operands[0]->type->vector_elements);
1192       cFFFFFFFF = new(ir) ir_constant(0xFFFFFFFFu, ir->operands[0]->type->vector_elements);
1193    }
1194 
1195    base_ir->insert_before(offset);
1196    base_ir->insert_before(assign(offset, ir->operands[2]));
1197 
1198    base_ir->insert_before(bits);
1199    base_ir->insert_before(assign(bits, ir->operands[3]));
1200 
1201    /* At least some hardware treats (x << y) as (x << (y%32)).  This means
1202     * we'd get a mask of 0 when bits is 32.  Special case it.
1203     *
1204     * mask = (bits == 32 ? 0xffffffff : (1u << bits) - 1u) << offset;
1205     *
1206     * Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1207     *
1208     *    The result will be undefined if offset or bits is negative, or if the
1209     *    sum of offset and bits is greater than the number of bits used to
1210     *    store the operand.
1211     *
1212     * Since it's undefined, there are a couple other ways this could be
1213     * implemented.  The other way that was considered was to put the csel
1214     * around the whole thing:
1215     *
1216     *    final_result = bits == 32 ? insert : ... ;
1217     */
1218    base_ir->insert_before(mask);
1219 
1220    base_ir->insert_before(assign(mask, csel(equal(bits, c32),
1221                                             cFFFFFFFF,
1222                                             lshift(sub(lshift(c1, bits),
1223                                                        c1->clone(ir, NULL)),
1224                                                    offset))));
1225 
1226    /* (base & ~mask) | ((insert << offset) & mask) */
1227    ir->operation = ir_binop_bit_or;
1228    ir->init_num_operands();
1229    ir->operands[0] = bit_and(ir->operands[0], bit_not(mask));
1230    ir->operands[1] = bit_and(lshift(ir->operands[1], offset), mask);
1231    ir->operands[2] = NULL;
1232    ir->operands[3] = NULL;
1233 
1234    this->progress = true;
1235 }
1236 
1237 void
reverse_to_shifts(ir_expression * ir)1238 lower_instructions_visitor::reverse_to_shifts(ir_expression *ir)
1239 {
1240    /* For more details, see:
1241     *
1242     * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel
1243     */
1244    ir_constant *c1 =
1245       new(ir) ir_constant(1u, ir->operands[0]->type->vector_elements);
1246    ir_constant *c2 =
1247       new(ir) ir_constant(2u, ir->operands[0]->type->vector_elements);
1248    ir_constant *c4 =
1249       new(ir) ir_constant(4u, ir->operands[0]->type->vector_elements);
1250    ir_constant *c8 =
1251       new(ir) ir_constant(8u, ir->operands[0]->type->vector_elements);
1252    ir_constant *c16 =
1253       new(ir) ir_constant(16u, ir->operands[0]->type->vector_elements);
1254    ir_constant *c33333333 =
1255       new(ir) ir_constant(0x33333333u, ir->operands[0]->type->vector_elements);
1256    ir_constant *c55555555 =
1257       new(ir) ir_constant(0x55555555u, ir->operands[0]->type->vector_elements);
1258    ir_constant *c0F0F0F0F =
1259       new(ir) ir_constant(0x0F0F0F0Fu, ir->operands[0]->type->vector_elements);
1260    ir_constant *c00FF00FF =
1261       new(ir) ir_constant(0x00FF00FFu, ir->operands[0]->type->vector_elements);
1262    ir_variable *temp =
1263       new(ir) ir_variable(glsl_type::uvec(ir->operands[0]->type->vector_elements),
1264                           "temp", ir_var_temporary);
1265    ir_instruction &i = *base_ir;
1266 
1267    i.insert_before(temp);
1268 
1269    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1270       i.insert_before(assign(temp, ir->operands[0]));
1271    } else {
1272       assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1273       i.insert_before(assign(temp, i2u(ir->operands[0])));
1274    }
1275 
1276    /* Swap odd and even bits.
1277     *
1278     * temp = ((temp >> 1) & 0x55555555u) | ((temp & 0x55555555u) << 1);
1279     */
1280    i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c1), c55555555),
1281                                        lshift(bit_and(temp, c55555555->clone(ir, NULL)),
1282                                               c1->clone(ir, NULL)))));
1283    /* Swap consecutive pairs.
1284     *
1285     * temp = ((temp >> 2) & 0x33333333u) | ((temp & 0x33333333u) << 2);
1286     */
1287    i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c2), c33333333),
1288                                        lshift(bit_and(temp, c33333333->clone(ir, NULL)),
1289                                               c2->clone(ir, NULL)))));
1290 
1291    /* Swap nibbles.
1292     *
1293     * temp = ((temp >> 4) & 0x0F0F0F0Fu) | ((temp & 0x0F0F0F0Fu) << 4);
1294     */
1295    i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c4), c0F0F0F0F),
1296                                        lshift(bit_and(temp, c0F0F0F0F->clone(ir, NULL)),
1297                                               c4->clone(ir, NULL)))));
1298 
1299    /* The last step is, basically, bswap.  Swap the bytes, then swap the
1300     * words.  When this code is run through GCC on x86, it does generate a
1301     * bswap instruction.
1302     *
1303     * temp = ((temp >> 8) & 0x00FF00FFu) | ((temp & 0x00FF00FFu) << 8);
1304     * temp = ( temp >> 16              ) | ( temp                << 16);
1305     */
1306    i.insert_before(assign(temp, bit_or(bit_and(rshift(temp, c8), c00FF00FF),
1307                                        lshift(bit_and(temp, c00FF00FF->clone(ir, NULL)),
1308                                               c8->clone(ir, NULL)))));
1309 
1310    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1311       ir->operation = ir_binop_bit_or;
1312       ir->init_num_operands();
1313       ir->operands[0] = rshift(temp, c16);
1314       ir->operands[1] = lshift(temp, c16->clone(ir, NULL));
1315    } else {
1316       ir->operation = ir_unop_u2i;
1317       ir->init_num_operands();
1318       ir->operands[0] = bit_or(rshift(temp, c16),
1319                                lshift(temp, c16->clone(ir, NULL)));
1320    }
1321 
1322    this->progress = true;
1323 }
1324 
1325 void
find_lsb_to_float_cast(ir_expression * ir)1326 lower_instructions_visitor::find_lsb_to_float_cast(ir_expression *ir)
1327 {
1328    /* For more details, see:
1329     *
1330     * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1331     */
1332    const unsigned elements = ir->operands[0]->type->vector_elements;
1333    ir_constant *c0 = new(ir) ir_constant(unsigned(0), elements);
1334    ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1335    ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1336    ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1337    ir_variable *temp =
1338       new(ir) ir_variable(glsl_type::ivec(elements), "temp", ir_var_temporary);
1339    ir_variable *lsb_only =
1340       new(ir) ir_variable(glsl_type::uvec(elements), "lsb_only", ir_var_temporary);
1341    ir_variable *as_float =
1342       new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1343    ir_variable *lsb =
1344       new(ir) ir_variable(glsl_type::ivec(elements), "lsb", ir_var_temporary);
1345 
1346    ir_instruction &i = *base_ir;
1347 
1348    i.insert_before(temp);
1349 
1350    if (ir->operands[0]->type->base_type == GLSL_TYPE_INT) {
1351       i.insert_before(assign(temp, ir->operands[0]));
1352    } else {
1353       assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1354       i.insert_before(assign(temp, u2i(ir->operands[0])));
1355    }
1356 
1357    /* The int-to-float conversion is lossless because (value & -value) is
1358     * either a power of two or zero.  We don't use the result in the zero
1359     * case.  The uint() cast is necessary so that 0x80000000 does not
1360     * generate a negative value.
1361     *
1362     * uint lsb_only = uint(value & -value);
1363     * float as_float = float(lsb_only);
1364     */
1365    i.insert_before(lsb_only);
1366    i.insert_before(assign(lsb_only, i2u(bit_and(temp, neg(temp)))));
1367 
1368    i.insert_before(as_float);
1369    i.insert_before(assign(as_float, u2f(lsb_only)));
1370 
1371    /* This is basically an open-coded frexp.  Implementations that have a
1372     * native frexp instruction would be better served by that.  This is
1373     * optimized versus a full-featured open-coded implementation in two ways:
1374     *
1375     * - We don't care about a correct result from subnormal numbers (including
1376     *   0.0), so the raw exponent can always be safely unbiased.
1377     *
1378     * - The value cannot be negative, so it does not need to be masked off to
1379     *   extract the exponent.
1380     *
1381     * int lsb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1382     */
1383    i.insert_before(lsb);
1384    i.insert_before(assign(lsb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1385 
1386    /* Use lsb_only in the comparison instead of temp so that the & (far above)
1387     * can possibly generate the result without an explicit comparison.
1388     *
1389     * (lsb_only == 0) ? -1 : lsb;
1390     *
1391     * Since our input values are all integers, the unbiased exponent must not
1392     * be negative.  It will only be negative (-0x7f, in fact) if lsb_only is
1393     * 0.  Instead of using (lsb_only == 0), we could use (lsb >= 0).  Which is
1394     * better is likely GPU dependent.  Either way, the difference should be
1395     * small.
1396     */
1397    ir->operation = ir_triop_csel;
1398    ir->init_num_operands();
1399    ir->operands[0] = equal(lsb_only, c0);
1400    ir->operands[1] = cminus1;
1401    ir->operands[2] = new(ir) ir_dereference_variable(lsb);
1402 
1403    this->progress = true;
1404 }
1405 
1406 void
find_msb_to_float_cast(ir_expression * ir)1407 lower_instructions_visitor::find_msb_to_float_cast(ir_expression *ir)
1408 {
1409    /* For more details, see:
1410     *
1411     * http://graphics.stanford.edu/~seander/bithacks.html#ZerosOnRightFloatCast
1412     */
1413    const unsigned elements = ir->operands[0]->type->vector_elements;
1414    ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1415    ir_constant *cminus1 = new(ir) ir_constant(int(-1), elements);
1416    ir_constant *c23 = new(ir) ir_constant(int(23), elements);
1417    ir_constant *c7F = new(ir) ir_constant(int(0x7F), elements);
1418    ir_constant *c000000FF = new(ir) ir_constant(0x000000FFu, elements);
1419    ir_constant *cFFFFFF00 = new(ir) ir_constant(0xFFFFFF00u, elements);
1420    ir_variable *temp =
1421       new(ir) ir_variable(glsl_type::uvec(elements), "temp", ir_var_temporary);
1422    ir_variable *as_float =
1423       new(ir) ir_variable(glsl_type::vec(elements), "as_float", ir_var_temporary);
1424    ir_variable *msb =
1425       new(ir) ir_variable(glsl_type::ivec(elements), "msb", ir_var_temporary);
1426 
1427    ir_instruction &i = *base_ir;
1428 
1429    i.insert_before(temp);
1430 
1431    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1432       i.insert_before(assign(temp, ir->operands[0]));
1433    } else {
1434       assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1435 
1436       /* findMSB(uint(abs(some_int))) almost always does the right thing.
1437        * There are two problem values:
1438        *
1439        * * 0x80000000.  Since abs(0x80000000) == 0x80000000, findMSB returns
1440        *   31.  However, findMSB(int(0x80000000)) == 30.
1441        *
1442        * * 0xffffffff.  Since abs(0xffffffff) == 1, findMSB returns
1443        *   31.  Section 8.8 (Integer Functions) of the GLSL 4.50 spec says:
1444        *
1445        *    For a value of zero or negative one, -1 will be returned.
1446        *
1447        * For all negative number cases, including 0x80000000 and 0xffffffff,
1448        * the correct value is obtained from findMSB if instead of negating the
1449        * (already negative) value the logical-not is used.  A conditonal
1450        * logical-not can be achieved in two instructions.
1451        */
1452       ir_variable *as_int =
1453          new(ir) ir_variable(glsl_type::ivec(elements), "as_int", ir_var_temporary);
1454       ir_constant *c31 = new(ir) ir_constant(int(31), elements);
1455 
1456       i.insert_before(as_int);
1457       i.insert_before(assign(as_int, ir->operands[0]));
1458       i.insert_before(assign(temp, i2u(expr(ir_binop_bit_xor,
1459                                             as_int,
1460                                             rshift(as_int, c31)))));
1461    }
1462 
1463    /* The int-to-float conversion is lossless because bits are conditionally
1464     * masked off the bottom of temp to ensure the value has at most 24 bits of
1465     * data or is zero.  We don't use the result in the zero case.  The uint()
1466     * cast is necessary so that 0x80000000 does not generate a negative value.
1467     *
1468     * float as_float = float(temp > 255 ? temp & ~255 : temp);
1469     */
1470    i.insert_before(as_float);
1471    i.insert_before(assign(as_float, u2f(csel(greater(temp, c000000FF),
1472                                              bit_and(temp, cFFFFFF00),
1473                                              temp))));
1474 
1475    /* This is basically an open-coded frexp.  Implementations that have a
1476     * native frexp instruction would be better served by that.  This is
1477     * optimized versus a full-featured open-coded implementation in two ways:
1478     *
1479     * - We don't care about a correct result from subnormal numbers (including
1480     *   0.0), so the raw exponent can always be safely unbiased.
1481     *
1482     * - The value cannot be negative, so it does not need to be masked off to
1483     *   extract the exponent.
1484     *
1485     * int msb = (floatBitsToInt(as_float) >> 23) - 0x7f;
1486     */
1487    i.insert_before(msb);
1488    i.insert_before(assign(msb, sub(rshift(bitcast_f2i(as_float), c23), c7F)));
1489 
1490    /* Use msb in the comparison instead of temp so that the subtract can
1491     * possibly generate the result without an explicit comparison.
1492     *
1493     * (msb < 0) ? -1 : msb;
1494     *
1495     * Since our input values are all integers, the unbiased exponent must not
1496     * be negative.  It will only be negative (-0x7f, in fact) if temp is 0.
1497     */
1498    ir->operation = ir_triop_csel;
1499    ir->init_num_operands();
1500    ir->operands[0] = less(msb, c0);
1501    ir->operands[1] = cminus1;
1502    ir->operands[2] = new(ir) ir_dereference_variable(msb);
1503 
1504    this->progress = true;
1505 }
1506 
1507 ir_expression *
_carry(operand a,operand b)1508 lower_instructions_visitor::_carry(operand a, operand b)
1509 {
1510    if (lowering(CARRY_TO_ARITH))
1511       return i2u(b2i(less(add(a, b),
1512                           a.val->clone(ralloc_parent(a.val), NULL))));
1513    else
1514       return carry(a, b);
1515 }
1516 
1517 void
imul_high_to_mul(ir_expression * ir)1518 lower_instructions_visitor::imul_high_to_mul(ir_expression *ir)
1519 {
1520    /*   ABCD
1521     * * EFGH
1522     * ======
1523     * (GH * CD) + (GH * AB) << 16 + (EF * CD) << 16 + (EF * AB) << 32
1524     *
1525     * In GLSL, (a * b) becomes
1526     *
1527     * uint m1 = (a & 0x0000ffffu) * (b & 0x0000ffffu);
1528     * uint m2 = (a & 0x0000ffffu) * (b >> 16);
1529     * uint m3 = (a >> 16)         * (b & 0x0000ffffu);
1530     * uint m4 = (a >> 16)         * (b >> 16);
1531     *
1532     * uint c1;
1533     * uint c2;
1534     * uint lo_result;
1535     * uint hi_result;
1536     *
1537     * lo_result = uaddCarry(m1, m2 << 16, c1);
1538     * hi_result = m4 + c1;
1539     * lo_result = uaddCarry(lo_result, m3 << 16, c2);
1540     * hi_result = hi_result + c2;
1541     * hi_result = hi_result + (m2 >> 16) + (m3 >> 16);
1542     */
1543    const unsigned elements = ir->operands[0]->type->vector_elements;
1544    ir_variable *src1 =
1545       new(ir) ir_variable(glsl_type::uvec(elements), "src1", ir_var_temporary);
1546    ir_variable *src1h =
1547       new(ir) ir_variable(glsl_type::uvec(elements), "src1h", ir_var_temporary);
1548    ir_variable *src1l =
1549       new(ir) ir_variable(glsl_type::uvec(elements), "src1l", ir_var_temporary);
1550    ir_variable *src2 =
1551       new(ir) ir_variable(glsl_type::uvec(elements), "src2", ir_var_temporary);
1552    ir_variable *src2h =
1553       new(ir) ir_variable(glsl_type::uvec(elements), "src2h", ir_var_temporary);
1554    ir_variable *src2l =
1555       new(ir) ir_variable(glsl_type::uvec(elements), "src2l", ir_var_temporary);
1556    ir_variable *t1 =
1557       new(ir) ir_variable(glsl_type::uvec(elements), "t1", ir_var_temporary);
1558    ir_variable *t2 =
1559       new(ir) ir_variable(glsl_type::uvec(elements), "t2", ir_var_temporary);
1560    ir_variable *lo =
1561       new(ir) ir_variable(glsl_type::uvec(elements), "lo", ir_var_temporary);
1562    ir_variable *hi =
1563       new(ir) ir_variable(glsl_type::uvec(elements), "hi", ir_var_temporary);
1564    ir_variable *different_signs = NULL;
1565    ir_constant *c0000FFFF = new(ir) ir_constant(0x0000FFFFu, elements);
1566    ir_constant *c16 = new(ir) ir_constant(16u, elements);
1567 
1568    ir_instruction &i = *base_ir;
1569 
1570    i.insert_before(src1);
1571    i.insert_before(src2);
1572    i.insert_before(src1h);
1573    i.insert_before(src2h);
1574    i.insert_before(src1l);
1575    i.insert_before(src2l);
1576 
1577    if (ir->operands[0]->type->base_type == GLSL_TYPE_UINT) {
1578       i.insert_before(assign(src1, ir->operands[0]));
1579       i.insert_before(assign(src2, ir->operands[1]));
1580    } else {
1581       assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1582 
1583       ir_variable *itmp1 =
1584          new(ir) ir_variable(glsl_type::ivec(elements), "itmp1", ir_var_temporary);
1585       ir_variable *itmp2 =
1586          new(ir) ir_variable(glsl_type::ivec(elements), "itmp2", ir_var_temporary);
1587       ir_constant *c0 = new(ir) ir_constant(int(0), elements);
1588 
1589       i.insert_before(itmp1);
1590       i.insert_before(itmp2);
1591       i.insert_before(assign(itmp1, ir->operands[0]));
1592       i.insert_before(assign(itmp2, ir->operands[1]));
1593 
1594       different_signs =
1595          new(ir) ir_variable(glsl_type::bvec(elements), "different_signs",
1596                              ir_var_temporary);
1597 
1598       i.insert_before(different_signs);
1599       i.insert_before(assign(different_signs, expr(ir_binop_logic_xor,
1600                                                    less(itmp1, c0),
1601                                                    less(itmp2, c0->clone(ir, NULL)))));
1602 
1603       i.insert_before(assign(src1, i2u(abs(itmp1))));
1604       i.insert_before(assign(src2, i2u(abs(itmp2))));
1605    }
1606 
1607    i.insert_before(assign(src1l, bit_and(src1, c0000FFFF)));
1608    i.insert_before(assign(src2l, bit_and(src2, c0000FFFF->clone(ir, NULL))));
1609    i.insert_before(assign(src1h, rshift(src1, c16)));
1610    i.insert_before(assign(src2h, rshift(src2, c16->clone(ir, NULL))));
1611 
1612    i.insert_before(lo);
1613    i.insert_before(hi);
1614    i.insert_before(t1);
1615    i.insert_before(t2);
1616 
1617    i.insert_before(assign(lo, mul(src1l, src2l)));
1618    i.insert_before(assign(t1, mul(src1l, src2h)));
1619    i.insert_before(assign(t2, mul(src1h, src2l)));
1620    i.insert_before(assign(hi, mul(src1h, src2h)));
1621 
1622    i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t1, c16->clone(ir, NULL))))));
1623    i.insert_before(assign(lo,            add(lo, lshift(t1, c16->clone(ir, NULL)))));
1624 
1625    i.insert_before(assign(hi, add(hi, _carry(lo, lshift(t2, c16->clone(ir, NULL))))));
1626    i.insert_before(assign(lo,            add(lo, lshift(t2, c16->clone(ir, NULL)))));
1627 
1628    if (different_signs == NULL) {
1629       assert(ir->operands[0]->type->base_type == GLSL_TYPE_UINT);
1630 
1631       ir->operation = ir_binop_add;
1632       ir->init_num_operands();
1633       ir->operands[0] = add(hi, rshift(t1, c16->clone(ir, NULL)));
1634       ir->operands[1] = rshift(t2, c16->clone(ir, NULL));
1635    } else {
1636       assert(ir->operands[0]->type->base_type == GLSL_TYPE_INT);
1637 
1638       i.insert_before(assign(hi, add(add(hi, rshift(t1, c16->clone(ir, NULL))),
1639                                      rshift(t2, c16->clone(ir, NULL)))));
1640 
1641       /* For channels where different_signs is set we have to perform a 64-bit
1642        * negation.  This is *not* the same as just negating the high 32-bits.
1643        * Consider -3 * 2.  The high 32-bits is 0, but the desired result is
1644        * -1, not -0!  Recall -x == ~x + 1.
1645        */
1646       ir_variable *neg_hi =
1647          new(ir) ir_variable(glsl_type::ivec(elements), "neg_hi", ir_var_temporary);
1648       ir_constant *c1 = new(ir) ir_constant(1u, elements);
1649 
1650       i.insert_before(neg_hi);
1651       i.insert_before(assign(neg_hi, add(bit_not(u2i(hi)),
1652                                          u2i(_carry(bit_not(lo), c1)))));
1653 
1654       ir->operation = ir_triop_csel;
1655       ir->init_num_operands();
1656       ir->operands[0] = new(ir) ir_dereference_variable(different_signs);
1657       ir->operands[1] = new(ir) ir_dereference_variable(neg_hi);
1658       ir->operands[2] = u2i(hi);
1659    }
1660 }
1661 
1662 void
sqrt_to_abs_sqrt(ir_expression * ir)1663 lower_instructions_visitor::sqrt_to_abs_sqrt(ir_expression *ir)
1664 {
1665    ir->operands[0] = new(ir) ir_expression(ir_unop_abs, ir->operands[0]);
1666    this->progress = true;
1667 }
1668 
1669 ir_visitor_status
visit_leave(ir_expression * ir)1670 lower_instructions_visitor::visit_leave(ir_expression *ir)
1671 {
1672    switch (ir->operation) {
1673    case ir_binop_dot:
1674       if (ir->operands[0]->type->is_double())
1675          double_dot_to_fma(ir);
1676       break;
1677    case ir_triop_lrp:
1678       if (ir->operands[0]->type->is_double())
1679          double_lrp(ir);
1680       break;
1681    case ir_binop_sub:
1682       if (lowering(SUB_TO_ADD_NEG))
1683 	 sub_to_add_neg(ir);
1684       break;
1685 
1686    case ir_binop_div:
1687       if (ir->operands[1]->type->is_integer() && lowering(INT_DIV_TO_MUL_RCP))
1688 	 int_div_to_mul_rcp(ir);
1689       else if ((ir->operands[1]->type->is_float() && lowering(FDIV_TO_MUL_RCP)) ||
1690                (ir->operands[1]->type->is_double() && lowering(DDIV_TO_MUL_RCP)))
1691 	 div_to_mul_rcp(ir);
1692       break;
1693 
1694    case ir_unop_exp:
1695       if (lowering(EXP_TO_EXP2))
1696 	 exp_to_exp2(ir);
1697       break;
1698 
1699    case ir_unop_log:
1700       if (lowering(LOG_TO_LOG2))
1701 	 log_to_log2(ir);
1702       break;
1703 
1704    case ir_binop_mod:
1705       if (lowering(MOD_TO_FLOOR) && (ir->type->is_float() || ir->type->is_double()))
1706 	 mod_to_floor(ir);
1707       break;
1708 
1709    case ir_binop_pow:
1710       if (lowering(POW_TO_EXP2))
1711 	 pow_to_exp2(ir);
1712       break;
1713 
1714    case ir_binop_ldexp:
1715       if (lowering(LDEXP_TO_ARITH) && ir->type->is_float())
1716          ldexp_to_arith(ir);
1717       if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->type->is_double())
1718          dldexp_to_arith(ir);
1719       break;
1720 
1721    case ir_unop_frexp_exp:
1722       if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1723          dfrexp_exp_to_arith(ir);
1724       break;
1725 
1726    case ir_unop_frexp_sig:
1727       if (lowering(DFREXP_DLDEXP_TO_ARITH) && ir->operands[0]->type->is_double())
1728          dfrexp_sig_to_arith(ir);
1729       break;
1730 
1731    case ir_binop_carry:
1732       if (lowering(CARRY_TO_ARITH))
1733          carry_to_arith(ir);
1734       break;
1735 
1736    case ir_binop_borrow:
1737       if (lowering(BORROW_TO_ARITH))
1738          borrow_to_arith(ir);
1739       break;
1740 
1741    case ir_unop_saturate:
1742       if (lowering(SAT_TO_CLAMP))
1743          sat_to_clamp(ir);
1744       break;
1745 
1746    case ir_unop_trunc:
1747       if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1748          dtrunc_to_dfrac(ir);
1749       break;
1750 
1751    case ir_unop_ceil:
1752       if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1753          dceil_to_dfrac(ir);
1754       break;
1755 
1756    case ir_unop_floor:
1757       if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1758          dfloor_to_dfrac(ir);
1759       break;
1760 
1761    case ir_unop_round_even:
1762       if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1763          dround_even_to_dfrac(ir);
1764       break;
1765 
1766    case ir_unop_sign:
1767       if (lowering(DOPS_TO_DFRAC) && ir->type->is_double())
1768          dsign_to_csel(ir);
1769       break;
1770 
1771    case ir_unop_bit_count:
1772       if (lowering(BIT_COUNT_TO_MATH))
1773          bit_count_to_math(ir);
1774       break;
1775 
1776    case ir_triop_bitfield_extract:
1777       if (lowering(EXTRACT_TO_SHIFTS))
1778          extract_to_shifts(ir);
1779       break;
1780 
1781    case ir_quadop_bitfield_insert:
1782       if (lowering(INSERT_TO_SHIFTS))
1783          insert_to_shifts(ir);
1784       break;
1785 
1786    case ir_unop_bitfield_reverse:
1787       if (lowering(REVERSE_TO_SHIFTS))
1788          reverse_to_shifts(ir);
1789       break;
1790 
1791    case ir_unop_find_lsb:
1792       if (lowering(FIND_LSB_TO_FLOAT_CAST))
1793          find_lsb_to_float_cast(ir);
1794       break;
1795 
1796    case ir_unop_find_msb:
1797       if (lowering(FIND_MSB_TO_FLOAT_CAST))
1798          find_msb_to_float_cast(ir);
1799       break;
1800 
1801    case ir_binop_imul_high:
1802       if (lowering(IMUL_HIGH_TO_MUL))
1803          imul_high_to_mul(ir);
1804       break;
1805 
1806    case ir_unop_rsq:
1807    case ir_unop_sqrt:
1808       if (lowering(SQRT_TO_ABS_SQRT))
1809          sqrt_to_abs_sqrt(ir);
1810       break;
1811 
1812    default:
1813       return visit_continue;
1814    }
1815 
1816    return visit_continue;
1817 }
1818