• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2013 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 
29 /**
30  * @file
31  * Format conversion code for srgb formats.
32  *
33  * Functions for converting from srgb to linear and vice versa.
34  * From http://www.opengl.org/registry/specs/EXT/texture_sRGB.txt:
35  *
36  * srgb->linear:
37  * cl = cs / 12.92,                 cs <= 0.04045
38  * cl = ((cs + 0.055)/1.055)^2.4,   cs >  0.04045
39  *
40  * linear->srgb:
41  * if (isnan(cl)) {
42  *    Map IEEE-754 Not-a-number to zero.
43  *    cs = 0.0;
44  * } else if (cl > 1.0) {
45  *    cs = 1.0;
46  * } else if (cl < 0.0) {
47  *    cs = 0.0;
48  * } else if (cl < 0.0031308) {
49  *    cs = 12.92 * cl;
50  * } else {
51  *    cs = 1.055 * pow(cl, 0.41666) - 0.055;
52  * }
53  *
54  * This does not need to be accurate, however at least for d3d10
55  * (http://msdn.microsoft.com/en-us/library/windows/desktop/dd607323%28v=vs.85%29.aspx):
56  * 1) For srgb->linear, it is required that the error on the srgb side is
57  *    not larger than 0.5f, which I interpret that if you map the value back
58  *    to srgb from linear using the ideal conversion, it would not be off by
59  *    more than 0.5f (that is, it would map to the same 8-bit integer value
60  *    as it was before conversion to linear).
61  * 2) linear->srgb is permitted 0.6f which luckily looks like quite a large
62  *    error is allowed.
63  * 3) Additionally, all srgb values converted to linear and back must result
64  *    in the same value as they were originally.
65  *
66  * @author Roland Scheidegger <sroland@vmware.com>
67  */
68 
69 
70 #include "util/u_debug.h"
71 
72 #include "lp_bld_type.h"
73 #include "lp_bld_const.h"
74 #include "lp_bld_arit.h"
75 #include "lp_bld_bitarit.h"
76 #include "lp_bld_logic.h"
77 #include "lp_bld_format.h"
78 
79 
80 
81 /**
82  * Convert srgb int values to linear float values.
83  * Several possibilities how to do this, e.g.
84  * - table
85  * - doing the pow() with int-to-float and float-to-int tricks
86  *   (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
87  * - just using standard polynomial approximation
88  *   (3rd order polynomial is required for crappy but just sufficient accuracy)
89  *
90  * @param src   integer (vector) value(s) to convert
91  *              (chan_bits bit values unpacked to 32 bit already).
92  */
93 LLVMValueRef
lp_build_srgb_to_linear(struct gallivm_state * gallivm,struct lp_type src_type,unsigned chan_bits,LLVMValueRef src)94 lp_build_srgb_to_linear(struct gallivm_state *gallivm,
95                         struct lp_type src_type,
96                         unsigned chan_bits,
97                         LLVMValueRef src)
98 {
99    struct lp_type f32_type = lp_type_float_vec(32, src_type.length * 32);
100    struct lp_build_context f32_bld;
101    LLVMValueRef srcf, part_lin, part_pow, is_linear, lin_const, lin_thresh;
102    double coeffs[4] = {0.0023f,
103                        0.0030f / 255.0f,
104                        0.6935f / (255.0f * 255.0f),
105                        0.3012f / (255.0f * 255.0f * 255.0f)
106    };
107 
108    assert(src_type.width == 32);
109    /* Technically this would work with more bits too but would be inaccurate. */
110    assert(chan_bits <= 8);
111 
112    lp_build_context_init(&f32_bld, gallivm, f32_type);
113 
114    /*
115     * using polynomial: (src * (src * (src * 0.3012 + 0.6935) + 0.0030) + 0.0023)
116     * ( poly =  0.3012*x^3 + 0.6935*x^2 + 0.0030*x + 0.0023)
117     * (found with octave polyfit and some magic as I couldn't get the error
118     * function right). Using the above mentioned error function, the values stay
119     * within +-0.35, except for the lowest values - hence tweaking linear segment
120     * to cover the first 16 instead of the first 11 values (the error stays
121     * just about acceptable there too).
122     * Hence: lin = src > 15 ? poly : src / 12.6
123     * This function really only makes sense for vectors, should use LUT otherwise.
124     * All in all (including float conversion) 11 instructions (with sse4.1),
125     * 6 constants (polynomial could be done with 1 instruction less at the cost
126     * of slightly worse dependency chain, fma should also help).
127     */
128    /* doing the 1/255 mul as part of the approximation */
129    srcf = lp_build_int_to_float(&f32_bld, src);
130    if (chan_bits != 8) {
131       /* could adjust all the constants instead */
132       LLVMValueRef rescale_const = lp_build_const_vec(gallivm, f32_type,
133                                                       255.0f / ((1 << chan_bits) - 1));
134       srcf = lp_build_mul(&f32_bld, srcf, rescale_const);
135    }
136    lin_const = lp_build_const_vec(gallivm, f32_type, 1.0f / (12.6f * 255.0f));
137    part_lin = lp_build_mul(&f32_bld, srcf, lin_const);
138 
139    part_pow = lp_build_polynomial(&f32_bld, srcf, coeffs, 4);
140 
141    lin_thresh = lp_build_const_vec(gallivm, f32_type, 15.0f);
142    is_linear = lp_build_compare(gallivm, f32_type, PIPE_FUNC_LEQUAL, srcf, lin_thresh);
143    return lp_build_select(&f32_bld, is_linear, part_lin, part_pow);
144 }
145 
146 
147 /**
148  * Convert linear float values to srgb int values.
149  * Several possibilities how to do this, e.g.
150  * - use table (based on exponent/highest order mantissa bits) and do
151  *   linear interpolation (https://gist.github.com/rygorous/2203834)
152  * - Chebyshev polynomial
153  * - Approximation using reciprocals
154  * - using int-to-float and float-to-int tricks for pow()
155  *   (http://stackoverflow.com/questions/6475373/optimizations-for-pow-with-const-non-integer-exponent)
156  *
157  * @param src   float (vector) value(s) to convert.
158  */
159 static LLVMValueRef
lp_build_linear_to_srgb(struct gallivm_state * gallivm,struct lp_type src_type,unsigned chan_bits,LLVMValueRef src)160 lp_build_linear_to_srgb(struct gallivm_state *gallivm,
161                         struct lp_type src_type,
162                         unsigned chan_bits,
163                         LLVMValueRef src)
164 {
165    LLVMBuilderRef builder = gallivm->builder;
166    struct lp_build_context f32_bld;
167    LLVMValueRef lin_thresh, lin, lin_const, is_linear, tmp, pow_final;
168 
169    lp_build_context_init(&f32_bld, gallivm, src_type);
170 
171    src = lp_build_clamp(&f32_bld, src, f32_bld.zero, f32_bld.one);
172 
173    if (0) {
174       /*
175        * using int-to-float and float-to-int trick for pow().
176        * This is much more accurate than necessary thanks to the correction,
177        * but it most certainly makes no sense without rsqrt available.
178        * Bonus points if you understand how this works...
179        * All in all (including min/max clamp, conversion) 19 instructions.
180        */
181 
182       float exp_f = 2.0f / 3.0f;
183       /* some compilers can't do exp2f, so this is exp2f(127.0f/exp_f - 127.0f) */
184       float exp2f_c = 1.30438178253e+19f;
185       float coeff_f = 0.62996f;
186       LLVMValueRef pow_approx, coeff, x2, exponent, pow_1, pow_2;
187       struct lp_type int_type = lp_int_type(src_type);
188 
189       /*
190        * First calculate approx x^8/12
191        */
192       exponent = lp_build_const_vec(gallivm, src_type, exp_f);
193       coeff = lp_build_const_vec(gallivm, src_type,
194                                  exp2f_c * powf(coeff_f, 1.0f / exp_f));
195 
196       /* premultiply src */
197       tmp = lp_build_mul(&f32_bld, coeff, src);
198       /* "log2" */
199       tmp = LLVMBuildBitCast(builder, tmp, lp_build_vec_type(gallivm, int_type), "");
200       tmp = lp_build_int_to_float(&f32_bld, tmp);
201       /* multiply for pow */
202       tmp = lp_build_mul(&f32_bld, tmp, exponent);
203       /* "exp2" */
204       pow_approx = lp_build_itrunc(&f32_bld, tmp);
205       pow_approx = LLVMBuildBitCast(builder, pow_approx,
206                                     lp_build_vec_type(gallivm, src_type), "");
207 
208       /*
209        * Since that pow was inaccurate (like 3 bits, though each sqrt step would
210        * give another bit), compensate the error (which is why we chose another
211        * exponent in the first place).
212        */
213       /* x * x^(8/12) = x^(20/12) */
214       pow_1 = lp_build_mul(&f32_bld, pow_approx, src);
215 
216       /* x * x * x^(-4/12) = x^(20/12) */
217       /* Should avoid using rsqrt if it's not available, but
218        * using x * x^(4/12) * x^(4/12) instead will change error weight */
219       tmp = lp_build_fast_rsqrt(&f32_bld, pow_approx);
220       x2 = lp_build_mul(&f32_bld, src, src);
221       pow_2 = lp_build_mul(&f32_bld, x2, tmp);
222 
223       /* average the values so the errors cancel out, compensate bias,
224        * we also squeeze the 1.055 mul of the srgb conversion plus the 255.0 mul
225        * for conversion to int in here */
226       tmp = lp_build_add(&f32_bld, pow_1, pow_2);
227       coeff = lp_build_const_vec(gallivm, src_type,
228                                  1.0f / (3.0f * coeff_f) * 0.999852f *
229                                  powf(1.055f * 255.0f, 4.0f));
230       pow_final = lp_build_mul(&f32_bld, tmp, coeff);
231 
232       /* x^(5/12) = rsqrt(rsqrt(x^20/12)) */
233       if (lp_build_fast_rsqrt_available(src_type)) {
234          pow_final = lp_build_fast_rsqrt(&f32_bld,
235                         lp_build_fast_rsqrt(&f32_bld, pow_final));
236       }
237       else {
238          pow_final = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, pow_final));
239       }
240       pow_final = lp_build_add(&f32_bld, pow_final,
241                                lp_build_const_vec(gallivm, src_type, -0.055f * 255.0f));
242    }
243 
244    else {
245       /*
246        * using "rational polynomial" approximation here.
247        * Essentially y = a*x^0.375 + b*x^0.5 + c, with also
248        * factoring in the 255.0 mul and the scaling mul.
249        * (a is closer to actual value so has higher weight than b.)
250        * Note: the constants are magic values. They were found empirically,
251        * possibly could be improved but good enough (be VERY careful with
252        * error metric if you'd want to tweak them, they also MUST fit with
253        * the crappy polynomial above for srgb->linear since it is required
254        * that each srgb value maps back to the same value).
255        * This function has an error of max +-0.17. Not sure this is actually
256        * enough, we require +-0.6 but that may include the +-0.5 from integer
257        * conversion. Seems to pass all relevant tests though...
258        * For the approximated srgb->linear values the error is naturally larger
259        * (+-0.42) but still accurate enough (required +-0.5 essentially).
260        * All in all (including min/max clamp, conversion) 15 instructions.
261        * FMA would help (minus 2 instructions).
262        */
263 
264       LLVMValueRef x05, x0375, a_const, b_const, c_const, tmp2;
265 
266       if (lp_build_fast_rsqrt_available(src_type)) {
267          tmp = lp_build_fast_rsqrt(&f32_bld, src);
268          x05 = lp_build_mul(&f32_bld, src, tmp);
269       }
270       else {
271          /*
272           * I don't really expect this to be practical without rsqrt
273           * but there's no reason for triple punishment so at least
274           * save the otherwise resulting division and unnecessary mul...
275           */
276          x05 = lp_build_sqrt(&f32_bld, src);
277       }
278 
279       tmp = lp_build_mul(&f32_bld, x05, src);
280       if (lp_build_fast_rsqrt_available(src_type)) {
281          x0375 = lp_build_fast_rsqrt(&f32_bld, lp_build_fast_rsqrt(&f32_bld, tmp));
282       }
283       else {
284          x0375 = lp_build_sqrt(&f32_bld, lp_build_sqrt(&f32_bld, tmp));
285       }
286 
287       a_const = lp_build_const_vec(gallivm, src_type, 0.675f * 1.0622 * 255.0f);
288       b_const = lp_build_const_vec(gallivm, src_type, 0.325f * 1.0622 * 255.0f);
289       c_const = lp_build_const_vec(gallivm, src_type, -0.0620f * 255.0f);
290 
291       tmp = lp_build_mul(&f32_bld, a_const, x0375);
292       tmp2 = lp_build_mad(&f32_bld, b_const, x05, c_const);
293       pow_final = lp_build_add(&f32_bld, tmp, tmp2);
294    }
295 
296    /* linear part is easy */
297    lin_const = lp_build_const_vec(gallivm, src_type, 12.92f * 255.0f);
298    lin = lp_build_mul(&f32_bld, src, lin_const);
299 
300    lin_thresh = lp_build_const_vec(gallivm, src_type, 0.0031308f);
301    is_linear = lp_build_compare(gallivm, src_type, PIPE_FUNC_LEQUAL, src, lin_thresh);
302    tmp = lp_build_select(&f32_bld, is_linear, lin, pow_final);
303 
304    if (chan_bits != 8) {
305       /* could adjust all the constants instead */
306       LLVMValueRef rescale_const = lp_build_const_vec(gallivm, src_type,
307                                                       ((1 << chan_bits) - 1) / 255.0f);
308       tmp = lp_build_mul(&f32_bld, tmp, rescale_const);
309    }
310 
311    f32_bld.type.sign = 0;
312    return lp_build_iround(&f32_bld, tmp);
313 }
314 
315 
316 /**
317  * Convert linear float soa values to packed srgb AoS values.
318  * This only handles packed formats which are 4x8bit in size
319  * (rgba and rgbx plus swizzles), and 16bit 565-style formats
320  * with no alpha. (In the latter case the return values won't be
321  * fully packed, it will look like r5g6b5x16r5g6b5x16...)
322  *
323  * @param src   float SoA (vector) values to convert.
324  */
325 LLVMValueRef
lp_build_float_to_srgb_packed(struct gallivm_state * gallivm,const struct util_format_description * dst_fmt,struct lp_type src_type,LLVMValueRef * src)326 lp_build_float_to_srgb_packed(struct gallivm_state *gallivm,
327                               const struct util_format_description *dst_fmt,
328                               struct lp_type src_type,
329                               LLVMValueRef *src)
330 {
331    LLVMBuilderRef builder = gallivm->builder;
332    unsigned chan;
333    struct lp_build_context f32_bld;
334    struct lp_type int32_type = lp_int_type(src_type);
335    LLVMValueRef tmpsrgb[4], alpha, dst;
336 
337    lp_build_context_init(&f32_bld, gallivm, src_type);
338 
339    /* rgb is subject to linear->srgb conversion, alpha is not */
340    for (chan = 0; chan < 3; chan++) {
341       unsigned chan_bits = dst_fmt->channel[dst_fmt->swizzle[chan]].size;
342       tmpsrgb[chan] = lp_build_linear_to_srgb(gallivm, src_type, chan_bits, src[chan]);
343    }
344    /*
345     * can't use lp_build_conv since we want to keep values as 32bit
346     * here so we can interleave with rgb to go from SoA->AoS.
347     */
348    alpha = lp_build_clamp_zero_one_nanzero(&f32_bld, src[3]);
349    alpha = lp_build_mul(&f32_bld, alpha,
350                         lp_build_const_vec(gallivm, src_type, 255.0f));
351    tmpsrgb[3] = lp_build_iround(&f32_bld, alpha);
352 
353    dst = lp_build_zero(gallivm, int32_type);
354    for (chan = 0; chan < dst_fmt->nr_channels; chan++) {
355       if (dst_fmt->swizzle[chan] <= PIPE_SWIZZLE_W) {
356          unsigned ls;
357          LLVMValueRef shifted, shift_val;
358          ls = dst_fmt->channel[dst_fmt->swizzle[chan]].shift;
359          shift_val = lp_build_const_int_vec(gallivm, int32_type, ls);
360          shifted = LLVMBuildShl(builder, tmpsrgb[chan], shift_val, "");
361          dst = LLVMBuildOr(builder, dst, shifted, "");
362       }
363    }
364    return dst;
365 }
366