• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**************************************************************************
2  *
3  * Copyright 2007 VMware, Inc.
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
19  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
20  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
21  * IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
22  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
23  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
24  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 /*
29  * Binning code for lines
30  */
31 
32 #include "util/u_math.h"
33 #include "util/u_memory.h"
34 #include "lp_perf.h"
35 #include "lp_setup_context.h"
36 #include "lp_rast.h"
37 #include "lp_state_fs.h"
38 #include "lp_state_setup.h"
39 #include "lp_context.h"
40 #include "draw/draw_context.h"
41 
42 #define NUM_CHANNELS 4
43 
44 struct lp_line_info {
45 
46    float dx;
47    float dy;
48    float oneoverarea;
49    boolean frontfacing;
50 
51    const float (*v1)[4];
52    const float (*v2)[4];
53 
54    float (*a0)[4];
55    float (*dadx)[4];
56    float (*dady)[4];
57 };
58 
59 
60 /**
61  * Compute a0 for a constant-valued coefficient (GL_FLAT shading).
62  */
constant_coef(struct lp_setup_context * setup,struct lp_line_info * info,unsigned slot,const float value,unsigned i)63 static void constant_coef( struct lp_setup_context *setup,
64                            struct lp_line_info *info,
65                            unsigned slot,
66                            const float value,
67                            unsigned i )
68 {
69    info->a0[slot][i] = value;
70    info->dadx[slot][i] = 0.0f;
71    info->dady[slot][i] = 0.0f;
72 }
73 
74 
75 /**
76  * Compute a0, dadx and dady for a linearly interpolated coefficient,
77  * for a triangle.
78  */
linear_coef(struct lp_setup_context * setup,struct lp_line_info * info,unsigned slot,unsigned vert_attr,unsigned i)79 static void linear_coef( struct lp_setup_context *setup,
80                          struct lp_line_info *info,
81                          unsigned slot,
82                          unsigned vert_attr,
83                          unsigned i)
84 {
85    float a1 = info->v1[vert_attr][i];
86    float a2 = info->v2[vert_attr][i];
87 
88    float da21 = a1 - a2;
89    float dadx = da21 * info->dx * info->oneoverarea;
90    float dady = da21 * info->dy * info->oneoverarea;
91 
92    info->dadx[slot][i] = dadx;
93    info->dady[slot][i] = dady;
94 
95    info->a0[slot][i] = (a1 -
96                               (dadx * (info->v1[0][0] - setup->pixel_offset) +
97                                dady * (info->v1[0][1] - setup->pixel_offset)));
98 }
99 
100 
101 /**
102  * Compute a0, dadx and dady for a perspective-corrected interpolant,
103  * for a triangle.
104  * We basically multiply the vertex value by 1/w before computing
105  * the plane coefficients (a0, dadx, dady).
106  * Later, when we compute the value at a particular fragment position we'll
107  * divide the interpolated value by the interpolated W at that fragment.
108  */
perspective_coef(struct lp_setup_context * setup,struct lp_line_info * info,unsigned slot,unsigned vert_attr,unsigned i)109 static void perspective_coef( struct lp_setup_context *setup,
110                               struct lp_line_info *info,
111                               unsigned slot,
112                               unsigned vert_attr,
113                               unsigned i)
114 {
115    /* premultiply by 1/w  (v[0][3] is always 1/w):
116     */
117    float a1 = info->v1[vert_attr][i] * info->v1[0][3];
118    float a2 = info->v2[vert_attr][i] * info->v2[0][3];
119 
120    float da21 = a1 - a2;
121    float dadx = da21 * info->dx * info->oneoverarea;
122    float dady = da21 * info->dy * info->oneoverarea;
123 
124    info->dadx[slot][i] = dadx;
125    info->dady[slot][i] = dady;
126 
127    info->a0[slot][i] = (a1 -
128                         (dadx * (info->v1[0][0] - setup->pixel_offset) +
129                          dady * (info->v1[0][1] - setup->pixel_offset)));
130 }
131 
132 static void
setup_fragcoord_coef(struct lp_setup_context * setup,struct lp_line_info * info,unsigned slot,unsigned usage_mask)133 setup_fragcoord_coef( struct lp_setup_context *setup,
134                       struct lp_line_info *info,
135                       unsigned slot,
136                       unsigned usage_mask)
137 {
138    /*X*/
139    if (usage_mask & TGSI_WRITEMASK_X) {
140       info->a0[slot][0] = 0.0;
141       info->dadx[slot][0] = 1.0;
142       info->dady[slot][0] = 0.0;
143    }
144 
145    /*Y*/
146    if (usage_mask & TGSI_WRITEMASK_Y) {
147       info->a0[slot][1] = 0.0;
148       info->dadx[slot][1] = 0.0;
149       info->dady[slot][1] = 1.0;
150    }
151 
152    /*Z*/
153    if (usage_mask & TGSI_WRITEMASK_Z) {
154       linear_coef(setup, info, slot, 0, 2);
155    }
156 
157    /*W*/
158    if (usage_mask & TGSI_WRITEMASK_W) {
159       linear_coef(setup, info, slot, 0, 3);
160    }
161 }
162 
163 /**
164  * Compute the tri->coef[] array dadx, dady, a0 values.
165  */
setup_line_coefficients(struct lp_setup_context * setup,struct lp_line_info * info)166 static void setup_line_coefficients( struct lp_setup_context *setup,
167                                      struct lp_line_info *info)
168 {
169    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
170    unsigned fragcoord_usage_mask = TGSI_WRITEMASK_XYZ;
171    unsigned slot;
172 
173    /* setup interpolation for all the remaining attributes:
174     */
175    for (slot = 0; slot < key->num_inputs; slot++) {
176       unsigned vert_attr = key->inputs[slot].src_index;
177       unsigned usage_mask = key->inputs[slot].usage_mask;
178       unsigned i;
179 
180       switch (key->inputs[slot].interp) {
181       case LP_INTERP_CONSTANT:
182          if (key->flatshade_first) {
183             for (i = 0; i < NUM_CHANNELS; i++)
184                if (usage_mask & (1 << i))
185                   constant_coef(setup, info, slot+1, info->v1[vert_attr][i], i);
186          }
187          else {
188             for (i = 0; i < NUM_CHANNELS; i++)
189                if (usage_mask & (1 << i))
190                   constant_coef(setup, info, slot+1, info->v2[vert_attr][i], i);
191          }
192          break;
193 
194       case LP_INTERP_LINEAR:
195          for (i = 0; i < NUM_CHANNELS; i++)
196             if (usage_mask & (1 << i))
197                linear_coef(setup, info, slot+1, vert_attr, i);
198          break;
199 
200       case LP_INTERP_PERSPECTIVE:
201          for (i = 0; i < NUM_CHANNELS; i++)
202             if (usage_mask & (1 << i))
203                perspective_coef(setup, info, slot+1, vert_attr, i);
204          fragcoord_usage_mask |= TGSI_WRITEMASK_W;
205          break;
206 
207       case LP_INTERP_POSITION:
208          /*
209           * The generated pixel interpolators will pick up the coeffs from
210           * slot 0, so all need to ensure that the usage mask is covers all
211           * usages.
212           */
213          fragcoord_usage_mask |= usage_mask;
214          break;
215 
216       case LP_INTERP_FACING:
217          for (i = 0; i < NUM_CHANNELS; i++)
218             if (usage_mask & (1 << i))
219                constant_coef(setup, info, slot+1,
220                              info->frontfacing ? 1.0f : -1.0f, i);
221          break;
222 
223       default:
224          assert(0);
225       }
226    }
227 
228    /* The internal position input is in slot zero:
229     */
230    setup_fragcoord_coef(setup, info, 0,
231                         fragcoord_usage_mask);
232 }
233 
234 
235 
subpixel_snap(float a)236 static inline int subpixel_snap( float a )
237 {
238    return util_iround(FIXED_ONE * a);
239 }
240 
241 
242 /**
243  * Print line vertex attribs (for debug).
244  */
245 static void
print_line(struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4])246 print_line(struct lp_setup_context *setup,
247            const float (*v1)[4],
248            const float (*v2)[4])
249 {
250    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
251    uint i;
252 
253    debug_printf("llvmpipe line\n");
254    for (i = 0; i < 1 + key->num_inputs; i++) {
255       debug_printf("  v1[%d]:  %f %f %f %f\n", i,
256                    v1[i][0], v1[i][1], v1[i][2], v1[i][3]);
257    }
258    for (i = 0; i < 1 + key->num_inputs; i++) {
259       debug_printf("  v2[%d]:  %f %f %f %f\n", i,
260                    v2[i][0], v2[i][1], v2[i][2], v2[i][3]);
261    }
262 }
263 
264 
sign(float x)265 static inline boolean sign(float x){
266    return x >= 0;
267 }
268 
269 
270 /* Used on positive floats only:
271  */
fracf(float f)272 static inline float fracf(float f)
273 {
274    return f - floorf(f);
275 }
276 
277 
278 
279 static boolean
try_setup_line(struct lp_setup_context * setup,const float (* v1)[4],const float (* v2)[4])280 try_setup_line( struct lp_setup_context *setup,
281                const float (*v1)[4],
282                const float (*v2)[4])
283 {
284    struct llvmpipe_context *lp_context = (struct llvmpipe_context *)setup->pipe;
285    struct lp_scene *scene = setup->scene;
286    const struct lp_setup_variant_key *key = &setup->setup.variant->key;
287    struct lp_rast_triangle *line;
288    struct lp_rast_plane *plane;
289    struct lp_line_info info;
290    float width = MAX2(1.0, setup->line_width);
291    const struct u_rect *scissor;
292    struct u_rect bbox, bboxpos;
293    boolean s_planes[4];
294    unsigned tri_bytes;
295    int x[4];
296    int y[4];
297    int i;
298    int nr_planes = 4;
299    unsigned viewport_index = 0;
300    unsigned layer = 0;
301 
302    /* linewidth should be interpreted as integer */
303    int fixed_width = util_iround(width) * FIXED_ONE;
304 
305    float x_offset=0;
306    float y_offset=0;
307    float x_offset_end=0;
308    float y_offset_end=0;
309 
310    float x1diff;
311    float y1diff;
312    float x2diff;
313    float y2diff;
314    float dx, dy;
315    float area;
316    const float (*pv)[4];
317 
318    boolean draw_start;
319    boolean draw_end;
320    boolean will_draw_start;
321    boolean will_draw_end;
322 
323    if (0)
324       print_line(setup, v1, v2);
325 
326    if (setup->flatshade_first) {
327       pv = v1;
328    }
329    else {
330       pv = v2;
331    }
332    if (setup->viewport_index_slot > 0) {
333       unsigned *udata = (unsigned*)pv[setup->viewport_index_slot];
334       viewport_index = lp_clamp_viewport_idx(*udata);
335    }
336    if (setup->layer_slot > 0) {
337       layer = *(unsigned*)pv[setup->layer_slot];
338       layer = MIN2(layer, scene->fb_max_layer);
339    }
340 
341    dx = v1[0][0] - v2[0][0];
342    dy = v1[0][1] - v2[0][1];
343    area = (dx * dx  + dy * dy);
344    if (area == 0) {
345       LP_COUNT(nr_culled_tris);
346       return TRUE;
347    }
348 
349    info.oneoverarea = 1.0f / area;
350    info.dx = dx;
351    info.dy = dy;
352    info.v1 = v1;
353    info.v2 = v2;
354 
355 
356    /* X-MAJOR LINE */
357    if (fabsf(dx) >= fabsf(dy)) {
358       float dydx = dy / dx;
359 
360       x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
361       y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
362       x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
363       y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
364 
365       if (y2diff==-0.5 && dy<0){
366          y2diff = 0.5;
367       }
368 
369       /*
370        * Diamond exit rule test for starting point
371        */
372       if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
373          draw_start = TRUE;
374       }
375       else if (sign(x1diff) == sign(-dx)) {
376          draw_start = FALSE;
377       }
378       else if (sign(-y1diff) != sign(dy)) {
379          draw_start = TRUE;
380       }
381       else {
382          /* do intersection test */
383          float yintersect = fracf(v1[0][1]) + x1diff * dydx;
384          draw_start = (yintersect < 1.0 && yintersect > 0.0);
385       }
386 
387 
388       /*
389        * Diamond exit rule test for ending point
390        */
391       if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
392          draw_end = FALSE;
393       }
394       else if (sign(x2diff) != sign(-dx)) {
395          draw_end = FALSE;
396       }
397       else if (sign(-y2diff) == sign(dy)) {
398          draw_end = TRUE;
399       }
400       else {
401          /* do intersection test */
402          float yintersect = fracf(v2[0][1]) + x2diff * dydx;
403          draw_end = (yintersect < 1.0 && yintersect > 0.0);
404       }
405 
406       /* Are we already drawing start/end?
407        */
408       will_draw_start = sign(-x1diff) != sign(dx);
409       will_draw_end = (sign(x2diff) == sign(-dx)) || x2diff==0;
410 
411       if (dx < 0) {
412          /* if v2 is to the right of v1, swap pointers */
413          const float (*temp)[4] = v1;
414          v1 = v2;
415          v2 = temp;
416          dx = -dx;
417          dy = -dy;
418          /* Otherwise shift planes appropriately */
419          if (will_draw_start != draw_start) {
420             x_offset_end = - x1diff - 0.5;
421             y_offset_end = x_offset_end * dydx;
422 
423          }
424          if (will_draw_end != draw_end) {
425             x_offset = - x2diff - 0.5;
426             y_offset = x_offset * dydx;
427          }
428 
429       }
430       else{
431          /* Otherwise shift planes appropriately */
432          if (will_draw_start != draw_start) {
433             x_offset = - x1diff + 0.5;
434             y_offset = x_offset * dydx;
435          }
436          if (will_draw_end != draw_end) {
437             x_offset_end = - x2diff + 0.5;
438             y_offset_end = x_offset_end * dydx;
439          }
440       }
441 
442       /* x/y positions in fixed point */
443       x[0] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset);
444       x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
445       x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset);
446       x[3] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset);
447 
448       y[0] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset) - fixed_width/2;
449       y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) - fixed_width/2;
450       y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset) + fixed_width/2;
451       y[3] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset) + fixed_width/2;
452 
453    }
454    else {
455       const float dxdy = dx / dy;
456 
457       /* Y-MAJOR LINE */
458       x1diff = v1[0][0] - (float) floor(v1[0][0]) - 0.5;
459       y1diff = v1[0][1] - (float) floor(v1[0][1]) - 0.5;
460       x2diff = v2[0][0] - (float) floor(v2[0][0]) - 0.5;
461       y2diff = v2[0][1] - (float) floor(v2[0][1]) - 0.5;
462 
463       if (x2diff==-0.5 && dx<0) {
464          x2diff = 0.5;
465       }
466 
467       /*
468        * Diamond exit rule test for starting point
469        */
470       if (fabsf(x1diff) + fabsf(y1diff) < 0.5) {
471          draw_start = TRUE;
472       }
473       else if (sign(-y1diff) == sign(dy)) {
474          draw_start = FALSE;
475       }
476       else if (sign(x1diff) != sign(-dx)) {
477          draw_start = TRUE;
478       }
479       else {
480          /* do intersection test */
481          float xintersect = fracf(v1[0][0]) + y1diff * dxdy;
482          draw_start = (xintersect < 1.0 && xintersect > 0.0);
483       }
484 
485       /*
486        * Diamond exit rule test for ending point
487        */
488       if (fabsf(x2diff) + fabsf(y2diff) < 0.5) {
489          draw_end = FALSE;
490       }
491       else if (sign(-y2diff) != sign(dy) ) {
492          draw_end = FALSE;
493       }
494       else if (sign(x2diff) == sign(-dx) ) {
495          draw_end = TRUE;
496       }
497       else {
498          /* do intersection test */
499          float xintersect = fracf(v2[0][0]) + y2diff * dxdy;
500          draw_end = (xintersect < 1.0 && xintersect >= 0.0);
501       }
502 
503       /* Are we already drawing start/end?
504        */
505       will_draw_start = sign(y1diff) == sign(dy);
506       will_draw_end = (sign(-y2diff) == sign(dy)) || y2diff==0;
507 
508       if (dy > 0) {
509          /* if v2 is on top of v1, swap pointers */
510          const float (*temp)[4] = v1;
511          v1 = v2;
512          v2 = temp;
513          dx = -dx;
514          dy = -dy;
515 
516          /* Otherwise shift planes appropriately */
517          if (will_draw_start != draw_start) {
518             y_offset_end = - y1diff + 0.5;
519             x_offset_end = y_offset_end * dxdy;
520          }
521          if (will_draw_end != draw_end) {
522             y_offset = - y2diff + 0.5;
523             x_offset = y_offset * dxdy;
524          }
525       }
526       else {
527          /* Otherwise shift planes appropriately */
528          if (will_draw_start != draw_start) {
529             y_offset = - y1diff - 0.5;
530             x_offset = y_offset * dxdy;
531 
532          }
533          if (will_draw_end != draw_end) {
534             y_offset_end = - y2diff - 0.5;
535             x_offset_end = y_offset_end * dxdy;
536          }
537       }
538 
539       /* x/y positions in fixed point */
540       x[0] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset) - fixed_width/2;
541       x[1] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) - fixed_width/2;
542       x[2] = subpixel_snap(v2[0][0] + x_offset_end - setup->pixel_offset) + fixed_width/2;
543       x[3] = subpixel_snap(v1[0][0] + x_offset     - setup->pixel_offset) + fixed_width/2;
544 
545       y[0] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset);
546       y[1] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
547       y[2] = subpixel_snap(v2[0][1] + y_offset_end - setup->pixel_offset);
548       y[3] = subpixel_snap(v1[0][1] + y_offset     - setup->pixel_offset);
549    }
550 
551    /* Bounding rectangle (in pixels) */
552    {
553       /* Yes this is necessary to accurately calculate bounding boxes
554        * with the two fill-conventions we support.  GL (normally) ends
555        * up needing a bottom-left fill convention, which requires
556        * slightly different rounding.
557        */
558       int adj = (setup->bottom_edge_rule != 0) ? 1 : 0;
559 
560       bbox.x0 = (MIN4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
561       bbox.x1 = (MAX4(x[0], x[1], x[2], x[3]) + (FIXED_ONE-1)) >> FIXED_ORDER;
562       bbox.y0 = (MIN4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
563       bbox.y1 = (MAX4(y[0], y[1], y[2], y[3]) + (FIXED_ONE-1) + adj) >> FIXED_ORDER;
564 
565       /* Inclusive coordinates:
566        */
567       bbox.x1--;
568       bbox.y1--;
569    }
570 
571    if (bbox.x1 < bbox.x0 ||
572        bbox.y1 < bbox.y0) {
573       if (0) debug_printf("empty bounding box\n");
574       LP_COUNT(nr_culled_tris);
575       return TRUE;
576    }
577 
578    if (!u_rect_test_intersection(&setup->draw_regions[viewport_index], &bbox)) {
579       if (0) debug_printf("offscreen\n");
580       LP_COUNT(nr_culled_tris);
581       return TRUE;
582    }
583 
584    bboxpos = bbox;
585 
586    /* Can safely discard negative regions:
587     */
588    bboxpos.x0 = MAX2(bboxpos.x0, 0);
589    bboxpos.y0 = MAX2(bboxpos.y0, 0);
590 
591    nr_planes = 4;
592    /*
593     * Determine how many scissor planes we need, that is drop scissor
594     * edges if the bounding box of the tri is fully inside that edge.
595     */
596    if (setup->scissor_test) {
597       /* why not just use draw_regions */
598       scissor = &setup->scissors[viewport_index];
599       scissor_planes_needed(s_planes, &bboxpos, scissor);
600       nr_planes += s_planes[0] + s_planes[1] + s_planes[2] + s_planes[3];
601    }
602 
603    line = lp_setup_alloc_triangle(scene,
604                                   key->num_inputs,
605                                   nr_planes,
606                                   &tri_bytes);
607    if (!line)
608       return FALSE;
609 
610 #ifdef DEBUG
611    line->v[0][0] = v1[0][0];
612    line->v[1][0] = v2[0][0];
613    line->v[0][1] = v1[0][1];
614    line->v[1][1] = v2[0][1];
615 #endif
616 
617    LP_COUNT(nr_tris);
618 
619    if (lp_context->active_statistics_queries &&
620        !llvmpipe_rasterization_disabled(lp_context)) {
621       lp_context->pipeline_statistics.c_primitives++;
622    }
623 
624    /* calculate the deltas */
625    plane = GET_PLANES(line);
626    plane[0].dcdy = x[0] - x[1];
627    plane[1].dcdy = x[1] - x[2];
628    plane[2].dcdy = x[2] - x[3];
629    plane[3].dcdy = x[3] - x[0];
630 
631    plane[0].dcdx = y[0] - y[1];
632    plane[1].dcdx = y[1] - y[2];
633    plane[2].dcdx = y[2] - y[3];
634    plane[3].dcdx = y[3] - y[0];
635 
636    if (draw_will_inject_frontface(lp_context->draw) &&
637        setup->face_slot > 0) {
638       line->inputs.frontfacing = v1[setup->face_slot][0];
639    } else {
640       line->inputs.frontfacing = TRUE;
641    }
642 
643    /* Setup parameter interpolants:
644     */
645    info.a0 = GET_A0(&line->inputs);
646    info.dadx = GET_DADX(&line->inputs);
647    info.dady = GET_DADY(&line->inputs);
648    info.frontfacing = line->inputs.frontfacing;
649    setup_line_coefficients(setup, &info);
650 
651    line->inputs.disable = FALSE;
652    line->inputs.opaque = FALSE;
653    line->inputs.layer = layer;
654    line->inputs.viewport_index = viewport_index;
655 
656    /*
657     * XXX: this code is mostly identical to the one in lp_setup_tri, except it
658     * uses 4 planes instead of 3. Could share the code (including the sse
659     * assembly, in fact we'd get the 4th plane for free).
660     * The only difference apart from storing the 4th plane would be some
661     * different shuffle for calculating dcdx/dcdy.
662     */
663    for (i = 0; i < 4; i++) {
664 
665       /* half-edge constants, will be iterated over the whole render
666        * target.
667        */
668       plane[i].c = IMUL64(plane[i].dcdx, x[i]) - IMUL64(plane[i].dcdy, y[i]);
669 
670       /* correct for top-left vs. bottom-left fill convention.
671        */
672       if (plane[i].dcdx < 0) {
673          /* both fill conventions want this - adjust for left edges */
674          plane[i].c++;
675       }
676       else if (plane[i].dcdx == 0) {
677          if (setup->pixel_offset == 0) {
678             /* correct for top-left fill convention:
679              */
680             if (plane[i].dcdy > 0) plane[i].c++;
681          }
682          else {
683             /* correct for bottom-left fill convention:
684              */
685             if (plane[i].dcdy < 0) plane[i].c++;
686          }
687       }
688 
689       plane[i].dcdx *= FIXED_ONE;
690       plane[i].dcdy *= FIXED_ONE;
691 
692       /* find trivial reject offsets for each edge for a single-pixel
693        * sized block.  These will be scaled up at each recursive level to
694        * match the active blocksize.  Scaling in this way works best if
695        * the blocks are square.
696        */
697       plane[i].eo = 0;
698       if (plane[i].dcdx < 0) plane[i].eo -= plane[i].dcdx;
699       if (plane[i].dcdy > 0) plane[i].eo += plane[i].dcdy;
700    }
701 
702 
703    /*
704     * When rasterizing scissored tris, use the intersection of the
705     * triangle bounding box and the scissor rect to generate the
706     * scissor planes.
707     *
708     * This permits us to cut off the triangle "tails" that are present
709     * in the intermediate recursive levels caused when two of the
710     * triangles edges don't diverge quickly enough to trivially reject
711     * exterior blocks from the triangle.
712     *
713     * It's not really clear if it's worth worrying about these tails,
714     * but since we generate the planes for each scissored tri, it's
715     * free to trim them in this case.
716     *
717     * Note that otherwise, the scissor planes only vary in 'C' value,
718     * and even then only on state-changes.  Could alternatively store
719     * these planes elsewhere.
720     * (Or only store the c value together with a bit indicating which
721     * scissor edge this is, so rasterization would treat them differently
722     * (easier to evaluate) to ordinary planes.)
723     */
724    if (nr_planes > 4) {
725       struct lp_rast_plane *plane_s = &plane[4];
726 
727       if (s_planes[0]) {
728          plane_s->dcdx = -1 << 8;
729          plane_s->dcdy = 0;
730          plane_s->c = (1-scissor->x0) << 8;
731          plane_s->eo = 1 << 8;
732          plane_s++;
733       }
734       if (s_planes[1]) {
735          plane_s->dcdx = 1 << 8;
736          plane_s->dcdy = 0;
737          plane_s->c = (scissor->x1+1) << 8;
738          plane_s->eo = 0 << 8;
739          plane_s++;
740       }
741       if (s_planes[2]) {
742          plane_s->dcdx = 0;
743          plane_s->dcdy = 1 << 8;
744          plane_s->c = (1-scissor->y0) << 8;
745          plane_s->eo = 1 << 8;
746          plane_s++;
747       }
748       if (s_planes[3]) {
749          plane_s->dcdx = 0;
750          plane_s->dcdy = -1 << 8;
751          plane_s->c = (scissor->y1+1) << 8;
752          plane_s->eo = 0;
753          plane_s++;
754       }
755       assert(plane_s == &plane[nr_planes]);
756    }
757 
758    return lp_setup_bin_triangle(setup, line, &bbox, &bboxpos, nr_planes, viewport_index);
759 }
760 
761 
lp_setup_line(struct lp_setup_context * setup,const float (* v0)[4],const float (* v1)[4])762 static void lp_setup_line( struct lp_setup_context *setup,
763                            const float (*v0)[4],
764                            const float (*v1)[4] )
765 {
766    if (!try_setup_line( setup, v0, v1 ))
767    {
768       if (!lp_setup_flush_and_restart(setup))
769          return;
770 
771       if (!try_setup_line( setup, v0, v1 ))
772          return;
773    }
774 }
775 
776 
lp_setup_choose_line(struct lp_setup_context * setup)777 void lp_setup_choose_line( struct lp_setup_context *setup )
778 {
779    setup->line = lp_setup_line;
780 }
781 
782 
783