1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR. The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand. The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables. For example,
15 // you can do something like this:
16 //
17 // Value *Exp = ...
18 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
19 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 // ... Pattern is matched and variables are bound ...
22 // }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_IR_PATTERNMATCH_H
30 #define LLVM_IR_PATTERNMATCH_H
31
32 #include "llvm/ADT/APFloat.h"
33 #include "llvm/ADT/APInt.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/Constant.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/Support/Casting.h"
44 #include <cstdint>
45
46 namespace llvm {
47 namespace PatternMatch {
48
match(Val * V,const Pattern & P)49 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
50 return const_cast<Pattern &>(P).match(V);
51 }
52
53 template <typename SubPattern_t> struct OneUse_match {
54 SubPattern_t SubPattern;
55
OneUse_matchOneUse_match56 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
57
matchOneUse_match58 template <typename OpTy> bool match(OpTy *V) {
59 return V->hasOneUse() && SubPattern.match(V);
60 }
61 };
62
m_OneUse(const T & SubPattern)63 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
64 return SubPattern;
65 }
66
67 template <typename Class> struct class_match {
matchclass_match68 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69 };
70
71 /// Match an arbitrary value and ignore it.
m_Value()72 inline class_match<Value> m_Value() { return class_match<Value>(); }
73
74 /// Match an arbitrary binary operation and ignore it.
m_BinOp()75 inline class_match<BinaryOperator> m_BinOp() {
76 return class_match<BinaryOperator>();
77 }
78
79 /// Matches any compare instruction and ignore it.
m_Cmp()80 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
81
82 /// Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()83 inline class_match<ConstantInt> m_ConstantInt() {
84 return class_match<ConstantInt>();
85 }
86
87 /// Match an arbitrary undef constant.
m_Undef()88 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
89
90 /// Match an arbitrary Constant and ignore it.
m_Constant()91 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
92
93 /// Matching combinators
94 template <typename LTy, typename RTy> struct match_combine_or {
95 LTy L;
96 RTy R;
97
match_combine_ormatch_combine_or98 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
99
matchmatch_combine_or100 template <typename ITy> bool match(ITy *V) {
101 if (L.match(V))
102 return true;
103 if (R.match(V))
104 return true;
105 return false;
106 }
107 };
108
109 template <typename LTy, typename RTy> struct match_combine_and {
110 LTy L;
111 RTy R;
112
match_combine_andmatch_combine_and113 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
114
matchmatch_combine_and115 template <typename ITy> bool match(ITy *V) {
116 if (L.match(V))
117 if (R.match(V))
118 return true;
119 return false;
120 }
121 };
122
123 /// Combine two pattern matchers matching L || R
124 template <typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)125 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
126 return match_combine_or<LTy, RTy>(L, R);
127 }
128
129 /// Combine two pattern matchers matching L && R
130 template <typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)131 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
132 return match_combine_and<LTy, RTy>(L, R);
133 }
134
135 struct apint_match {
136 const APInt *&Res;
137
apint_matchapint_match138 apint_match(const APInt *&R) : Res(R) {}
139
matchapint_match140 template <typename ITy> bool match(ITy *V) {
141 if (auto *CI = dyn_cast<ConstantInt>(V)) {
142 Res = &CI->getValue();
143 return true;
144 }
145 if (V->getType()->isVectorTy())
146 if (const auto *C = dyn_cast<Constant>(V))
147 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
148 Res = &CI->getValue();
149 return true;
150 }
151 return false;
152 }
153 };
154 // Either constexpr if or renaming ConstantFP::getValueAPF to
155 // ConstantFP::getValue is needed to do it via single template
156 // function for both apint/apfloat.
157 struct apfloat_match {
158 const APFloat *&Res;
apfloat_matchapfloat_match159 apfloat_match(const APFloat *&R) : Res(R) {}
matchapfloat_match160 template <typename ITy> bool match(ITy *V) {
161 if (auto *CI = dyn_cast<ConstantFP>(V)) {
162 Res = &CI->getValueAPF();
163 return true;
164 }
165 if (V->getType()->isVectorTy())
166 if (const auto *C = dyn_cast<Constant>(V))
167 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
168 Res = &CI->getValueAPF();
169 return true;
170 }
171 return false;
172 }
173 };
174
175 /// Match a ConstantInt or splatted ConstantVector, binding the
176 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)177 inline apint_match m_APInt(const APInt *&Res) { return Res; }
178
179 /// Match a ConstantFP or splatted ConstantVector, binding the
180 /// specified pointer to the contained APFloat.
m_APFloat(const APFloat * & Res)181 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
182
183 template <int64_t Val> struct constantint_match {
matchconstantint_match184 template <typename ITy> bool match(ITy *V) {
185 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
186 const APInt &CIV = CI->getValue();
187 if (Val >= 0)
188 return CIV == static_cast<uint64_t>(Val);
189 // If Val is negative, and CI is shorter than it, truncate to the right
190 // number of bits. If it is larger, then we have to sign extend. Just
191 // compare their negated values.
192 return -CIV == -Val;
193 }
194 return false;
195 }
196 };
197
198 /// Match a ConstantInt with a specific value.
m_ConstantInt()199 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
200 return constantint_match<Val>();
201 }
202
203 /// This helper class is used to match scalar and vector integer constants that
204 /// satisfy a specified predicate.
205 /// For vector constants, undefined elements are ignored.
206 template <typename Predicate> struct cst_pred_ty : public Predicate {
matchcst_pred_ty207 template <typename ITy> bool match(ITy *V) {
208 if (const auto *CI = dyn_cast<ConstantInt>(V))
209 return this->isValue(CI->getValue());
210 if (V->getType()->isVectorTy()) {
211 if (const auto *C = dyn_cast<Constant>(V)) {
212 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
213 return this->isValue(CI->getValue());
214
215 // Non-splat vector constant: check each element for a match.
216 unsigned NumElts = V->getType()->getVectorNumElements();
217 assert(NumElts != 0 && "Constant vector with no elements?");
218 for (unsigned i = 0; i != NumElts; ++i) {
219 Constant *Elt = C->getAggregateElement(i);
220 if (!Elt)
221 return false;
222 if (isa<UndefValue>(Elt))
223 continue;
224 auto *CI = dyn_cast<ConstantInt>(Elt);
225 if (!CI || !this->isValue(CI->getValue()))
226 return false;
227 }
228 return true;
229 }
230 }
231 return false;
232 }
233 };
234
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238 const APInt *&Res;
239
api_pred_tyapi_pred_ty240 api_pred_ty(const APInt *&R) : Res(R) {}
241
matchapi_pred_ty242 template <typename ITy> bool match(ITy *V) {
243 if (const auto *CI = dyn_cast<ConstantInt>(V))
244 if (this->isValue(CI->getValue())) {
245 Res = &CI->getValue();
246 return true;
247 }
248 if (V->getType()->isVectorTy())
249 if (const auto *C = dyn_cast<Constant>(V))
250 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251 if (this->isValue(CI->getValue())) {
252 Res = &CI->getValue();
253 return true;
254 }
255
256 return false;
257 }
258 };
259
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
matchcstfp_pred_ty264 template <typename ITy> bool match(ITy *V) {
265 if (const auto *CF = dyn_cast<ConstantFP>(V))
266 return this->isValue(CF->getValueAPF());
267 if (V->getType()->isVectorTy()) {
268 if (const auto *C = dyn_cast<Constant>(V)) {
269 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270 return this->isValue(CF->getValueAPF());
271
272 // Non-splat vector constant: check each element for a match.
273 unsigned NumElts = V->getType()->getVectorNumElements();
274 assert(NumElts != 0 && "Constant vector with no elements?");
275 for (unsigned i = 0; i != NumElts; ++i) {
276 Constant *Elt = C->getAggregateElement(i);
277 if (!Elt)
278 return false;
279 if (isa<UndefValue>(Elt))
280 continue;
281 auto *CF = dyn_cast<ConstantFP>(Elt);
282 if (!CF || !this->isValue(CF->getValueAPF()))
283 return false;
284 }
285 return true;
286 }
287 }
288 return false;
289 }
290 };
291
292 ///////////////////////////////////////////////////////////////////////////////
293 //
294 // Encapsulate constant value queries for use in templated predicate matchers.
295 // This allows checking if constants match using compound predicates and works
296 // with vector constants, possibly with relaxed constraints. For example, ignore
297 // undef values.
298 //
299 ///////////////////////////////////////////////////////////////////////////////
300
301 struct is_all_ones {
isValueis_all_ones302 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
303 };
304 /// Match an integer or vector with all bits set.
305 /// For vectors, this includes constants with undefined elements.
m_AllOnes()306 inline cst_pred_ty<is_all_ones> m_AllOnes() {
307 return cst_pred_ty<is_all_ones>();
308 }
309
310 struct is_maxsignedvalue {
isValueis_maxsignedvalue311 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
312 };
313 /// Match an integer or vector with values having all bits except for the high
314 /// bit set (0x7f...).
315 /// For vectors, this includes constants with undefined elements.
m_MaxSignedValue()316 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
317 return cst_pred_ty<is_maxsignedvalue>();
318 }
m_MaxSignedValue(const APInt * & V)319 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
320 return V;
321 }
322
323 struct is_negative {
isValueis_negative324 bool isValue(const APInt &C) { return C.isNegative(); }
325 };
326 /// Match an integer or vector of negative values.
327 /// For vectors, this includes constants with undefined elements.
m_Negative()328 inline cst_pred_ty<is_negative> m_Negative() {
329 return cst_pred_ty<is_negative>();
330 }
m_Negative(const APInt * & V)331 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
332 return V;
333 }
334
335 struct is_nonnegative {
isValueis_nonnegative336 bool isValue(const APInt &C) { return C.isNonNegative(); }
337 };
338 /// Match an integer or vector of nonnegative values.
339 /// For vectors, this includes constants with undefined elements.
m_NonNegative()340 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
341 return cst_pred_ty<is_nonnegative>();
342 }
m_NonNegative(const APInt * & V)343 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
344 return V;
345 }
346
347 struct is_one {
isValueis_one348 bool isValue(const APInt &C) { return C.isOneValue(); }
349 };
350 /// Match an integer 1 or a vector with all elements equal to 1.
351 /// For vectors, this includes constants with undefined elements.
m_One()352 inline cst_pred_ty<is_one> m_One() {
353 return cst_pred_ty<is_one>();
354 }
355
356 struct is_zero_int {
isValueis_zero_int357 bool isValue(const APInt &C) { return C.isNullValue(); }
358 };
359 /// Match an integer 0 or a vector with all elements equal to 0.
360 /// For vectors, this includes constants with undefined elements.
m_ZeroInt()361 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
362 return cst_pred_ty<is_zero_int>();
363 }
364
365 struct is_zero {
matchis_zero366 template <typename ITy> bool match(ITy *V) {
367 auto *C = dyn_cast<Constant>(V);
368 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
369 }
370 };
371 /// Match any null constant or a vector with all elements equal to 0.
372 /// For vectors, this includes constants with undefined elements.
m_Zero()373 inline is_zero m_Zero() {
374 return is_zero();
375 }
376
377 struct is_power2 {
isValueis_power2378 bool isValue(const APInt &C) { return C.isPowerOf2(); }
379 };
380 /// Match an integer or vector power-of-2.
381 /// For vectors, this includes constants with undefined elements.
m_Power2()382 inline cst_pred_ty<is_power2> m_Power2() {
383 return cst_pred_ty<is_power2>();
384 }
m_Power2(const APInt * & V)385 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
386 return V;
387 }
388
389 struct is_power2_or_zero {
isValueis_power2_or_zero390 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
391 };
392 /// Match an integer or vector of 0 or power-of-2 values.
393 /// For vectors, this includes constants with undefined elements.
m_Power2OrZero()394 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
395 return cst_pred_ty<is_power2_or_zero>();
396 }
m_Power2OrZero(const APInt * & V)397 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
398 return V;
399 }
400
401 struct is_sign_mask {
isValueis_sign_mask402 bool isValue(const APInt &C) { return C.isSignMask(); }
403 };
404 /// Match an integer or vector with only the sign bit(s) set.
405 /// For vectors, this includes constants with undefined elements.
m_SignMask()406 inline cst_pred_ty<is_sign_mask> m_SignMask() {
407 return cst_pred_ty<is_sign_mask>();
408 }
409
410 struct is_lowbit_mask {
isValueis_lowbit_mask411 bool isValue(const APInt &C) { return C.isMask(); }
412 };
413 /// Match an integer or vector with only the low bit(s) set.
414 /// For vectors, this includes constants with undefined elements.
m_LowBitMask()415 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
416 return cst_pred_ty<is_lowbit_mask>();
417 }
418
419 struct is_nan {
isValueis_nan420 bool isValue(const APFloat &C) { return C.isNaN(); }
421 };
422 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
423 /// For vectors, this includes constants with undefined elements.
m_NaN()424 inline cstfp_pred_ty<is_nan> m_NaN() {
425 return cstfp_pred_ty<is_nan>();
426 }
427
428 struct is_any_zero_fp {
isValueis_any_zero_fp429 bool isValue(const APFloat &C) { return C.isZero(); }
430 };
431 /// Match a floating-point negative zero or positive zero.
432 /// For vectors, this includes constants with undefined elements.
m_AnyZeroFP()433 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
434 return cstfp_pred_ty<is_any_zero_fp>();
435 }
436
437 struct is_pos_zero_fp {
isValueis_pos_zero_fp438 bool isValue(const APFloat &C) { return C.isPosZero(); }
439 };
440 /// Match a floating-point positive zero.
441 /// For vectors, this includes constants with undefined elements.
m_PosZeroFP()442 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
443 return cstfp_pred_ty<is_pos_zero_fp>();
444 }
445
446 struct is_neg_zero_fp {
isValueis_neg_zero_fp447 bool isValue(const APFloat &C) { return C.isNegZero(); }
448 };
449 /// Match a floating-point negative zero.
450 /// For vectors, this includes constants with undefined elements.
m_NegZeroFP()451 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
452 return cstfp_pred_ty<is_neg_zero_fp>();
453 }
454
455 ///////////////////////////////////////////////////////////////////////////////
456
457 template <typename Class> struct bind_ty {
458 Class *&VR;
459
bind_tybind_ty460 bind_ty(Class *&V) : VR(V) {}
461
matchbind_ty462 template <typename ITy> bool match(ITy *V) {
463 if (auto *CV = dyn_cast<Class>(V)) {
464 VR = CV;
465 return true;
466 }
467 return false;
468 }
469 };
470
471 /// Match a value, capturing it if we match.
m_Value(Value * & V)472 inline bind_ty<Value> m_Value(Value *&V) { return V; }
m_Value(const Value * & V)473 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
474
475 /// Match an instruction, capturing it if we match.
m_Instruction(Instruction * & I)476 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
477 /// Match a binary operator, capturing it if we match.
m_BinOp(BinaryOperator * & I)478 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
479
480 /// Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)481 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
482
483 /// Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)484 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
485
486 /// Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)487 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
488
489 /// Match a specified Value*.
490 struct specificval_ty {
491 const Value *Val;
492
specificval_tyspecificval_ty493 specificval_ty(const Value *V) : Val(V) {}
494
matchspecificval_ty495 template <typename ITy> bool match(ITy *V) { return V == Val; }
496 };
497
498 /// Match if we have a specific specified value.
m_Specific(const Value * V)499 inline specificval_ty m_Specific(const Value *V) { return V; }
500
501 /// Stores a reference to the Value *, not the Value * itself,
502 /// thus can be used in commutative matchers.
503 template <typename Class> struct deferredval_ty {
504 Class *const &Val;
505
deferredval_tydeferredval_ty506 deferredval_ty(Class *const &V) : Val(V) {}
507
matchdeferredval_ty508 template <typename ITy> bool match(ITy *const V) { return V == Val; }
509 };
510
511 /// A commutative-friendly version of m_Specific().
m_Deferred(Value * const & V)512 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
m_Deferred(const Value * const & V)513 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
514 return V;
515 }
516
517 /// Match a specified floating point value or vector of all elements of
518 /// that value.
519 struct specific_fpval {
520 double Val;
521
specific_fpvalspecific_fpval522 specific_fpval(double V) : Val(V) {}
523
matchspecific_fpval524 template <typename ITy> bool match(ITy *V) {
525 if (const auto *CFP = dyn_cast<ConstantFP>(V))
526 return CFP->isExactlyValue(Val);
527 if (V->getType()->isVectorTy())
528 if (const auto *C = dyn_cast<Constant>(V))
529 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
530 return CFP->isExactlyValue(Val);
531 return false;
532 }
533 };
534
535 /// Match a specific floating point value or vector with all elements
536 /// equal to the value.
m_SpecificFP(double V)537 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
538
539 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()540 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
541
542 struct bind_const_intval_ty {
543 uint64_t &VR;
544
bind_const_intval_tybind_const_intval_ty545 bind_const_intval_ty(uint64_t &V) : VR(V) {}
546
matchbind_const_intval_ty547 template <typename ITy> bool match(ITy *V) {
548 if (const auto *CV = dyn_cast<ConstantInt>(V))
549 if (CV->getValue().ule(UINT64_MAX)) {
550 VR = CV->getZExtValue();
551 return true;
552 }
553 return false;
554 }
555 };
556
557 /// Match a specified integer value or vector of all elements of that
558 // value.
559 struct specific_intval {
560 uint64_t Val;
561
specific_intvalspecific_intval562 specific_intval(uint64_t V) : Val(V) {}
563
matchspecific_intval564 template <typename ITy> bool match(ITy *V) {
565 const auto *CI = dyn_cast<ConstantInt>(V);
566 if (!CI && V->getType()->isVectorTy())
567 if (const auto *C = dyn_cast<Constant>(V))
568 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
569
570 return CI && CI->getValue() == Val;
571 }
572 };
573
574 /// Match a specific integer value or vector with all elements equal to
575 /// the value.
m_SpecificInt(uint64_t V)576 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
577
578 /// Match a ConstantInt and bind to its value. This does not match
579 /// ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)580 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
581
582 //===----------------------------------------------------------------------===//
583 // Matcher for any binary operator.
584 //
585 template <typename LHS_t, typename RHS_t, bool Commutable = false>
586 struct AnyBinaryOp_match {
587 LHS_t L;
588 RHS_t R;
589
590 // The evaluation order is always stable, regardless of Commutability.
591 // The LHS is always matched first.
AnyBinaryOp_matchAnyBinaryOp_match592 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
593
matchAnyBinaryOp_match594 template <typename OpTy> bool match(OpTy *V) {
595 if (auto *I = dyn_cast<BinaryOperator>(V))
596 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
597 (Commutable && L.match(I->getOperand(1)) &&
598 R.match(I->getOperand(0)));
599 return false;
600 }
601 };
602
603 template <typename LHS, typename RHS>
m_BinOp(const LHS & L,const RHS & R)604 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
605 return AnyBinaryOp_match<LHS, RHS>(L, R);
606 }
607
608 //===----------------------------------------------------------------------===//
609 // Matchers for specific binary operators.
610 //
611
612 template <typename LHS_t, typename RHS_t, unsigned Opcode,
613 bool Commutable = false>
614 struct BinaryOp_match {
615 LHS_t L;
616 RHS_t R;
617
618 // The evaluation order is always stable, regardless of Commutability.
619 // The LHS is always matched first.
BinaryOp_matchBinaryOp_match620 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
621
matchBinaryOp_match622 template <typename OpTy> bool match(OpTy *V) {
623 if (V->getValueID() == Value::InstructionVal + Opcode) {
624 auto *I = cast<BinaryOperator>(V);
625 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
626 (Commutable && L.match(I->getOperand(1)) &&
627 R.match(I->getOperand(0)));
628 }
629 if (auto *CE = dyn_cast<ConstantExpr>(V))
630 return CE->getOpcode() == Opcode &&
631 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
632 (Commutable && L.match(CE->getOperand(1)) &&
633 R.match(CE->getOperand(0))));
634 return false;
635 }
636 };
637
638 template <typename LHS, typename RHS>
m_Add(const LHS & L,const RHS & R)639 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
640 const RHS &R) {
641 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
642 }
643
644 template <typename LHS, typename RHS>
m_FAdd(const LHS & L,const RHS & R)645 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
646 const RHS &R) {
647 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
648 }
649
650 template <typename LHS, typename RHS>
m_Sub(const LHS & L,const RHS & R)651 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
652 const RHS &R) {
653 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
654 }
655
656 template <typename LHS, typename RHS>
m_FSub(const LHS & L,const RHS & R)657 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
658 const RHS &R) {
659 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
660 }
661
662 /// Match 'fneg X' as 'fsub -0.0, X'.
663 template <typename RHS>
664 inline BinaryOp_match<cstfp_pred_ty<is_neg_zero_fp>, RHS, Instruction::FSub>
m_FNeg(const RHS & X)665 m_FNeg(const RHS &X) {
666 return m_FSub(m_NegZeroFP(), X);
667 }
668
669 template <typename LHS, typename RHS>
m_Mul(const LHS & L,const RHS & R)670 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
671 const RHS &R) {
672 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
673 }
674
675 template <typename LHS, typename RHS>
m_FMul(const LHS & L,const RHS & R)676 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
677 const RHS &R) {
678 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
679 }
680
681 template <typename LHS, typename RHS>
m_UDiv(const LHS & L,const RHS & R)682 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
683 const RHS &R) {
684 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
685 }
686
687 template <typename LHS, typename RHS>
m_SDiv(const LHS & L,const RHS & R)688 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
689 const RHS &R) {
690 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
691 }
692
693 template <typename LHS, typename RHS>
m_FDiv(const LHS & L,const RHS & R)694 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
695 const RHS &R) {
696 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
697 }
698
699 template <typename LHS, typename RHS>
m_URem(const LHS & L,const RHS & R)700 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
701 const RHS &R) {
702 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
703 }
704
705 template <typename LHS, typename RHS>
m_SRem(const LHS & L,const RHS & R)706 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
707 const RHS &R) {
708 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
709 }
710
711 template <typename LHS, typename RHS>
m_FRem(const LHS & L,const RHS & R)712 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
713 const RHS &R) {
714 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
715 }
716
717 template <typename LHS, typename RHS>
m_And(const LHS & L,const RHS & R)718 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
719 const RHS &R) {
720 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
721 }
722
723 template <typename LHS, typename RHS>
m_Or(const LHS & L,const RHS & R)724 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
725 const RHS &R) {
726 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
727 }
728
729 template <typename LHS, typename RHS>
m_Xor(const LHS & L,const RHS & R)730 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
731 const RHS &R) {
732 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
733 }
734
735 template <typename LHS, typename RHS>
m_Shl(const LHS & L,const RHS & R)736 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
737 const RHS &R) {
738 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
739 }
740
741 template <typename LHS, typename RHS>
m_LShr(const LHS & L,const RHS & R)742 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
743 const RHS &R) {
744 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
745 }
746
747 template <typename LHS, typename RHS>
m_AShr(const LHS & L,const RHS & R)748 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
749 const RHS &R) {
750 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
751 }
752
753 template <typename LHS_t, typename RHS_t, unsigned Opcode,
754 unsigned WrapFlags = 0>
755 struct OverflowingBinaryOp_match {
756 LHS_t L;
757 RHS_t R;
758
OverflowingBinaryOp_matchOverflowingBinaryOp_match759 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
760 : L(LHS), R(RHS) {}
761
matchOverflowingBinaryOp_match762 template <typename OpTy> bool match(OpTy *V) {
763 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
764 if (Op->getOpcode() != Opcode)
765 return false;
766 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
767 !Op->hasNoUnsignedWrap())
768 return false;
769 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
770 !Op->hasNoSignedWrap())
771 return false;
772 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
773 }
774 return false;
775 }
776 };
777
778 template <typename LHS, typename RHS>
779 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
780 OverflowingBinaryOperator::NoSignedWrap>
m_NSWAdd(const LHS & L,const RHS & R)781 m_NSWAdd(const LHS &L, const RHS &R) {
782 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
783 OverflowingBinaryOperator::NoSignedWrap>(
784 L, R);
785 }
786 template <typename LHS, typename RHS>
787 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
788 OverflowingBinaryOperator::NoSignedWrap>
m_NSWSub(const LHS & L,const RHS & R)789 m_NSWSub(const LHS &L, const RHS &R) {
790 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
791 OverflowingBinaryOperator::NoSignedWrap>(
792 L, R);
793 }
794 template <typename LHS, typename RHS>
795 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
796 OverflowingBinaryOperator::NoSignedWrap>
m_NSWMul(const LHS & L,const RHS & R)797 m_NSWMul(const LHS &L, const RHS &R) {
798 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
799 OverflowingBinaryOperator::NoSignedWrap>(
800 L, R);
801 }
802 template <typename LHS, typename RHS>
803 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
804 OverflowingBinaryOperator::NoSignedWrap>
m_NSWShl(const LHS & L,const RHS & R)805 m_NSWShl(const LHS &L, const RHS &R) {
806 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
807 OverflowingBinaryOperator::NoSignedWrap>(
808 L, R);
809 }
810
811 template <typename LHS, typename RHS>
812 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
813 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWAdd(const LHS & L,const RHS & R)814 m_NUWAdd(const LHS &L, const RHS &R) {
815 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
816 OverflowingBinaryOperator::NoUnsignedWrap>(
817 L, R);
818 }
819 template <typename LHS, typename RHS>
820 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
821 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWSub(const LHS & L,const RHS & R)822 m_NUWSub(const LHS &L, const RHS &R) {
823 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
824 OverflowingBinaryOperator::NoUnsignedWrap>(
825 L, R);
826 }
827 template <typename LHS, typename RHS>
828 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
829 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWMul(const LHS & L,const RHS & R)830 m_NUWMul(const LHS &L, const RHS &R) {
831 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
832 OverflowingBinaryOperator::NoUnsignedWrap>(
833 L, R);
834 }
835 template <typename LHS, typename RHS>
836 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
837 OverflowingBinaryOperator::NoUnsignedWrap>
m_NUWShl(const LHS & L,const RHS & R)838 m_NUWShl(const LHS &L, const RHS &R) {
839 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
840 OverflowingBinaryOperator::NoUnsignedWrap>(
841 L, R);
842 }
843
844 //===----------------------------------------------------------------------===//
845 // Class that matches a group of binary opcodes.
846 //
847 template <typename LHS_t, typename RHS_t, typename Predicate>
848 struct BinOpPred_match : Predicate {
849 LHS_t L;
850 RHS_t R;
851
BinOpPred_matchBinOpPred_match852 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
853
matchBinOpPred_match854 template <typename OpTy> bool match(OpTy *V) {
855 if (auto *I = dyn_cast<Instruction>(V))
856 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
857 R.match(I->getOperand(1));
858 if (auto *CE = dyn_cast<ConstantExpr>(V))
859 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
860 R.match(CE->getOperand(1));
861 return false;
862 }
863 };
864
865 struct is_shift_op {
isOpTypeis_shift_op866 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
867 };
868
869 struct is_right_shift_op {
isOpTypeis_right_shift_op870 bool isOpType(unsigned Opcode) {
871 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
872 }
873 };
874
875 struct is_logical_shift_op {
isOpTypeis_logical_shift_op876 bool isOpType(unsigned Opcode) {
877 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
878 }
879 };
880
881 struct is_bitwiselogic_op {
isOpTypeis_bitwiselogic_op882 bool isOpType(unsigned Opcode) {
883 return Instruction::isBitwiseLogicOp(Opcode);
884 }
885 };
886
887 struct is_idiv_op {
isOpTypeis_idiv_op888 bool isOpType(unsigned Opcode) {
889 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
890 }
891 };
892
893 /// Matches shift operations.
894 template <typename LHS, typename RHS>
m_Shift(const LHS & L,const RHS & R)895 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
896 const RHS &R) {
897 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
898 }
899
900 /// Matches logical shift operations.
901 template <typename LHS, typename RHS>
m_Shr(const LHS & L,const RHS & R)902 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
903 const RHS &R) {
904 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
905 }
906
907 /// Matches logical shift operations.
908 template <typename LHS, typename RHS>
909 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
m_LogicalShift(const LHS & L,const RHS & R)910 m_LogicalShift(const LHS &L, const RHS &R) {
911 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
912 }
913
914 /// Matches bitwise logic operations.
915 template <typename LHS, typename RHS>
916 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
m_BitwiseLogic(const LHS & L,const RHS & R)917 m_BitwiseLogic(const LHS &L, const RHS &R) {
918 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
919 }
920
921 /// Matches integer division operations.
922 template <typename LHS, typename RHS>
m_IDiv(const LHS & L,const RHS & R)923 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
924 const RHS &R) {
925 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
926 }
927
928 //===----------------------------------------------------------------------===//
929 // Class that matches exact binary ops.
930 //
931 template <typename SubPattern_t> struct Exact_match {
932 SubPattern_t SubPattern;
933
Exact_matchExact_match934 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
935
matchExact_match936 template <typename OpTy> bool match(OpTy *V) {
937 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
938 return PEO->isExact() && SubPattern.match(V);
939 return false;
940 }
941 };
942
m_Exact(const T & SubPattern)943 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
944 return SubPattern;
945 }
946
947 //===----------------------------------------------------------------------===//
948 // Matchers for CmpInst classes
949 //
950
951 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
952 bool Commutable = false>
953 struct CmpClass_match {
954 PredicateTy &Predicate;
955 LHS_t L;
956 RHS_t R;
957
958 // The evaluation order is always stable, regardless of Commutability.
959 // The LHS is always matched first.
CmpClass_matchCmpClass_match960 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
961 : Predicate(Pred), L(LHS), R(RHS) {}
962
matchCmpClass_match963 template <typename OpTy> bool match(OpTy *V) {
964 if (auto *I = dyn_cast<Class>(V))
965 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
966 (Commutable && L.match(I->getOperand(1)) &&
967 R.match(I->getOperand(0)))) {
968 Predicate = I->getPredicate();
969 return true;
970 }
971 return false;
972 }
973 };
974
975 template <typename LHS, typename RHS>
976 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
m_Cmp(CmpInst::Predicate & Pred,const LHS & L,const RHS & R)977 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
978 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
979 }
980
981 template <typename LHS, typename RHS>
982 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)983 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
984 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
985 }
986
987 template <typename LHS, typename RHS>
988 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)989 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
990 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
991 }
992
993 //===----------------------------------------------------------------------===//
994 // Matchers for SelectInst classes
995 //
996
997 template <typename Cond_t, typename LHS_t, typename RHS_t>
998 struct SelectClass_match {
999 Cond_t C;
1000 LHS_t L;
1001 RHS_t R;
1002
SelectClass_matchSelectClass_match1003 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS, const RHS_t &RHS)
1004 : C(Cond), L(LHS), R(RHS) {}
1005
matchSelectClass_match1006 template <typename OpTy> bool match(OpTy *V) {
1007 if (auto *I = dyn_cast<SelectInst>(V))
1008 return C.match(I->getOperand(0)) && L.match(I->getOperand(1)) &&
1009 R.match(I->getOperand(2));
1010 return false;
1011 }
1012 };
1013
1014 template <typename Cond, typename LHS, typename RHS>
m_Select(const Cond & C,const LHS & L,const RHS & R)1015 inline SelectClass_match<Cond, LHS, RHS> m_Select(const Cond &C, const LHS &L,
1016 const RHS &R) {
1017 return SelectClass_match<Cond, LHS, RHS>(C, L, R);
1018 }
1019
1020 /// This matches a select of two constants, e.g.:
1021 /// m_SelectCst<-1, 0>(m_Value(V))
1022 template <int64_t L, int64_t R, typename Cond>
1023 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R>>
m_SelectCst(const Cond & C)1024 m_SelectCst(const Cond &C) {
1025 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1026 }
1027
1028 //===----------------------------------------------------------------------===//
1029 // Matchers for InsertElementInst classes
1030 //
1031
1032 template <typename Val_t, typename Elt_t, typename Idx_t>
1033 struct InsertElementClass_match {
1034 Val_t V;
1035 Elt_t E;
1036 Idx_t I;
1037
InsertElementClass_matchInsertElementClass_match1038 InsertElementClass_match(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx)
1039 : V(Val), E(Elt), I(Idx) {}
1040
matchInsertElementClass_match1041 template <typename OpTy> bool match(OpTy *VV) {
1042 if (auto *II = dyn_cast<InsertElementInst>(VV))
1043 return V.match(II->getOperand(0)) && E.match(II->getOperand(1)) &&
1044 I.match(II->getOperand(2));
1045 return false;
1046 }
1047 };
1048
1049 template <typename Val_t, typename Elt_t, typename Idx_t>
1050 inline InsertElementClass_match<Val_t, Elt_t, Idx_t>
m_InsertElement(const Val_t & Val,const Elt_t & Elt,const Idx_t & Idx)1051 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1052 return InsertElementClass_match<Val_t, Elt_t, Idx_t>(Val, Elt, Idx);
1053 }
1054
1055 //===----------------------------------------------------------------------===//
1056 // Matchers for ExtractElementInst classes
1057 //
1058
1059 template <typename Val_t, typename Idx_t> struct ExtractElementClass_match {
1060 Val_t V;
1061 Idx_t I;
1062
ExtractElementClass_matchExtractElementClass_match1063 ExtractElementClass_match(const Val_t &Val, const Idx_t &Idx)
1064 : V(Val), I(Idx) {}
1065
matchExtractElementClass_match1066 template <typename OpTy> bool match(OpTy *VV) {
1067 if (auto *II = dyn_cast<ExtractElementInst>(VV))
1068 return V.match(II->getOperand(0)) && I.match(II->getOperand(1));
1069 return false;
1070 }
1071 };
1072
1073 template <typename Val_t, typename Idx_t>
1074 inline ExtractElementClass_match<Val_t, Idx_t>
m_ExtractElement(const Val_t & Val,const Idx_t & Idx)1075 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1076 return ExtractElementClass_match<Val_t, Idx_t>(Val, Idx);
1077 }
1078
1079 //===----------------------------------------------------------------------===//
1080 // Matchers for ShuffleVectorInst classes
1081 //
1082
1083 template <typename V1_t, typename V2_t, typename Mask_t>
1084 struct ShuffleVectorClass_match {
1085 V1_t V1;
1086 V2_t V2;
1087 Mask_t M;
1088
ShuffleVectorClass_matchShuffleVectorClass_match1089 ShuffleVectorClass_match(const V1_t &v1, const V2_t &v2, const Mask_t &m)
1090 : V1(v1), V2(v2), M(m) {}
1091
matchShuffleVectorClass_match1092 template <typename OpTy> bool match(OpTy *V) {
1093 if (auto *SI = dyn_cast<ShuffleVectorInst>(V))
1094 return V1.match(SI->getOperand(0)) && V2.match(SI->getOperand(1)) &&
1095 M.match(SI->getOperand(2));
1096 return false;
1097 }
1098 };
1099
1100 template <typename V1_t, typename V2_t, typename Mask_t>
1101 inline ShuffleVectorClass_match<V1_t, V2_t, Mask_t>
m_ShuffleVector(const V1_t & v1,const V2_t & v2,const Mask_t & m)1102 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1103 return ShuffleVectorClass_match<V1_t, V2_t, Mask_t>(v1, v2, m);
1104 }
1105
1106 //===----------------------------------------------------------------------===//
1107 // Matchers for CastInst classes
1108 //
1109
1110 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1111 Op_t Op;
1112
CastClass_matchCastClass_match1113 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1114
matchCastClass_match1115 template <typename OpTy> bool match(OpTy *V) {
1116 if (auto *O = dyn_cast<Operator>(V))
1117 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1118 return false;
1119 }
1120 };
1121
1122 /// Matches BitCast.
1123 template <typename OpTy>
m_BitCast(const OpTy & Op)1124 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1125 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1126 }
1127
1128 /// Matches PtrToInt.
1129 template <typename OpTy>
m_PtrToInt(const OpTy & Op)1130 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1131 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1132 }
1133
1134 /// Matches Trunc.
1135 template <typename OpTy>
m_Trunc(const OpTy & Op)1136 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1137 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1138 }
1139
1140 /// Matches SExt.
1141 template <typename OpTy>
m_SExt(const OpTy & Op)1142 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1143 return CastClass_match<OpTy, Instruction::SExt>(Op);
1144 }
1145
1146 /// Matches ZExt.
1147 template <typename OpTy>
m_ZExt(const OpTy & Op)1148 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1149 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1150 }
1151
1152 template <typename OpTy>
1153 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1154 CastClass_match<OpTy, Instruction::SExt>>
m_ZExtOrSExt(const OpTy & Op)1155 m_ZExtOrSExt(const OpTy &Op) {
1156 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1157 }
1158
1159 /// Matches UIToFP.
1160 template <typename OpTy>
m_UIToFP(const OpTy & Op)1161 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1162 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1163 }
1164
1165 /// Matches SIToFP.
1166 template <typename OpTy>
m_SIToFP(const OpTy & Op)1167 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1168 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1169 }
1170
1171 /// Matches FPTrunc
1172 template <typename OpTy>
m_FPTrunc(const OpTy & Op)1173 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1174 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1175 }
1176
1177 /// Matches FPExt
1178 template <typename OpTy>
m_FPExt(const OpTy & Op)1179 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1180 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1181 }
1182
1183 //===----------------------------------------------------------------------===//
1184 // Matcher for LoadInst classes
1185 //
1186
1187 template <typename Op_t> struct LoadClass_match {
1188 Op_t Op;
1189
LoadClass_matchLoadClass_match1190 LoadClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1191
matchLoadClass_match1192 template <typename OpTy> bool match(OpTy *V) {
1193 if (auto *LI = dyn_cast<LoadInst>(V))
1194 return Op.match(LI->getPointerOperand());
1195 return false;
1196 }
1197 };
1198
1199 /// Matches LoadInst.
m_Load(const OpTy & Op)1200 template <typename OpTy> inline LoadClass_match<OpTy> m_Load(const OpTy &Op) {
1201 return LoadClass_match<OpTy>(Op);
1202 }
1203
1204 //===----------------------------------------------------------------------===//
1205 // Matcher for StoreInst classes
1206 //
1207
1208 template <typename ValueOp_t, typename PointerOp_t> struct StoreClass_match {
1209 ValueOp_t ValueOp;
1210 PointerOp_t PointerOp;
1211
StoreClass_matchStoreClass_match1212 StoreClass_match(const ValueOp_t &ValueOpMatch,
1213 const PointerOp_t &PointerOpMatch) :
1214 ValueOp(ValueOpMatch), PointerOp(PointerOpMatch) {}
1215
matchStoreClass_match1216 template <typename OpTy> bool match(OpTy *V) {
1217 if (auto *LI = dyn_cast<StoreInst>(V))
1218 return ValueOp.match(LI->getValueOperand()) &&
1219 PointerOp.match(LI->getPointerOperand());
1220 return false;
1221 }
1222 };
1223
1224 /// Matches StoreInst.
1225 template <typename ValueOpTy, typename PointerOpTy>
1226 inline StoreClass_match<ValueOpTy, PointerOpTy>
m_Store(const ValueOpTy & ValueOp,const PointerOpTy & PointerOp)1227 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1228 return StoreClass_match<ValueOpTy, PointerOpTy>(ValueOp, PointerOp);
1229 }
1230
1231 //===----------------------------------------------------------------------===//
1232 // Matchers for control flow.
1233 //
1234
1235 struct br_match {
1236 BasicBlock *&Succ;
1237
br_matchbr_match1238 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1239
matchbr_match1240 template <typename OpTy> bool match(OpTy *V) {
1241 if (auto *BI = dyn_cast<BranchInst>(V))
1242 if (BI->isUnconditional()) {
1243 Succ = BI->getSuccessor(0);
1244 return true;
1245 }
1246 return false;
1247 }
1248 };
1249
m_UnconditionalBr(BasicBlock * & Succ)1250 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1251
1252 template <typename Cond_t> struct brc_match {
1253 Cond_t Cond;
1254 BasicBlock *&T, *&F;
1255
brc_matchbrc_match1256 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1257 : Cond(C), T(t), F(f) {}
1258
matchbrc_match1259 template <typename OpTy> bool match(OpTy *V) {
1260 if (auto *BI = dyn_cast<BranchInst>(V))
1261 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1262 T = BI->getSuccessor(0);
1263 F = BI->getSuccessor(1);
1264 return true;
1265 }
1266 return false;
1267 }
1268 };
1269
1270 template <typename Cond_t>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)1271 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1272 return brc_match<Cond_t>(C, T, F);
1273 }
1274
1275 //===----------------------------------------------------------------------===//
1276 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1277 //
1278
1279 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1280 bool Commutable = false>
1281 struct MaxMin_match {
1282 LHS_t L;
1283 RHS_t R;
1284
1285 // The evaluation order is always stable, regardless of Commutability.
1286 // The LHS is always matched first.
MaxMin_matchMaxMin_match1287 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1288
matchMaxMin_match1289 template <typename OpTy> bool match(OpTy *V) {
1290 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1291 auto *SI = dyn_cast<SelectInst>(V);
1292 if (!SI)
1293 return false;
1294 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1295 if (!Cmp)
1296 return false;
1297 // At this point we have a select conditioned on a comparison. Check that
1298 // it is the values returned by the select that are being compared.
1299 Value *TrueVal = SI->getTrueValue();
1300 Value *FalseVal = SI->getFalseValue();
1301 Value *LHS = Cmp->getOperand(0);
1302 Value *RHS = Cmp->getOperand(1);
1303 if ((TrueVal != LHS || FalseVal != RHS) &&
1304 (TrueVal != RHS || FalseVal != LHS))
1305 return false;
1306 typename CmpInst_t::Predicate Pred =
1307 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1308 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1309 if (!Pred_t::match(Pred))
1310 return false;
1311 // It does! Bind the operands.
1312 return (L.match(LHS) && R.match(RHS)) ||
1313 (Commutable && L.match(RHS) && R.match(LHS));
1314 }
1315 };
1316
1317 /// Helper class for identifying signed max predicates.
1318 struct smax_pred_ty {
matchsmax_pred_ty1319 static bool match(ICmpInst::Predicate Pred) {
1320 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1321 }
1322 };
1323
1324 /// Helper class for identifying signed min predicates.
1325 struct smin_pred_ty {
matchsmin_pred_ty1326 static bool match(ICmpInst::Predicate Pred) {
1327 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1328 }
1329 };
1330
1331 /// Helper class for identifying unsigned max predicates.
1332 struct umax_pred_ty {
matchumax_pred_ty1333 static bool match(ICmpInst::Predicate Pred) {
1334 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1335 }
1336 };
1337
1338 /// Helper class for identifying unsigned min predicates.
1339 struct umin_pred_ty {
matchumin_pred_ty1340 static bool match(ICmpInst::Predicate Pred) {
1341 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1342 }
1343 };
1344
1345 /// Helper class for identifying ordered max predicates.
1346 struct ofmax_pred_ty {
matchofmax_pred_ty1347 static bool match(FCmpInst::Predicate Pred) {
1348 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1349 }
1350 };
1351
1352 /// Helper class for identifying ordered min predicates.
1353 struct ofmin_pred_ty {
matchofmin_pred_ty1354 static bool match(FCmpInst::Predicate Pred) {
1355 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1356 }
1357 };
1358
1359 /// Helper class for identifying unordered max predicates.
1360 struct ufmax_pred_ty {
matchufmax_pred_ty1361 static bool match(FCmpInst::Predicate Pred) {
1362 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1363 }
1364 };
1365
1366 /// Helper class for identifying unordered min predicates.
1367 struct ufmin_pred_ty {
matchufmin_pred_ty1368 static bool match(FCmpInst::Predicate Pred) {
1369 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1370 }
1371 };
1372
1373 template <typename LHS, typename RHS>
m_SMax(const LHS & L,const RHS & R)1374 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1375 const RHS &R) {
1376 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1377 }
1378
1379 template <typename LHS, typename RHS>
m_SMin(const LHS & L,const RHS & R)1380 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1381 const RHS &R) {
1382 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1383 }
1384
1385 template <typename LHS, typename RHS>
m_UMax(const LHS & L,const RHS & R)1386 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1387 const RHS &R) {
1388 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1389 }
1390
1391 template <typename LHS, typename RHS>
m_UMin(const LHS & L,const RHS & R)1392 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1393 const RHS &R) {
1394 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1395 }
1396
1397 /// Match an 'ordered' floating point maximum function.
1398 /// Floating point has one special value 'NaN'. Therefore, there is no total
1399 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1400 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1401 /// semantics. In the presence of 'NaN' we have to preserve the original
1402 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1403 ///
1404 /// max(L, R) iff L and R are not NaN
1405 /// m_OrdFMax(L, R) = R iff L or R are NaN
1406 template <typename LHS, typename RHS>
m_OrdFMax(const LHS & L,const RHS & R)1407 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1408 const RHS &R) {
1409 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1410 }
1411
1412 /// Match an 'ordered' floating point minimum function.
1413 /// Floating point has one special value 'NaN'. Therefore, there is no total
1414 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1415 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1416 /// semantics. In the presence of 'NaN' we have to preserve the original
1417 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1418 ///
1419 /// min(L, R) iff L and R are not NaN
1420 /// m_OrdFMin(L, R) = R iff L or R are NaN
1421 template <typename LHS, typename RHS>
m_OrdFMin(const LHS & L,const RHS & R)1422 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1423 const RHS &R) {
1424 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1425 }
1426
1427 /// Match an 'unordered' floating point maximum function.
1428 /// Floating point has one special value 'NaN'. Therefore, there is no total
1429 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1430 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1431 /// semantics. In the presence of 'NaN' we have to preserve the original
1432 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1433 ///
1434 /// max(L, R) iff L and R are not NaN
1435 /// m_UnordFMax(L, R) = L iff L or R are NaN
1436 template <typename LHS, typename RHS>
1437 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1438 m_UnordFMax(const LHS &L, const RHS &R) {
1439 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1440 }
1441
1442 /// Match an 'unordered' floating point minimum function.
1443 /// Floating point has one special value 'NaN'. Therefore, there is no total
1444 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1445 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1446 /// semantics. In the presence of 'NaN' we have to preserve the original
1447 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1448 ///
1449 /// min(L, R) iff L and R are not NaN
1450 /// m_UnordFMin(L, R) = L iff L or R are NaN
1451 template <typename LHS, typename RHS>
1452 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1453 m_UnordFMin(const LHS &L, const RHS &R) {
1454 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1455 }
1456
1457 //===----------------------------------------------------------------------===//
1458 // Matchers for overflow check patterns: e.g. (a + b) u< a
1459 //
1460
1461 template <typename LHS_t, typename RHS_t, typename Sum_t>
1462 struct UAddWithOverflow_match {
1463 LHS_t L;
1464 RHS_t R;
1465 Sum_t S;
1466
UAddWithOverflow_matchUAddWithOverflow_match1467 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1468 : L(L), R(R), S(S) {}
1469
matchUAddWithOverflow_match1470 template <typename OpTy> bool match(OpTy *V) {
1471 Value *ICmpLHS, *ICmpRHS;
1472 ICmpInst::Predicate Pred;
1473 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1474 return false;
1475
1476 Value *AddLHS, *AddRHS;
1477 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1478
1479 // (a + b) u< a, (a + b) u< b
1480 if (Pred == ICmpInst::ICMP_ULT)
1481 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1482 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1483
1484 // a >u (a + b), b >u (a + b)
1485 if (Pred == ICmpInst::ICMP_UGT)
1486 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1487 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1488
1489 return false;
1490 }
1491 };
1492
1493 /// Match an icmp instruction checking for unsigned overflow on addition.
1494 ///
1495 /// S is matched to the addition whose result is being checked for overflow, and
1496 /// L and R are matched to the LHS and RHS of S.
1497 template <typename LHS_t, typename RHS_t, typename Sum_t>
1498 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
m_UAddWithOverflow(const LHS_t & L,const RHS_t & R,const Sum_t & S)1499 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1500 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1501 }
1502
1503 template <typename Opnd_t> struct Argument_match {
1504 unsigned OpI;
1505 Opnd_t Val;
1506
Argument_matchArgument_match1507 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1508
matchArgument_match1509 template <typename OpTy> bool match(OpTy *V) {
1510 CallSite CS(V);
1511 return CS.isCall() && Val.match(CS.getArgument(OpI));
1512 }
1513 };
1514
1515 /// Match an argument.
1516 template <unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1517 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1518 return Argument_match<Opnd_t>(OpI, Op);
1519 }
1520
1521 /// Intrinsic matchers.
1522 struct IntrinsicID_match {
1523 unsigned ID;
1524
IntrinsicID_matchIntrinsicID_match1525 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1526
matchIntrinsicID_match1527 template <typename OpTy> bool match(OpTy *V) {
1528 if (const auto *CI = dyn_cast<CallInst>(V))
1529 if (const auto *F = CI->getCalledFunction())
1530 return F->getIntrinsicID() == ID;
1531 return false;
1532 }
1533 };
1534
1535 /// Intrinsic matches are combinations of ID matchers, and argument
1536 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1537 /// them with lower arity matchers. Here's some convenient typedefs for up to
1538 /// several arguments, and more can be added as needed
1539 template <typename T0 = void, typename T1 = void, typename T2 = void,
1540 typename T3 = void, typename T4 = void, typename T5 = void,
1541 typename T6 = void, typename T7 = void, typename T8 = void,
1542 typename T9 = void, typename T10 = void>
1543 struct m_Intrinsic_Ty;
1544 template <typename T0> struct m_Intrinsic_Ty<T0> {
1545 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1546 };
1547 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1548 using Ty =
1549 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1550 };
1551 template <typename T0, typename T1, typename T2>
1552 struct m_Intrinsic_Ty<T0, T1, T2> {
1553 using Ty =
1554 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1555 Argument_match<T2>>;
1556 };
1557 template <typename T0, typename T1, typename T2, typename T3>
1558 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1559 using Ty =
1560 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1561 Argument_match<T3>>;
1562 };
1563
1564 /// Match intrinsic calls like this:
1565 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1566 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1567 return IntrinsicID_match(IntrID);
1568 }
1569
1570 template <Intrinsic::ID IntrID, typename T0>
1571 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1572 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1573 }
1574
1575 template <Intrinsic::ID IntrID, typename T0, typename T1>
1576 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1577 const T1 &Op1) {
1578 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1579 }
1580
1581 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1582 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1583 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1584 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1585 }
1586
1587 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1588 typename T3>
1589 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1590 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1591 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1592 }
1593
1594 // Helper intrinsic matching specializations.
1595 template <typename Opnd0>
1596 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1597 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1598 }
1599
1600 template <typename Opnd0>
1601 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1602 return m_Intrinsic<Intrinsic::bswap>(Op0);
1603 }
1604
1605 template <typename Opnd0>
1606 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1607 return m_Intrinsic<Intrinsic::fabs>(Op0);
1608 }
1609
1610 template <typename Opnd0>
1611 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1612 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1613 }
1614
1615 template <typename Opnd0, typename Opnd1>
1616 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1617 const Opnd1 &Op1) {
1618 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1619 }
1620
1621 template <typename Opnd0, typename Opnd1>
1622 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1623 const Opnd1 &Op1) {
1624 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1625 }
1626
1627 //===----------------------------------------------------------------------===//
1628 // Matchers for two-operands operators with the operators in either order
1629 //
1630
1631 /// Matches a BinaryOperator with LHS and RHS in either order.
1632 template <typename LHS, typename RHS>
1633 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1634 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1635 }
1636
1637 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1638 /// Does not swap the predicate.
1639 template <typename LHS, typename RHS>
1640 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1641 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1642 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1643 R);
1644 }
1645
1646 /// Matches a Add with LHS and RHS in either order.
1647 template <typename LHS, typename RHS>
1648 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1649 const RHS &R) {
1650 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1651 }
1652
1653 /// Matches a Mul with LHS and RHS in either order.
1654 template <typename LHS, typename RHS>
1655 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1656 const RHS &R) {
1657 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1658 }
1659
1660 /// Matches an And with LHS and RHS in either order.
1661 template <typename LHS, typename RHS>
1662 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1663 const RHS &R) {
1664 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1665 }
1666
1667 /// Matches an Or with LHS and RHS in either order.
1668 template <typename LHS, typename RHS>
1669 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1670 const RHS &R) {
1671 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1672 }
1673
1674 /// Matches an Xor with LHS and RHS in either order.
1675 template <typename LHS, typename RHS>
1676 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1677 const RHS &R) {
1678 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1679 }
1680
1681 /// Matches a 'Neg' as 'sub 0, V'.
1682 template <typename ValTy>
1683 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1684 m_Neg(const ValTy &V) {
1685 return m_Sub(m_ZeroInt(), V);
1686 }
1687
1688 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1689 template <typename ValTy>
1690 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1691 m_Not(const ValTy &V) {
1692 return m_c_Xor(V, m_AllOnes());
1693 }
1694
1695 /// Matches an SMin with LHS and RHS in either order.
1696 template <typename LHS, typename RHS>
1697 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1698 m_c_SMin(const LHS &L, const RHS &R) {
1699 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1700 }
1701 /// Matches an SMax with LHS and RHS in either order.
1702 template <typename LHS, typename RHS>
1703 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1704 m_c_SMax(const LHS &L, const RHS &R) {
1705 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1706 }
1707 /// Matches a UMin with LHS and RHS in either order.
1708 template <typename LHS, typename RHS>
1709 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1710 m_c_UMin(const LHS &L, const RHS &R) {
1711 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1712 }
1713 /// Matches a UMax with LHS and RHS in either order.
1714 template <typename LHS, typename RHS>
1715 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1716 m_c_UMax(const LHS &L, const RHS &R) {
1717 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1718 }
1719
1720 /// Matches FAdd with LHS and RHS in either order.
1721 template <typename LHS, typename RHS>
1722 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1723 m_c_FAdd(const LHS &L, const RHS &R) {
1724 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1725 }
1726
1727 /// Matches FMul with LHS and RHS in either order.
1728 template <typename LHS, typename RHS>
1729 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1730 m_c_FMul(const LHS &L, const RHS &R) {
1731 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1732 }
1733
1734 template <typename Opnd_t> struct Signum_match {
1735 Opnd_t Val;
1736 Signum_match(const Opnd_t &V) : Val(V) {}
1737
1738 template <typename OpTy> bool match(OpTy *V) {
1739 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1740 if (TypeSize == 0)
1741 return false;
1742
1743 unsigned ShiftWidth = TypeSize - 1;
1744 Value *OpL = nullptr, *OpR = nullptr;
1745
1746 // This is the representation of signum we match:
1747 //
1748 // signum(x) == (x >> 63) | (-x >>u 63)
1749 //
1750 // An i1 value is its own signum, so it's correct to match
1751 //
1752 // signum(x) == (x >> 0) | (-x >>u 0)
1753 //
1754 // for i1 values.
1755
1756 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1757 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1758 auto Signum = m_Or(LHS, RHS);
1759
1760 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1761 }
1762 };
1763
1764 /// Matches a signum pattern.
1765 ///
1766 /// signum(x) =
1767 /// x > 0 -> 1
1768 /// x == 0 -> 0
1769 /// x < 0 -> -1
1770 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1771 return Signum_match<Val_t>(V);
1772 }
1773
1774 } // end namespace PatternMatch
1775 } // end namespace llvm
1776
1777 #endif // LLVM_IR_PATTERNMATCH_H
1778