• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file declares the Value class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_IR_VALUE_H
15 #define LLVM_IR_VALUE_H
16 
17 #include "llvm-c/Types.h"
18 #include "llvm/ADT/iterator_range.h"
19 #include "llvm/IR/Use.h"
20 #include "llvm/Support/CBindingWrapping.h"
21 #include "llvm/Support/Casting.h"
22 #include <cassert>
23 #include <iterator>
24 #include <memory>
25 
26 namespace llvm {
27 
28 class APInt;
29 class Argument;
30 class BasicBlock;
31 class Constant;
32 class ConstantData;
33 class ConstantAggregate;
34 class DataLayout;
35 class Function;
36 class GlobalAlias;
37 class GlobalIFunc;
38 class GlobalIndirectSymbol;
39 class GlobalObject;
40 class GlobalValue;
41 class GlobalVariable;
42 class InlineAsm;
43 class Instruction;
44 class LLVMContext;
45 class Module;
46 class ModuleSlotTracker;
47 class raw_ostream;
48 template<typename ValueTy> class StringMapEntry;
49 class StringRef;
50 class Twine;
51 class Type;
52 class User;
53 
54 using ValueName = StringMapEntry<Value *>;
55 
56 //===----------------------------------------------------------------------===//
57 //                                 Value Class
58 //===----------------------------------------------------------------------===//
59 
60 /// LLVM Value Representation
61 ///
62 /// This is a very important LLVM class. It is the base class of all values
63 /// computed by a program that may be used as operands to other values. Value is
64 /// the super class of other important classes such as Instruction and Function.
65 /// All Values have a Type. Type is not a subclass of Value. Some values can
66 /// have a name and they belong to some Module.  Setting the name on the Value
67 /// automatically updates the module's symbol table.
68 ///
69 /// Every value has a "use list" that keeps track of which other Values are
70 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
71 /// objects that watch it and listen to RAUW and Destroy events.  See
72 /// llvm/IR/ValueHandle.h for details.
73 class Value {
74   // The least-significant bit of the first word of Value *must* be zero:
75   //   http://www.llvm.org/docs/ProgrammersManual.html#the-waymarking-algorithm
76   Type *VTy;
77   Use *UseList;
78 
79   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
80   friend class ValueHandleBase;
81 
82   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
83   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84 
85 protected:
86   /// Hold subclass data that can be dropped.
87   ///
88   /// This member is similar to SubclassData, however it is for holding
89   /// information which may be used to aid optimization, but which may be
90   /// cleared to zero without affecting conservative interpretation.
91   unsigned char SubclassOptionalData : 7;
92 
93 private:
94   /// Hold arbitrary subclass data.
95   ///
96   /// This member is defined by this class, but is not used for anything.
97   /// Subclasses can use it to hold whatever state they find useful.  This
98   /// field is initialized to zero by the ctor.
99   unsigned short SubclassData;
100 
101 protected:
102   /// The number of operands in the subclass.
103   ///
104   /// This member is defined by this class, but not used for anything.
105   /// Subclasses can use it to store their number of operands, if they have
106   /// any.
107   ///
108   /// This is stored here to save space in User on 64-bit hosts.  Since most
109   /// instances of Value have operands, 32-bit hosts aren't significantly
110   /// affected.
111   ///
112   /// Note, this should *NOT* be used directly by any class other than User.
113   /// User uses this value to find the Use list.
114   enum : unsigned { NumUserOperandsBits = 28 };
115   unsigned NumUserOperands : NumUserOperandsBits;
116 
117   // Use the same type as the bitfield above so that MSVC will pack them.
118   unsigned IsUsedByMD : 1;
119   unsigned HasName : 1;
120   unsigned HasHungOffUses : 1;
121   unsigned HasDescriptor : 1;
122 
123 private:
124   template <typename UseT> // UseT == 'Use' or 'const Use'
125   class use_iterator_impl
126       : public std::iterator<std::forward_iterator_tag, UseT *> {
127     friend class Value;
128 
129     UseT *U;
130 
use_iterator_impl(UseT * u)131     explicit use_iterator_impl(UseT *u) : U(u) {}
132 
133   public:
use_iterator_impl()134     use_iterator_impl() : U() {}
135 
136     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
137     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
138 
139     use_iterator_impl &operator++() { // Preincrement
140       assert(U && "Cannot increment end iterator!");
141       U = U->getNext();
142       return *this;
143     }
144 
145     use_iterator_impl operator++(int) { // Postincrement
146       auto tmp = *this;
147       ++*this;
148       return tmp;
149     }
150 
151     UseT &operator*() const {
152       assert(U && "Cannot dereference end iterator!");
153       return *U;
154     }
155 
156     UseT *operator->() const { return &operator*(); }
157 
158     operator use_iterator_impl<const UseT>() const {
159       return use_iterator_impl<const UseT>(U);
160     }
161   };
162 
163   template <typename UserTy> // UserTy == 'User' or 'const User'
164   class user_iterator_impl
165       : public std::iterator<std::forward_iterator_tag, UserTy *> {
166     use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)167     explicit user_iterator_impl(Use *U) : UI(U) {}
168     friend class Value;
169 
170   public:
171     user_iterator_impl() = default;
172 
173     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
174     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
175 
176     /// Returns true if this iterator is equal to user_end() on the value.
atEnd()177     bool atEnd() const { return *this == user_iterator_impl(); }
178 
179     user_iterator_impl &operator++() { // Preincrement
180       ++UI;
181       return *this;
182     }
183 
184     user_iterator_impl operator++(int) { // Postincrement
185       auto tmp = *this;
186       ++*this;
187       return tmp;
188     }
189 
190     // Retrieve a pointer to the current User.
191     UserTy *operator*() const {
192       return UI->getUser();
193     }
194 
195     UserTy *operator->() const { return operator*(); }
196 
197     operator user_iterator_impl<const UserTy>() const {
198       return user_iterator_impl<const UserTy>(*UI);
199     }
200 
getUse()201     Use &getUse() const { return *UI; }
202   };
203 
204 protected:
205   Value(Type *Ty, unsigned scid);
206 
207   /// Value's destructor should be virtual by design, but that would require
208   /// that Value and all of its subclasses have a vtable that effectively
209   /// duplicates the information in the value ID. As a size optimization, the
210   /// destructor has been protected, and the caller should manually call
211   /// deleteValue.
212   ~Value(); // Use deleteValue() to delete a generic Value.
213 
214 public:
215   Value(const Value &) = delete;
216   Value &operator=(const Value &) = delete;
217 
218   /// Delete a pointer to a generic Value.
219   void deleteValue();
220 
221   /// Support for debugging, callable in GDB: V->dump()
222   void dump() const;
223 
224   /// Implement operator<< on Value.
225   /// @{
226   void print(raw_ostream &O, bool IsForDebug = false) const;
227   void print(raw_ostream &O, ModuleSlotTracker &MST,
228              bool IsForDebug = false) const;
229   /// @}
230 
231   /// Print the name of this Value out to the specified raw_ostream.
232   ///
233   /// This is useful when you just want to print 'int %reg126', not the
234   /// instruction that generated it. If you specify a Module for context, then
235   /// even constanst get pretty-printed; for example, the type of a null
236   /// pointer is printed symbolically.
237   /// @{
238   void printAsOperand(raw_ostream &O, bool PrintType = true,
239                       const Module *M = nullptr) const;
240   void printAsOperand(raw_ostream &O, bool PrintType,
241                       ModuleSlotTracker &MST) const;
242   /// @}
243 
244   /// All values are typed, get the type of this value.
getType()245   Type *getType() const { return VTy; }
246 
247   /// All values hold a context through their type.
248   LLVMContext &getContext() const;
249 
250   // All values can potentially be named.
hasName()251   bool hasName() const { return HasName; }
252   ValueName *getValueName() const;
253   void setValueName(ValueName *VN);
254 
255 private:
256   void destroyValueName();
257   void doRAUW(Value *New, bool NoMetadata);
258   void setNameImpl(const Twine &Name);
259 
260 public:
261   /// Return a constant reference to the value's name.
262   ///
263   /// This guaranteed to return the same reference as long as the value is not
264   /// modified.  If the value has a name, this does a hashtable lookup, so it's
265   /// not free.
266   StringRef getName() const;
267 
268   /// Change the name of the value.
269   ///
270   /// Choose a new unique name if the provided name is taken.
271   ///
272   /// \param Name The new name; or "" if the value's name should be removed.
273   void setName(const Twine &Name);
274 
275   /// Transfer the name from V to this value.
276   ///
277   /// After taking V's name, sets V's name to empty.
278   ///
279   /// \note It is an error to call V->takeName(V).
280   void takeName(Value *V);
281 
282   /// Change all uses of this to point to a new Value.
283   ///
284   /// Go through the uses list for this definition and make each use point to
285   /// "V" instead of "this".  After this completes, 'this's use list is
286   /// guaranteed to be empty.
287   void replaceAllUsesWith(Value *V);
288 
289   /// Change non-metadata uses of this to point to a new Value.
290   ///
291   /// Go through the uses list for this definition and make each use point to
292   /// "V" instead of "this". This function skips metadata entries in the list.
293   void replaceNonMetadataUsesWith(Value *V);
294 
295   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
296   /// make each use point to "V" instead of "this" when the use is outside the
297   /// block. 'This's use list is expected to have at least one element.
298   /// Unlike replaceAllUsesWith this function does not support basic block
299   /// values or constant users.
300   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
301 
302   //----------------------------------------------------------------------
303   // Methods for handling the chain of uses of this Value.
304   //
305   // Materializing a function can introduce new uses, so these methods come in
306   // two variants:
307   // The methods that start with materialized_ check the uses that are
308   // currently known given which functions are materialized. Be very careful
309   // when using them since you might not get all uses.
310   // The methods that don't start with materialized_ assert that modules is
311   // fully materialized.
312   void assertModuleIsMaterializedImpl() const;
313   // This indirection exists so we can keep assertModuleIsMaterializedImpl()
314   // around in release builds of Value.cpp to be linked with other code built
315   // in debug mode. But this avoids calling it in any of the release built code.
assertModuleIsMaterialized()316   void assertModuleIsMaterialized() const {
317 #ifndef NDEBUG
318     assertModuleIsMaterializedImpl();
319 #endif
320   }
321 
use_empty()322   bool use_empty() const {
323     assertModuleIsMaterialized();
324     return UseList == nullptr;
325   }
326 
materialized_use_empty()327   bool materialized_use_empty() const {
328     return UseList == nullptr;
329   }
330 
331   using use_iterator = use_iterator_impl<Use>;
332   using const_use_iterator = use_iterator_impl<const Use>;
333 
materialized_use_begin()334   use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()335   const_use_iterator materialized_use_begin() const {
336     return const_use_iterator(UseList);
337   }
use_begin()338   use_iterator use_begin() {
339     assertModuleIsMaterialized();
340     return materialized_use_begin();
341   }
use_begin()342   const_use_iterator use_begin() const {
343     assertModuleIsMaterialized();
344     return materialized_use_begin();
345   }
use_end()346   use_iterator use_end() { return use_iterator(); }
use_end()347   const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()348   iterator_range<use_iterator> materialized_uses() {
349     return make_range(materialized_use_begin(), use_end());
350   }
materialized_uses()351   iterator_range<const_use_iterator> materialized_uses() const {
352     return make_range(materialized_use_begin(), use_end());
353   }
uses()354   iterator_range<use_iterator> uses() {
355     assertModuleIsMaterialized();
356     return materialized_uses();
357   }
uses()358   iterator_range<const_use_iterator> uses() const {
359     assertModuleIsMaterialized();
360     return materialized_uses();
361   }
362 
user_empty()363   bool user_empty() const {
364     assertModuleIsMaterialized();
365     return UseList == nullptr;
366   }
367 
368   using user_iterator = user_iterator_impl<User>;
369   using const_user_iterator = user_iterator_impl<const User>;
370 
materialized_user_begin()371   user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()372   const_user_iterator materialized_user_begin() const {
373     return const_user_iterator(UseList);
374   }
user_begin()375   user_iterator user_begin() {
376     assertModuleIsMaterialized();
377     return materialized_user_begin();
378   }
user_begin()379   const_user_iterator user_begin() const {
380     assertModuleIsMaterialized();
381     return materialized_user_begin();
382   }
user_end()383   user_iterator user_end() { return user_iterator(); }
user_end()384   const_user_iterator user_end() const { return const_user_iterator(); }
user_back()385   User *user_back() {
386     assertModuleIsMaterialized();
387     return *materialized_user_begin();
388   }
user_back()389   const User *user_back() const {
390     assertModuleIsMaterialized();
391     return *materialized_user_begin();
392   }
materialized_users()393   iterator_range<user_iterator> materialized_users() {
394     return make_range(materialized_user_begin(), user_end());
395   }
materialized_users()396   iterator_range<const_user_iterator> materialized_users() const {
397     return make_range(materialized_user_begin(), user_end());
398   }
users()399   iterator_range<user_iterator> users() {
400     assertModuleIsMaterialized();
401     return materialized_users();
402   }
users()403   iterator_range<const_user_iterator> users() const {
404     assertModuleIsMaterialized();
405     return materialized_users();
406   }
407 
408   /// Return true if there is exactly one user of this value.
409   ///
410   /// This is specialized because it is a common request and does not require
411   /// traversing the whole use list.
hasOneUse()412   bool hasOneUse() const {
413     const_use_iterator I = use_begin(), E = use_end();
414     if (I == E) return false;
415     return ++I == E;
416   }
417 
418   /// Return true if this Value has exactly N users.
419   bool hasNUses(unsigned N) const;
420 
421   /// Return true if this value has N users or more.
422   ///
423   /// This is logically equivalent to getNumUses() >= N.
424   bool hasNUsesOrMore(unsigned N) const;
425 
426   /// Check if this value is used in the specified basic block.
427   bool isUsedInBasicBlock(const BasicBlock *BB) const;
428 
429   /// This method computes the number of uses of this Value.
430   ///
431   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
432   /// hasNUsesOrMore to check for specific values.
433   unsigned getNumUses() const;
434 
435   /// This method should only be used by the Use class.
addUse(Use & U)436   void addUse(Use &U) { U.addToList(&UseList); }
437 
438   /// Concrete subclass of this.
439   ///
440   /// An enumeration for keeping track of the concrete subclass of Value that
441   /// is actually instantiated. Values of this enumeration are kept in the
442   /// Value classes SubclassID field. They are used for concrete type
443   /// identification.
444   enum ValueTy {
445 #define HANDLE_VALUE(Name) Name##Val,
446 #include "llvm/IR/Value.def"
447 
448     // Markers:
449 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
450 #include "llvm/IR/Value.def"
451   };
452 
453   /// Return an ID for the concrete type of this object.
454   ///
455   /// This is used to implement the classof checks.  This should not be used
456   /// for any other purpose, as the values may change as LLVM evolves.  Also,
457   /// note that for instructions, the Instruction's opcode is added to
458   /// InstructionVal. So this means three things:
459   /// # there is no value with code InstructionVal (no opcode==0).
460   /// # there are more possible values for the value type than in ValueTy enum.
461   /// # the InstructionVal enumerator must be the highest valued enumerator in
462   ///   the ValueTy enum.
getValueID()463   unsigned getValueID() const {
464     return SubclassID;
465   }
466 
467   /// Return the raw optional flags value contained in this value.
468   ///
469   /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()470   unsigned getRawSubclassOptionalData() const {
471     return SubclassOptionalData;
472   }
473 
474   /// Clear the optional flags contained in this value.
clearSubclassOptionalData()475   void clearSubclassOptionalData() {
476     SubclassOptionalData = 0;
477   }
478 
479   /// Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)480   bool hasSameSubclassOptionalData(const Value *V) const {
481     return SubclassOptionalData == V->SubclassOptionalData;
482   }
483 
484   /// Return true if there is a value handle associated with this value.
hasValueHandle()485   bool hasValueHandle() const { return HasValueHandle; }
486 
487   /// Return true if there is metadata referencing this value.
isUsedByMetadata()488   bool isUsedByMetadata() const { return IsUsedByMD; }
489 
490   /// Return true if this value is a swifterror value.
491   ///
492   /// swifterror values can be either a function argument or an alloca with a
493   /// swifterror attribute.
494   bool isSwiftError() const;
495 
496   /// Strip off pointer casts, all-zero GEPs, and aliases.
497   ///
498   /// Returns the original uncasted value.  If this is called on a non-pointer
499   /// value, it returns 'this'.
500   const Value *stripPointerCasts() const;
stripPointerCasts()501   Value *stripPointerCasts() {
502     return const_cast<Value *>(
503                          static_cast<const Value *>(this)->stripPointerCasts());
504   }
505 
506   /// Strip off pointer casts, all-zero GEPs, aliases and invariant group
507   /// info.
508   ///
509   /// Returns the original uncasted value.  If this is called on a non-pointer
510   /// value, it returns 'this'. This function should be used only in
511   /// Alias analysis.
512   const Value *stripPointerCastsAndInvariantGroups() const;
stripPointerCastsAndInvariantGroups()513   Value *stripPointerCastsAndInvariantGroups() {
514     return const_cast<Value *>(
515         static_cast<const Value *>(this)->stripPointerCastsAndInvariantGroups());
516   }
517 
518   /// Strip off pointer casts and all-zero GEPs.
519   ///
520   /// Returns the original uncasted value.  If this is called on a non-pointer
521   /// value, it returns 'this'.
522   const Value *stripPointerCastsNoFollowAliases() const;
stripPointerCastsNoFollowAliases()523   Value *stripPointerCastsNoFollowAliases() {
524     return const_cast<Value *>(
525           static_cast<const Value *>(this)->stripPointerCastsNoFollowAliases());
526   }
527 
528   /// Strip off pointer casts and all-constant inbounds GEPs.
529   ///
530   /// Returns the original pointer value.  If this is called on a non-pointer
531   /// value, it returns 'this'.
532   const Value *stripInBoundsConstantOffsets() const;
stripInBoundsConstantOffsets()533   Value *stripInBoundsConstantOffsets() {
534     return const_cast<Value *>(
535               static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
536   }
537 
538   /// Accumulate offsets from \a stripInBoundsConstantOffsets().
539   ///
540   /// Stores the resulting constant offset stripped into the APInt provided.
541   /// The provided APInt will be extended or truncated as needed to be the
542   /// correct bitwidth for an offset of this pointer type.
543   ///
544   /// If this is called on a non-pointer value, it returns 'this'.
545   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
546                                                          APInt &Offset) const;
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)547   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
548                                                    APInt &Offset) {
549     return const_cast<Value *>(static_cast<const Value *>(this)
550         ->stripAndAccumulateInBoundsConstantOffsets(DL, Offset));
551   }
552 
553   /// Strip off pointer casts and inbounds GEPs.
554   ///
555   /// Returns the original pointer value.  If this is called on a non-pointer
556   /// value, it returns 'this'.
557   const Value *stripInBoundsOffsets() const;
stripInBoundsOffsets()558   Value *stripInBoundsOffsets() {
559     return const_cast<Value *>(
560                       static_cast<const Value *>(this)->stripInBoundsOffsets());
561   }
562 
563   /// Returns the number of bytes known to be dereferenceable for the
564   /// pointer value.
565   ///
566   /// If CanBeNull is set by this function the pointer can either be null or be
567   /// dereferenceable up to the returned number of bytes.
568   uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
569                                           bool &CanBeNull) const;
570 
571   /// Returns an alignment of the pointer value.
572   ///
573   /// Returns an alignment which is either specified explicitly, e.g. via
574   /// align attribute of a function argument, or guaranteed by DataLayout.
575   unsigned getPointerAlignment(const DataLayout &DL) const;
576 
577   /// Translate PHI node to its predecessor from the given basic block.
578   ///
579   /// If this value is a PHI node with CurBB as its parent, return the value in
580   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
581   /// useful if you want to know the value something has in a predecessor
582   /// block.
583   const Value *DoPHITranslation(const BasicBlock *CurBB,
584                                 const BasicBlock *PredBB) const;
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)585   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
586     return const_cast<Value *>(
587              static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
588   }
589 
590   /// The maximum alignment for instructions.
591   ///
592   /// This is the greatest alignment value supported by load, store, and alloca
593   /// instructions, and global values.
594   static const unsigned MaxAlignmentExponent = 29;
595   static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
596 
597   /// Mutate the type of this Value to be of the specified type.
598   ///
599   /// Note that this is an extremely dangerous operation which can create
600   /// completely invalid IR very easily.  It is strongly recommended that you
601   /// recreate IR objects with the right types instead of mutating them in
602   /// place.
mutateType(Type * Ty)603   void mutateType(Type *Ty) {
604     VTy = Ty;
605   }
606 
607   /// Sort the use-list.
608   ///
609   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
610   /// expected to compare two \a Use references.
611   template <class Compare> void sortUseList(Compare Cmp);
612 
613   /// Reverse the use-list.
614   void reverseUseList();
615 
616 private:
617   /// Merge two lists together.
618   ///
619   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
620   /// "equal" items from L before items from R.
621   ///
622   /// \return the first element in the list.
623   ///
624   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
625   template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)626   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
627     Use *Merged;
628     Use **Next = &Merged;
629 
630     while (true) {
631       if (!L) {
632         *Next = R;
633         break;
634       }
635       if (!R) {
636         *Next = L;
637         break;
638       }
639       if (Cmp(*R, *L)) {
640         *Next = R;
641         Next = &R->Next;
642         R = R->Next;
643       } else {
644         *Next = L;
645         Next = &L->Next;
646         L = L->Next;
647       }
648     }
649 
650     return Merged;
651   }
652 
653 protected:
getSubclassDataFromValue()654   unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)655   void setValueSubclassData(unsigned short D) { SubclassData = D; }
656 };
657 
operatorValueDeleter658 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
659 
660 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
661 /// Those don't work because Value and Instruction's destructors are protected,
662 /// aren't virtual, and won't destroy the complete object.
663 using unique_value = std::unique_ptr<Value, ValueDeleter>;
664 
665 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
666   V.print(OS);
667   return OS;
668 }
669 
set(Value * V)670 void Use::set(Value *V) {
671   if (Val) removeFromList();
672   Val = V;
673   if (V) V->addUse(*this);
674 }
675 
676 Value *Use::operator=(Value *RHS) {
677   set(RHS);
678   return RHS;
679 }
680 
681 const Use &Use::operator=(const Use &RHS) {
682   set(RHS.Val);
683   return *this;
684 }
685 
sortUseList(Compare Cmp)686 template <class Compare> void Value::sortUseList(Compare Cmp) {
687   if (!UseList || !UseList->Next)
688     // No need to sort 0 or 1 uses.
689     return;
690 
691   // Note: this function completely ignores Prev pointers until the end when
692   // they're fixed en masse.
693 
694   // Create a binomial vector of sorted lists, visiting uses one at a time and
695   // merging lists as necessary.
696   const unsigned MaxSlots = 32;
697   Use *Slots[MaxSlots];
698 
699   // Collect the first use, turning it into a single-item list.
700   Use *Next = UseList->Next;
701   UseList->Next = nullptr;
702   unsigned NumSlots = 1;
703   Slots[0] = UseList;
704 
705   // Collect all but the last use.
706   while (Next->Next) {
707     Use *Current = Next;
708     Next = Current->Next;
709 
710     // Turn Current into a single-item list.
711     Current->Next = nullptr;
712 
713     // Save Current in the first available slot, merging on collisions.
714     unsigned I;
715     for (I = 0; I < NumSlots; ++I) {
716       if (!Slots[I])
717         break;
718 
719       // Merge two lists, doubling the size of Current and emptying slot I.
720       //
721       // Since the uses in Slots[I] originally preceded those in Current, send
722       // Slots[I] in as the left parameter to maintain a stable sort.
723       Current = mergeUseLists(Slots[I], Current, Cmp);
724       Slots[I] = nullptr;
725     }
726     // Check if this is a new slot.
727     if (I == NumSlots) {
728       ++NumSlots;
729       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
730     }
731 
732     // Found an open slot.
733     Slots[I] = Current;
734   }
735 
736   // Merge all the lists together.
737   assert(Next && "Expected one more Use");
738   assert(!Next->Next && "Expected only one Use");
739   UseList = Next;
740   for (unsigned I = 0; I < NumSlots; ++I)
741     if (Slots[I])
742       // Since the uses in Slots[I] originally preceded those in UseList, send
743       // Slots[I] in as the left parameter to maintain a stable sort.
744       UseList = mergeUseLists(Slots[I], UseList, Cmp);
745 
746   // Fix the Prev pointers.
747   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
748     I->setPrev(Prev);
749     Prev = &I->Next;
750   }
751 }
752 
753 // isa - Provide some specializations of isa so that we don't have to include
754 // the subtype header files to test to see if the value is a subclass...
755 //
756 template <> struct isa_impl<Constant, Value> {
757   static inline bool doit(const Value &Val) {
758     static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
759     return Val.getValueID() <= Value::ConstantLastVal;
760   }
761 };
762 
763 template <> struct isa_impl<ConstantData, Value> {
764   static inline bool doit(const Value &Val) {
765     return Val.getValueID() >= Value::ConstantDataFirstVal &&
766            Val.getValueID() <= Value::ConstantDataLastVal;
767   }
768 };
769 
770 template <> struct isa_impl<ConstantAggregate, Value> {
771   static inline bool doit(const Value &Val) {
772     return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
773            Val.getValueID() <= Value::ConstantAggregateLastVal;
774   }
775 };
776 
777 template <> struct isa_impl<Argument, Value> {
778   static inline bool doit (const Value &Val) {
779     return Val.getValueID() == Value::ArgumentVal;
780   }
781 };
782 
783 template <> struct isa_impl<InlineAsm, Value> {
784   static inline bool doit(const Value &Val) {
785     return Val.getValueID() == Value::InlineAsmVal;
786   }
787 };
788 
789 template <> struct isa_impl<Instruction, Value> {
790   static inline bool doit(const Value &Val) {
791     return Val.getValueID() >= Value::InstructionVal;
792   }
793 };
794 
795 template <> struct isa_impl<BasicBlock, Value> {
796   static inline bool doit(const Value &Val) {
797     return Val.getValueID() == Value::BasicBlockVal;
798   }
799 };
800 
801 template <> struct isa_impl<Function, Value> {
802   static inline bool doit(const Value &Val) {
803     return Val.getValueID() == Value::FunctionVal;
804   }
805 };
806 
807 template <> struct isa_impl<GlobalVariable, Value> {
808   static inline bool doit(const Value &Val) {
809     return Val.getValueID() == Value::GlobalVariableVal;
810   }
811 };
812 
813 template <> struct isa_impl<GlobalAlias, Value> {
814   static inline bool doit(const Value &Val) {
815     return Val.getValueID() == Value::GlobalAliasVal;
816   }
817 };
818 
819 template <> struct isa_impl<GlobalIFunc, Value> {
820   static inline bool doit(const Value &Val) {
821     return Val.getValueID() == Value::GlobalIFuncVal;
822   }
823 };
824 
825 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
826   static inline bool doit(const Value &Val) {
827     return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
828   }
829 };
830 
831 template <> struct isa_impl<GlobalValue, Value> {
832   static inline bool doit(const Value &Val) {
833     return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
834   }
835 };
836 
837 template <> struct isa_impl<GlobalObject, Value> {
838   static inline bool doit(const Value &Val) {
839     return isa<GlobalVariable>(Val) || isa<Function>(Val);
840   }
841 };
842 
843 // Create wrappers for C Binding types (see CBindingWrapping.h).
844 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
845 
846 // Specialized opaque value conversions.
847 inline Value **unwrap(LLVMValueRef *Vals) {
848   return reinterpret_cast<Value**>(Vals);
849 }
850 
851 template<typename T>
852 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
853 #ifndef NDEBUG
854   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
855     unwrap<T>(*I); // For side effect of calling assert on invalid usage.
856 #endif
857   (void)Length;
858   return reinterpret_cast<T**>(Vals);
859 }
860 
861 inline LLVMValueRef *wrap(const Value **Vals) {
862   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
863 }
864 
865 } // end namespace llvm
866 
867 #endif // LLVM_IR_VALUE_H
868