1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2010,2012 Jitse Niesen <jitse@maths.leeds.ac.uk>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10
11 #ifndef EIGEN_REAL_SCHUR_H
12 #define EIGEN_REAL_SCHUR_H
13
14 #include "./HessenbergDecomposition.h"
15
16 namespace Eigen {
17
18 /** \eigenvalues_module \ingroup Eigenvalues_Module
19 *
20 *
21 * \class RealSchur
22 *
23 * \brief Performs a real Schur decomposition of a square matrix
24 *
25 * \tparam _MatrixType the type of the matrix of which we are computing the
26 * real Schur decomposition; this is expected to be an instantiation of the
27 * Matrix class template.
28 *
29 * Given a real square matrix A, this class computes the real Schur
30 * decomposition: \f$ A = U T U^T \f$ where U is a real orthogonal matrix and
31 * T is a real quasi-triangular matrix. An orthogonal matrix is a matrix whose
32 * inverse is equal to its transpose, \f$ U^{-1} = U^T \f$. A quasi-triangular
33 * matrix is a block-triangular matrix whose diagonal consists of 1-by-1
34 * blocks and 2-by-2 blocks with complex eigenvalues. The eigenvalues of the
35 * blocks on the diagonal of T are the same as the eigenvalues of the matrix
36 * A, and thus the real Schur decomposition is used in EigenSolver to compute
37 * the eigendecomposition of a matrix.
38 *
39 * Call the function compute() to compute the real Schur decomposition of a
40 * given matrix. Alternatively, you can use the RealSchur(const MatrixType&, bool)
41 * constructor which computes the real Schur decomposition at construction
42 * time. Once the decomposition is computed, you can use the matrixU() and
43 * matrixT() functions to retrieve the matrices U and T in the decomposition.
44 *
45 * The documentation of RealSchur(const MatrixType&, bool) contains an example
46 * of the typical use of this class.
47 *
48 * \note The implementation is adapted from
49 * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
50 * Their code is based on EISPACK.
51 *
52 * \sa class ComplexSchur, class EigenSolver, class ComplexEigenSolver
53 */
54 template<typename _MatrixType> class RealSchur
55 {
56 public:
57 typedef _MatrixType MatrixType;
58 enum {
59 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
60 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
61 Options = MatrixType::Options,
62 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
63 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
64 };
65 typedef typename MatrixType::Scalar Scalar;
66 typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
67 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
68
69 typedef Matrix<ComplexScalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> EigenvalueType;
70 typedef Matrix<Scalar, ColsAtCompileTime, 1, Options & ~RowMajor, MaxColsAtCompileTime, 1> ColumnVectorType;
71
72 /** \brief Default constructor.
73 *
74 * \param [in] size Positive integer, size of the matrix whose Schur decomposition will be computed.
75 *
76 * The default constructor is useful in cases in which the user intends to
77 * perform decompositions via compute(). The \p size parameter is only
78 * used as a hint. It is not an error to give a wrong \p size, but it may
79 * impair performance.
80 *
81 * \sa compute() for an example.
82 */
83 explicit RealSchur(Index size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
m_matT(size,size)84 : m_matT(size, size),
85 m_matU(size, size),
86 m_workspaceVector(size),
87 m_hess(size),
88 m_isInitialized(false),
89 m_matUisUptodate(false),
90 m_maxIters(-1)
91 { }
92
93 /** \brief Constructor; computes real Schur decomposition of given matrix.
94 *
95 * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
96 * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
97 *
98 * This constructor calls compute() to compute the Schur decomposition.
99 *
100 * Example: \include RealSchur_RealSchur_MatrixType.cpp
101 * Output: \verbinclude RealSchur_RealSchur_MatrixType.out
102 */
103 template<typename InputType>
104 explicit RealSchur(const EigenBase<InputType>& matrix, bool computeU = true)
105 : m_matT(matrix.rows(),matrix.cols()),
106 m_matU(matrix.rows(),matrix.cols()),
107 m_workspaceVector(matrix.rows()),
108 m_hess(matrix.rows()),
109 m_isInitialized(false),
110 m_matUisUptodate(false),
111 m_maxIters(-1)
112 {
113 compute(matrix.derived(), computeU);
114 }
115
116 /** \brief Returns the orthogonal matrix in the Schur decomposition.
117 *
118 * \returns A const reference to the matrix U.
119 *
120 * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
121 * member function compute(const MatrixType&, bool) has been called before
122 * to compute the Schur decomposition of a matrix, and \p computeU was set
123 * to true (the default value).
124 *
125 * \sa RealSchur(const MatrixType&, bool) for an example
126 */
matrixU()127 const MatrixType& matrixU() const
128 {
129 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
130 eigen_assert(m_matUisUptodate && "The matrix U has not been computed during the RealSchur decomposition.");
131 return m_matU;
132 }
133
134 /** \brief Returns the quasi-triangular matrix in the Schur decomposition.
135 *
136 * \returns A const reference to the matrix T.
137 *
138 * \pre Either the constructor RealSchur(const MatrixType&, bool) or the
139 * member function compute(const MatrixType&, bool) has been called before
140 * to compute the Schur decomposition of a matrix.
141 *
142 * \sa RealSchur(const MatrixType&, bool) for an example
143 */
matrixT()144 const MatrixType& matrixT() const
145 {
146 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
147 return m_matT;
148 }
149
150 /** \brief Computes Schur decomposition of given matrix.
151 *
152 * \param[in] matrix Square matrix whose Schur decomposition is to be computed.
153 * \param[in] computeU If true, both T and U are computed; if false, only T is computed.
154 * \returns Reference to \c *this
155 *
156 * The Schur decomposition is computed by first reducing the matrix to
157 * Hessenberg form using the class HessenbergDecomposition. The Hessenberg
158 * matrix is then reduced to triangular form by performing Francis QR
159 * iterations with implicit double shift. The cost of computing the Schur
160 * decomposition depends on the number of iterations; as a rough guide, it
161 * may be taken to be \f$25n^3\f$ flops if \a computeU is true and
162 * \f$10n^3\f$ flops if \a computeU is false.
163 *
164 * Example: \include RealSchur_compute.cpp
165 * Output: \verbinclude RealSchur_compute.out
166 *
167 * \sa compute(const MatrixType&, bool, Index)
168 */
169 template<typename InputType>
170 RealSchur& compute(const EigenBase<InputType>& matrix, bool computeU = true);
171
172 /** \brief Computes Schur decomposition of a Hessenberg matrix H = Z T Z^T
173 * \param[in] matrixH Matrix in Hessenberg form H
174 * \param[in] matrixQ orthogonal matrix Q that transform a matrix A to H : A = Q H Q^T
175 * \param computeU Computes the matriX U of the Schur vectors
176 * \return Reference to \c *this
177 *
178 * This routine assumes that the matrix is already reduced in Hessenberg form matrixH
179 * using either the class HessenbergDecomposition or another mean.
180 * It computes the upper quasi-triangular matrix T of the Schur decomposition of H
181 * When computeU is true, this routine computes the matrix U such that
182 * A = U T U^T = (QZ) T (QZ)^T = Q H Q^T where A is the initial matrix
183 *
184 * NOTE Q is referenced if computeU is true; so, if the initial orthogonal matrix
185 * is not available, the user should give an identity matrix (Q.setIdentity())
186 *
187 * \sa compute(const MatrixType&, bool)
188 */
189 template<typename HessMatrixType, typename OrthMatrixType>
190 RealSchur& computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU);
191 /** \brief Reports whether previous computation was successful.
192 *
193 * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
194 */
info()195 ComputationInfo info() const
196 {
197 eigen_assert(m_isInitialized && "RealSchur is not initialized.");
198 return m_info;
199 }
200
201 /** \brief Sets the maximum number of iterations allowed.
202 *
203 * If not specified by the user, the maximum number of iterations is m_maxIterationsPerRow times the size
204 * of the matrix.
205 */
setMaxIterations(Index maxIters)206 RealSchur& setMaxIterations(Index maxIters)
207 {
208 m_maxIters = maxIters;
209 return *this;
210 }
211
212 /** \brief Returns the maximum number of iterations. */
getMaxIterations()213 Index getMaxIterations()
214 {
215 return m_maxIters;
216 }
217
218 /** \brief Maximum number of iterations per row.
219 *
220 * If not otherwise specified, the maximum number of iterations is this number times the size of the
221 * matrix. It is currently set to 40.
222 */
223 static const int m_maxIterationsPerRow = 40;
224
225 private:
226
227 MatrixType m_matT;
228 MatrixType m_matU;
229 ColumnVectorType m_workspaceVector;
230 HessenbergDecomposition<MatrixType> m_hess;
231 ComputationInfo m_info;
232 bool m_isInitialized;
233 bool m_matUisUptodate;
234 Index m_maxIters;
235
236 typedef Matrix<Scalar,3,1> Vector3s;
237
238 Scalar computeNormOfT();
239 Index findSmallSubdiagEntry(Index iu);
240 void splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift);
241 void computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo);
242 void initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector);
243 void performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace);
244 };
245
246
247 template<typename MatrixType>
248 template<typename InputType>
compute(const EigenBase<InputType> & matrix,bool computeU)249 RealSchur<MatrixType>& RealSchur<MatrixType>::compute(const EigenBase<InputType>& matrix, bool computeU)
250 {
251 const Scalar considerAsZero = (std::numeric_limits<Scalar>::min)();
252
253 eigen_assert(matrix.cols() == matrix.rows());
254 Index maxIters = m_maxIters;
255 if (maxIters == -1)
256 maxIters = m_maxIterationsPerRow * matrix.rows();
257
258 Scalar scale = matrix.derived().cwiseAbs().maxCoeff();
259 if(scale<considerAsZero)
260 {
261 m_matT.setZero(matrix.rows(),matrix.cols());
262 if(computeU)
263 m_matU.setIdentity(matrix.rows(),matrix.cols());
264 m_info = Success;
265 m_isInitialized = true;
266 m_matUisUptodate = computeU;
267 return *this;
268 }
269
270 // Step 1. Reduce to Hessenberg form
271 m_hess.compute(matrix.derived()/scale);
272
273 // Step 2. Reduce to real Schur form
274 computeFromHessenberg(m_hess.matrixH(), m_hess.matrixQ(), computeU);
275
276 m_matT *= scale;
277
278 return *this;
279 }
280 template<typename MatrixType>
281 template<typename HessMatrixType, typename OrthMatrixType>
computeFromHessenberg(const HessMatrixType & matrixH,const OrthMatrixType & matrixQ,bool computeU)282 RealSchur<MatrixType>& RealSchur<MatrixType>::computeFromHessenberg(const HessMatrixType& matrixH, const OrthMatrixType& matrixQ, bool computeU)
283 {
284 using std::abs;
285
286 m_matT = matrixH;
287 if(computeU)
288 m_matU = matrixQ;
289
290 Index maxIters = m_maxIters;
291 if (maxIters == -1)
292 maxIters = m_maxIterationsPerRow * matrixH.rows();
293 m_workspaceVector.resize(m_matT.cols());
294 Scalar* workspace = &m_workspaceVector.coeffRef(0);
295
296 // The matrix m_matT is divided in three parts.
297 // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
298 // Rows il,...,iu is the part we are working on (the active window).
299 // Rows iu+1,...,end are already brought in triangular form.
300 Index iu = m_matT.cols() - 1;
301 Index iter = 0; // iteration count for current eigenvalue
302 Index totalIter = 0; // iteration count for whole matrix
303 Scalar exshift(0); // sum of exceptional shifts
304 Scalar norm = computeNormOfT();
305
306 if(norm!=0)
307 {
308 while (iu >= 0)
309 {
310 Index il = findSmallSubdiagEntry(iu);
311
312 // Check for convergence
313 if (il == iu) // One root found
314 {
315 m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
316 if (iu > 0)
317 m_matT.coeffRef(iu, iu-1) = Scalar(0);
318 iu--;
319 iter = 0;
320 }
321 else if (il == iu-1) // Two roots found
322 {
323 splitOffTwoRows(iu, computeU, exshift);
324 iu -= 2;
325 iter = 0;
326 }
327 else // No convergence yet
328 {
329 // The firstHouseholderVector vector has to be initialized to something to get rid of a silly GCC warning (-O1 -Wall -DNDEBUG )
330 Vector3s firstHouseholderVector(0,0,0), shiftInfo;
331 computeShift(iu, iter, exshift, shiftInfo);
332 iter = iter + 1;
333 totalIter = totalIter + 1;
334 if (totalIter > maxIters) break;
335 Index im;
336 initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
337 performFrancisQRStep(il, im, iu, computeU, firstHouseholderVector, workspace);
338 }
339 }
340 }
341 if(totalIter <= maxIters)
342 m_info = Success;
343 else
344 m_info = NoConvergence;
345
346 m_isInitialized = true;
347 m_matUisUptodate = computeU;
348 return *this;
349 }
350
351 /** \internal Computes and returns vector L1 norm of T */
352 template<typename MatrixType>
computeNormOfT()353 inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
354 {
355 const Index size = m_matT.cols();
356 // FIXME to be efficient the following would requires a triangular reduxion code
357 // Scalar norm = m_matT.upper().cwiseAbs().sum()
358 // + m_matT.bottomLeftCorner(size-1,size-1).diagonal().cwiseAbs().sum();
359 Scalar norm(0);
360 for (Index j = 0; j < size; ++j)
361 norm += m_matT.col(j).segment(0, (std::min)(size,j+2)).cwiseAbs().sum();
362 return norm;
363 }
364
365 /** \internal Look for single small sub-diagonal element and returns its index */
366 template<typename MatrixType>
findSmallSubdiagEntry(Index iu)367 inline Index RealSchur<MatrixType>::findSmallSubdiagEntry(Index iu)
368 {
369 using std::abs;
370 Index res = iu;
371 while (res > 0)
372 {
373 Scalar s = abs(m_matT.coeff(res-1,res-1)) + abs(m_matT.coeff(res,res));
374 if (abs(m_matT.coeff(res,res-1)) <= NumTraits<Scalar>::epsilon() * s)
375 break;
376 res--;
377 }
378 return res;
379 }
380
381 /** \internal Update T given that rows iu-1 and iu decouple from the rest. */
382 template<typename MatrixType>
splitOffTwoRows(Index iu,bool computeU,const Scalar & exshift)383 inline void RealSchur<MatrixType>::splitOffTwoRows(Index iu, bool computeU, const Scalar& exshift)
384 {
385 using std::sqrt;
386 using std::abs;
387 const Index size = m_matT.cols();
388
389 // The eigenvalues of the 2x2 matrix [a b; c d] are
390 // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
391 Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
392 Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
393 m_matT.coeffRef(iu,iu) += exshift;
394 m_matT.coeffRef(iu-1,iu-1) += exshift;
395
396 if (q >= Scalar(0)) // Two real eigenvalues
397 {
398 Scalar z = sqrt(abs(q));
399 JacobiRotation<Scalar> rot;
400 if (p >= Scalar(0))
401 rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
402 else
403 rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
404
405 m_matT.rightCols(size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
406 m_matT.topRows(iu+1).applyOnTheRight(iu-1, iu, rot);
407 m_matT.coeffRef(iu, iu-1) = Scalar(0);
408 if (computeU)
409 m_matU.applyOnTheRight(iu-1, iu, rot);
410 }
411
412 if (iu > 1)
413 m_matT.coeffRef(iu-1, iu-2) = Scalar(0);
414 }
415
416 /** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
417 template<typename MatrixType>
computeShift(Index iu,Index iter,Scalar & exshift,Vector3s & shiftInfo)418 inline void RealSchur<MatrixType>::computeShift(Index iu, Index iter, Scalar& exshift, Vector3s& shiftInfo)
419 {
420 using std::sqrt;
421 using std::abs;
422 shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
423 shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
424 shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
425
426 // Wilkinson's original ad hoc shift
427 if (iter == 10)
428 {
429 exshift += shiftInfo.coeff(0);
430 for (Index i = 0; i <= iu; ++i)
431 m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
432 Scalar s = abs(m_matT.coeff(iu,iu-1)) + abs(m_matT.coeff(iu-1,iu-2));
433 shiftInfo.coeffRef(0) = Scalar(0.75) * s;
434 shiftInfo.coeffRef(1) = Scalar(0.75) * s;
435 shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
436 }
437
438 // MATLAB's new ad hoc shift
439 if (iter == 30)
440 {
441 Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
442 s = s * s + shiftInfo.coeff(2);
443 if (s > Scalar(0))
444 {
445 s = sqrt(s);
446 if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
447 s = -s;
448 s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
449 s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
450 exshift += s;
451 for (Index i = 0; i <= iu; ++i)
452 m_matT.coeffRef(i,i) -= s;
453 shiftInfo.setConstant(Scalar(0.964));
454 }
455 }
456 }
457
458 /** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
459 template<typename MatrixType>
initFrancisQRStep(Index il,Index iu,const Vector3s & shiftInfo,Index & im,Vector3s & firstHouseholderVector)460 inline void RealSchur<MatrixType>::initFrancisQRStep(Index il, Index iu, const Vector3s& shiftInfo, Index& im, Vector3s& firstHouseholderVector)
461 {
462 using std::abs;
463 Vector3s& v = firstHouseholderVector; // alias to save typing
464
465 for (im = iu-2; im >= il; --im)
466 {
467 const Scalar Tmm = m_matT.coeff(im,im);
468 const Scalar r = shiftInfo.coeff(0) - Tmm;
469 const Scalar s = shiftInfo.coeff(1) - Tmm;
470 v.coeffRef(0) = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
471 v.coeffRef(1) = m_matT.coeff(im+1,im+1) - Tmm - r - s;
472 v.coeffRef(2) = m_matT.coeff(im+2,im+1);
473 if (im == il) {
474 break;
475 }
476 const Scalar lhs = m_matT.coeff(im,im-1) * (abs(v.coeff(1)) + abs(v.coeff(2)));
477 const Scalar rhs = v.coeff(0) * (abs(m_matT.coeff(im-1,im-1)) + abs(Tmm) + abs(m_matT.coeff(im+1,im+1)));
478 if (abs(lhs) < NumTraits<Scalar>::epsilon() * rhs)
479 break;
480 }
481 }
482
483 /** \internal Perform a Francis QR step involving rows il:iu and columns im:iu. */
484 template<typename MatrixType>
performFrancisQRStep(Index il,Index im,Index iu,bool computeU,const Vector3s & firstHouseholderVector,Scalar * workspace)485 inline void RealSchur<MatrixType>::performFrancisQRStep(Index il, Index im, Index iu, bool computeU, const Vector3s& firstHouseholderVector, Scalar* workspace)
486 {
487 eigen_assert(im >= il);
488 eigen_assert(im <= iu-2);
489
490 const Index size = m_matT.cols();
491
492 for (Index k = im; k <= iu-2; ++k)
493 {
494 bool firstIteration = (k == im);
495
496 Vector3s v;
497 if (firstIteration)
498 v = firstHouseholderVector;
499 else
500 v = m_matT.template block<3,1>(k,k-1);
501
502 Scalar tau, beta;
503 Matrix<Scalar, 2, 1> ess;
504 v.makeHouseholder(ess, tau, beta);
505
506 if (beta != Scalar(0)) // if v is not zero
507 {
508 if (firstIteration && k > il)
509 m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
510 else if (!firstIteration)
511 m_matT.coeffRef(k,k-1) = beta;
512
513 // These Householder transformations form the O(n^3) part of the algorithm
514 m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, tau, workspace);
515 m_matT.block(0, k, (std::min)(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, tau, workspace);
516 if (computeU)
517 m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, tau, workspace);
518 }
519 }
520
521 Matrix<Scalar, 2, 1> v = m_matT.template block<2,1>(iu-1, iu-2);
522 Scalar tau, beta;
523 Matrix<Scalar, 1, 1> ess;
524 v.makeHouseholder(ess, tau, beta);
525
526 if (beta != Scalar(0)) // if v is not zero
527 {
528 m_matT.coeffRef(iu-1, iu-2) = beta;
529 m_matT.block(iu-1, iu-1, 2, size-iu+1).applyHouseholderOnTheLeft(ess, tau, workspace);
530 m_matT.block(0, iu-1, iu+1, 2).applyHouseholderOnTheRight(ess, tau, workspace);
531 if (computeU)
532 m_matU.block(0, iu-1, size, 2).applyHouseholderOnTheRight(ess, tau, workspace);
533 }
534
535 // clean up pollution due to round-off errors
536 for (Index i = im+2; i <= iu; ++i)
537 {
538 m_matT.coeffRef(i,i-2) = Scalar(0);
539 if (i > im+2)
540 m_matT.coeffRef(i,i-3) = Scalar(0);
541 }
542 }
543
544 } // end namespace Eigen
545
546 #endif // EIGEN_REAL_SCHUR_H
547