• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved.
3  *
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <debug.h>
14 #include <denver.h>
15 #include <mce.h>
16 #include <mce_private.h>
17 #include <mmio.h>
18 #include <string.h>
19 #include <sys/errno.h>
20 #include <t18x_ari.h>
21 #include <tegra_def.h>
22 #include <tegra_platform.h>
23 
24 /* NVG functions handlers */
25 static arch_mce_ops_t nvg_mce_ops = {
26 	.enter_cstate = nvg_enter_cstate,
27 	.update_cstate_info = nvg_update_cstate_info,
28 	.update_crossover_time = nvg_update_crossover_time,
29 	.read_cstate_stats = nvg_read_cstate_stats,
30 	.write_cstate_stats = nvg_write_cstate_stats,
31 	.call_enum_misc = ari_enumeration_misc,
32 	.is_ccx_allowed = nvg_is_ccx_allowed,
33 	.is_sc7_allowed = nvg_is_sc7_allowed,
34 	.online_core = nvg_online_core,
35 	.cc3_ctrl = nvg_cc3_ctrl,
36 	.update_reset_vector = ari_reset_vector_update,
37 	.roc_flush_cache = ari_roc_flush_cache,
38 	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
39 	.roc_clean_cache = ari_roc_clean_cache,
40 	.read_write_mca = ari_read_write_mca,
41 	.update_ccplex_gsc = ari_update_ccplex_gsc,
42 	.enter_ccplex_state = ari_enter_ccplex_state,
43 	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
44 	.misc_ccplex = ari_misc_ccplex
45 };
46 
47 /* ARI functions handlers */
48 static arch_mce_ops_t ari_mce_ops = {
49 	.enter_cstate = ari_enter_cstate,
50 	.update_cstate_info = ari_update_cstate_info,
51 	.update_crossover_time = ari_update_crossover_time,
52 	.read_cstate_stats = ari_read_cstate_stats,
53 	.write_cstate_stats = ari_write_cstate_stats,
54 	.call_enum_misc = ari_enumeration_misc,
55 	.is_ccx_allowed = ari_is_ccx_allowed,
56 	.is_sc7_allowed = ari_is_sc7_allowed,
57 	.online_core = ari_online_core,
58 	.cc3_ctrl = ari_cc3_ctrl,
59 	.update_reset_vector = ari_reset_vector_update,
60 	.roc_flush_cache = ari_roc_flush_cache,
61 	.roc_flush_cache_trbits = ari_roc_flush_cache_trbits,
62 	.roc_clean_cache = ari_roc_clean_cache,
63 	.read_write_mca = ari_read_write_mca,
64 	.update_ccplex_gsc = ari_update_ccplex_gsc,
65 	.enter_ccplex_state = ari_enter_ccplex_state,
66 	.read_write_uncore_perfmon = ari_read_write_uncore_perfmon,
67 	.misc_ccplex = ari_misc_ccplex
68 };
69 
70 typedef struct {
71 	uint32_t ari_base;
72 	arch_mce_ops_t *ops;
73 } mce_config_t;
74 
75 /* Table to hold the per-CPU ARI base address and function handlers */
76 static mce_config_t mce_cfg_table[MCE_ARI_APERTURES_MAX] = {
77 	{
78 		/* A57 Core 0 */
79 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_0_OFFSET,
80 		.ops = &ari_mce_ops,
81 	},
82 	{
83 		/* A57 Core 1 */
84 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_1_OFFSET,
85 		.ops = &ari_mce_ops,
86 	},
87 	{
88 		/* A57 Core 2 */
89 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_2_OFFSET,
90 		.ops = &ari_mce_ops,
91 	},
92 	{
93 		/* A57 Core 3 */
94 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_3_OFFSET,
95 		.ops = &ari_mce_ops,
96 	},
97 	{
98 		/* D15 Core 0 */
99 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_4_OFFSET,
100 		.ops = &nvg_mce_ops,
101 	},
102 	{
103 		/* D15 Core 1 */
104 		.ari_base = TEGRA_MMCRAB_BASE + MCE_ARI_APERTURE_5_OFFSET,
105 		.ops = &nvg_mce_ops,
106 	}
107 };
108 
mce_get_curr_cpu_ari_base(void)109 static uint32_t mce_get_curr_cpu_ari_base(void)
110 {
111 	uint64_t mpidr = read_mpidr();
112 	uint64_t cpuid = mpidr & (uint64_t)MPIDR_CPU_MASK;
113 	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) & (uint64_t)MIDR_IMPL_MASK;
114 
115 	/*
116 	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
117 	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
118 	 * numbers start from 0. In order to get the proper arch_mce_ops_t
119 	 * struct, we have to convert the Denver CPU ids to the corresponding
120 	 * indices in the mce_ops_table array.
121 	 */
122 	if (impl == DENVER_IMPL) {
123 		cpuid |= 0x4U;
124 	}
125 
126 	return mce_cfg_table[cpuid].ari_base;
127 }
128 
mce_get_curr_cpu_ops(void)129 static arch_mce_ops_t *mce_get_curr_cpu_ops(void)
130 {
131 	uint64_t mpidr = read_mpidr();
132 	uint64_t cpuid = mpidr & (uint64_t)MPIDR_CPU_MASK;
133 	uint64_t impl = (read_midr() >> (uint64_t)MIDR_IMPL_SHIFT) &
134 			(uint64_t)MIDR_IMPL_MASK;
135 
136 	/*
137 	 * T186 has 2 CPU clusters, one with Denver CPUs and the other with
138 	 * ARM CortexA-57 CPUs. Each cluster consists of 4 CPUs and the CPU
139 	 * numbers start from 0. In order to get the proper arch_mce_ops_t
140 	 * struct, we have to convert the Denver CPU ids to the corresponding
141 	 * indices in the mce_ops_table array.
142 	 */
143 	if (impl == DENVER_IMPL) {
144 		cpuid |= 0x4U;
145 	}
146 
147 	return mce_cfg_table[cpuid].ops;
148 }
149 
150 /*******************************************************************************
151  * Common handler for all MCE commands
152  ******************************************************************************/
mce_command_handler(uint64_t cmd,uint64_t arg0,uint64_t arg1,uint64_t arg2)153 int32_t mce_command_handler(uint64_t cmd, uint64_t arg0, uint64_t arg1,
154 			uint64_t arg2)
155 {
156 	const arch_mce_ops_t *ops;
157 	gp_regs_t *gp_regs = get_gpregs_ctx(cm_get_context(NON_SECURE));
158 	uint32_t cpu_ari_base;
159 	uint64_t ret64 = 0, arg3, arg4, arg5;
160 	int32_t ret = 0;
161 
162 	assert(gp_regs != NULL);
163 
164 	/* get a pointer to the CPU's arch_mce_ops_t struct */
165 	ops = mce_get_curr_cpu_ops();
166 
167 	/* get the CPU's ARI base address */
168 	cpu_ari_base = mce_get_curr_cpu_ari_base();
169 
170 	switch (cmd) {
171 	case MCE_CMD_ENTER_CSTATE:
172 		ret = ops->enter_cstate(cpu_ari_base, arg0, arg1);
173 		if (ret < 0) {
174 			ERROR("%s: enter_cstate failed(%d)\n", __func__, ret);
175 		}
176 
177 		break;
178 
179 	case MCE_CMD_UPDATE_CSTATE_INFO:
180 		/*
181 		 * get the parameters required for the update cstate info
182 		 * command
183 		 */
184 		arg3 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X4));
185 		arg4 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X5));
186 		arg5 = read_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X6));
187 
188 		ret = ops->update_cstate_info(cpu_ari_base, (uint32_t)arg0,
189 				(uint32_t)arg1, (uint32_t)arg2, (uint8_t)arg3,
190 				(uint32_t)arg4, (uint8_t)arg5);
191 		if (ret < 0) {
192 			ERROR("%s: update_cstate_info failed(%d)\n",
193 				__func__, ret);
194 		}
195 
196 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X4), (0));
197 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X5), (0));
198 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X6), (0));
199 
200 		break;
201 
202 	case MCE_CMD_UPDATE_CROSSOVER_TIME:
203 		ret = ops->update_crossover_time(cpu_ari_base, arg0, arg1);
204 		if (ret < 0) {
205 			ERROR("%s: update_crossover_time failed(%d)\n",
206 				__func__, ret);
207 		}
208 
209 		break;
210 
211 	case MCE_CMD_READ_CSTATE_STATS:
212 		ret64 = ops->read_cstate_stats(cpu_ari_base, arg0);
213 
214 		/* update context to return cstate stats value */
215 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
216 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2), (ret64));
217 
218 		break;
219 
220 	case MCE_CMD_WRITE_CSTATE_STATS:
221 		ret = ops->write_cstate_stats(cpu_ari_base, arg0, arg1);
222 		if (ret < 0) {
223 			ERROR("%s: write_cstate_stats failed(%d)\n",
224 				__func__, ret);
225 		}
226 
227 		break;
228 
229 	case MCE_CMD_IS_CCX_ALLOWED:
230 		ret = ops->is_ccx_allowed(cpu_ari_base, arg0, arg1);
231 		if (ret < 0) {
232 			ERROR("%s: is_ccx_allowed failed(%d)\n", __func__, ret);
233 			break;
234 		}
235 
236 		/* update context to return CCx status value */
237 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
238 			      (uint64_t)(ret));
239 
240 		break;
241 
242 	case MCE_CMD_IS_SC7_ALLOWED:
243 		ret = ops->is_sc7_allowed(cpu_ari_base, arg0, arg1);
244 		if (ret < 0) {
245 			ERROR("%s: is_sc7_allowed failed(%d)\n", __func__, ret);
246 			break;
247 		}
248 
249 		/* update context to return SC7 status value */
250 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
251 			      (uint64_t)(ret));
252 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3),
253 			      (uint64_t)(ret));
254 
255 		break;
256 
257 	case MCE_CMD_ONLINE_CORE:
258 		ret = ops->online_core(cpu_ari_base, arg0);
259 		if (ret < 0) {
260 			ERROR("%s: online_core failed(%d)\n", __func__, ret);
261 		}
262 
263 		break;
264 
265 	case MCE_CMD_CC3_CTRL:
266 		ret = ops->cc3_ctrl(cpu_ari_base, arg0, arg1, arg2);
267 		if (ret < 0) {
268 			ERROR("%s: cc3_ctrl failed(%d)\n", __func__, ret);
269 		}
270 
271 		break;
272 
273 	case MCE_CMD_ECHO_DATA:
274 		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_ECHO,
275 				arg0);
276 
277 		/* update context to return if echo'd data matched source */
278 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
279 			      ((ret64 == arg0) ? 1ULL : 0ULL));
280 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2),
281 			      ((ret64 == arg0) ? 1ULL : 0ULL));
282 
283 		break;
284 
285 	case MCE_CMD_READ_VERSIONS:
286 		ret64 = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION,
287 			arg0);
288 
289 		/*
290 		 * version = minor(63:32) | major(31:0). Update context
291 		 * to return major and minor version number.
292 		 */
293 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1),
294 			      (ret64));
295 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2),
296 			      (ret64 >> 32ULL));
297 
298 		break;
299 
300 	case MCE_CMD_ENUM_FEATURES:
301 		ret64 = ops->call_enum_misc(cpu_ari_base,
302 				TEGRA_ARI_MISC_FEATURE_LEAF_0, arg0);
303 
304 		/* update context to return features value */
305 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
306 
307 		break;
308 
309 	case MCE_CMD_ROC_FLUSH_CACHE_TRBITS:
310 		ret = ops->roc_flush_cache_trbits(cpu_ari_base);
311 		if (ret < 0) {
312 			ERROR("%s: flush cache_trbits failed(%d)\n", __func__,
313 				ret);
314 		}
315 
316 		break;
317 
318 	case MCE_CMD_ROC_FLUSH_CACHE:
319 		ret = ops->roc_flush_cache(cpu_ari_base);
320 		if (ret < 0) {
321 			ERROR("%s: flush cache failed(%d)\n", __func__, ret);
322 		}
323 
324 		break;
325 
326 	case MCE_CMD_ROC_CLEAN_CACHE:
327 		ret = ops->roc_clean_cache(cpu_ari_base);
328 		if (ret < 0) {
329 			ERROR("%s: clean cache failed(%d)\n", __func__, ret);
330 		}
331 
332 		break;
333 
334 	case MCE_CMD_ENUM_READ_MCA:
335 		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
336 
337 		/* update context to return MCA data/error */
338 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
339 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X2), (arg1));
340 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3), (ret64));
341 
342 		break;
343 
344 	case MCE_CMD_ENUM_WRITE_MCA:
345 		ret64 = ops->read_write_mca(cpu_ari_base, arg0, &arg1);
346 
347 		/* update context to return MCA error */
348 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (ret64));
349 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X3), (ret64));
350 
351 		break;
352 
353 #if ENABLE_CHIP_VERIFICATION_HARNESS
354 	case MCE_CMD_ENABLE_LATIC:
355 		/*
356 		 * This call is not for production use. The constant value,
357 		 * 0xFFFF0000, is specific to allowing for enabling LATIC on
358 		 * pre-production parts for the chip verification harness.
359 		 *
360 		 * Enabling LATIC allows S/W to read the MINI ISPs in the
361 		 * CCPLEX. The ISMs are used for various measurements relevant
362 		 * to particular locations in the Silicon. They are small
363 		 * counters which can be polled to determine how fast a
364 		 * particular location in the Silicon is.
365 		 */
366 		ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(),
367 			0xFFFF0000);
368 
369 		break;
370 #endif
371 
372 	case MCE_CMD_UNCORE_PERFMON_REQ:
373 		ret = ops->read_write_uncore_perfmon(cpu_ari_base, arg0, &arg1);
374 
375 		/* update context to return data */
376 		write_ctx_reg((gp_regs), (uint32_t)(CTX_GPREG_X1), (arg1));
377 		break;
378 
379 	case MCE_CMD_MISC_CCPLEX:
380 		ops->misc_ccplex(cpu_ari_base, arg0, arg1);
381 
382 		break;
383 
384 	default:
385 		ERROR("unknown MCE command (%lu)\n", cmd);
386 		ret = EINVAL;
387 		break;
388 	}
389 
390 	return ret;
391 }
392 
393 /*******************************************************************************
394  * Handler to update the reset vector for CPUs
395  ******************************************************************************/
mce_update_reset_vector(void)396 int32_t mce_update_reset_vector(void)
397 {
398 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
399 
400 	ops->update_reset_vector(mce_get_curr_cpu_ari_base());
401 
402 	return 0;
403 }
404 
mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)405 static int32_t mce_update_ccplex_gsc(tegra_ari_gsc_index_t gsc_idx)
406 {
407 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
408 
409 	ops->update_ccplex_gsc(mce_get_curr_cpu_ari_base(), gsc_idx);
410 
411 	return 0;
412 }
413 
414 /*******************************************************************************
415  * Handler to update carveout values for Video Memory Carveout region
416  ******************************************************************************/
mce_update_gsc_videomem(void)417 int32_t mce_update_gsc_videomem(void)
418 {
419 	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_VPR_IDX);
420 }
421 
422 /*******************************************************************************
423  * Handler to update carveout values for TZDRAM aperture
424  ******************************************************************************/
mce_update_gsc_tzdram(void)425 int32_t mce_update_gsc_tzdram(void)
426 {
427 	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZ_DRAM_IDX);
428 }
429 
430 /*******************************************************************************
431  * Handler to update carveout values for TZ SysRAM aperture
432  ******************************************************************************/
mce_update_gsc_tzram(void)433 int32_t mce_update_gsc_tzram(void)
434 {
435 	return mce_update_ccplex_gsc(TEGRA_ARI_GSC_TZRAM);
436 }
437 
438 /*******************************************************************************
439  * Handler to shutdown/reset the entire system
440  ******************************************************************************/
mce_enter_ccplex_state(uint32_t state_idx)441 __dead2 void mce_enter_ccplex_state(uint32_t state_idx)
442 {
443 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
444 
445 	/* sanity check state value */
446 	if ((state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_POWER_OFF) &&
447 	    (state_idx != TEGRA_ARI_MISC_CCPLEX_SHUTDOWN_REBOOT)) {
448 		panic();
449 	}
450 
451 	ops->enter_ccplex_state(mce_get_curr_cpu_ari_base(), state_idx);
452 
453 	/* wait till the CCPLEX powers down */
454 	for (;;) {
455 		;
456 	}
457 
458 }
459 
460 /*******************************************************************************
461  * Handler to issue the UPDATE_CSTATE_INFO request
462  ******************************************************************************/
mce_update_cstate_info(const mce_cstate_info_t * cstate)463 void mce_update_cstate_info(const mce_cstate_info_t *cstate)
464 {
465 	const arch_mce_ops_t *ops = mce_get_curr_cpu_ops();
466 
467 	/* issue the UPDATE_CSTATE_INFO request */
468 	ops->update_cstate_info(mce_get_curr_cpu_ari_base(), cstate->cluster,
469 		cstate->ccplex, cstate->system, cstate->system_state_force,
470 		cstate->wake_mask, cstate->update_wake_mask);
471 }
472 
473 /*******************************************************************************
474  * Handler to read the MCE firmware version and check if it is compatible
475  * with interface header the BL3-1 was compiled against
476  ******************************************************************************/
mce_verify_firmware_version(void)477 void mce_verify_firmware_version(void)
478 {
479 	const arch_mce_ops_t *ops;
480 	uint32_t cpu_ari_base;
481 	uint64_t version;
482 	uint32_t major, minor;
483 
484 	/*
485 	 * MCE firmware is not supported on simulation platforms.
486 	 */
487 	if (tegra_platform_is_emulation()) {
488 
489 		INFO("MCE firmware is not supported\n");
490 
491 	} else {
492 		/* get a pointer to the CPU's arch_mce_ops_t struct */
493 		ops = mce_get_curr_cpu_ops();
494 
495 		/* get the CPU's ARI base address */
496 		cpu_ari_base = mce_get_curr_cpu_ari_base();
497 
498 		/*
499 		 * Read the MCE firmware version and extract the major and minor
500 		 * version fields
501 		 */
502 		version = ops->call_enum_misc(cpu_ari_base, TEGRA_ARI_MISC_VERSION, 0);
503 		major = (uint32_t)version;
504 		minor = (uint32_t)(version >> 32);
505 
506 		INFO("MCE Version - HW=%d:%d, SW=%d:%d\n", major, minor,
507 			TEGRA_ARI_VERSION_MAJOR, TEGRA_ARI_VERSION_MINOR);
508 
509 		/*
510 		 * Verify that the MCE firmware version and the interface header
511 		 * match
512 		 */
513 		if (major != TEGRA_ARI_VERSION_MAJOR) {
514 			ERROR("ARI major version mismatch\n");
515 			panic();
516 		}
517 
518 		if (minor < TEGRA_ARI_VERSION_MINOR) {
519 			ERROR("ARI minor version mismatch\n");
520 			panic();
521 		}
522 	}
523 }
524