1 /*
2 * Copyright (c) 2013-2017, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <arch.h>
8 #include <arch_helpers.h>
9 #include <assert.h>
10 #include <bl_common.h>
11 #include <context.h>
12 #include <context_mgmt.h>
13 #include <interrupt_mgmt.h>
14 #include <platform.h>
15 #include <platform_def.h>
16 #include <pubsub_events.h>
17 #include <smcc_helpers.h>
18 #include <string.h>
19 #include <utils.h>
20
21
22 /*******************************************************************************
23 * Context management library initialisation routine. This library is used by
24 * runtime services to share pointers to 'cpu_context' structures for the secure
25 * and non-secure states. Management of the structures and their associated
26 * memory is not done by the context management library e.g. the PSCI service
27 * manages the cpu context used for entry from and exit to the non-secure state.
28 * The Secure payload dispatcher service manages the context(s) corresponding to
29 * the secure state. It also uses this library to get access to the non-secure
30 * state cpu context pointers.
31 * Lastly, this library provides the api to make SP_EL3 point to the cpu context
32 * which will used for programming an entry into a lower EL. The same context
33 * will used to save state upon exception entry from that EL.
34 ******************************************************************************/
cm_init(void)35 void cm_init(void)
36 {
37 /*
38 * The context management library has only global data to intialize, but
39 * that will be done when the BSS is zeroed out
40 */
41 }
42
43 /*******************************************************************************
44 * The following function initializes the cpu_context 'ctx' for
45 * first use, and sets the initial entrypoint state as specified by the
46 * entry_point_info structure.
47 *
48 * The security state to initialize is determined by the SECURE attribute
49 * of the entry_point_info. The function returns a pointer to the initialized
50 * context and sets this as the next context to return to.
51 *
52 * The EE and ST attributes are used to configure the endianess and secure
53 * timer availability for the new execution context.
54 *
55 * To prepare the register state for entry call cm_prepare_el3_exit() and
56 * el3_exit(). For Secure-EL1 cm_prepare_el3_exit() is equivalent to
57 * cm_e1_sysreg_context_restore().
58 ******************************************************************************/
cm_init_context_common(cpu_context_t * ctx,const entry_point_info_t * ep)59 static void cm_init_context_common(cpu_context_t *ctx, const entry_point_info_t *ep)
60 {
61 unsigned int security_state;
62 uint32_t scr_el3, pmcr_el0;
63 el3_state_t *state;
64 gp_regs_t *gp_regs;
65 unsigned long sctlr_elx;
66
67 assert(ctx);
68
69 security_state = GET_SECURITY_STATE(ep->h.attr);
70
71 /* Clear any residual register values from the context */
72 zeromem(ctx, sizeof(*ctx));
73
74 /*
75 * SCR_EL3 was initialised during reset sequence in macro
76 * el3_arch_init_common. This code modifies the SCR_EL3 fields that
77 * affect the next EL.
78 *
79 * The following fields are initially set to zero and then updated to
80 * the required value depending on the state of the SPSR_EL3 and the
81 * Security state and entrypoint attributes of the next EL.
82 */
83 scr_el3 = read_scr();
84 scr_el3 &= ~(SCR_NS_BIT | SCR_RW_BIT | SCR_FIQ_BIT | SCR_IRQ_BIT |
85 SCR_ST_BIT | SCR_HCE_BIT);
86 /*
87 * SCR_NS: Set the security state of the next EL.
88 */
89 if (security_state != SECURE)
90 scr_el3 |= SCR_NS_BIT;
91 /*
92 * SCR_EL3.RW: Set the execution state, AArch32 or AArch64, for next
93 * Exception level as specified by SPSR.
94 */
95 if (GET_RW(ep->spsr) == MODE_RW_64)
96 scr_el3 |= SCR_RW_BIT;
97 /*
98 * SCR_EL3.ST: Traps Secure EL1 accesses to the Counter-timer Physical
99 * Secure timer registers to EL3, from AArch64 state only, if specified
100 * by the entrypoint attributes.
101 */
102 if (EP_GET_ST(ep->h.attr))
103 scr_el3 |= SCR_ST_BIT;
104
105 #ifndef HANDLE_EA_EL3_FIRST
106 /*
107 * SCR_EL3.EA: Do not route External Abort and SError Interrupt External
108 * to EL3 when executing at a lower EL. When executing at EL3, External
109 * Aborts are taken to EL3.
110 */
111 scr_el3 &= ~SCR_EA_BIT;
112 #endif
113
114 #ifdef IMAGE_BL31
115 /*
116 * SCR_EL3.IRQ, SCR_EL3.FIQ: Enable the physical FIQ and IRQ rounting as
117 * indicated by the interrupt routing model for BL31.
118 */
119 scr_el3 |= get_scr_el3_from_routing_model(security_state);
120 #endif
121
122 /*
123 * SCR_EL3.HCE: Enable HVC instructions if next execution state is
124 * AArch64 and next EL is EL2, or if next execution state is AArch32 and
125 * next mode is Hyp.
126 */
127 if ((GET_RW(ep->spsr) == MODE_RW_64
128 && GET_EL(ep->spsr) == MODE_EL2)
129 || (GET_RW(ep->spsr) != MODE_RW_64
130 && GET_M32(ep->spsr) == MODE32_hyp)) {
131 scr_el3 |= SCR_HCE_BIT;
132 }
133
134 /*
135 * Initialise SCTLR_EL1 to the reset value corresponding to the target
136 * execution state setting all fields rather than relying of the hw.
137 * Some fields have architecturally UNKNOWN reset values and these are
138 * set to zero.
139 *
140 * SCTLR.EE: Endianness is taken from the entrypoint attributes.
141 *
142 * SCTLR.M, SCTLR.C and SCTLR.I: These fields must be zero (as
143 * required by PSCI specification)
144 */
145 sctlr_elx = EP_GET_EE(ep->h.attr) ? SCTLR_EE_BIT : 0;
146 if (GET_RW(ep->spsr) == MODE_RW_64)
147 sctlr_elx |= SCTLR_EL1_RES1;
148 else {
149 /*
150 * If the target execution state is AArch32 then the following
151 * fields need to be set.
152 *
153 * SCTRL_EL1.nTWE: Set to one so that EL0 execution of WFE
154 * instructions are not trapped to EL1.
155 *
156 * SCTLR_EL1.nTWI: Set to one so that EL0 execution of WFI
157 * instructions are not trapped to EL1.
158 *
159 * SCTLR_EL1.CP15BEN: Set to one to enable EL0 execution of the
160 * CP15DMB, CP15DSB, and CP15ISB instructions.
161 */
162 sctlr_elx |= SCTLR_AARCH32_EL1_RES1 | SCTLR_CP15BEN_BIT
163 | SCTLR_NTWI_BIT | SCTLR_NTWE_BIT;
164 }
165
166 /*
167 * Store the initialised SCTLR_EL1 value in the cpu_context - SCTLR_EL2
168 * and other EL2 registers are set up by cm_preapre_ns_entry() as they
169 * are not part of the stored cpu_context.
170 */
171 write_ctx_reg(get_sysregs_ctx(ctx), CTX_SCTLR_EL1, sctlr_elx);
172
173 if (security_state == SECURE) {
174 /*
175 * Initialise PMCR_EL0 for secure context only, setting all
176 * fields rather than relying on hw. Some fields are
177 * architecturally UNKNOWN on reset.
178 *
179 * PMCR_EL0.LC: Set to one so that cycle counter overflow, that
180 * is recorded in PMOVSCLR_EL0[31], occurs on the increment
181 * that changes PMCCNTR_EL0[63] from 1 to 0.
182 *
183 * PMCR_EL0.DP: Set to one so that the cycle counter,
184 * PMCCNTR_EL0 does not count when event counting is prohibited.
185 *
186 * PMCR_EL0.X: Set to zero to disable export of events.
187 *
188 * PMCR_EL0.D: Set to zero so that, when enabled, PMCCNTR_EL0
189 * counts on every clock cycle.
190 */
191 pmcr_el0 = ((PMCR_EL0_RESET_VAL | PMCR_EL0_LC_BIT
192 | PMCR_EL0_DP_BIT)
193 & ~(PMCR_EL0_X_BIT | PMCR_EL0_D_BIT));
194 write_ctx_reg(get_sysregs_ctx(ctx), CTX_PMCR_EL0, pmcr_el0);
195 }
196
197 /* Populate EL3 state so that we've the right context before doing ERET */
198 state = get_el3state_ctx(ctx);
199 write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
200 write_ctx_reg(state, CTX_ELR_EL3, ep->pc);
201 write_ctx_reg(state, CTX_SPSR_EL3, ep->spsr);
202
203 /*
204 * Store the X0-X7 value from the entrypoint into the context
205 * Use memcpy as we are in control of the layout of the structures
206 */
207 gp_regs = get_gpregs_ctx(ctx);
208 memcpy(gp_regs, (void *)&ep->args, sizeof(aapcs64_params_t));
209 }
210
211 /*******************************************************************************
212 * The following function initializes the cpu_context for a CPU specified by
213 * its `cpu_idx` for first use, and sets the initial entrypoint state as
214 * specified by the entry_point_info structure.
215 ******************************************************************************/
cm_init_context_by_index(unsigned int cpu_idx,const entry_point_info_t * ep)216 void cm_init_context_by_index(unsigned int cpu_idx,
217 const entry_point_info_t *ep)
218 {
219 cpu_context_t *ctx;
220 ctx = cm_get_context_by_index(cpu_idx, GET_SECURITY_STATE(ep->h.attr));
221 cm_init_context_common(ctx, ep);
222 }
223
224 /*******************************************************************************
225 * The following function initializes the cpu_context for the current CPU
226 * for first use, and sets the initial entrypoint state as specified by the
227 * entry_point_info structure.
228 ******************************************************************************/
cm_init_my_context(const entry_point_info_t * ep)229 void cm_init_my_context(const entry_point_info_t *ep)
230 {
231 cpu_context_t *ctx;
232 ctx = cm_get_context(GET_SECURITY_STATE(ep->h.attr));
233 cm_init_context_common(ctx, ep);
234 }
235
236 /*******************************************************************************
237 * Prepare the CPU system registers for first entry into secure or normal world
238 *
239 * If execution is requested to EL2 or hyp mode, SCTLR_EL2 is initialized
240 * If execution is requested to non-secure EL1 or svc mode, and the CPU supports
241 * EL2 then EL2 is disabled by configuring all necessary EL2 registers.
242 * For all entries, the EL1 registers are initialized from the cpu_context
243 ******************************************************************************/
cm_prepare_el3_exit(uint32_t security_state)244 void cm_prepare_el3_exit(uint32_t security_state)
245 {
246 uint32_t sctlr_elx, scr_el3, mdcr_el2;
247 cpu_context_t *ctx = cm_get_context(security_state);
248
249 assert(ctx);
250
251 if (security_state == NON_SECURE) {
252 scr_el3 = read_ctx_reg(get_el3state_ctx(ctx), CTX_SCR_EL3);
253 if (scr_el3 & SCR_HCE_BIT) {
254 /* Use SCTLR_EL1.EE value to initialise sctlr_el2 */
255 sctlr_elx = read_ctx_reg(get_sysregs_ctx(ctx),
256 CTX_SCTLR_EL1);
257 sctlr_elx &= SCTLR_EE_BIT;
258 sctlr_elx |= SCTLR_EL2_RES1;
259 write_sctlr_el2(sctlr_elx);
260 } else if (EL_IMPLEMENTED(2)) {
261 /*
262 * EL2 present but unused, need to disable safely.
263 * SCTLR_EL2 can be ignored in this case.
264 *
265 * Initialise all fields in HCR_EL2, except HCR_EL2.RW,
266 * to zero so that Non-secure operations do not trap to
267 * EL2.
268 *
269 * HCR_EL2.RW: Set this field to match SCR_EL3.RW
270 */
271 write_hcr_el2((scr_el3 & SCR_RW_BIT) ? HCR_RW_BIT : 0);
272
273 /*
274 * Initialise CPTR_EL2 setting all fields rather than
275 * relying on the hw. All fields have architecturally
276 * UNKNOWN reset values.
277 *
278 * CPTR_EL2.TCPAC: Set to zero so that Non-secure EL1
279 * accesses to the CPACR_EL1 or CPACR from both
280 * Execution states do not trap to EL2.
281 *
282 * CPTR_EL2.TTA: Set to zero so that Non-secure System
283 * register accesses to the trace registers from both
284 * Execution states do not trap to EL2.
285 *
286 * CPTR_EL2.TFP: Set to zero so that Non-secure accesses
287 * to SIMD and floating-point functionality from both
288 * Execution states do not trap to EL2.
289 */
290 write_cptr_el2(CPTR_EL2_RESET_VAL &
291 ~(CPTR_EL2_TCPAC_BIT | CPTR_EL2_TTA_BIT
292 | CPTR_EL2_TFP_BIT));
293
294 /*
295 * Initiliase CNTHCTL_EL2. All fields are
296 * architecturally UNKNOWN on reset and are set to zero
297 * except for field(s) listed below.
298 *
299 * CNTHCTL_EL2.EL1PCEN: Set to one to disable traps to
300 * Hyp mode of Non-secure EL0 and EL1 accesses to the
301 * physical timer registers.
302 *
303 * CNTHCTL_EL2.EL1PCTEN: Set to one to disable traps to
304 * Hyp mode of Non-secure EL0 and EL1 accesses to the
305 * physical counter registers.
306 */
307 write_cnthctl_el2(CNTHCTL_RESET_VAL |
308 EL1PCEN_BIT | EL1PCTEN_BIT);
309
310 /*
311 * Initialise CNTVOFF_EL2 to zero as it resets to an
312 * architecturally UNKNOWN value.
313 */
314 write_cntvoff_el2(0);
315
316 /*
317 * Set VPIDR_EL2 and VMPIDR_EL2 to match MIDR_EL1 and
318 * MPIDR_EL1 respectively.
319 */
320 write_vpidr_el2(read_midr_el1());
321 write_vmpidr_el2(read_mpidr_el1());
322
323 /*
324 * Initialise VTTBR_EL2. All fields are architecturally
325 * UNKNOWN on reset.
326 *
327 * VTTBR_EL2.VMID: Set to zero. Even though EL1&0 stage
328 * 2 address translation is disabled, cache maintenance
329 * operations depend on the VMID.
330 *
331 * VTTBR_EL2.BADDR: Set to zero as EL1&0 stage 2 address
332 * translation is disabled.
333 */
334 write_vttbr_el2(VTTBR_RESET_VAL &
335 ~((VTTBR_VMID_MASK << VTTBR_VMID_SHIFT)
336 | (VTTBR_BADDR_MASK << VTTBR_BADDR_SHIFT)));
337
338 /*
339 * Initialise MDCR_EL2, setting all fields rather than
340 * relying on hw. Some fields are architecturally
341 * UNKNOWN on reset.
342 *
343 * MDCR_EL2.TPMS (ARM v8.2): Do not trap statistical
344 * profiling controls to EL2.
345 *
346 * MDCR_EL2.E2PB (ARM v8.2): SPE enabled in non-secure
347 * state. Accesses to profiling buffer controls at
348 * non-secure EL1 are not trapped to EL2.
349 *
350 * MDCR_EL2.TDRA: Set to zero so that Non-secure EL0 and
351 * EL1 System register accesses to the Debug ROM
352 * registers are not trapped to EL2.
353 *
354 * MDCR_EL2.TDOSA: Set to zero so that Non-secure EL1
355 * System register accesses to the powerdown debug
356 * registers are not trapped to EL2.
357 *
358 * MDCR_EL2.TDA: Set to zero so that System register
359 * accesses to the debug registers do not trap to EL2.
360 *
361 * MDCR_EL2.TDE: Set to zero so that debug exceptions
362 * are not routed to EL2.
363 *
364 * MDCR_EL2.HPME: Set to zero to disable EL2 Performance
365 * Monitors.
366 *
367 * MDCR_EL2.TPM: Set to zero so that Non-secure EL0 and
368 * EL1 accesses to all Performance Monitors registers
369 * are not trapped to EL2.
370 *
371 * MDCR_EL2.TPMCR: Set to zero so that Non-secure EL0
372 * and EL1 accesses to the PMCR_EL0 or PMCR are not
373 * trapped to EL2.
374 *
375 * MDCR_EL2.HPMN: Set to value of PMCR_EL0.N which is the
376 * architecturally-defined reset value.
377 */
378 mdcr_el2 = ((MDCR_EL2_RESET_VAL |
379 ((read_pmcr_el0() & PMCR_EL0_N_BITS)
380 >> PMCR_EL0_N_SHIFT)) &
381 ~(MDCR_EL2_TDRA_BIT | MDCR_EL2_TDOSA_BIT
382 | MDCR_EL2_TDA_BIT | MDCR_EL2_TDE_BIT
383 | MDCR_EL2_HPME_BIT | MDCR_EL2_TPM_BIT
384 | MDCR_EL2_TPMCR_BIT));
385
386 #if ENABLE_SPE_FOR_LOWER_ELS
387 uint64_t id_aa64dfr0_el1;
388
389 /* Detect if SPE is implemented */
390 id_aa64dfr0_el1 = read_id_aa64dfr0_el1() >>
391 ID_AA64DFR0_PMS_SHIFT;
392 if ((id_aa64dfr0_el1 & ID_AA64DFR0_PMS_MASK) == 1) {
393 /*
394 * Make sure traps to EL2 are not generated if
395 * EL2 is implemented but not used.
396 */
397 mdcr_el2 &= ~MDCR_EL2_TPMS;
398 mdcr_el2 |= MDCR_EL2_E2PB(MDCR_EL2_E2PB_EL1);
399 }
400 #endif
401
402 write_mdcr_el2(mdcr_el2);
403
404 /*
405 * Initialise HSTR_EL2. All fields are architecturally
406 * UNKNOWN on reset.
407 *
408 * HSTR_EL2.T<n>: Set all these fields to zero so that
409 * Non-secure EL0 or EL1 accesses to System registers
410 * do not trap to EL2.
411 */
412 write_hstr_el2(HSTR_EL2_RESET_VAL & ~(HSTR_EL2_T_MASK));
413 /*
414 * Initialise CNTHP_CTL_EL2. All fields are
415 * architecturally UNKNOWN on reset.
416 *
417 * CNTHP_CTL_EL2:ENABLE: Set to zero to disable the EL2
418 * physical timer and prevent timer interrupts.
419 */
420 write_cnthp_ctl_el2(CNTHP_CTL_RESET_VAL &
421 ~(CNTHP_CTL_ENABLE_BIT));
422 }
423 }
424
425 cm_el1_sysregs_context_restore(security_state);
426 cm_set_next_eret_context(security_state);
427 }
428
429 /*******************************************************************************
430 * The next four functions are used by runtime services to save and restore
431 * EL1 context on the 'cpu_context' structure for the specified security
432 * state.
433 ******************************************************************************/
cm_el1_sysregs_context_save(uint32_t security_state)434 void cm_el1_sysregs_context_save(uint32_t security_state)
435 {
436 cpu_context_t *ctx;
437
438 ctx = cm_get_context(security_state);
439 assert(ctx);
440
441 el1_sysregs_context_save(get_sysregs_ctx(ctx));
442 el1_sysregs_context_save_post_ops();
443
444 #if IMAGE_BL31
445 if (security_state == SECURE)
446 PUBLISH_EVENT(cm_exited_secure_world);
447 else
448 PUBLISH_EVENT(cm_exited_normal_world);
449 #endif
450 }
451
cm_el1_sysregs_context_restore(uint32_t security_state)452 void cm_el1_sysregs_context_restore(uint32_t security_state)
453 {
454 cpu_context_t *ctx;
455
456 ctx = cm_get_context(security_state);
457 assert(ctx);
458
459 el1_sysregs_context_restore(get_sysregs_ctx(ctx));
460
461 #if IMAGE_BL31
462 if (security_state == SECURE)
463 PUBLISH_EVENT(cm_entering_secure_world);
464 else
465 PUBLISH_EVENT(cm_entering_normal_world);
466 #endif
467 }
468
469 /*******************************************************************************
470 * This function populates ELR_EL3 member of 'cpu_context' pertaining to the
471 * given security state with the given entrypoint
472 ******************************************************************************/
cm_set_elr_el3(uint32_t security_state,uintptr_t entrypoint)473 void cm_set_elr_el3(uint32_t security_state, uintptr_t entrypoint)
474 {
475 cpu_context_t *ctx;
476 el3_state_t *state;
477
478 ctx = cm_get_context(security_state);
479 assert(ctx);
480
481 /* Populate EL3 state so that ERET jumps to the correct entry */
482 state = get_el3state_ctx(ctx);
483 write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
484 }
485
486 /*******************************************************************************
487 * This function populates ELR_EL3 and SPSR_EL3 members of 'cpu_context'
488 * pertaining to the given security state
489 ******************************************************************************/
cm_set_elr_spsr_el3(uint32_t security_state,uintptr_t entrypoint,uint32_t spsr)490 void cm_set_elr_spsr_el3(uint32_t security_state,
491 uintptr_t entrypoint, uint32_t spsr)
492 {
493 cpu_context_t *ctx;
494 el3_state_t *state;
495
496 ctx = cm_get_context(security_state);
497 assert(ctx);
498
499 /* Populate EL3 state so that ERET jumps to the correct entry */
500 state = get_el3state_ctx(ctx);
501 write_ctx_reg(state, CTX_ELR_EL3, entrypoint);
502 write_ctx_reg(state, CTX_SPSR_EL3, spsr);
503 }
504
505 /*******************************************************************************
506 * This function updates a single bit in the SCR_EL3 member of the 'cpu_context'
507 * pertaining to the given security state using the value and bit position
508 * specified in the parameters. It preserves all other bits.
509 ******************************************************************************/
cm_write_scr_el3_bit(uint32_t security_state,uint32_t bit_pos,uint32_t value)510 void cm_write_scr_el3_bit(uint32_t security_state,
511 uint32_t bit_pos,
512 uint32_t value)
513 {
514 cpu_context_t *ctx;
515 el3_state_t *state;
516 uint32_t scr_el3;
517
518 ctx = cm_get_context(security_state);
519 assert(ctx);
520
521 /* Ensure that the bit position is a valid one */
522 assert((1 << bit_pos) & SCR_VALID_BIT_MASK);
523
524 /* Ensure that the 'value' is only a bit wide */
525 assert(value <= 1);
526
527 /*
528 * Get the SCR_EL3 value from the cpu context, clear the desired bit
529 * and set it to its new value.
530 */
531 state = get_el3state_ctx(ctx);
532 scr_el3 = read_ctx_reg(state, CTX_SCR_EL3);
533 scr_el3 &= ~(1 << bit_pos);
534 scr_el3 |= value << bit_pos;
535 write_ctx_reg(state, CTX_SCR_EL3, scr_el3);
536 }
537
538 /*******************************************************************************
539 * This function retrieves SCR_EL3 member of 'cpu_context' pertaining to the
540 * given security state.
541 ******************************************************************************/
cm_get_scr_el3(uint32_t security_state)542 uint32_t cm_get_scr_el3(uint32_t security_state)
543 {
544 cpu_context_t *ctx;
545 el3_state_t *state;
546
547 ctx = cm_get_context(security_state);
548 assert(ctx);
549
550 /* Populate EL3 state so that ERET jumps to the correct entry */
551 state = get_el3state_ctx(ctx);
552 return read_ctx_reg(state, CTX_SCR_EL3);
553 }
554
555 /*******************************************************************************
556 * This function is used to program the context that's used for exception
557 * return. This initializes the SP_EL3 to a pointer to a 'cpu_context' set for
558 * the required security state
559 ******************************************************************************/
cm_set_next_eret_context(uint32_t security_state)560 void cm_set_next_eret_context(uint32_t security_state)
561 {
562 cpu_context_t *ctx;
563
564 ctx = cm_get_context(security_state);
565 assert(ctx);
566
567 cm_set_next_context(ctx);
568 }
569