1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 *
9 */
10
11 #ifndef __UBOOT__
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/ptrace.h>
15 #include <linux/seq_file.h>
16 #include <linux/string.h>
17 #include <linux/timer.h>
18 #include <linux/major.h>
19 #include <linux/fs.h>
20 #include <linux/err.h>
21 #include <linux/ioctl.h>
22 #include <linux/init.h>
23 #include <linux/proc_fs.h>
24 #include <linux/idr.h>
25 #include <linux/backing-dev.h>
26 #include <linux/gfp.h>
27 #include <linux/slab.h>
28 #else
29 #include <linux/err.h>
30 #include <ubi_uboot.h>
31 #endif
32
33 #include <linux/log2.h>
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36
37 #include "mtdcore.h"
38
39 #ifndef __UBOOT__
40 /*
41 * backing device capabilities for non-mappable devices (such as NAND flash)
42 * - permits private mappings, copies are taken of the data
43 */
44 static struct backing_dev_info mtd_bdi_unmappable = {
45 .capabilities = BDI_CAP_MAP_COPY,
46 };
47
48 /*
49 * backing device capabilities for R/O mappable devices (such as ROM)
50 * - permits private mappings, copies are taken of the data
51 * - permits non-writable shared mappings
52 */
53 static struct backing_dev_info mtd_bdi_ro_mappable = {
54 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
55 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP),
56 };
57
58 /*
59 * backing device capabilities for writable mappable devices (such as RAM)
60 * - permits private mappings, copies are taken of the data
61 * - permits non-writable shared mappings
62 */
63 static struct backing_dev_info mtd_bdi_rw_mappable = {
64 .capabilities = (BDI_CAP_MAP_COPY | BDI_CAP_MAP_DIRECT |
65 BDI_CAP_EXEC_MAP | BDI_CAP_READ_MAP |
66 BDI_CAP_WRITE_MAP),
67 };
68
69 static int mtd_cls_suspend(struct device *dev, pm_message_t state);
70 static int mtd_cls_resume(struct device *dev);
71
72 static struct class mtd_class = {
73 .name = "mtd",
74 .owner = THIS_MODULE,
75 .suspend = mtd_cls_suspend,
76 .resume = mtd_cls_resume,
77 };
78 #else
79 struct mtd_info *mtd_table[MAX_MTD_DEVICES];
80
81 #define MAX_IDR_ID 64
82
83 struct idr_layer {
84 int used;
85 void *ptr;
86 };
87
88 struct idr {
89 struct idr_layer id[MAX_IDR_ID];
90 };
91
92 #define DEFINE_IDR(name) struct idr name;
93
idr_remove(struct idr * idp,int id)94 void idr_remove(struct idr *idp, int id)
95 {
96 if (idp->id[id].used)
97 idp->id[id].used = 0;
98
99 return;
100 }
idr_find(struct idr * idp,int id)101 void *idr_find(struct idr *idp, int id)
102 {
103 if (idp->id[id].used)
104 return idp->id[id].ptr;
105
106 return NULL;
107 }
108
idr_get_next(struct idr * idp,int * next)109 void *idr_get_next(struct idr *idp, int *next)
110 {
111 void *ret;
112 int id = *next;
113
114 ret = idr_find(idp, id);
115 if (ret) {
116 id ++;
117 if (!idp->id[id].used)
118 id = 0;
119 *next = id;
120 } else {
121 *next = 0;
122 }
123
124 return ret;
125 }
126
idr_alloc(struct idr * idp,void * ptr,int start,int end,gfp_t gfp_mask)127 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask)
128 {
129 struct idr_layer *idl;
130 int i = 0;
131
132 while (i < MAX_IDR_ID) {
133 idl = &idp->id[i];
134 if (idl->used == 0) {
135 idl->used = 1;
136 idl->ptr = ptr;
137 return i;
138 }
139 i++;
140 }
141 return -ENOSPC;
142 }
143 #endif
144
145 static DEFINE_IDR(mtd_idr);
146
147 /* These are exported solely for the purpose of mtd_blkdevs.c. You
148 should not use them for _anything_ else */
149 DEFINE_MUTEX(mtd_table_mutex);
150 EXPORT_SYMBOL_GPL(mtd_table_mutex);
151
__mtd_next_device(int i)152 struct mtd_info *__mtd_next_device(int i)
153 {
154 return idr_get_next(&mtd_idr, &i);
155 }
156 EXPORT_SYMBOL_GPL(__mtd_next_device);
157
158 #ifndef __UBOOT__
159 static LIST_HEAD(mtd_notifiers);
160
161
162 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
163
164 /* REVISIT once MTD uses the driver model better, whoever allocates
165 * the mtd_info will probably want to use the release() hook...
166 */
mtd_release(struct device * dev)167 static void mtd_release(struct device *dev)
168 {
169 struct mtd_info __maybe_unused *mtd = dev_get_drvdata(dev);
170 dev_t index = MTD_DEVT(mtd->index);
171
172 /* remove /dev/mtdXro node if needed */
173 if (index)
174 device_destroy(&mtd_class, index + 1);
175 }
176
mtd_cls_suspend(struct device * dev,pm_message_t state)177 static int mtd_cls_suspend(struct device *dev, pm_message_t state)
178 {
179 struct mtd_info *mtd = dev_get_drvdata(dev);
180
181 return mtd ? mtd_suspend(mtd) : 0;
182 }
183
mtd_cls_resume(struct device * dev)184 static int mtd_cls_resume(struct device *dev)
185 {
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 if (mtd)
189 mtd_resume(mtd);
190 return 0;
191 }
192
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)193 static ssize_t mtd_type_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195 {
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197 char *type;
198
199 switch (mtd->type) {
200 case MTD_ABSENT:
201 type = "absent";
202 break;
203 case MTD_RAM:
204 type = "ram";
205 break;
206 case MTD_ROM:
207 type = "rom";
208 break;
209 case MTD_NORFLASH:
210 type = "nor";
211 break;
212 case MTD_NANDFLASH:
213 type = "nand";
214 break;
215 case MTD_DATAFLASH:
216 type = "dataflash";
217 break;
218 case MTD_UBIVOLUME:
219 type = "ubi";
220 break;
221 case MTD_MLCNANDFLASH:
222 type = "mlc-nand";
223 break;
224 default:
225 type = "unknown";
226 }
227
228 return snprintf(buf, PAGE_SIZE, "%s\n", type);
229 }
230 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
231
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)232 static ssize_t mtd_flags_show(struct device *dev,
233 struct device_attribute *attr, char *buf)
234 {
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
238
239 }
240 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
241
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)242 static ssize_t mtd_size_show(struct device *dev,
243 struct device_attribute *attr, char *buf)
244 {
245 struct mtd_info *mtd = dev_get_drvdata(dev);
246
247 return snprintf(buf, PAGE_SIZE, "%llu\n",
248 (unsigned long long)mtd->size);
249
250 }
251 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
252
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)253 static ssize_t mtd_erasesize_show(struct device *dev,
254 struct device_attribute *attr, char *buf)
255 {
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257
258 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
259
260 }
261 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
262
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)263 static ssize_t mtd_writesize_show(struct device *dev,
264 struct device_attribute *attr, char *buf)
265 {
266 struct mtd_info *mtd = dev_get_drvdata(dev);
267
268 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
269
270 }
271 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
272
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)273 static ssize_t mtd_subpagesize_show(struct device *dev,
274 struct device_attribute *attr, char *buf)
275 {
276 struct mtd_info *mtd = dev_get_drvdata(dev);
277 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
278
279 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
280
281 }
282 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
283
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)284 static ssize_t mtd_oobsize_show(struct device *dev,
285 struct device_attribute *attr, char *buf)
286 {
287 struct mtd_info *mtd = dev_get_drvdata(dev);
288
289 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
290
291 }
292 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
293
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)294 static ssize_t mtd_numeraseregions_show(struct device *dev,
295 struct device_attribute *attr, char *buf)
296 {
297 struct mtd_info *mtd = dev_get_drvdata(dev);
298
299 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
300
301 }
302 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
303 NULL);
304
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)305 static ssize_t mtd_name_show(struct device *dev,
306 struct device_attribute *attr, char *buf)
307 {
308 struct mtd_info *mtd = dev_get_drvdata(dev);
309
310 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
311
312 }
313 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
314
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)315 static ssize_t mtd_ecc_strength_show(struct device *dev,
316 struct device_attribute *attr, char *buf)
317 {
318 struct mtd_info *mtd = dev_get_drvdata(dev);
319
320 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
321 }
322 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
323
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)324 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
325 struct device_attribute *attr,
326 char *buf)
327 {
328 struct mtd_info *mtd = dev_get_drvdata(dev);
329
330 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
331 }
332
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)333 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
334 struct device_attribute *attr,
335 const char *buf, size_t count)
336 {
337 struct mtd_info *mtd = dev_get_drvdata(dev);
338 unsigned int bitflip_threshold;
339 int retval;
340
341 retval = kstrtouint(buf, 0, &bitflip_threshold);
342 if (retval)
343 return retval;
344
345 mtd->bitflip_threshold = bitflip_threshold;
346 return count;
347 }
348 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
349 mtd_bitflip_threshold_show,
350 mtd_bitflip_threshold_store);
351
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)352 static ssize_t mtd_ecc_step_size_show(struct device *dev,
353 struct device_attribute *attr, char *buf)
354 {
355 struct mtd_info *mtd = dev_get_drvdata(dev);
356
357 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
358
359 }
360 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
361
362 static struct attribute *mtd_attrs[] = {
363 &dev_attr_type.attr,
364 &dev_attr_flags.attr,
365 &dev_attr_size.attr,
366 &dev_attr_erasesize.attr,
367 &dev_attr_writesize.attr,
368 &dev_attr_subpagesize.attr,
369 &dev_attr_oobsize.attr,
370 &dev_attr_numeraseregions.attr,
371 &dev_attr_name.attr,
372 &dev_attr_ecc_strength.attr,
373 &dev_attr_ecc_step_size.attr,
374 &dev_attr_bitflip_threshold.attr,
375 NULL,
376 };
377 ATTRIBUTE_GROUPS(mtd);
378
379 static struct device_type mtd_devtype = {
380 .name = "mtd",
381 .groups = mtd_groups,
382 .release = mtd_release,
383 };
384 #endif
385
386 /**
387 * add_mtd_device - register an MTD device
388 * @mtd: pointer to new MTD device info structure
389 *
390 * Add a device to the list of MTD devices present in the system, and
391 * notify each currently active MTD 'user' of its arrival. Returns
392 * zero on success or 1 on failure, which currently will only happen
393 * if there is insufficient memory or a sysfs error.
394 */
395
add_mtd_device(struct mtd_info * mtd)396 int add_mtd_device(struct mtd_info *mtd)
397 {
398 #ifndef __UBOOT__
399 struct mtd_notifier *not;
400 #endif
401 int i, error;
402
403 #ifndef __UBOOT__
404 if (!mtd->backing_dev_info) {
405 switch (mtd->type) {
406 case MTD_RAM:
407 mtd->backing_dev_info = &mtd_bdi_rw_mappable;
408 break;
409 case MTD_ROM:
410 mtd->backing_dev_info = &mtd_bdi_ro_mappable;
411 break;
412 default:
413 mtd->backing_dev_info = &mtd_bdi_unmappable;
414 break;
415 }
416 }
417 #endif
418
419 BUG_ON(mtd->writesize == 0);
420 mutex_lock(&mtd_table_mutex);
421
422 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
423 if (i < 0)
424 goto fail_locked;
425
426 mtd->index = i;
427 mtd->usecount = 0;
428
429 /* default value if not set by driver */
430 if (mtd->bitflip_threshold == 0)
431 mtd->bitflip_threshold = mtd->ecc_strength;
432
433 if (is_power_of_2(mtd->erasesize))
434 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
435 else
436 mtd->erasesize_shift = 0;
437
438 if (is_power_of_2(mtd->writesize))
439 mtd->writesize_shift = ffs(mtd->writesize) - 1;
440 else
441 mtd->writesize_shift = 0;
442
443 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
444 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
445
446 /* Some chips always power up locked. Unlock them now */
447 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
448 error = mtd_unlock(mtd, 0, mtd->size);
449 if (error && error != -EOPNOTSUPP)
450 printk(KERN_WARNING
451 "%s: unlock failed, writes may not work\n",
452 mtd->name);
453 }
454
455 #ifndef __UBOOT__
456 /* Caller should have set dev.parent to match the
457 * physical device.
458 */
459 mtd->dev.type = &mtd_devtype;
460 mtd->dev.class = &mtd_class;
461 mtd->dev.devt = MTD_DEVT(i);
462 dev_set_name(&mtd->dev, "mtd%d", i);
463 dev_set_drvdata(&mtd->dev, mtd);
464 if (device_register(&mtd->dev) != 0)
465 goto fail_added;
466
467 if (MTD_DEVT(i))
468 device_create(&mtd_class, mtd->dev.parent,
469 MTD_DEVT(i) + 1,
470 NULL, "mtd%dro", i);
471
472 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
473 /* No need to get a refcount on the module containing
474 the notifier, since we hold the mtd_table_mutex */
475 list_for_each_entry(not, &mtd_notifiers, list)
476 not->add(mtd);
477 #else
478 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
479 #endif
480
481 mutex_unlock(&mtd_table_mutex);
482 /* We _know_ we aren't being removed, because
483 our caller is still holding us here. So none
484 of this try_ nonsense, and no bitching about it
485 either. :) */
486 __module_get(THIS_MODULE);
487 return 0;
488
489 #ifndef __UBOOT__
490 fail_added:
491 idr_remove(&mtd_idr, i);
492 #endif
493 fail_locked:
494 mutex_unlock(&mtd_table_mutex);
495 return 1;
496 }
497
498 /**
499 * del_mtd_device - unregister an MTD device
500 * @mtd: pointer to MTD device info structure
501 *
502 * Remove a device from the list of MTD devices present in the system,
503 * and notify each currently active MTD 'user' of its departure.
504 * Returns zero on success or 1 on failure, which currently will happen
505 * if the requested device does not appear to be present in the list.
506 */
507
del_mtd_device(struct mtd_info * mtd)508 int del_mtd_device(struct mtd_info *mtd)
509 {
510 int ret;
511 #ifndef __UBOOT__
512 struct mtd_notifier *not;
513 #endif
514
515 mutex_lock(&mtd_table_mutex);
516
517 if (idr_find(&mtd_idr, mtd->index) != mtd) {
518 ret = -ENODEV;
519 goto out_error;
520 }
521
522 #ifndef __UBOOT__
523 /* No need to get a refcount on the module containing
524 the notifier, since we hold the mtd_table_mutex */
525 list_for_each_entry(not, &mtd_notifiers, list)
526 not->remove(mtd);
527 #endif
528
529 if (mtd->usecount) {
530 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
531 mtd->index, mtd->name, mtd->usecount);
532 ret = -EBUSY;
533 } else {
534 #ifndef __UBOOT__
535 device_unregister(&mtd->dev);
536 #endif
537
538 idr_remove(&mtd_idr, mtd->index);
539
540 module_put(THIS_MODULE);
541 ret = 0;
542 }
543
544 out_error:
545 mutex_unlock(&mtd_table_mutex);
546 return ret;
547 }
548
549 #ifndef __UBOOT__
550 /**
551 * mtd_device_parse_register - parse partitions and register an MTD device.
552 *
553 * @mtd: the MTD device to register
554 * @types: the list of MTD partition probes to try, see
555 * 'parse_mtd_partitions()' for more information
556 * @parser_data: MTD partition parser-specific data
557 * @parts: fallback partition information to register, if parsing fails;
558 * only valid if %nr_parts > %0
559 * @nr_parts: the number of partitions in parts, if zero then the full
560 * MTD device is registered if no partition info is found
561 *
562 * This function aggregates MTD partitions parsing (done by
563 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
564 * basically follows the most common pattern found in many MTD drivers:
565 *
566 * * It first tries to probe partitions on MTD device @mtd using parsers
567 * specified in @types (if @types is %NULL, then the default list of parsers
568 * is used, see 'parse_mtd_partitions()' for more information). If none are
569 * found this functions tries to fallback to information specified in
570 * @parts/@nr_parts.
571 * * If any partitioning info was found, this function registers the found
572 * partitions.
573 * * If no partitions were found this function just registers the MTD device
574 * @mtd and exits.
575 *
576 * Returns zero in case of success and a negative error code in case of failure.
577 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)578 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
579 struct mtd_part_parser_data *parser_data,
580 const struct mtd_partition *parts,
581 int nr_parts)
582 {
583 int err;
584 struct mtd_partition *real_parts;
585
586 err = parse_mtd_partitions(mtd, types, &real_parts, parser_data);
587 if (err <= 0 && nr_parts && parts) {
588 real_parts = kmemdup(parts, sizeof(*parts) * nr_parts,
589 GFP_KERNEL);
590 if (!real_parts)
591 err = -ENOMEM;
592 else
593 err = nr_parts;
594 }
595
596 if (err > 0) {
597 err = add_mtd_partitions(mtd, real_parts, err);
598 kfree(real_parts);
599 } else if (err == 0) {
600 err = add_mtd_device(mtd);
601 if (err == 1)
602 err = -ENODEV;
603 }
604
605 return err;
606 }
607 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
608
609 /**
610 * mtd_device_unregister - unregister an existing MTD device.
611 *
612 * @master: the MTD device to unregister. This will unregister both the master
613 * and any partitions if registered.
614 */
mtd_device_unregister(struct mtd_info * master)615 int mtd_device_unregister(struct mtd_info *master)
616 {
617 int err;
618
619 err = del_mtd_partitions(master);
620 if (err)
621 return err;
622
623 if (!device_is_registered(&master->dev))
624 return 0;
625
626 return del_mtd_device(master);
627 }
628 EXPORT_SYMBOL_GPL(mtd_device_unregister);
629
630 /**
631 * register_mtd_user - register a 'user' of MTD devices.
632 * @new: pointer to notifier info structure
633 *
634 * Registers a pair of callbacks function to be called upon addition
635 * or removal of MTD devices. Causes the 'add' callback to be immediately
636 * invoked for each MTD device currently present in the system.
637 */
register_mtd_user(struct mtd_notifier * new)638 void register_mtd_user (struct mtd_notifier *new)
639 {
640 struct mtd_info *mtd;
641
642 mutex_lock(&mtd_table_mutex);
643
644 list_add(&new->list, &mtd_notifiers);
645
646 __module_get(THIS_MODULE);
647
648 mtd_for_each_device(mtd)
649 new->add(mtd);
650
651 mutex_unlock(&mtd_table_mutex);
652 }
653 EXPORT_SYMBOL_GPL(register_mtd_user);
654
655 /**
656 * unregister_mtd_user - unregister a 'user' of MTD devices.
657 * @old: pointer to notifier info structure
658 *
659 * Removes a callback function pair from the list of 'users' to be
660 * notified upon addition or removal of MTD devices. Causes the
661 * 'remove' callback to be immediately invoked for each MTD device
662 * currently present in the system.
663 */
unregister_mtd_user(struct mtd_notifier * old)664 int unregister_mtd_user (struct mtd_notifier *old)
665 {
666 struct mtd_info *mtd;
667
668 mutex_lock(&mtd_table_mutex);
669
670 module_put(THIS_MODULE);
671
672 mtd_for_each_device(mtd)
673 old->remove(mtd);
674
675 list_del(&old->list);
676 mutex_unlock(&mtd_table_mutex);
677 return 0;
678 }
679 EXPORT_SYMBOL_GPL(unregister_mtd_user);
680 #endif
681
682 /**
683 * get_mtd_device - obtain a validated handle for an MTD device
684 * @mtd: last known address of the required MTD device
685 * @num: internal device number of the required MTD device
686 *
687 * Given a number and NULL address, return the num'th entry in the device
688 * table, if any. Given an address and num == -1, search the device table
689 * for a device with that address and return if it's still present. Given
690 * both, return the num'th driver only if its address matches. Return
691 * error code if not.
692 */
get_mtd_device(struct mtd_info * mtd,int num)693 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
694 {
695 struct mtd_info *ret = NULL, *other;
696 int err = -ENODEV;
697
698 mutex_lock(&mtd_table_mutex);
699
700 if (num == -1) {
701 mtd_for_each_device(other) {
702 if (other == mtd) {
703 ret = mtd;
704 break;
705 }
706 }
707 } else if (num >= 0) {
708 ret = idr_find(&mtd_idr, num);
709 if (mtd && mtd != ret)
710 ret = NULL;
711 }
712
713 if (!ret) {
714 ret = ERR_PTR(err);
715 goto out;
716 }
717
718 err = __get_mtd_device(ret);
719 if (err)
720 ret = ERR_PTR(err);
721 out:
722 mutex_unlock(&mtd_table_mutex);
723 return ret;
724 }
725 EXPORT_SYMBOL_GPL(get_mtd_device);
726
727
__get_mtd_device(struct mtd_info * mtd)728 int __get_mtd_device(struct mtd_info *mtd)
729 {
730 int err;
731
732 if (!try_module_get(mtd->owner))
733 return -ENODEV;
734
735 if (mtd->_get_device) {
736 err = mtd->_get_device(mtd);
737
738 if (err) {
739 module_put(mtd->owner);
740 return err;
741 }
742 }
743 mtd->usecount++;
744 return 0;
745 }
746 EXPORT_SYMBOL_GPL(__get_mtd_device);
747
748 /**
749 * get_mtd_device_nm - obtain a validated handle for an MTD device by
750 * device name
751 * @name: MTD device name to open
752 *
753 * This function returns MTD device description structure in case of
754 * success and an error code in case of failure.
755 */
get_mtd_device_nm(const char * name)756 struct mtd_info *get_mtd_device_nm(const char *name)
757 {
758 int err = -ENODEV;
759 struct mtd_info *mtd = NULL, *other;
760
761 mutex_lock(&mtd_table_mutex);
762
763 mtd_for_each_device(other) {
764 if (!strcmp(name, other->name)) {
765 mtd = other;
766 break;
767 }
768 }
769
770 if (!mtd)
771 goto out_unlock;
772
773 err = __get_mtd_device(mtd);
774 if (err)
775 goto out_unlock;
776
777 mutex_unlock(&mtd_table_mutex);
778 return mtd;
779
780 out_unlock:
781 mutex_unlock(&mtd_table_mutex);
782 return ERR_PTR(err);
783 }
784 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
785
786 #if defined(CONFIG_CMD_MTDPARTS_SPREAD)
787 /**
788 * mtd_get_len_incl_bad
789 *
790 * Check if length including bad blocks fits into device.
791 *
792 * @param mtd an MTD device
793 * @param offset offset in flash
794 * @param length image length
795 * @return image length including bad blocks in *len_incl_bad and whether or not
796 * the length returned was truncated in *truncated
797 */
mtd_get_len_incl_bad(struct mtd_info * mtd,uint64_t offset,const uint64_t length,uint64_t * len_incl_bad,int * truncated)798 void mtd_get_len_incl_bad(struct mtd_info *mtd, uint64_t offset,
799 const uint64_t length, uint64_t *len_incl_bad,
800 int *truncated)
801 {
802 *truncated = 0;
803 *len_incl_bad = 0;
804
805 if (!mtd->_block_isbad) {
806 *len_incl_bad = length;
807 return;
808 }
809
810 uint64_t len_excl_bad = 0;
811 uint64_t block_len;
812
813 while (len_excl_bad < length) {
814 if (offset >= mtd->size) {
815 *truncated = 1;
816 return;
817 }
818
819 block_len = mtd->erasesize - (offset & (mtd->erasesize - 1));
820
821 if (!mtd->_block_isbad(mtd, offset & ~(mtd->erasesize - 1)))
822 len_excl_bad += block_len;
823
824 *len_incl_bad += block_len;
825 offset += block_len;
826 }
827 }
828 #endif /* defined(CONFIG_CMD_MTDPARTS_SPREAD) */
829
put_mtd_device(struct mtd_info * mtd)830 void put_mtd_device(struct mtd_info *mtd)
831 {
832 mutex_lock(&mtd_table_mutex);
833 __put_mtd_device(mtd);
834 mutex_unlock(&mtd_table_mutex);
835
836 }
837 EXPORT_SYMBOL_GPL(put_mtd_device);
838
__put_mtd_device(struct mtd_info * mtd)839 void __put_mtd_device(struct mtd_info *mtd)
840 {
841 --mtd->usecount;
842 BUG_ON(mtd->usecount < 0);
843
844 if (mtd->_put_device)
845 mtd->_put_device(mtd);
846
847 module_put(mtd->owner);
848 }
849 EXPORT_SYMBOL_GPL(__put_mtd_device);
850
851 /*
852 * Erase is an asynchronous operation. Device drivers are supposed
853 * to call instr->callback() whenever the operation completes, even
854 * if it completes with a failure.
855 * Callers are supposed to pass a callback function and wait for it
856 * to be called before writing to the block.
857 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)858 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
859 {
860 if (instr->addr > mtd->size || instr->len > mtd->size - instr->addr)
861 return -EINVAL;
862 if (!(mtd->flags & MTD_WRITEABLE))
863 return -EROFS;
864 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
865 if (!instr->len) {
866 instr->state = MTD_ERASE_DONE;
867 mtd_erase_callback(instr);
868 return 0;
869 }
870 return mtd->_erase(mtd, instr);
871 }
872 EXPORT_SYMBOL_GPL(mtd_erase);
873
874 #ifndef __UBOOT__
875 /*
876 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
877 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)878 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
879 void **virt, resource_size_t *phys)
880 {
881 *retlen = 0;
882 *virt = NULL;
883 if (phys)
884 *phys = 0;
885 if (!mtd->_point)
886 return -EOPNOTSUPP;
887 if (from < 0 || from > mtd->size || len > mtd->size - from)
888 return -EINVAL;
889 if (!len)
890 return 0;
891 return mtd->_point(mtd, from, len, retlen, virt, phys);
892 }
893 EXPORT_SYMBOL_GPL(mtd_point);
894
895 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)896 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
897 {
898 if (!mtd->_point)
899 return -EOPNOTSUPP;
900 if (from < 0 || from > mtd->size || len > mtd->size - from)
901 return -EINVAL;
902 if (!len)
903 return 0;
904 return mtd->_unpoint(mtd, from, len);
905 }
906 EXPORT_SYMBOL_GPL(mtd_unpoint);
907 #endif
908
909 /*
910 * Allow NOMMU mmap() to directly map the device (if not NULL)
911 * - return the address to which the offset maps
912 * - return -ENOSYS to indicate refusal to do the mapping
913 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)914 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
915 unsigned long offset, unsigned long flags)
916 {
917 if (!mtd->_get_unmapped_area)
918 return -EOPNOTSUPP;
919 if (offset > mtd->size || len > mtd->size - offset)
920 return -EINVAL;
921 return mtd->_get_unmapped_area(mtd, len, offset, flags);
922 }
923 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
924
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)925 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
926 u_char *buf)
927 {
928 int ret_code;
929 *retlen = 0;
930 if (from < 0 || from > mtd->size || len > mtd->size - from)
931 return -EINVAL;
932 if (!len)
933 return 0;
934
935 /*
936 * In the absence of an error, drivers return a non-negative integer
937 * representing the maximum number of bitflips that were corrected on
938 * any one ecc region (if applicable; zero otherwise).
939 */
940 ret_code = mtd->_read(mtd, from, len, retlen, buf);
941 if (unlikely(ret_code < 0))
942 return ret_code;
943 if (mtd->ecc_strength == 0)
944 return 0; /* device lacks ecc */
945 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
946 }
947 EXPORT_SYMBOL_GPL(mtd_read);
948
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)949 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
950 const u_char *buf)
951 {
952 *retlen = 0;
953 if (to < 0 || to > mtd->size || len > mtd->size - to)
954 return -EINVAL;
955 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
956 return -EROFS;
957 if (!len)
958 return 0;
959 return mtd->_write(mtd, to, len, retlen, buf);
960 }
961 EXPORT_SYMBOL_GPL(mtd_write);
962
963 /*
964 * In blackbox flight recorder like scenarios we want to make successful writes
965 * in interrupt context. panic_write() is only intended to be called when its
966 * known the kernel is about to panic and we need the write to succeed. Since
967 * the kernel is not going to be running for much longer, this function can
968 * break locks and delay to ensure the write succeeds (but not sleep).
969 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)970 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
971 const u_char *buf)
972 {
973 *retlen = 0;
974 if (!mtd->_panic_write)
975 return -EOPNOTSUPP;
976 if (to < 0 || to > mtd->size || len > mtd->size - to)
977 return -EINVAL;
978 if (!(mtd->flags & MTD_WRITEABLE))
979 return -EROFS;
980 if (!len)
981 return 0;
982 return mtd->_panic_write(mtd, to, len, retlen, buf);
983 }
984 EXPORT_SYMBOL_GPL(mtd_panic_write);
985
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)986 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
987 {
988 int ret_code;
989 ops->retlen = ops->oobretlen = 0;
990 if (!mtd->_read_oob)
991 return -EOPNOTSUPP;
992 /*
993 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
994 * similar to mtd->_read(), returning a non-negative integer
995 * representing max bitflips. In other cases, mtd->_read_oob() may
996 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
997 */
998 ret_code = mtd->_read_oob(mtd, from, ops);
999 if (unlikely(ret_code < 0))
1000 return ret_code;
1001 if (mtd->ecc_strength == 0)
1002 return 0; /* device lacks ecc */
1003 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1004 }
1005 EXPORT_SYMBOL_GPL(mtd_read_oob);
1006
1007 /**
1008 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1009 * @mtd: MTD device structure
1010 * @section: ECC section. Depending on the layout you may have all the ECC
1011 * bytes stored in a single contiguous section, or one section
1012 * per ECC chunk (and sometime several sections for a single ECC
1013 * ECC chunk)
1014 * @oobecc: OOB region struct filled with the appropriate ECC position
1015 * information
1016 *
1017 * This function returns ECC section information in the OOB area. If you want
1018 * to get all the ECC bytes information, then you should call
1019 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1020 *
1021 * Returns zero on success, a negative error code otherwise.
1022 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1023 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1024 struct mtd_oob_region *oobecc)
1025 {
1026 memset(oobecc, 0, sizeof(*oobecc));
1027
1028 if (!mtd || section < 0)
1029 return -EINVAL;
1030
1031 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1032 return -ENOTSUPP;
1033
1034 return mtd->ooblayout->ecc(mtd, section, oobecc);
1035 }
1036 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1037
1038 /**
1039 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1040 * section
1041 * @mtd: MTD device structure
1042 * @section: Free section you are interested in. Depending on the layout
1043 * you may have all the free bytes stored in a single contiguous
1044 * section, or one section per ECC chunk plus an extra section
1045 * for the remaining bytes (or other funky layout).
1046 * @oobfree: OOB region struct filled with the appropriate free position
1047 * information
1048 *
1049 * This function returns free bytes position in the OOB area. If you want
1050 * to get all the free bytes information, then you should call
1051 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1052 *
1053 * Returns zero on success, a negative error code otherwise.
1054 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1055 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1056 struct mtd_oob_region *oobfree)
1057 {
1058 memset(oobfree, 0, sizeof(*oobfree));
1059
1060 if (!mtd || section < 0)
1061 return -EINVAL;
1062
1063 if (!mtd->ooblayout || !mtd->ooblayout->free)
1064 return -ENOTSUPP;
1065
1066 return mtd->ooblayout->free(mtd, section, oobfree);
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1069
1070 /**
1071 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1072 * @mtd: mtd info structure
1073 * @byte: the byte we are searching for
1074 * @sectionp: pointer where the section id will be stored
1075 * @oobregion: used to retrieve the ECC position
1076 * @iter: iterator function. Should be either mtd_ooblayout_free or
1077 * mtd_ooblayout_ecc depending on the region type you're searching for
1078 *
1079 * This function returns the section id and oobregion information of a
1080 * specific byte. For example, say you want to know where the 4th ECC byte is
1081 * stored, you'll use:
1082 *
1083 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1084 *
1085 * Returns zero on success, a negative error code otherwise.
1086 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1087 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1088 int *sectionp, struct mtd_oob_region *oobregion,
1089 int (*iter)(struct mtd_info *,
1090 int section,
1091 struct mtd_oob_region *oobregion))
1092 {
1093 int pos = 0, ret, section = 0;
1094
1095 memset(oobregion, 0, sizeof(*oobregion));
1096
1097 while (1) {
1098 ret = iter(mtd, section, oobregion);
1099 if (ret)
1100 return ret;
1101
1102 if (pos + oobregion->length > byte)
1103 break;
1104
1105 pos += oobregion->length;
1106 section++;
1107 }
1108
1109 /*
1110 * Adjust region info to make it start at the beginning at the
1111 * 'start' ECC byte.
1112 */
1113 oobregion->offset += byte - pos;
1114 oobregion->length -= byte - pos;
1115 *sectionp = section;
1116
1117 return 0;
1118 }
1119
1120 /**
1121 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1122 * ECC byte
1123 * @mtd: mtd info structure
1124 * @eccbyte: the byte we are searching for
1125 * @sectionp: pointer where the section id will be stored
1126 * @oobregion: OOB region information
1127 *
1128 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1129 * byte.
1130 *
1131 * Returns zero on success, a negative error code otherwise.
1132 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1133 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1134 int *section,
1135 struct mtd_oob_region *oobregion)
1136 {
1137 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1138 mtd_ooblayout_ecc);
1139 }
1140 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1141
1142 /**
1143 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1144 * @mtd: mtd info structure
1145 * @buf: destination buffer to store OOB bytes
1146 * @oobbuf: OOB buffer
1147 * @start: first byte to retrieve
1148 * @nbytes: number of bytes to retrieve
1149 * @iter: section iterator
1150 *
1151 * Extract bytes attached to a specific category (ECC or free)
1152 * from the OOB buffer and copy them into buf.
1153 *
1154 * Returns zero on success, a negative error code otherwise.
1155 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1156 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1157 const u8 *oobbuf, int start, int nbytes,
1158 int (*iter)(struct mtd_info *,
1159 int section,
1160 struct mtd_oob_region *oobregion))
1161 {
1162 struct mtd_oob_region oobregion;
1163 int section, ret;
1164
1165 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1166 &oobregion, iter);
1167
1168 while (!ret) {
1169 int cnt;
1170
1171 cnt = min_t(int, nbytes, oobregion.length);
1172 memcpy(buf, oobbuf + oobregion.offset, cnt);
1173 buf += cnt;
1174 nbytes -= cnt;
1175
1176 if (!nbytes)
1177 break;
1178
1179 ret = iter(mtd, ++section, &oobregion);
1180 }
1181
1182 return ret;
1183 }
1184
1185 /**
1186 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1187 * @mtd: mtd info structure
1188 * @buf: source buffer to get OOB bytes from
1189 * @oobbuf: OOB buffer
1190 * @start: first OOB byte to set
1191 * @nbytes: number of OOB bytes to set
1192 * @iter: section iterator
1193 *
1194 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1195 * is selected by passing the appropriate iterator.
1196 *
1197 * Returns zero on success, a negative error code otherwise.
1198 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1199 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1200 u8 *oobbuf, int start, int nbytes,
1201 int (*iter)(struct mtd_info *,
1202 int section,
1203 struct mtd_oob_region *oobregion))
1204 {
1205 struct mtd_oob_region oobregion;
1206 int section, ret;
1207
1208 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1209 &oobregion, iter);
1210
1211 while (!ret) {
1212 int cnt;
1213
1214 cnt = min_t(int, nbytes, oobregion.length);
1215 memcpy(oobbuf + oobregion.offset, buf, cnt);
1216 buf += cnt;
1217 nbytes -= cnt;
1218
1219 if (!nbytes)
1220 break;
1221
1222 ret = iter(mtd, ++section, &oobregion);
1223 }
1224
1225 return ret;
1226 }
1227
1228 /**
1229 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1230 * @mtd: mtd info structure
1231 * @iter: category iterator
1232 *
1233 * Count the number of bytes in a given category.
1234 *
1235 * Returns a positive value on success, a negative error code otherwise.
1236 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1237 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1238 int (*iter)(struct mtd_info *,
1239 int section,
1240 struct mtd_oob_region *oobregion))
1241 {
1242 struct mtd_oob_region oobregion;
1243 int section = 0, ret, nbytes = 0;
1244
1245 while (1) {
1246 ret = iter(mtd, section++, &oobregion);
1247 if (ret) {
1248 if (ret == -ERANGE)
1249 ret = nbytes;
1250 break;
1251 }
1252
1253 nbytes += oobregion.length;
1254 }
1255
1256 return ret;
1257 }
1258
1259 /**
1260 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1261 * @mtd: mtd info structure
1262 * @eccbuf: destination buffer to store ECC bytes
1263 * @oobbuf: OOB buffer
1264 * @start: first ECC byte to retrieve
1265 * @nbytes: number of ECC bytes to retrieve
1266 *
1267 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1268 *
1269 * Returns zero on success, a negative error code otherwise.
1270 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1271 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1272 const u8 *oobbuf, int start, int nbytes)
1273 {
1274 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1275 mtd_ooblayout_ecc);
1276 }
1277 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1278
1279 /**
1280 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1281 * @mtd: mtd info structure
1282 * @eccbuf: source buffer to get ECC bytes from
1283 * @oobbuf: OOB buffer
1284 * @start: first ECC byte to set
1285 * @nbytes: number of ECC bytes to set
1286 *
1287 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1288 *
1289 * Returns zero on success, a negative error code otherwise.
1290 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1291 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1292 u8 *oobbuf, int start, int nbytes)
1293 {
1294 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1295 mtd_ooblayout_ecc);
1296 }
1297 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1298
1299 /**
1300 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1301 * @mtd: mtd info structure
1302 * @databuf: destination buffer to store ECC bytes
1303 * @oobbuf: OOB buffer
1304 * @start: first ECC byte to retrieve
1305 * @nbytes: number of ECC bytes to retrieve
1306 *
1307 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1308 *
1309 * Returns zero on success, a negative error code otherwise.
1310 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1311 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1312 const u8 *oobbuf, int start, int nbytes)
1313 {
1314 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1315 mtd_ooblayout_free);
1316 }
1317 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1318
1319 /**
1320 * mtd_ooblayout_get_eccbytes - set data bytes into the oob buffer
1321 * @mtd: mtd info structure
1322 * @eccbuf: source buffer to get data bytes from
1323 * @oobbuf: OOB buffer
1324 * @start: first ECC byte to set
1325 * @nbytes: number of ECC bytes to set
1326 *
1327 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1328 *
1329 * Returns zero on success, a negative error code otherwise.
1330 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1331 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1332 u8 *oobbuf, int start, int nbytes)
1333 {
1334 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1335 mtd_ooblayout_free);
1336 }
1337 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1338
1339 /**
1340 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1341 * @mtd: mtd info structure
1342 *
1343 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1344 *
1345 * Returns zero on success, a negative error code otherwise.
1346 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1347 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1348 {
1349 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1350 }
1351 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1352
1353 /**
1354 * mtd_ooblayout_count_freebytes - count the number of ECC bytes in OOB
1355 * @mtd: mtd info structure
1356 *
1357 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1358 *
1359 * Returns zero on success, a negative error code otherwise.
1360 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1361 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1362 {
1363 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1364 }
1365 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1366
1367 /*
1368 * Method to access the protection register area, present in some flash
1369 * devices. The user data is one time programmable but the factory data is read
1370 * only.
1371 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1372 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1373 struct otp_info *buf)
1374 {
1375 if (!mtd->_get_fact_prot_info)
1376 return -EOPNOTSUPP;
1377 if (!len)
1378 return 0;
1379 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1380 }
1381 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1382
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1383 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1384 size_t *retlen, u_char *buf)
1385 {
1386 *retlen = 0;
1387 if (!mtd->_read_fact_prot_reg)
1388 return -EOPNOTSUPP;
1389 if (!len)
1390 return 0;
1391 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1392 }
1393 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1394
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1395 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1396 struct otp_info *buf)
1397 {
1398 if (!mtd->_get_user_prot_info)
1399 return -EOPNOTSUPP;
1400 if (!len)
1401 return 0;
1402 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1403 }
1404 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1405
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1406 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1407 size_t *retlen, u_char *buf)
1408 {
1409 *retlen = 0;
1410 if (!mtd->_read_user_prot_reg)
1411 return -EOPNOTSUPP;
1412 if (!len)
1413 return 0;
1414 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1415 }
1416 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1417
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1418 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1419 size_t *retlen, u_char *buf)
1420 {
1421 int ret;
1422
1423 *retlen = 0;
1424 if (!mtd->_write_user_prot_reg)
1425 return -EOPNOTSUPP;
1426 if (!len)
1427 return 0;
1428 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1429 if (ret)
1430 return ret;
1431
1432 /*
1433 * If no data could be written at all, we are out of memory and
1434 * must return -ENOSPC.
1435 */
1436 return (*retlen) ? 0 : -ENOSPC;
1437 }
1438 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1439
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1440 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1441 {
1442 if (!mtd->_lock_user_prot_reg)
1443 return -EOPNOTSUPP;
1444 if (!len)
1445 return 0;
1446 return mtd->_lock_user_prot_reg(mtd, from, len);
1447 }
1448 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1449
1450 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1451 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1452 {
1453 if (!mtd->_lock)
1454 return -EOPNOTSUPP;
1455 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1456 return -EINVAL;
1457 if (!len)
1458 return 0;
1459 return mtd->_lock(mtd, ofs, len);
1460 }
1461 EXPORT_SYMBOL_GPL(mtd_lock);
1462
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1463 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1464 {
1465 if (!mtd->_unlock)
1466 return -EOPNOTSUPP;
1467 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1468 return -EINVAL;
1469 if (!len)
1470 return 0;
1471 return mtd->_unlock(mtd, ofs, len);
1472 }
1473 EXPORT_SYMBOL_GPL(mtd_unlock);
1474
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1475 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1476 {
1477 if (!mtd->_is_locked)
1478 return -EOPNOTSUPP;
1479 if (ofs < 0 || ofs > mtd->size || len > mtd->size - ofs)
1480 return -EINVAL;
1481 if (!len)
1482 return 0;
1483 return mtd->_is_locked(mtd, ofs, len);
1484 }
1485 EXPORT_SYMBOL_GPL(mtd_is_locked);
1486
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1487 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1488 {
1489 if (ofs < 0 || ofs > mtd->size)
1490 return -EINVAL;
1491 if (!mtd->_block_isreserved)
1492 return 0;
1493 return mtd->_block_isreserved(mtd, ofs);
1494 }
1495 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1496
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)1497 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1498 {
1499 if (ofs < 0 || ofs > mtd->size)
1500 return -EINVAL;
1501 if (!mtd->_block_isbad)
1502 return 0;
1503 return mtd->_block_isbad(mtd, ofs);
1504 }
1505 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1506
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)1507 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1508 {
1509 if (!mtd->_block_markbad)
1510 return -EOPNOTSUPP;
1511 if (ofs < 0 || ofs > mtd->size)
1512 return -EINVAL;
1513 if (!(mtd->flags & MTD_WRITEABLE))
1514 return -EROFS;
1515 return mtd->_block_markbad(mtd, ofs);
1516 }
1517 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1518
1519 #ifndef __UBOOT__
1520 /*
1521 * default_mtd_writev - the default writev method
1522 * @mtd: mtd device description object pointer
1523 * @vecs: the vectors to write
1524 * @count: count of vectors in @vecs
1525 * @to: the MTD device offset to write to
1526 * @retlen: on exit contains the count of bytes written to the MTD device.
1527 *
1528 * This function returns zero in case of success and a negative error code in
1529 * case of failure.
1530 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1531 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1532 unsigned long count, loff_t to, size_t *retlen)
1533 {
1534 unsigned long i;
1535 size_t totlen = 0, thislen;
1536 int ret = 0;
1537
1538 for (i = 0; i < count; i++) {
1539 if (!vecs[i].iov_len)
1540 continue;
1541 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1542 vecs[i].iov_base);
1543 totlen += thislen;
1544 if (ret || thislen != vecs[i].iov_len)
1545 break;
1546 to += vecs[i].iov_len;
1547 }
1548 *retlen = totlen;
1549 return ret;
1550 }
1551
1552 /*
1553 * mtd_writev - the vector-based MTD write method
1554 * @mtd: mtd device description object pointer
1555 * @vecs: the vectors to write
1556 * @count: count of vectors in @vecs
1557 * @to: the MTD device offset to write to
1558 * @retlen: on exit contains the count of bytes written to the MTD device.
1559 *
1560 * This function returns zero in case of success and a negative error code in
1561 * case of failure.
1562 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)1563 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1564 unsigned long count, loff_t to, size_t *retlen)
1565 {
1566 *retlen = 0;
1567 if (!(mtd->flags & MTD_WRITEABLE))
1568 return -EROFS;
1569 if (!mtd->_writev)
1570 return default_mtd_writev(mtd, vecs, count, to, retlen);
1571 return mtd->_writev(mtd, vecs, count, to, retlen);
1572 }
1573 EXPORT_SYMBOL_GPL(mtd_writev);
1574
1575 /**
1576 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1577 * @mtd: mtd device description object pointer
1578 * @size: a pointer to the ideal or maximum size of the allocation, points
1579 * to the actual allocation size on success.
1580 *
1581 * This routine attempts to allocate a contiguous kernel buffer up to
1582 * the specified size, backing off the size of the request exponentially
1583 * until the request succeeds or until the allocation size falls below
1584 * the system page size. This attempts to make sure it does not adversely
1585 * impact system performance, so when allocating more than one page, we
1586 * ask the memory allocator to avoid re-trying, swapping, writing back
1587 * or performing I/O.
1588 *
1589 * Note, this function also makes sure that the allocated buffer is aligned to
1590 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1591 *
1592 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1593 * to handle smaller (i.e. degraded) buffer allocations under low- or
1594 * fragmented-memory situations where such reduced allocations, from a
1595 * requested ideal, are allowed.
1596 *
1597 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1598 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)1599 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1600 {
1601 gfp_t flags = __GFP_NOWARN | __GFP_WAIT |
1602 __GFP_NORETRY | __GFP_NO_KSWAPD;
1603 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1604 void *kbuf;
1605
1606 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1607
1608 while (*size > min_alloc) {
1609 kbuf = kmalloc(*size, flags);
1610 if (kbuf)
1611 return kbuf;
1612
1613 *size >>= 1;
1614 *size = ALIGN(*size, mtd->writesize);
1615 }
1616
1617 /*
1618 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1619 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1620 */
1621 return kmalloc(*size, GFP_KERNEL);
1622 }
1623 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1624 #endif
1625
1626 #ifdef CONFIG_PROC_FS
1627
1628 /*====================================================================*/
1629 /* Support for /proc/mtd */
1630
mtd_proc_show(struct seq_file * m,void * v)1631 static int mtd_proc_show(struct seq_file *m, void *v)
1632 {
1633 struct mtd_info *mtd;
1634
1635 seq_puts(m, "dev: size erasesize name\n");
1636 mutex_lock(&mtd_table_mutex);
1637 mtd_for_each_device(mtd) {
1638 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1639 mtd->index, (unsigned long long)mtd->size,
1640 mtd->erasesize, mtd->name);
1641 }
1642 mutex_unlock(&mtd_table_mutex);
1643 return 0;
1644 }
1645
mtd_proc_open(struct inode * inode,struct file * file)1646 static int mtd_proc_open(struct inode *inode, struct file *file)
1647 {
1648 return single_open(file, mtd_proc_show, NULL);
1649 }
1650
1651 static const struct file_operations mtd_proc_ops = {
1652 .open = mtd_proc_open,
1653 .read = seq_read,
1654 .llseek = seq_lseek,
1655 .release = single_release,
1656 };
1657 #endif /* CONFIG_PROC_FS */
1658
1659 /*====================================================================*/
1660 /* Init code */
1661
1662 #ifndef __UBOOT__
mtd_bdi_init(struct backing_dev_info * bdi,const char * name)1663 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1664 {
1665 int ret;
1666
1667 ret = bdi_init(bdi);
1668 if (!ret)
1669 ret = bdi_register(bdi, NULL, "%s", name);
1670
1671 if (ret)
1672 bdi_destroy(bdi);
1673
1674 return ret;
1675 }
1676
1677 static struct proc_dir_entry *proc_mtd;
1678
init_mtd(void)1679 static int __init init_mtd(void)
1680 {
1681 int ret;
1682
1683 ret = class_register(&mtd_class);
1684 if (ret)
1685 goto err_reg;
1686
1687 ret = mtd_bdi_init(&mtd_bdi_unmappable, "mtd-unmap");
1688 if (ret)
1689 goto err_bdi1;
1690
1691 ret = mtd_bdi_init(&mtd_bdi_ro_mappable, "mtd-romap");
1692 if (ret)
1693 goto err_bdi2;
1694
1695 ret = mtd_bdi_init(&mtd_bdi_rw_mappable, "mtd-rwmap");
1696 if (ret)
1697 goto err_bdi3;
1698
1699 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1700
1701 ret = init_mtdchar();
1702 if (ret)
1703 goto out_procfs;
1704
1705 return 0;
1706
1707 out_procfs:
1708 if (proc_mtd)
1709 remove_proc_entry("mtd", NULL);
1710 err_bdi3:
1711 bdi_destroy(&mtd_bdi_ro_mappable);
1712 err_bdi2:
1713 bdi_destroy(&mtd_bdi_unmappable);
1714 err_bdi1:
1715 class_unregister(&mtd_class);
1716 err_reg:
1717 pr_err("Error registering mtd class or bdi: %d\n", ret);
1718 return ret;
1719 }
1720
cleanup_mtd(void)1721 static void __exit cleanup_mtd(void)
1722 {
1723 cleanup_mtdchar();
1724 if (proc_mtd)
1725 remove_proc_entry("mtd", NULL);
1726 class_unregister(&mtd_class);
1727 bdi_destroy(&mtd_bdi_unmappable);
1728 bdi_destroy(&mtd_bdi_ro_mappable);
1729 bdi_destroy(&mtd_bdi_rw_mappable);
1730 }
1731
1732 module_init(init_mtd);
1733 module_exit(cleanup_mtd);
1734 #endif
1735
1736 MODULE_LICENSE("GPL");
1737 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1738 MODULE_DESCRIPTION("Core MTD registration and access routines");
1739