• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.util;
18 
19 import com.android.ide.common.rendering.api.LayoutLog;
20 import com.android.layoutlib.bridge.Bridge;
21 import com.android.layoutlib.bridge.impl.DelegateManager;
22 import com.android.tools.layoutlib.annotations.LayoutlibDelegate;
23 
24 import android.annotation.NonNull;
25 import android.graphics.Path_Delegate;
26 
27 import java.util.ArrayList;
28 import java.util.Arrays;
29 import java.util.logging.Level;
30 import java.util.logging.Logger;
31 
32 /**
33  * Delegate that provides implementation for native methods in {@link android.util.PathParser}
34  * <p/>
35  * Through the layoutlib_create tool, selected methods of PathParser have been replaced by calls to
36  * methods of the same name in this delegate class.
37  *
38  * Most of the code has been taken from the implementation in
39  * {@code tools/base/sdk-common/src/main/java/com/android/ide/common/vectordrawable/PathParser.java}
40  * revision be6fe89a3b686db5a75e7e692a148699973957f3
41  */
42 public class PathParser_Delegate {
43 
44     private static final Logger LOGGER = Logger.getLogger("PathParser");
45 
46     // ---- Builder delegate manager ----
47     private static final DelegateManager<PathParser_Delegate> sManager =
48             new DelegateManager<PathParser_Delegate>(PathParser_Delegate.class);
49 
50     // ---- delegate data ----
51     @NonNull
52     private PathDataNode[] mPathDataNodes;
53 
getDelegate(long nativePtr)54     public static PathParser_Delegate getDelegate(long nativePtr) {
55         return sManager.getDelegate(nativePtr);
56     }
57 
PathParser_Delegate(@onNull PathDataNode[] nodes)58     private PathParser_Delegate(@NonNull PathDataNode[] nodes) {
59         mPathDataNodes = nodes;
60     }
61 
getPathDataNodes()62     public PathDataNode[] getPathDataNodes() {
63         return mPathDataNodes;
64     }
65 
66     @LayoutlibDelegate
nParseStringForPath(long pathPtr, @NonNull String pathString, int stringLength)67     /*package*/ static void nParseStringForPath(long pathPtr, @NonNull String pathString, int
68             stringLength) {
69         Path_Delegate path_delegate = Path_Delegate.getDelegate(pathPtr);
70         if (path_delegate == null) {
71             return;
72         }
73         assert pathString.length() == stringLength;
74         PathDataNode.nodesToPath(createNodesFromPathData(pathString), path_delegate);
75     }
76 
77     @LayoutlibDelegate
nCreatePathFromPathData(long outPathPtr, long pathData)78     /*package*/ static void nCreatePathFromPathData(long outPathPtr, long pathData) {
79         Path_Delegate path_delegate = Path_Delegate.getDelegate(outPathPtr);
80         PathParser_Delegate source = sManager.getDelegate(outPathPtr);
81         if (source == null || path_delegate == null) {
82             return;
83         }
84         PathDataNode.nodesToPath(source.mPathDataNodes, path_delegate);
85     }
86 
87     @LayoutlibDelegate
nCreateEmptyPathData()88     /*package*/ static long nCreateEmptyPathData() {
89         PathParser_Delegate newDelegate = new PathParser_Delegate(new PathDataNode[0]);
90         return sManager.addNewDelegate(newDelegate);
91     }
92 
93     @LayoutlibDelegate
nCreatePathData(long nativePtr)94     /*package*/ static long nCreatePathData(long nativePtr) {
95         PathParser_Delegate source = sManager.getDelegate(nativePtr);
96         if (source == null) {
97             return 0;
98         }
99         PathParser_Delegate dest = new PathParser_Delegate(deepCopyNodes(source.mPathDataNodes));
100         return sManager.addNewDelegate(dest);
101     }
102 
103     @LayoutlibDelegate
nCreatePathDataFromString(@onNull String pathString, int stringLength)104     /*package*/ static long nCreatePathDataFromString(@NonNull String pathString,
105             int stringLength) {
106         assert pathString.length() == stringLength : "Inconsistent path string length.";
107         PathDataNode[] nodes = createNodesFromPathData(pathString);
108         PathParser_Delegate delegate = new PathParser_Delegate(nodes);
109         return sManager.addNewDelegate(delegate);
110 
111     }
112 
113     @LayoutlibDelegate
nInterpolatePathData(long outDataPtr, long fromDataPtr, long toDataPtr, float fraction)114     /*package*/ static boolean nInterpolatePathData(long outDataPtr, long fromDataPtr,
115             long toDataPtr, float fraction) {
116         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
117         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
118         PathParser_Delegate to = sManager.getDelegate(toDataPtr);
119         if (out == null || from == null || to == null) {
120             return false;
121         }
122         int length = from.mPathDataNodes.length;
123         if (length != to.mPathDataNodes.length) {
124             Bridge.getLog().error(LayoutLog.TAG_BROKEN,
125                     "Cannot interpolate path data with different lengths (from " + length + " to " +
126                             to.mPathDataNodes.length + ").", null);
127             return false;
128         }
129         if (out.mPathDataNodes.length != length) {
130             out.mPathDataNodes = new PathDataNode[length];
131         }
132         for (int i = 0; i < length; i++) {
133             if (out.mPathDataNodes[i] == null) {
134                 out.mPathDataNodes[i] = new PathDataNode(from.mPathDataNodes[i]);
135             }
136             out.mPathDataNodes[i].interpolatePathDataNode(from.mPathDataNodes[i],
137                         to.mPathDataNodes[i], fraction);
138         }
139         return true;
140     }
141 
142     @LayoutlibDelegate
nFinalize(long nativePtr)143     /*package*/ static void nFinalize(long nativePtr) {
144         sManager.removeJavaReferenceFor(nativePtr);
145     }
146 
147     @LayoutlibDelegate
nCanMorph(long fromDataPtr, long toDataPtr)148     /*package*/ static boolean nCanMorph(long fromDataPtr, long toDataPtr) {
149         PathParser_Delegate fromPath = PathParser_Delegate.getDelegate(fromDataPtr);
150         PathParser_Delegate toPath = PathParser_Delegate.getDelegate(toDataPtr);
151         if (fromPath == null || toPath == null || fromPath.getPathDataNodes() == null || toPath
152                 .getPathDataNodes() == null) {
153             return true;
154         }
155         return PathParser_Delegate.canMorph(fromPath.getPathDataNodes(), toPath.getPathDataNodes());
156     }
157 
158     @LayoutlibDelegate
nSetPathData(long outDataPtr, long fromDataPtr)159     /*package*/ static void nSetPathData(long outDataPtr, long fromDataPtr) {
160         PathParser_Delegate out = sManager.getDelegate(outDataPtr);
161         PathParser_Delegate from = sManager.getDelegate(fromDataPtr);
162         if (from == null || out == null) {
163             return;
164         }
165         out.mPathDataNodes = deepCopyNodes(from.mPathDataNodes);
166     }
167 
168     /**
169      * @param pathData The string representing a path, the same as "d" string in svg file.
170      *
171      * @return an array of the PathDataNode.
172      */
173     @NonNull
createNodesFromPathData(@onNull String pathData)174     public static PathDataNode[] createNodesFromPathData(@NonNull String pathData) {
175         int start = 0;
176         int end = 1;
177 
178         ArrayList<PathDataNode> list = new ArrayList<PathDataNode>();
179         while (end < pathData.length()) {
180             end = nextStart(pathData, end);
181             String s = pathData.substring(start, end).trim();
182             if (s.length() > 0) {
183                 float[] val = getFloats(s);
184                 addNode(list, s.charAt(0), val);
185             }
186 
187             start = end;
188             end++;
189         }
190         if ((end - start) == 1 && start < pathData.length()) {
191             addNode(list, pathData.charAt(start), new float[0]);
192         }
193         return list.toArray(new PathDataNode[list.size()]);
194     }
195 
196     /**
197      * @param source The array of PathDataNode to be duplicated.
198      *
199      * @return a deep copy of the <code>source</code>.
200      */
201     @NonNull
deepCopyNodes(@onNull PathDataNode[] source)202     public static PathDataNode[] deepCopyNodes(@NonNull PathDataNode[] source) {
203         PathDataNode[] copy = new PathDataNode[source.length];
204         for (int i = 0; i < source.length; i++) {
205             copy[i] = new PathDataNode(source[i]);
206         }
207         return copy;
208     }
209 
210     /**
211      * @param nodesFrom The source path represented in an array of PathDataNode
212      * @param nodesTo The target path represented in an array of PathDataNode
213      * @return whether the <code>nodesFrom</code> can morph into <code>nodesTo</code>
214      */
canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo)215     public static boolean canMorph(PathDataNode[] nodesFrom, PathDataNode[] nodesTo) {
216         if (nodesFrom == null || nodesTo == null) {
217             return false;
218         }
219 
220         if (nodesFrom.length != nodesTo.length) {
221             return false;
222         }
223 
224         for (int i = 0; i < nodesFrom.length; i ++) {
225             if (nodesFrom[i].mType != nodesTo[i].mType
226                     || nodesFrom[i].mParams.length != nodesTo[i].mParams.length) {
227                 return false;
228             }
229         }
230         return true;
231     }
232 
233     /**
234      * Update the target's data to match the source.
235      * Before calling this, make sure canMorph(target, source) is true.
236      *
237      * @param target The target path represented in an array of PathDataNode
238      * @param source The source path represented in an array of PathDataNode
239      */
updateNodes(PathDataNode[] target, PathDataNode[] source)240     public static void updateNodes(PathDataNode[] target, PathDataNode[] source) {
241         for (int i = 0; i < source.length; i ++) {
242             target[i].mType = source[i].mType;
243             for (int j = 0; j < source[i].mParams.length; j ++) {
244                 target[i].mParams[j] = source[i].mParams[j];
245             }
246         }
247     }
248 
nextStart(@onNull String s, int end)249     private static int nextStart(@NonNull String s, int end) {
250         char c;
251 
252         while (end < s.length()) {
253             c = s.charAt(end);
254             // Note that 'e' or 'E' are not valid path commands, but could be
255             // used for floating point numbers' scientific notation.
256             // Therefore, when searching for next command, we should ignore 'e'
257             // and 'E'.
258             if ((((c - 'A') * (c - 'Z') <= 0) || ((c - 'a') * (c - 'z') <= 0))
259                     && c != 'e' && c != 'E') {
260                 return end;
261             }
262             end++;
263         }
264         return end;
265     }
266 
267     /**
268      * Calculate the position of the next comma or space or negative sign
269      *
270      * @param s the string to search
271      * @param start the position to start searching
272      * @param result the result of the extraction, including the position of the the starting
273      * position of next number, whether it is ending with a '-'.
274      */
extract(@onNull String s, int start, @NonNull ExtractFloatResult result)275     private static void extract(@NonNull String s, int start, @NonNull ExtractFloatResult result) {
276         // Now looking for ' ', ',', '.' or '-' from the start.
277         int currentIndex = start;
278         boolean foundSeparator = false;
279         result.mEndWithNegOrDot = false;
280         boolean secondDot = false;
281         boolean isExponential = false;
282         for (; currentIndex < s.length(); currentIndex++) {
283             boolean isPrevExponential = isExponential;
284             isExponential = false;
285             char currentChar = s.charAt(currentIndex);
286             switch (currentChar) {
287                 case ' ':
288                 case ',':
289                 case '\t':
290                 case '\n':
291                     foundSeparator = true;
292                     break;
293                 case '-':
294                     // The negative sign following a 'e' or 'E' is not a separator.
295                     if (currentIndex != start && !isPrevExponential) {
296                         foundSeparator = true;
297                         result.mEndWithNegOrDot = true;
298                     }
299                     break;
300                 case '.':
301                     if (!secondDot) {
302                         secondDot = true;
303                     } else {
304                         // This is the second dot, and it is considered as a separator.
305                         foundSeparator = true;
306                         result.mEndWithNegOrDot = true;
307                     }
308                     break;
309                 case 'e':
310                 case 'E':
311                     isExponential = true;
312                     break;
313             }
314             if (foundSeparator) {
315                 break;
316             }
317         }
318         // When there is nothing found, then we put the end position to the end
319         // of the string.
320         result.mEndPosition = currentIndex;
321     }
322 
323     /**
324      * Parse the floats in the string. This is an optimized version of
325      * parseFloat(s.split(",|\\s"));
326      *
327      * @param s the string containing a command and list of floats
328      *
329      * @return array of floats
330      */
331     @NonNull
getFloats(@onNull String s)332     private static float[] getFloats(@NonNull String s) {
333         if (s.charAt(0) == 'z' || s.charAt(0) == 'Z') {
334             return new float[0];
335         }
336         try {
337             float[] results = new float[s.length()];
338             int count = 0;
339             int startPosition = 1;
340             int endPosition;
341 
342             ExtractFloatResult result = new ExtractFloatResult();
343             int totalLength = s.length();
344 
345             // The startPosition should always be the first character of the
346             // current number, and endPosition is the character after the current
347             // number.
348             while (startPosition < totalLength) {
349                 extract(s, startPosition, result);
350                 endPosition = result.mEndPosition;
351 
352                 if (startPosition < endPosition) {
353                     results[count++] = Float.parseFloat(
354                             s.substring(startPosition, endPosition));
355                 }
356 
357                 if (result.mEndWithNegOrDot) {
358                     // Keep the '-' or '.' sign with next number.
359                     startPosition = endPosition;
360                 } else {
361                     startPosition = endPosition + 1;
362                 }
363             }
364             return Arrays.copyOf(results, count);
365         } catch (NumberFormatException e) {
366             assert false : "error in parsing \"" + s + "\"" + e;
367             return new float[0];
368         }
369     }
370 
371 
addNode(@onNull ArrayList<PathDataNode> list, char cmd, @NonNull float[] val)372     private static void addNode(@NonNull ArrayList<PathDataNode> list, char cmd,
373             @NonNull float[] val) {
374         list.add(new PathDataNode(cmd, val));
375     }
376 
377     private static class ExtractFloatResult {
378         // We need to return the position of the next separator and whether the
379         // next float starts with a '-' or a '.'.
380         private int mEndPosition;
381         private boolean mEndWithNegOrDot;
382     }
383 
384     /**
385      * Each PathDataNode represents one command in the "d" attribute of the svg file. An array of
386      * PathDataNode can represent the whole "d" attribute.
387      */
388     public static class PathDataNode {
389         private char mType;
390         @NonNull
391         private float[] mParams;
392 
PathDataNode(char type, @NonNull float[] params)393         private PathDataNode(char type, @NonNull float[] params) {
394             mType = type;
395             mParams = params;
396         }
397 
getType()398         public char getType() {
399             return mType;
400         }
401 
402         @NonNull
getParams()403         public float[] getParams() {
404             return mParams;
405         }
406 
PathDataNode(@onNull PathDataNode n)407         private PathDataNode(@NonNull PathDataNode n) {
408             mType = n.mType;
409             mParams = Arrays.copyOf(n.mParams, n.mParams.length);
410         }
411 
412         /**
413          * Convert an array of PathDataNode to Path. Reset the passed path as needed before
414          * calling this method.
415          *
416          * @param node The source array of PathDataNode.
417          * @param path The target Path object.
418          */
nodesToPath(@onNull PathDataNode[] node, @NonNull Path_Delegate path)419         public static void nodesToPath(@NonNull PathDataNode[] node, @NonNull Path_Delegate path) {
420             float[] current = new float[6];
421             char previousCommand = 'm';
422             //noinspection ForLoopReplaceableByForEach
423             for (int i = 0; i < node.length; i++) {
424                 addCommand(path, current, previousCommand, node[i].mType, node[i].mParams);
425                 previousCommand = node[i].mType;
426             }
427         }
428 
429         /**
430          * The current PathDataNode will be interpolated between the <code>nodeFrom</code> and
431          * <code>nodeTo</code> according to the <code>fraction</code>.
432          *
433          * @param nodeFrom The start value as a PathDataNode.
434          * @param nodeTo The end value as a PathDataNode
435          * @param fraction The fraction to interpolate.
436          */
interpolatePathDataNode(@onNull PathDataNode nodeFrom, @NonNull PathDataNode nodeTo, float fraction)437         private void interpolatePathDataNode(@NonNull PathDataNode nodeFrom,
438                 @NonNull PathDataNode nodeTo, float fraction) {
439             for (int i = 0; i < nodeFrom.mParams.length; i++) {
440                 mParams[i] = nodeFrom.mParams[i] * (1 - fraction)
441                         + nodeTo.mParams[i] * fraction;
442             }
443         }
444 
445         @SuppressWarnings("PointlessArithmeticExpression")
addCommand(@onNull Path_Delegate path, float[] current, char previousCmd, char cmd, @NonNull float[] val)446         private static void addCommand(@NonNull Path_Delegate path, float[] current,
447                 char previousCmd, char cmd, @NonNull float[] val) {
448 
449             int incr = 2;
450             float currentX = current[0];
451             float currentY = current[1];
452             float ctrlPointX = current[2];
453             float ctrlPointY = current[3];
454             float currentSegmentStartX = current[4];
455             float currentSegmentStartY = current[5];
456             float reflectiveCtrlPointX;
457             float reflectiveCtrlPointY;
458 
459             switch (cmd) {
460                 case 'z':
461                 case 'Z':
462                     path.close();
463                     // Path is closed here, but we need to move the pen to the
464                     // closed position. So we cache the segment's starting position,
465                     // and restore it here.
466                     currentX = currentSegmentStartX;
467                     currentY = currentSegmentStartY;
468                     ctrlPointX = currentSegmentStartX;
469                     ctrlPointY = currentSegmentStartY;
470                     path.moveTo(currentX, currentY);
471                     break;
472                 case 'm':
473                 case 'M':
474                 case 'l':
475                 case 'L':
476                 case 't':
477                 case 'T':
478                     incr = 2;
479                     break;
480                 case 'h':
481                 case 'H':
482                 case 'v':
483                 case 'V':
484                     incr = 1;
485                     break;
486                 case 'c':
487                 case 'C':
488                     incr = 6;
489                     break;
490                 case 's':
491                 case 'S':
492                 case 'q':
493                 case 'Q':
494                     incr = 4;
495                     break;
496                 case 'a':
497                 case 'A':
498                     incr = 7;
499                     break;
500             }
501 
502             for (int k = 0; k < val.length; k += incr) {
503                 switch (cmd) {
504                     case 'm': // moveto - Start a new sub-path (relative)
505                         currentX += val[k + 0];
506                         currentY += val[k + 1];
507 
508                         if (k > 0) {
509                             // According to the spec, if a moveto is followed by multiple
510                             // pairs of coordinates, the subsequent pairs are treated as
511                             // implicit lineto commands.
512                             path.rLineTo(val[k + 0], val[k + 1]);
513                         } else {
514                             path.rMoveTo(val[k + 0], val[k + 1]);
515                             currentSegmentStartX = currentX;
516                             currentSegmentStartY = currentY;
517                         }
518                         break;
519                     case 'M': // moveto - Start a new sub-path
520                         currentX = val[k + 0];
521                         currentY = val[k + 1];
522 
523                         if (k > 0) {
524                             // According to the spec, if a moveto is followed by multiple
525                             // pairs of coordinates, the subsequent pairs are treated as
526                             // implicit lineto commands.
527                             path.lineTo(val[k + 0], val[k + 1]);
528                         } else {
529                             path.moveTo(val[k + 0], val[k + 1]);
530                             currentSegmentStartX = currentX;
531                             currentSegmentStartY = currentY;
532                         }
533                         break;
534                     case 'l': // lineto - Draw a line from the current point (relative)
535                         path.rLineTo(val[k + 0], val[k + 1]);
536                         currentX += val[k + 0];
537                         currentY += val[k + 1];
538                         break;
539                     case 'L': // lineto - Draw a line from the current point
540                         path.lineTo(val[k + 0], val[k + 1]);
541                         currentX = val[k + 0];
542                         currentY = val[k + 1];
543                         break;
544                     case 'h': // horizontal lineto - Draws a horizontal line (relative)
545                         path.rLineTo(val[k + 0], 0);
546                         currentX += val[k + 0];
547                         break;
548                     case 'H': // horizontal lineto - Draws a horizontal line
549                         path.lineTo(val[k + 0], currentY);
550                         currentX = val[k + 0];
551                         break;
552                     case 'v': // vertical lineto - Draws a vertical line from the current point (r)
553                         path.rLineTo(0, val[k + 0]);
554                         currentY += val[k + 0];
555                         break;
556                     case 'V': // vertical lineto - Draws a vertical line from the current point
557                         path.lineTo(currentX, val[k + 0]);
558                         currentY = val[k + 0];
559                         break;
560                     case 'c': // curveto - Draws a cubic Bézier curve (relative)
561                         path.rCubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
562                                 val[k + 4], val[k + 5]);
563 
564                         ctrlPointX = currentX + val[k + 2];
565                         ctrlPointY = currentY + val[k + 3];
566                         currentX += val[k + 4];
567                         currentY += val[k + 5];
568 
569                         break;
570                     case 'C': // curveto - Draws a cubic Bézier curve
571                         path.cubicTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3],
572                                 val[k + 4], val[k + 5]);
573                         currentX = val[k + 4];
574                         currentY = val[k + 5];
575                         ctrlPointX = val[k + 2];
576                         ctrlPointY = val[k + 3];
577                         break;
578                     case 's': // smooth curveto - Draws a cubic Bézier curve (reflective cp)
579                         reflectiveCtrlPointX = 0;
580                         reflectiveCtrlPointY = 0;
581                         if (previousCmd == 'c' || previousCmd == 's'
582                                 || previousCmd == 'C' || previousCmd == 'S') {
583                             reflectiveCtrlPointX = currentX - ctrlPointX;
584                             reflectiveCtrlPointY = currentY - ctrlPointY;
585                         }
586                         path.rCubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
587                                 val[k + 0], val[k + 1],
588                                 val[k + 2], val[k + 3]);
589 
590                         ctrlPointX = currentX + val[k + 0];
591                         ctrlPointY = currentY + val[k + 1];
592                         currentX += val[k + 2];
593                         currentY += val[k + 3];
594                         break;
595                     case 'S': // shorthand/smooth curveto Draws a cubic Bézier curve(reflective cp)
596                         reflectiveCtrlPointX = currentX;
597                         reflectiveCtrlPointY = currentY;
598                         if (previousCmd == 'c' || previousCmd == 's'
599                                 || previousCmd == 'C' || previousCmd == 'S') {
600                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
601                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
602                         }
603                         path.cubicTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
604                                 val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
605                         ctrlPointX = val[k + 0];
606                         ctrlPointY = val[k + 1];
607                         currentX = val[k + 2];
608                         currentY = val[k + 3];
609                         break;
610                     case 'q': // Draws a quadratic Bézier (relative)
611                         path.rQuadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
612                         ctrlPointX = currentX + val[k + 0];
613                         ctrlPointY = currentY + val[k + 1];
614                         currentX += val[k + 2];
615                         currentY += val[k + 3];
616                         break;
617                     case 'Q': // Draws a quadratic Bézier
618                         path.quadTo(val[k + 0], val[k + 1], val[k + 2], val[k + 3]);
619                         ctrlPointX = val[k + 0];
620                         ctrlPointY = val[k + 1];
621                         currentX = val[k + 2];
622                         currentY = val[k + 3];
623                         break;
624                     case 't': // Draws a quadratic Bézier curve(reflective control point)(relative)
625                         reflectiveCtrlPointX = 0;
626                         reflectiveCtrlPointY = 0;
627                         if (previousCmd == 'q' || previousCmd == 't'
628                                 || previousCmd == 'Q' || previousCmd == 'T') {
629                             reflectiveCtrlPointX = currentX - ctrlPointX;
630                             reflectiveCtrlPointY = currentY - ctrlPointY;
631                         }
632                         path.rQuadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
633                                 val[k + 0], val[k + 1]);
634                         ctrlPointX = currentX + reflectiveCtrlPointX;
635                         ctrlPointY = currentY + reflectiveCtrlPointY;
636                         currentX += val[k + 0];
637                         currentY += val[k + 1];
638                         break;
639                     case 'T': // Draws a quadratic Bézier curve (reflective control point)
640                         reflectiveCtrlPointX = currentX;
641                         reflectiveCtrlPointY = currentY;
642                         if (previousCmd == 'q' || previousCmd == 't'
643                                 || previousCmd == 'Q' || previousCmd == 'T') {
644                             reflectiveCtrlPointX = 2 * currentX - ctrlPointX;
645                             reflectiveCtrlPointY = 2 * currentY - ctrlPointY;
646                         }
647                         path.quadTo(reflectiveCtrlPointX, reflectiveCtrlPointY,
648                                 val[k + 0], val[k + 1]);
649                         ctrlPointX = reflectiveCtrlPointX;
650                         ctrlPointY = reflectiveCtrlPointY;
651                         currentX = val[k + 0];
652                         currentY = val[k + 1];
653                         break;
654                     case 'a': // Draws an elliptical arc
655                         // (rx ry x-axis-rotation large-arc-flag sweep-flag x y)
656                         drawArc(path,
657                                 currentX,
658                                 currentY,
659                                 val[k + 5] + currentX,
660                                 val[k + 6] + currentY,
661                                 val[k + 0],
662                                 val[k + 1],
663                                 val[k + 2],
664                                 val[k + 3] != 0,
665                                 val[k + 4] != 0);
666                         currentX += val[k + 5];
667                         currentY += val[k + 6];
668                         ctrlPointX = currentX;
669                         ctrlPointY = currentY;
670                         break;
671                     case 'A': // Draws an elliptical arc
672                         drawArc(path,
673                                 currentX,
674                                 currentY,
675                                 val[k + 5],
676                                 val[k + 6],
677                                 val[k + 0],
678                                 val[k + 1],
679                                 val[k + 2],
680                                 val[k + 3] != 0,
681                                 val[k + 4] != 0);
682                         currentX = val[k + 5];
683                         currentY = val[k + 6];
684                         ctrlPointX = currentX;
685                         ctrlPointY = currentY;
686                         break;
687                 }
688                 previousCmd = cmd;
689             }
690             current[0] = currentX;
691             current[1] = currentY;
692             current[2] = ctrlPointX;
693             current[3] = ctrlPointY;
694             current[4] = currentSegmentStartX;
695             current[5] = currentSegmentStartY;
696         }
697 
drawArc(@onNull Path_Delegate p, float x0, float y0, float x1, float y1, float a, float b, float theta, boolean isMoreThanHalf, boolean isPositiveArc)698         private static void drawArc(@NonNull Path_Delegate p, float x0, float y0, float x1,
699                 float y1, float a, float b, float theta, boolean isMoreThanHalf,
700                 boolean isPositiveArc) {
701 
702             LOGGER.log(Level.FINE, "(" + x0 + "," + y0 + ")-(" + x1 + "," + y1
703                     + ") {" + a + " " + b + "}");
704         /* Convert rotation angle from degrees to radians */
705             double thetaD = theta * Math.PI / 180.0f;
706         /* Pre-compute rotation matrix entries */
707             double cosTheta = Math.cos(thetaD);
708             double sinTheta = Math.sin(thetaD);
709         /* Transform (x0, y0) and (x1, y1) into unit space */
710         /* using (inverse) rotation, followed by (inverse) scale */
711             double x0p = (x0 * cosTheta + y0 * sinTheta) / a;
712             double y0p = (-x0 * sinTheta + y0 * cosTheta) / b;
713             double x1p = (x1 * cosTheta + y1 * sinTheta) / a;
714             double y1p = (-x1 * sinTheta + y1 * cosTheta) / b;
715             LOGGER.log(Level.FINE, "unit space (" + x0p + "," + y0p + ")-(" + x1p
716                     + "," + y1p + ")");
717         /* Compute differences and averages */
718             double dx = x0p - x1p;
719             double dy = y0p - y1p;
720             double xm = (x0p + x1p) / 2;
721             double ym = (y0p + y1p) / 2;
722         /* Solve for intersecting unit circles */
723             double dsq = dx * dx + dy * dy;
724             if (dsq == 0.0) {
725                 LOGGER.log(Level.FINE, " Points are coincident");
726                 return; /* Points are coincident */
727             }
728             double disc = 1.0 / dsq - 1.0 / 4.0;
729             if (disc < 0.0) {
730                 LOGGER.log(Level.FINE, "Points are too far apart " + dsq);
731                 float adjust = (float) (Math.sqrt(dsq) / 1.99999);
732                 drawArc(p, x0, y0, x1, y1, a * adjust, b * adjust, theta,
733                         isMoreThanHalf, isPositiveArc);
734                 return; /* Points are too far apart */
735             }
736             double s = Math.sqrt(disc);
737             double sdx = s * dx;
738             double sdy = s * dy;
739             double cx;
740             double cy;
741             if (isMoreThanHalf == isPositiveArc) {
742                 cx = xm - sdy;
743                 cy = ym + sdx;
744             } else {
745                 cx = xm + sdy;
746                 cy = ym - sdx;
747             }
748 
749             double eta0 = Math.atan2((y0p - cy), (x0p - cx));
750             LOGGER.log(Level.FINE, "eta0 = Math.atan2( " + (y0p - cy) + " , "
751                     + (x0p - cx) + ") = " + Math.toDegrees(eta0));
752 
753             double eta1 = Math.atan2((y1p - cy), (x1p - cx));
754             LOGGER.log(Level.FINE, "eta1 = Math.atan2( " + (y1p - cy) + " , "
755                     + (x1p - cx) + ") = " + Math.toDegrees(eta1));
756             double sweep = (eta1 - eta0);
757             if (isPositiveArc != (sweep >= 0)) {
758                 if (sweep > 0) {
759                     sweep -= 2 * Math.PI;
760                 } else {
761                     sweep += 2 * Math.PI;
762                 }
763             }
764 
765             cx *= a;
766             cy *= b;
767             double tcx = cx;
768             cx = cx * cosTheta - cy * sinTheta;
769             cy = tcx * sinTheta + cy * cosTheta;
770             LOGGER.log(
771                     Level.FINE,
772                     "cx, cy, a, b, x0, y0, thetaD, eta0, sweep = " + cx + " , "
773                             + cy + " , " + a + " , " + b + " , " + x0 + " , " + y0
774                             + " , " + Math.toDegrees(thetaD) + " , "
775                             + Math.toDegrees(eta0) + " , " + Math.toDegrees(sweep));
776 
777             arcToBezier(p, cx, cy, a, b, x0, y0, thetaD, eta0, sweep);
778         }
779 
780         /**
781          * Converts an arc to cubic Bezier segments and records them in p.
782          *
783          * @param p The target for the cubic Bezier segments
784          * @param cx The x coordinate center of the ellipse
785          * @param cy The y coordinate center of the ellipse
786          * @param a The radius of the ellipse in the horizontal direction
787          * @param b The radius of the ellipse in the vertical direction
788          * @param e1x E(eta1) x coordinate of the starting point of the arc
789          * @param e1y E(eta2) y coordinate of the starting point of the arc
790          * @param theta The angle that the ellipse bounding rectangle makes with the horizontal
791          * plane
792          * @param start The start angle of the arc on the ellipse
793          * @param sweep The angle (positive or negative) of the sweep of the arc on the ellipse
794          */
arcToBezier(@onNull Path_Delegate p, double cx, double cy, double a, double b, double e1x, double e1y, double theta, double start, double sweep)795         private static void arcToBezier(@NonNull Path_Delegate p, double cx, double cy, double a,
796                 double b, double e1x, double e1y, double theta, double start,
797                 double sweep) {
798             // Taken from equations at:
799             // http://spaceroots.org/documents/ellipse/node8.html
800             // and http://www.spaceroots.org/documents/ellipse/node22.html
801             // Maximum of 45 degrees per cubic Bezier segment
802             int numSegments = (int) Math.ceil(Math.abs(sweep * 4 / Math.PI));
803 
804 
805             double eta1 = start;
806             double cosTheta = Math.cos(theta);
807             double sinTheta = Math.sin(theta);
808             double cosEta1 = Math.cos(eta1);
809             double sinEta1 = Math.sin(eta1);
810             double ep1x = (-a * cosTheta * sinEta1) - (b * sinTheta * cosEta1);
811             double ep1y = (-a * sinTheta * sinEta1) + (b * cosTheta * cosEta1);
812 
813             double anglePerSegment = sweep / numSegments;
814             for (int i = 0; i < numSegments; i++) {
815                 double eta2 = eta1 + anglePerSegment;
816                 double sinEta2 = Math.sin(eta2);
817                 double cosEta2 = Math.cos(eta2);
818                 double e2x = cx + (a * cosTheta * cosEta2)
819                         - (b * sinTheta * sinEta2);
820                 double e2y = cy + (a * sinTheta * cosEta2)
821                         + (b * cosTheta * sinEta2);
822                 double ep2x = -a * cosTheta * sinEta2 - b * sinTheta * cosEta2;
823                 double ep2y = -a * sinTheta * sinEta2 + b * cosTheta * cosEta2;
824                 double tanDiff2 = Math.tan((eta2 - eta1) / 2);
825                 double alpha = Math.sin(eta2 - eta1)
826                         * (Math.sqrt(4 + (3 * tanDiff2 * tanDiff2)) - 1) / 3;
827                 double q1x = e1x + alpha * ep1x;
828                 double q1y = e1y + alpha * ep1y;
829                 double q2x = e2x - alpha * ep2x;
830                 double q2y = e2y - alpha * ep2y;
831 
832                 p.cubicTo((float) q1x,
833                         (float) q1y,
834                         (float) q2x,
835                         (float) q2y,
836                         (float) e2x,
837                         (float) e2y);
838                 eta1 = eta2;
839                 e1x = e2x;
840                 e1y = e2y;
841                 ep1x = ep2x;
842                 ep1y = ep2y;
843             }
844         }
845     }
846 }
847